]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - lib/bitmap.c
Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-jammy-kernel.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8bc3bcc9
PG
8#include <linux/export.h>
9#include <linux/thread_info.h>
1da177e4
LT
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
50af5ead 14#include <linux/bug.h>
e52bc7c2 15#include <linux/kernel.h>
ce1091d4 16#include <linux/mm.h>
c42b65e3 17#include <linux/slab.h>
e52bc7c2 18#include <linux/string.h>
13d4ea09 19#include <linux/uaccess.h>
5aaba363
SH
20
21#include <asm/page.h>
1da177e4 22
e371c481
YN
23#include "kstrtox.h"
24
7d7363e4
RD
25/**
26 * DOC: bitmap introduction
27 *
1da177e4
LT
28 * bitmaps provide an array of bits, implemented using an an
29 * array of unsigned longs. The number of valid bits in a
30 * given bitmap does _not_ need to be an exact multiple of
31 * BITS_PER_LONG.
32 *
33 * The possible unused bits in the last, partially used word
34 * of a bitmap are 'don't care'. The implementation makes
35 * no particular effort to keep them zero. It ensures that
36 * their value will not affect the results of any operation.
37 * The bitmap operations that return Boolean (bitmap_empty,
38 * for example) or scalar (bitmap_weight, for example) results
39 * carefully filter out these unused bits from impacting their
40 * results.
41 *
1da177e4
LT
42 * The byte ordering of bitmaps is more natural on little
43 * endian architectures. See the big-endian headers
44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45 * for the best explanations of this ordering.
46 */
47
1da177e4 48int __bitmap_equal(const unsigned long *bitmap1,
5e068069 49 const unsigned long *bitmap2, unsigned int bits)
1da177e4 50{
5e068069 51 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
52 for (k = 0; k < lim; ++k)
53 if (bitmap1[k] != bitmap2[k])
54 return 0;
55
56 if (bits % BITS_PER_LONG)
57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58 return 0;
59
60 return 1;
61}
62EXPORT_SYMBOL(__bitmap_equal);
63
3d6684f4 64void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 65{
ca1250bb 66 unsigned int k, lim = BITS_TO_LONGS(bits);
1da177e4
LT
67 for (k = 0; k < lim; ++k)
68 dst[k] = ~src[k];
1da177e4
LT
69}
70EXPORT_SYMBOL(__bitmap_complement);
71
72fd4a35 72/**
1da177e4 73 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
74 * @dst : destination bitmap
75 * @src : source bitmap
76 * @shift : shift by this many bits
2fbad299 77 * @nbits : bitmap size, in bits
1da177e4
LT
78 *
79 * Shifting right (dividing) means moving bits in the MS -> LS bit
80 * direction. Zeros are fed into the vacated MS positions and the
81 * LS bits shifted off the bottom are lost.
82 */
2fbad299
RV
83void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
84 unsigned shift, unsigned nbits)
1da177e4 85{
cfac1d08 86 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 87 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 88 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
89 for (k = 0; off + k < lim; ++k) {
90 unsigned long upper, lower;
91
92 /*
93 * If shift is not word aligned, take lower rem bits of
94 * word above and make them the top rem bits of result.
95 */
96 if (!rem || off + k + 1 >= lim)
97 upper = 0;
98 else {
99 upper = src[off + k + 1];
cfac1d08 100 if (off + k + 1 == lim - 1)
1da177e4 101 upper &= mask;
9d8a6b2a 102 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
103 }
104 lower = src[off + k];
cfac1d08 105 if (off + k == lim - 1)
1da177e4 106 lower &= mask;
9d8a6b2a
RV
107 lower >>= rem;
108 dst[k] = lower | upper;
1da177e4
LT
109 }
110 if (off)
111 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
112}
113EXPORT_SYMBOL(__bitmap_shift_right);
114
115
72fd4a35 116/**
1da177e4 117 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
118 * @dst : destination bitmap
119 * @src : source bitmap
120 * @shift : shift by this many bits
dba94c25 121 * @nbits : bitmap size, in bits
1da177e4
LT
122 *
123 * Shifting left (multiplying) means moving bits in the LS -> MS
124 * direction. Zeros are fed into the vacated LS bit positions
125 * and those MS bits shifted off the top are lost.
126 */
127
dba94c25
RV
128void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
129 unsigned int shift, unsigned int nbits)
1da177e4 130{
dba94c25 131 int k;
7f590657 132 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 133 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
134 for (k = lim - off - 1; k >= 0; --k) {
135 unsigned long upper, lower;
136
137 /*
138 * If shift is not word aligned, take upper rem bits of
139 * word below and make them the bottom rem bits of result.
140 */
141 if (rem && k > 0)
6d874eca 142 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
143 else
144 lower = 0;
7f590657 145 upper = src[k] << rem;
6d874eca 146 dst[k + off] = lower | upper;
1da177e4
LT
147 }
148 if (off)
149 memset(dst, 0, off*sizeof(unsigned long));
150}
151EXPORT_SYMBOL(__bitmap_shift_left);
152
f4b0373b 153int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 154 const unsigned long *bitmap2, unsigned int bits)
1da177e4 155{
2f9305eb 156 unsigned int k;
7e5f97d1 157 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 158 unsigned long result = 0;
1da177e4 159
7e5f97d1 160 for (k = 0; k < lim; k++)
f4b0373b 161 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
162 if (bits % BITS_PER_LONG)
163 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
164 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 165 return result != 0;
1da177e4
LT
166}
167EXPORT_SYMBOL(__bitmap_and);
168
169void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 170 const unsigned long *bitmap2, unsigned int bits)
1da177e4 171{
2f9305eb
RV
172 unsigned int k;
173 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
174
175 for (k = 0; k < nr; k++)
176 dst[k] = bitmap1[k] | bitmap2[k];
177}
178EXPORT_SYMBOL(__bitmap_or);
179
180void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 181 const unsigned long *bitmap2, unsigned int bits)
1da177e4 182{
2f9305eb
RV
183 unsigned int k;
184 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
185
186 for (k = 0; k < nr; k++)
187 dst[k] = bitmap1[k] ^ bitmap2[k];
188}
189EXPORT_SYMBOL(__bitmap_xor);
190
f4b0373b 191int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 192 const unsigned long *bitmap2, unsigned int bits)
1da177e4 193{
2f9305eb 194 unsigned int k;
74e76531 195 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 196 unsigned long result = 0;
1da177e4 197
74e76531 198 for (k = 0; k < lim; k++)
f4b0373b 199 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
200 if (bits % BITS_PER_LONG)
201 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
202 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 203 return result != 0;
1da177e4
LT
204}
205EXPORT_SYMBOL(__bitmap_andnot);
206
207int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 208 const unsigned long *bitmap2, unsigned int bits)
1da177e4 209{
6dfe9799 210 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
211 for (k = 0; k < lim; ++k)
212 if (bitmap1[k] & bitmap2[k])
213 return 1;
214
215 if (bits % BITS_PER_LONG)
216 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
217 return 1;
218 return 0;
219}
220EXPORT_SYMBOL(__bitmap_intersects);
221
222int __bitmap_subset(const unsigned long *bitmap1,
5be20213 223 const unsigned long *bitmap2, unsigned int bits)
1da177e4 224{
5be20213 225 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
226 for (k = 0; k < lim; ++k)
227 if (bitmap1[k] & ~bitmap2[k])
228 return 0;
229
230 if (bits % BITS_PER_LONG)
231 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
232 return 0;
233 return 1;
234}
235EXPORT_SYMBOL(__bitmap_subset);
236
877d9f3b 237int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 238{
877d9f3b
RV
239 unsigned int k, lim = bits/BITS_PER_LONG;
240 int w = 0;
1da177e4
LT
241
242 for (k = 0; k < lim; k++)
37d54111 243 w += hweight_long(bitmap[k]);
1da177e4
LT
244
245 if (bits % BITS_PER_LONG)
37d54111 246 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
247
248 return w;
249}
1da177e4
LT
250EXPORT_SYMBOL(__bitmap_weight);
251
e5af323c 252void __bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
253{
254 unsigned long *p = map + BIT_WORD(start);
fb5ac542 255 const unsigned int size = start + len;
c1a2a962
AM
256 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
257 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
258
fb5ac542 259 while (len - bits_to_set >= 0) {
c1a2a962 260 *p |= mask_to_set;
fb5ac542 261 len -= bits_to_set;
c1a2a962
AM
262 bits_to_set = BITS_PER_LONG;
263 mask_to_set = ~0UL;
264 p++;
265 }
fb5ac542 266 if (len) {
c1a2a962
AM
267 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
268 *p |= mask_to_set;
269 }
270}
e5af323c 271EXPORT_SYMBOL(__bitmap_set);
c1a2a962 272
e5af323c 273void __bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
274{
275 unsigned long *p = map + BIT_WORD(start);
154f5e38 276 const unsigned int size = start + len;
c1a2a962
AM
277 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
278 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
279
154f5e38 280 while (len - bits_to_clear >= 0) {
c1a2a962 281 *p &= ~mask_to_clear;
154f5e38 282 len -= bits_to_clear;
c1a2a962
AM
283 bits_to_clear = BITS_PER_LONG;
284 mask_to_clear = ~0UL;
285 p++;
286 }
154f5e38 287 if (len) {
c1a2a962
AM
288 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
289 *p &= ~mask_to_clear;
290 }
291}
e5af323c 292EXPORT_SYMBOL(__bitmap_clear);
c1a2a962 293
5e19b013
MN
294/**
295 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
296 * @map: The address to base the search on
297 * @size: The bitmap size in bits
298 * @start: The bitnumber to start searching at
299 * @nr: The number of zeroed bits we're looking for
300 * @align_mask: Alignment mask for zero area
5e19b013 301 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
302 *
303 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
304 * the bit offset of all zero areas this function finds plus @align_offset
305 * is multiple of that power of 2.
c1a2a962 306 */
5e19b013
MN
307unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
308 unsigned long size,
309 unsigned long start,
310 unsigned int nr,
311 unsigned long align_mask,
312 unsigned long align_offset)
c1a2a962
AM
313{
314 unsigned long index, end, i;
315again:
316 index = find_next_zero_bit(map, size, start);
317
318 /* Align allocation */
5e19b013 319 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
320
321 end = index + nr;
322 if (end > size)
323 return end;
324 i = find_next_bit(map, end, index);
325 if (i < end) {
326 start = i + 1;
327 goto again;
328 }
329 return index;
330}
5e19b013 331EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 332
1da177e4 333/*
6d49e352 334 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
335 * second version by Paul Jackson, third by Joe Korty.
336 */
337
338#define CHUNKSZ 32
339#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
340#define BASEDEC 10 /* fancier cpuset lists input in decimal */
341
1da177e4 342/**
01a3ee2b
RC
343 * __bitmap_parse - convert an ASCII hex string into a bitmap.
344 * @buf: pointer to buffer containing string.
345 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 346 * then it must be terminated with a \0.
01a3ee2b 347 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
348 * @maskp: pointer to bitmap array that will contain result.
349 * @nmaskbits: size of bitmap, in bits.
350 *
351 * Commas group hex digits into chunks. Each chunk defines exactly 32
352 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
353 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
354 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
355 * characters and for grouping errors such as "1,,5", ",44", "," and "".
356 * Leading and trailing whitespace accepted, but not embedded whitespace.
357 */
01a3ee2b
RC
358int __bitmap_parse(const char *buf, unsigned int buflen,
359 int is_user, unsigned long *maskp,
360 int nmaskbits)
1da177e4
LT
361{
362 int c, old_c, totaldigits, ndigits, nchunks, nbits;
363 u32 chunk;
b9c321fd 364 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
365
366 bitmap_zero(maskp, nmaskbits);
367
368 nchunks = nbits = totaldigits = c = 0;
369 do {
d21c3d4d
PX
370 chunk = 0;
371 ndigits = totaldigits;
1da177e4
LT
372
373 /* Get the next chunk of the bitmap */
01a3ee2b 374 while (buflen) {
1da177e4 375 old_c = c;
01a3ee2b
RC
376 if (is_user) {
377 if (__get_user(c, ubuf++))
378 return -EFAULT;
379 }
380 else
381 c = *buf++;
382 buflen--;
1da177e4
LT
383 if (isspace(c))
384 continue;
385
386 /*
387 * If the last character was a space and the current
388 * character isn't '\0', we've got embedded whitespace.
389 * This is a no-no, so throw an error.
390 */
391 if (totaldigits && c && isspace(old_c))
392 return -EINVAL;
393
394 /* A '\0' or a ',' signal the end of the chunk */
395 if (c == '\0' || c == ',')
396 break;
397
398 if (!isxdigit(c))
399 return -EINVAL;
400
401 /*
402 * Make sure there are at least 4 free bits in 'chunk'.
403 * If not, this hexdigit will overflow 'chunk', so
404 * throw an error.
405 */
406 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
407 return -EOVERFLOW;
408
66f1991b 409 chunk = (chunk << 4) | hex_to_bin(c);
d21c3d4d 410 totaldigits++;
1da177e4 411 }
d21c3d4d 412 if (ndigits == totaldigits)
1da177e4
LT
413 return -EINVAL;
414 if (nchunks == 0 && chunk == 0)
415 continue;
416
417 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
418 *maskp |= chunk;
419 nchunks++;
420 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
421 if (nbits > nmaskbits)
422 return -EOVERFLOW;
01a3ee2b 423 } while (buflen && c == ',');
1da177e4
LT
424
425 return 0;
426}
01a3ee2b
RC
427EXPORT_SYMBOL(__bitmap_parse);
428
429/**
9a86e2ba 430 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
431 *
432 * @ubuf: pointer to user buffer containing string.
433 * @ulen: buffer size in bytes. If string is smaller than this
434 * then it must be terminated with a \0.
435 * @maskp: pointer to bitmap array that will contain result.
436 * @nmaskbits: size of bitmap, in bits.
437 *
438 * Wrapper for __bitmap_parse(), providing it with user buffer.
439 *
440 * We cannot have this as an inline function in bitmap.h because it needs
441 * linux/uaccess.h to get the access_ok() declaration and this causes
442 * cyclic dependencies.
443 */
444int bitmap_parse_user(const char __user *ubuf,
445 unsigned int ulen, unsigned long *maskp,
446 int nmaskbits)
447{
96d4f267 448 if (!access_ok(ubuf, ulen))
01a3ee2b 449 return -EFAULT;
b9c321fd
HS
450 return __bitmap_parse((const char __force *)ubuf,
451 ulen, 1, maskp, nmaskbits);
452
01a3ee2b
RC
453}
454EXPORT_SYMBOL(bitmap_parse_user);
1da177e4 455
5aaba363
SH
456/**
457 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
458 * @list: indicates whether the bitmap must be list
459 * @buf: page aligned buffer into which string is placed
460 * @maskp: pointer to bitmap to convert
461 * @nmaskbits: size of bitmap, in bits
462 *
463 * Output format is a comma-separated list of decimal numbers and
464 * ranges if list is specified or hex digits grouped into comma-separated
465 * sets of 8 digits/set. Returns the number of characters written to buf.
9cf79d11 466 *
ce1091d4
RV
467 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
468 * area and that sufficient storage remains at @buf to accommodate the
469 * bitmap_print_to_pagebuf() output. Returns the number of characters
470 * actually printed to @buf, excluding terminating '\0'.
5aaba363
SH
471 */
472int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
473 int nmaskbits)
474{
ce1091d4 475 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
5aaba363 476
8ec3d768
RV
477 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
478 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
5aaba363
SH
479}
480EXPORT_SYMBOL(bitmap_print_to_pagebuf);
481
e371c481
YN
482/*
483 * Region 9-38:4/10 describes the following bitmap structure:
484 * 0 9 12 18 38
485 * .........****......****......****......
486 * ^ ^ ^ ^
487 * start off group_len end
488 */
489struct region {
490 unsigned int start;
491 unsigned int off;
492 unsigned int group_len;
493 unsigned int end;
494};
495
496static int bitmap_set_region(const struct region *r,
497 unsigned long *bitmap, int nbits)
498{
499 unsigned int start;
500
501 if (r->end >= nbits)
502 return -ERANGE;
503
504 for (start = r->start; start <= r->end; start += r->group_len)
505 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
506
507 return 0;
508}
509
510static int bitmap_check_region(const struct region *r)
511{
512 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
513 return -EINVAL;
514
515 return 0;
516}
517
518static const char *bitmap_getnum(const char *str, unsigned int *num)
519{
520 unsigned long long n;
521 unsigned int len;
522
523 len = _parse_integer(str, 10, &n);
524 if (!len)
525 return ERR_PTR(-EINVAL);
526 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
527 return ERR_PTR(-EOVERFLOW);
528
529 *num = n;
530 return str + len;
531}
532
533static inline bool end_of_str(char c)
534{
535 return c == '\0' || c == '\n';
536}
537
538static inline bool __end_of_region(char c)
539{
540 return isspace(c) || c == ',';
541}
542
543static inline bool end_of_region(char c)
544{
545 return __end_of_region(c) || end_of_str(c);
546}
547
548/*
549 * The format allows commas and whitespases at the beginning
550 * of the region.
551 */
552static const char *bitmap_find_region(const char *str)
553{
554 while (__end_of_region(*str))
555 str++;
556
557 return end_of_str(*str) ? NULL : str;
558}
559
560static const char *bitmap_parse_region(const char *str, struct region *r)
561{
562 str = bitmap_getnum(str, &r->start);
563 if (IS_ERR(str))
564 return str;
565
566 if (end_of_region(*str))
567 goto no_end;
568
569 if (*str != '-')
570 return ERR_PTR(-EINVAL);
571
572 str = bitmap_getnum(str + 1, &r->end);
573 if (IS_ERR(str))
574 return str;
575
576 if (end_of_region(*str))
577 goto no_pattern;
578
579 if (*str != ':')
580 return ERR_PTR(-EINVAL);
581
582 str = bitmap_getnum(str + 1, &r->off);
583 if (IS_ERR(str))
584 return str;
585
586 if (*str != '/')
587 return ERR_PTR(-EINVAL);
588
589 return bitmap_getnum(str + 1, &r->group_len);
590
591no_end:
592 r->end = r->start;
593no_pattern:
594 r->off = r->end + 1;
595 r->group_len = r->end + 1;
596
597 return end_of_str(*str) ? NULL : str;
598}
599
1da177e4 600/**
e371c481
YN
601 * bitmap_parselist - convert list format ASCII string to bitmap
602 * @buf: read user string from this buffer; must be terminated
603 * with a \0 or \n.
6e1907ff 604 * @maskp: write resulting mask here
1da177e4
LT
605 * @nmaskbits: number of bits in mask to be written
606 *
607 * Input format is a comma-separated list of decimal numbers and
608 * ranges. Consecutively set bits are shown as two hyphen-separated
609 * decimal numbers, the smallest and largest bit numbers set in
610 * the range.
2d13e6ca
NC
611 * Optionally each range can be postfixed to denote that only parts of it
612 * should be set. The range will divided to groups of specific size.
613 * From each group will be used only defined amount of bits.
614 * Syntax: range:used_size/group_size
615 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
1da177e4 616 *
40bf19a8
MCC
617 * Returns: 0 on success, -errno on invalid input strings. Error values:
618 *
e371c481 619 * - ``-EINVAL``: wrong region format
40bf19a8
MCC
620 * - ``-EINVAL``: invalid character in string
621 * - ``-ERANGE``: bit number specified too large for mask
e371c481 622 * - ``-EOVERFLOW``: integer overflow in the input parameters
1da177e4 623 */
e371c481 624int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
1da177e4 625{
e371c481
YN
626 struct region r;
627 long ret;
1da177e4
LT
628
629 bitmap_zero(maskp, nmaskbits);
4b060420 630
e371c481
YN
631 while (buf) {
632 buf = bitmap_find_region(buf);
633 if (buf == NULL)
634 return 0;
2d13e6ca 635
e371c481
YN
636 buf = bitmap_parse_region(buf, &r);
637 if (IS_ERR(buf))
638 return PTR_ERR(buf);
2d13e6ca 639
e371c481
YN
640 ret = bitmap_check_region(&r);
641 if (ret)
642 return ret;
4b060420 643
e371c481
YN
644 ret = bitmap_set_region(&r, maskp, nmaskbits);
645 if (ret)
646 return ret;
647 }
4b060420 648
1da177e4
LT
649 return 0;
650}
651EXPORT_SYMBOL(bitmap_parselist);
652
4b060420
MT
653
654/**
655 * bitmap_parselist_user()
656 *
657 * @ubuf: pointer to user buffer containing string.
658 * @ulen: buffer size in bytes. If string is smaller than this
659 * then it must be terminated with a \0.
660 * @maskp: pointer to bitmap array that will contain result.
661 * @nmaskbits: size of bitmap, in bits.
662 *
663 * Wrapper for bitmap_parselist(), providing it with user buffer.
4b060420
MT
664 */
665int bitmap_parselist_user(const char __user *ubuf,
666 unsigned int ulen, unsigned long *maskp,
667 int nmaskbits)
668{
281327c9
YN
669 char *buf;
670 int ret;
671
672 buf = memdup_user_nul(ubuf, ulen);
673 if (IS_ERR(buf))
674 return PTR_ERR(buf);
675
676 ret = bitmap_parselist(buf, maskp, nmaskbits);
677
678 kfree(buf);
679 return ret;
4b060420
MT
680}
681EXPORT_SYMBOL(bitmap_parselist_user);
682
683
cdc90a18 684#ifdef CONFIG_NUMA
72fd4a35 685/**
9a86e2ba 686 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 687 * @buf: pointer to a bitmap
df1d80a9
RV
688 * @pos: a bit position in @buf (0 <= @pos < @nbits)
689 * @nbits: number of valid bit positions in @buf
fb5eeeee 690 *
df1d80a9 691 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 692 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 693 * is not a valid bit position, map to -1.
fb5eeeee
PJ
694 *
695 * If for example, just bits 4 through 7 are set in @buf, then @pos
696 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 697 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
698 * gets mapped to (returns) @ord value 3 in this example, that means
699 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
700 *
701 * The bit positions 0 through @bits are valid positions in @buf.
702 */
df1d80a9 703static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 704{
df1d80a9 705 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 706 return -1;
fb5eeeee 707
df1d80a9 708 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
709}
710
711/**
9a86e2ba 712 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
713 * @buf: pointer to bitmap
714 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 715 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
716 *
717 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
718 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
719 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
720 *
721 * If for example, just bits 4 through 7 are set in @buf, then @ord
722 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 723 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
724 * gets mapped to (returns) @pos value 7 in this example, that means
725 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
726 *
f6a1f5db 727 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 728 */
f6a1f5db 729unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 730{
f6a1f5db 731 unsigned int pos;
fb5eeeee 732
f6a1f5db
RV
733 for (pos = find_first_bit(buf, nbits);
734 pos < nbits && ord;
735 pos = find_next_bit(buf, nbits, pos + 1))
736 ord--;
fb5eeeee
PJ
737
738 return pos;
739}
740
741/**
742 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 743 * @dst: remapped result
96b7f341 744 * @src: subset to be remapped
fb5eeeee
PJ
745 * @old: defines domain of map
746 * @new: defines range of map
9814ec13 747 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
748 *
749 * Let @old and @new define a mapping of bit positions, such that
750 * whatever position is held by the n-th set bit in @old is mapped
751 * to the n-th set bit in @new. In the more general case, allowing
752 * for the possibility that the weight 'w' of @new is less than the
753 * weight of @old, map the position of the n-th set bit in @old to
754 * the position of the m-th set bit in @new, where m == n % w.
755 *
96b7f341
PJ
756 * If either of the @old and @new bitmaps are empty, or if @src and
757 * @dst point to the same location, then this routine copies @src
758 * to @dst.
fb5eeeee 759 *
96b7f341
PJ
760 * The positions of unset bits in @old are mapped to themselves
761 * (the identify map).
fb5eeeee
PJ
762 *
763 * Apply the above specified mapping to @src, placing the result in
764 * @dst, clearing any bits previously set in @dst.
765 *
fb5eeeee
PJ
766 * For example, lets say that @old has bits 4 through 7 set, and
767 * @new has bits 12 through 15 set. This defines the mapping of bit
768 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
769 * bit positions unchanged. So if say @src comes into this routine
770 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
771 * 13 and 15 set.
fb5eeeee
PJ
772 */
773void bitmap_remap(unsigned long *dst, const unsigned long *src,
774 const unsigned long *old, const unsigned long *new,
9814ec13 775 unsigned int nbits)
fb5eeeee 776{
9814ec13 777 unsigned int oldbit, w;
fb5eeeee 778
fb5eeeee
PJ
779 if (dst == src) /* following doesn't handle inplace remaps */
780 return;
9814ec13 781 bitmap_zero(dst, nbits);
96b7f341 782
9814ec13
RV
783 w = bitmap_weight(new, nbits);
784 for_each_set_bit(oldbit, src, nbits) {
785 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 786
96b7f341
PJ
787 if (n < 0 || w == 0)
788 set_bit(oldbit, dst); /* identity map */
789 else
9814ec13 790 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
791 }
792}
fb5eeeee
PJ
793
794/**
795 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
796 * @oldbit: bit position to be mapped
797 * @old: defines domain of map
798 * @new: defines range of map
799 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
800 *
801 * Let @old and @new define a mapping of bit positions, such that
802 * whatever position is held by the n-th set bit in @old is mapped
803 * to the n-th set bit in @new. In the more general case, allowing
804 * for the possibility that the weight 'w' of @new is less than the
805 * weight of @old, map the position of the n-th set bit in @old to
806 * the position of the m-th set bit in @new, where m == n % w.
807 *
96b7f341
PJ
808 * The positions of unset bits in @old are mapped to themselves
809 * (the identify map).
fb5eeeee
PJ
810 *
811 * Apply the above specified mapping to bit position @oldbit, returning
812 * the new bit position.
813 *
814 * For example, lets say that @old has bits 4 through 7 set, and
815 * @new has bits 12 through 15 set. This defines the mapping of bit
816 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
817 * bit positions unchanged. So if say @oldbit is 5, then this routine
818 * returns 13.
fb5eeeee
PJ
819 */
820int bitmap_bitremap(int oldbit, const unsigned long *old,
821 const unsigned long *new, int bits)
822{
96b7f341
PJ
823 int w = bitmap_weight(new, bits);
824 int n = bitmap_pos_to_ord(old, oldbit, bits);
825 if (n < 0 || w == 0)
826 return oldbit;
827 else
828 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee 829}
fb5eeeee 830
7ea931c9
PJ
831/**
832 * bitmap_onto - translate one bitmap relative to another
833 * @dst: resulting translated bitmap
834 * @orig: original untranslated bitmap
835 * @relmap: bitmap relative to which translated
836 * @bits: number of bits in each of these bitmaps
837 *
838 * Set the n-th bit of @dst iff there exists some m such that the
839 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
840 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
841 * (If you understood the previous sentence the first time your
842 * read it, you're overqualified for your current job.)
843 *
844 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 845 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
846 * m-th set bit of @relmap }.
847 *
848 * Any set bits in @orig above bit number W, where W is the
849 * weight of (number of set bits in) @relmap are mapped nowhere.
850 * In particular, if for all bits m set in @orig, m >= W, then
851 * @dst will end up empty. In situations where the possibility
852 * of such an empty result is not desired, one way to avoid it is
853 * to use the bitmap_fold() operator, below, to first fold the
854 * @orig bitmap over itself so that all its set bits x are in the
855 * range 0 <= x < W. The bitmap_fold() operator does this by
856 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
857 *
858 * Example [1] for bitmap_onto():
859 * Let's say @relmap has bits 30-39 set, and @orig has bits
860 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
861 * @dst will have bits 31, 33, 35, 37 and 39 set.
862 *
863 * When bit 0 is set in @orig, it means turn on the bit in
864 * @dst corresponding to whatever is the first bit (if any)
865 * that is turned on in @relmap. Since bit 0 was off in the
866 * above example, we leave off that bit (bit 30) in @dst.
867 *
868 * When bit 1 is set in @orig (as in the above example), it
869 * means turn on the bit in @dst corresponding to whatever
870 * is the second bit that is turned on in @relmap. The second
871 * bit in @relmap that was turned on in the above example was
872 * bit 31, so we turned on bit 31 in @dst.
873 *
874 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
875 * because they were the 4th, 6th, 8th and 10th set bits
876 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
877 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
878 *
879 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 880 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
881 * turned on in @relmap. In the above example, there were
882 * only ten bits turned on in @relmap (30..39), so that bit
883 * 11 was set in @orig had no affect on @dst.
884 *
885 * Example [2] for bitmap_fold() + bitmap_onto():
40bf19a8
MCC
886 * Let's say @relmap has these ten bits set::
887 *
7ea931c9 888 * 40 41 42 43 45 48 53 61 74 95
40bf19a8 889 *
7ea931c9
PJ
890 * (for the curious, that's 40 plus the first ten terms of the
891 * Fibonacci sequence.)
892 *
893 * Further lets say we use the following code, invoking
894 * bitmap_fold() then bitmap_onto, as suggested above to
40bf19a8 895 * avoid the possibility of an empty @dst result::
7ea931c9
PJ
896 *
897 * unsigned long *tmp; // a temporary bitmap's bits
898 *
899 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
900 * bitmap_onto(dst, tmp, relmap, bits);
901 *
902 * Then this table shows what various values of @dst would be, for
903 * various @orig's. I list the zero-based positions of each set bit.
904 * The tmp column shows the intermediate result, as computed by
905 * using bitmap_fold() to fold the @orig bitmap modulo ten
40bf19a8 906 * (the weight of @relmap):
7ea931c9 907 *
40bf19a8 908 * =============== ============== =================
7ea931c9
PJ
909 * @orig tmp @dst
910 * 0 0 40
911 * 1 1 41
912 * 9 9 95
40bf19a8 913 * 10 0 40 [#f1]_
7ea931c9
PJ
914 * 1 3 5 7 1 3 5 7 41 43 48 61
915 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
916 * 0 9 18 27 0 9 8 7 40 61 74 95
917 * 0 10 20 30 0 40
918 * 0 11 22 33 0 1 2 3 40 41 42 43
919 * 0 12 24 36 0 2 4 6 40 42 45 53
40bf19a8
MCC
920 * 78 102 211 1 2 8 41 42 74 [#f1]_
921 * =============== ============== =================
922 *
923 * .. [#f1]
7ea931c9 924 *
40bf19a8 925 * For these marked lines, if we hadn't first done bitmap_fold()
7ea931c9
PJ
926 * into tmp, then the @dst result would have been empty.
927 *
928 * If either of @orig or @relmap is empty (no set bits), then @dst
929 * will be returned empty.
930 *
931 * If (as explained above) the only set bits in @orig are in positions
932 * m where m >= W, (where W is the weight of @relmap) then @dst will
933 * once again be returned empty.
934 *
935 * All bits in @dst not set by the above rule are cleared.
936 */
937void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 938 const unsigned long *relmap, unsigned int bits)
7ea931c9 939{
eb569883 940 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
941
942 if (dst == orig) /* following doesn't handle inplace mappings */
943 return;
944 bitmap_zero(dst, bits);
945
946 /*
947 * The following code is a more efficient, but less
948 * obvious, equivalent to the loop:
949 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
950 * n = bitmap_ord_to_pos(orig, m, bits);
951 * if (test_bit(m, orig))
952 * set_bit(n, dst);
953 * }
954 */
955
956 m = 0;
08564fb7 957 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
958 /* m == bitmap_pos_to_ord(relmap, n, bits) */
959 if (test_bit(m, orig))
960 set_bit(n, dst);
961 m++;
962 }
963}
7ea931c9
PJ
964
965/**
966 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
967 * @dst: resulting smaller bitmap
968 * @orig: original larger bitmap
969 * @sz: specified size
b26ad583 970 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
971 *
972 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
973 * Clear all other bits in @dst. See further the comment and
974 * Example [2] for bitmap_onto() for why and how to use this.
975 */
976void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 977 unsigned int sz, unsigned int nbits)
7ea931c9 978{
b26ad583 979 unsigned int oldbit;
7ea931c9
PJ
980
981 if (dst == orig) /* following doesn't handle inplace mappings */
982 return;
b26ad583 983 bitmap_zero(dst, nbits);
7ea931c9 984
b26ad583 985 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
986 set_bit(oldbit % sz, dst);
987}
cdc90a18 988#endif /* CONFIG_NUMA */
7ea931c9 989
3cf64b93
PJ
990/*
991 * Common code for bitmap_*_region() routines.
992 * bitmap: array of unsigned longs corresponding to the bitmap
993 * pos: the beginning of the region
994 * order: region size (log base 2 of number of bits)
995 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 996 *
3cf64b93
PJ
997 * Can set, verify and/or release a region of bits in a bitmap,
998 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 999 *
3cf64b93
PJ
1000 * A region of a bitmap is a sequence of bits in the bitmap, of
1001 * some size '1 << order' (a power of two), aligned to that same
1002 * '1 << order' power of two.
1003 *
1004 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1005 * Returns 0 in all other cases and reg_ops.
1da177e4 1006 */
3cf64b93
PJ
1007
1008enum {
1009 REG_OP_ISFREE, /* true if region is all zero bits */
1010 REG_OP_ALLOC, /* set all bits in region */
1011 REG_OP_RELEASE, /* clear all bits in region */
1012};
1013
9279d328 1014static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 1015{
3cf64b93
PJ
1016 int nbits_reg; /* number of bits in region */
1017 int index; /* index first long of region in bitmap */
1018 int offset; /* bit offset region in bitmap[index] */
1019 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1020 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1021 unsigned long mask; /* bitmask for one long of region */
74373c6a 1022 int i; /* scans bitmap by longs */
3cf64b93 1023 int ret = 0; /* return value */
74373c6a 1024
3cf64b93
PJ
1025 /*
1026 * Either nlongs_reg == 1 (for small orders that fit in one long)
1027 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1028 */
1029 nbits_reg = 1 << order;
1030 index = pos / BITS_PER_LONG;
1031 offset = pos - (index * BITS_PER_LONG);
1032 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1033 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1034
3cf64b93
PJ
1035 /*
1036 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1037 * overflows if nbitsinlong == BITS_PER_LONG.
1038 */
74373c6a 1039 mask = (1UL << (nbitsinlong - 1));
1da177e4 1040 mask += mask - 1;
3cf64b93 1041 mask <<= offset;
1da177e4 1042
3cf64b93
PJ
1043 switch (reg_op) {
1044 case REG_OP_ISFREE:
1045 for (i = 0; i < nlongs_reg; i++) {
1046 if (bitmap[index + i] & mask)
1047 goto done;
1048 }
1049 ret = 1; /* all bits in region free (zero) */
1050 break;
1051
1052 case REG_OP_ALLOC:
1053 for (i = 0; i < nlongs_reg; i++)
1054 bitmap[index + i] |= mask;
1055 break;
1056
1057 case REG_OP_RELEASE:
1058 for (i = 0; i < nlongs_reg; i++)
1059 bitmap[index + i] &= ~mask;
1060 break;
1da177e4 1061 }
3cf64b93
PJ
1062done:
1063 return ret;
1064}
1065
1066/**
1067 * bitmap_find_free_region - find a contiguous aligned mem region
1068 * @bitmap: array of unsigned longs corresponding to the bitmap
1069 * @bits: number of bits in the bitmap
1070 * @order: region size (log base 2 of number of bits) to find
1071 *
1072 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1073 * allocate them (set them to one). Only consider regions of length
1074 * a power (@order) of two, aligned to that power of two, which
1075 * makes the search algorithm much faster.
1076 *
1077 * Return the bit offset in bitmap of the allocated region,
1078 * or -errno on failure.
1079 */
9279d328 1080int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1081{
9279d328 1082 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1083
9279d328 1084 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1085 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1086 continue;
1087 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1088 return pos;
1089 }
1090 return -ENOMEM;
1da177e4
LT
1091}
1092EXPORT_SYMBOL(bitmap_find_free_region);
1093
1094/**
87e24802 1095 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1096 * @bitmap: array of unsigned longs corresponding to the bitmap
1097 * @pos: beginning of bit region to release
1098 * @order: region size (log base 2 of number of bits) to release
1da177e4 1099 *
72fd4a35 1100 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1101 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1102 *
1103 * No return value.
1da177e4 1104 */
9279d328 1105void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1106{
3cf64b93 1107 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1108}
1109EXPORT_SYMBOL(bitmap_release_region);
1110
87e24802
PJ
1111/**
1112 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1113 * @bitmap: array of unsigned longs corresponding to the bitmap
1114 * @pos: beginning of bit region to allocate
1115 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1116 *
1117 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1118 *
6e1907ff 1119 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1120 * free (not all bits were zero).
1121 */
9279d328 1122int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1123{
3cf64b93
PJ
1124 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1125 return -EBUSY;
2ac521d3 1126 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1127}
1128EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1129
1130/**
1131 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1132 * @dst: destination buffer
1133 * @src: bitmap to copy
1134 * @nbits: number of bits in the bitmap
1135 *
1136 * Require nbits % BITS_PER_LONG == 0.
1137 */
e8f24278 1138#ifdef __BIG_ENDIAN
9b6c2d2e 1139void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1140{
9b6c2d2e 1141 unsigned int i;
ccbe329b
DV
1142
1143 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1144 if (BITS_PER_LONG == 64)
9b6c2d2e 1145 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1146 else
9b6c2d2e 1147 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1148 }
1149}
1150EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1151#endif
c724f193 1152
c42b65e3
AS
1153unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1154{
1155 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1156 flags);
1157}
1158EXPORT_SYMBOL(bitmap_alloc);
1159
1160unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1161{
1162 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1163}
1164EXPORT_SYMBOL(bitmap_zalloc);
1165
1166void bitmap_free(const unsigned long *bitmap)
1167{
1168 kfree(bitmap);
1169}
1170EXPORT_SYMBOL(bitmap_free);
1171
c724f193
YN
1172#if BITS_PER_LONG == 64
1173/**
1174 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1175 * @bitmap: array of unsigned longs, the destination bitmap
1176 * @buf: array of u32 (in host byte order), the source bitmap
1177 * @nbits: number of bits in @bitmap
1178 */
ccf7a6d4 1179void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
c724f193
YN
1180{
1181 unsigned int i, halfwords;
1182
c724f193
YN
1183 halfwords = DIV_ROUND_UP(nbits, 32);
1184 for (i = 0; i < halfwords; i++) {
1185 bitmap[i/2] = (unsigned long) buf[i];
1186 if (++i < halfwords)
1187 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1188 }
1189
1190 /* Clear tail bits in last word beyond nbits. */
1191 if (nbits % BITS_PER_LONG)
1192 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1193}
1194EXPORT_SYMBOL(bitmap_from_arr32);
1195
1196/**
1197 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1198 * @buf: array of u32 (in host byte order), the dest bitmap
1199 * @bitmap: array of unsigned longs, the source bitmap
1200 * @nbits: number of bits in @bitmap
1201 */
1202void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1203{
1204 unsigned int i, halfwords;
1205
c724f193
YN
1206 halfwords = DIV_ROUND_UP(nbits, 32);
1207 for (i = 0; i < halfwords; i++) {
1208 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1209 if (++i < halfwords)
1210 buf[i] = (u32) (bitmap[i/2] >> 32);
1211 }
1212
1213 /* Clear tail bits in last element of array beyond nbits. */
1214 if (nbits % BITS_PER_LONG)
1215 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1216}
1217EXPORT_SYMBOL(bitmap_to_arr32);
1218
1219#endif