]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - lib/bitmap.c
lib: bitmap: change bitmap_shift_left to take unsigned parameters
[mirror_ubuntu-zesty-kernel.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8bc3bcc9
PG
8#include <linux/export.h>
9#include <linux/thread_info.h>
1da177e4
LT
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
50af5ead 14#include <linux/bug.h>
5aaba363
SH
15
16#include <asm/page.h>
1da177e4
LT
17#include <asm/uaccess.h>
18
19/*
20 * bitmaps provide an array of bits, implemented using an an
21 * array of unsigned longs. The number of valid bits in a
22 * given bitmap does _not_ need to be an exact multiple of
23 * BITS_PER_LONG.
24 *
25 * The possible unused bits in the last, partially used word
26 * of a bitmap are 'don't care'. The implementation makes
27 * no particular effort to keep them zero. It ensures that
28 * their value will not affect the results of any operation.
29 * The bitmap operations that return Boolean (bitmap_empty,
30 * for example) or scalar (bitmap_weight, for example) results
31 * carefully filter out these unused bits from impacting their
32 * results.
33 *
34 * These operations actually hold to a slightly stronger rule:
35 * if you don't input any bitmaps to these ops that have some
36 * unused bits set, then they won't output any set unused bits
37 * in output bitmaps.
38 *
39 * The byte ordering of bitmaps is more natural on little
40 * endian architectures. See the big-endian headers
41 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
42 * for the best explanations of this ordering.
43 */
44
0679cc48 45int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
1da177e4 46{
0679cc48 47 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
48 for (k = 0; k < lim; ++k)
49 if (bitmap[k])
50 return 0;
51
52 if (bits % BITS_PER_LONG)
53 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
54 return 0;
55
56 return 1;
57}
58EXPORT_SYMBOL(__bitmap_empty);
59
8397927c 60int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
1da177e4 61{
8397927c 62 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
63 for (k = 0; k < lim; ++k)
64 if (~bitmap[k])
65 return 0;
66
67 if (bits % BITS_PER_LONG)
68 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
69 return 0;
70
71 return 1;
72}
73EXPORT_SYMBOL(__bitmap_full);
74
75int __bitmap_equal(const unsigned long *bitmap1,
5e068069 76 const unsigned long *bitmap2, unsigned int bits)
1da177e4 77{
5e068069 78 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
79 for (k = 0; k < lim; ++k)
80 if (bitmap1[k] != bitmap2[k])
81 return 0;
82
83 if (bits % BITS_PER_LONG)
84 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
85 return 0;
86
87 return 1;
88}
89EXPORT_SYMBOL(__bitmap_equal);
90
3d6684f4 91void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 92{
3d6684f4 93 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
94 for (k = 0; k < lim; ++k)
95 dst[k] = ~src[k];
96
97 if (bits % BITS_PER_LONG)
65b4ee62 98 dst[k] = ~src[k];
1da177e4
LT
99}
100EXPORT_SYMBOL(__bitmap_complement);
101
72fd4a35 102/**
1da177e4 103 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
104 * @dst : destination bitmap
105 * @src : source bitmap
106 * @shift : shift by this many bits
2fbad299 107 * @nbits : bitmap size, in bits
1da177e4
LT
108 *
109 * Shifting right (dividing) means moving bits in the MS -> LS bit
110 * direction. Zeros are fed into the vacated MS positions and the
111 * LS bits shifted off the bottom are lost.
112 */
2fbad299
RV
113void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
114 unsigned shift, unsigned nbits)
1da177e4 115{
cfac1d08 116 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 117 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 118 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
119 for (k = 0; off + k < lim; ++k) {
120 unsigned long upper, lower;
121
122 /*
123 * If shift is not word aligned, take lower rem bits of
124 * word above and make them the top rem bits of result.
125 */
126 if (!rem || off + k + 1 >= lim)
127 upper = 0;
128 else {
129 upper = src[off + k + 1];
cfac1d08 130 if (off + k + 1 == lim - 1)
1da177e4 131 upper &= mask;
9d8a6b2a 132 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
133 }
134 lower = src[off + k];
cfac1d08 135 if (off + k == lim - 1)
1da177e4 136 lower &= mask;
9d8a6b2a
RV
137 lower >>= rem;
138 dst[k] = lower | upper;
1da177e4
LT
139 }
140 if (off)
141 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
142}
143EXPORT_SYMBOL(__bitmap_shift_right);
144
145
72fd4a35 146/**
1da177e4 147 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
148 * @dst : destination bitmap
149 * @src : source bitmap
150 * @shift : shift by this many bits
dba94c25 151 * @nbits : bitmap size, in bits
1da177e4
LT
152 *
153 * Shifting left (multiplying) means moving bits in the LS -> MS
154 * direction. Zeros are fed into the vacated LS bit positions
155 * and those MS bits shifted off the top are lost.
156 */
157
dba94c25
RV
158void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
159 unsigned int shift, unsigned int nbits)
1da177e4 160{
dba94c25
RV
161 int k;
162 unsigned int lim = BITS_TO_LONGS(nbits), left = nbits % BITS_PER_LONG;
163 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
164 for (k = lim - off - 1; k >= 0; --k) {
165 unsigned long upper, lower;
166
167 /*
168 * If shift is not word aligned, take upper rem bits of
169 * word below and make them the bottom rem bits of result.
170 */
171 if (rem && k > 0)
172 lower = src[k - 1];
173 else
174 lower = 0;
175 upper = src[k];
176 if (left && k == lim - 1)
177 upper &= (1UL << left) - 1;
ea5d05b3
JK
178 dst[k + off] = upper << rem;
179 if (rem)
180 dst[k + off] |= lower >> (BITS_PER_LONG - rem);
1da177e4
LT
181 if (left && k + off == lim - 1)
182 dst[k + off] &= (1UL << left) - 1;
183 }
184 if (off)
185 memset(dst, 0, off*sizeof(unsigned long));
186}
187EXPORT_SYMBOL(__bitmap_shift_left);
188
f4b0373b 189int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 190 const unsigned long *bitmap2, unsigned int bits)
1da177e4 191{
2f9305eb 192 unsigned int k;
7e5f97d1 193 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 194 unsigned long result = 0;
1da177e4 195
7e5f97d1 196 for (k = 0; k < lim; k++)
f4b0373b 197 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
198 if (bits % BITS_PER_LONG)
199 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
200 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 201 return result != 0;
1da177e4
LT
202}
203EXPORT_SYMBOL(__bitmap_and);
204
205void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 206 const unsigned long *bitmap2, unsigned int bits)
1da177e4 207{
2f9305eb
RV
208 unsigned int k;
209 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
210
211 for (k = 0; k < nr; k++)
212 dst[k] = bitmap1[k] | bitmap2[k];
213}
214EXPORT_SYMBOL(__bitmap_or);
215
216void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 217 const unsigned long *bitmap2, unsigned int bits)
1da177e4 218{
2f9305eb
RV
219 unsigned int k;
220 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
221
222 for (k = 0; k < nr; k++)
223 dst[k] = bitmap1[k] ^ bitmap2[k];
224}
225EXPORT_SYMBOL(__bitmap_xor);
226
f4b0373b 227int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 228 const unsigned long *bitmap2, unsigned int bits)
1da177e4 229{
2f9305eb 230 unsigned int k;
74e76531 231 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 232 unsigned long result = 0;
1da177e4 233
74e76531 234 for (k = 0; k < lim; k++)
f4b0373b 235 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
236 if (bits % BITS_PER_LONG)
237 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
238 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 239 return result != 0;
1da177e4
LT
240}
241EXPORT_SYMBOL(__bitmap_andnot);
242
243int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 244 const unsigned long *bitmap2, unsigned int bits)
1da177e4 245{
6dfe9799 246 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
247 for (k = 0; k < lim; ++k)
248 if (bitmap1[k] & bitmap2[k])
249 return 1;
250
251 if (bits % BITS_PER_LONG)
252 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
253 return 1;
254 return 0;
255}
256EXPORT_SYMBOL(__bitmap_intersects);
257
258int __bitmap_subset(const unsigned long *bitmap1,
5be20213 259 const unsigned long *bitmap2, unsigned int bits)
1da177e4 260{
5be20213 261 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
262 for (k = 0; k < lim; ++k)
263 if (bitmap1[k] & ~bitmap2[k])
264 return 0;
265
266 if (bits % BITS_PER_LONG)
267 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
268 return 0;
269 return 1;
270}
271EXPORT_SYMBOL(__bitmap_subset);
272
877d9f3b 273int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 274{
877d9f3b
RV
275 unsigned int k, lim = bits/BITS_PER_LONG;
276 int w = 0;
1da177e4
LT
277
278 for (k = 0; k < lim; k++)
37d54111 279 w += hweight_long(bitmap[k]);
1da177e4
LT
280
281 if (bits % BITS_PER_LONG)
37d54111 282 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
283
284 return w;
285}
1da177e4
LT
286EXPORT_SYMBOL(__bitmap_weight);
287
fb5ac542 288void bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
289{
290 unsigned long *p = map + BIT_WORD(start);
fb5ac542 291 const unsigned int size = start + len;
c1a2a962
AM
292 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
293 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
294
fb5ac542 295 while (len - bits_to_set >= 0) {
c1a2a962 296 *p |= mask_to_set;
fb5ac542 297 len -= bits_to_set;
c1a2a962
AM
298 bits_to_set = BITS_PER_LONG;
299 mask_to_set = ~0UL;
300 p++;
301 }
fb5ac542 302 if (len) {
c1a2a962
AM
303 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
304 *p |= mask_to_set;
305 }
306}
307EXPORT_SYMBOL(bitmap_set);
308
154f5e38 309void bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
310{
311 unsigned long *p = map + BIT_WORD(start);
154f5e38 312 const unsigned int size = start + len;
c1a2a962
AM
313 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
314 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
315
154f5e38 316 while (len - bits_to_clear >= 0) {
c1a2a962 317 *p &= ~mask_to_clear;
154f5e38 318 len -= bits_to_clear;
c1a2a962
AM
319 bits_to_clear = BITS_PER_LONG;
320 mask_to_clear = ~0UL;
321 p++;
322 }
154f5e38 323 if (len) {
c1a2a962
AM
324 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
325 *p &= ~mask_to_clear;
326 }
327}
328EXPORT_SYMBOL(bitmap_clear);
329
5e19b013
MN
330/**
331 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
332 * @map: The address to base the search on
333 * @size: The bitmap size in bits
334 * @start: The bitnumber to start searching at
335 * @nr: The number of zeroed bits we're looking for
336 * @align_mask: Alignment mask for zero area
5e19b013 337 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
338 *
339 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
340 * the bit offset of all zero areas this function finds plus @align_offset
341 * is multiple of that power of 2.
c1a2a962 342 */
5e19b013
MN
343unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
344 unsigned long size,
345 unsigned long start,
346 unsigned int nr,
347 unsigned long align_mask,
348 unsigned long align_offset)
c1a2a962
AM
349{
350 unsigned long index, end, i;
351again:
352 index = find_next_zero_bit(map, size, start);
353
354 /* Align allocation */
5e19b013 355 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
356
357 end = index + nr;
358 if (end > size)
359 return end;
360 i = find_next_bit(map, end, index);
361 if (i < end) {
362 start = i + 1;
363 goto again;
364 }
365 return index;
366}
5e19b013 367EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 368
1da177e4 369/*
6d49e352 370 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
371 * second version by Paul Jackson, third by Joe Korty.
372 */
373
374#define CHUNKSZ 32
375#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
376#define BASEDEC 10 /* fancier cpuset lists input in decimal */
377
378/**
379 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
380 * @buf: byte buffer into which string is placed
381 * @buflen: reserved size of @buf, in bytes
382 * @maskp: pointer to bitmap to convert
383 * @nmaskbits: size of bitmap, in bits
384 *
385 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
05a6c8a9
AM
386 * comma-separated sets of eight digits per set. Returns the number of
387 * characters which were written to *buf, excluding the trailing \0.
1da177e4
LT
388 */
389int bitmap_scnprintf(char *buf, unsigned int buflen,
390 const unsigned long *maskp, int nmaskbits)
391{
392 int i, word, bit, len = 0;
393 unsigned long val;
394 const char *sep = "";
395 int chunksz;
396 u32 chunkmask;
397
398 chunksz = nmaskbits & (CHUNKSZ - 1);
399 if (chunksz == 0)
400 chunksz = CHUNKSZ;
401
8c0e33c1 402 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
1da177e4
LT
403 for (; i >= 0; i -= CHUNKSZ) {
404 chunkmask = ((1ULL << chunksz) - 1);
405 word = i / BITS_PER_LONG;
406 bit = i % BITS_PER_LONG;
407 val = (maskp[word] >> bit) & chunkmask;
408 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
409 (chunksz+3)/4, val);
410 chunksz = CHUNKSZ;
411 sep = ",";
412 }
413 return len;
414}
415EXPORT_SYMBOL(bitmap_scnprintf);
416
417/**
01a3ee2b
RC
418 * __bitmap_parse - convert an ASCII hex string into a bitmap.
419 * @buf: pointer to buffer containing string.
420 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 421 * then it must be terminated with a \0.
01a3ee2b 422 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
423 * @maskp: pointer to bitmap array that will contain result.
424 * @nmaskbits: size of bitmap, in bits.
425 *
426 * Commas group hex digits into chunks. Each chunk defines exactly 32
427 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
428 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
429 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
430 * characters and for grouping errors such as "1,,5", ",44", "," and "".
431 * Leading and trailing whitespace accepted, but not embedded whitespace.
432 */
01a3ee2b
RC
433int __bitmap_parse(const char *buf, unsigned int buflen,
434 int is_user, unsigned long *maskp,
435 int nmaskbits)
1da177e4
LT
436{
437 int c, old_c, totaldigits, ndigits, nchunks, nbits;
438 u32 chunk;
b9c321fd 439 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
440
441 bitmap_zero(maskp, nmaskbits);
442
443 nchunks = nbits = totaldigits = c = 0;
444 do {
445 chunk = ndigits = 0;
446
447 /* Get the next chunk of the bitmap */
01a3ee2b 448 while (buflen) {
1da177e4 449 old_c = c;
01a3ee2b
RC
450 if (is_user) {
451 if (__get_user(c, ubuf++))
452 return -EFAULT;
453 }
454 else
455 c = *buf++;
456 buflen--;
1da177e4
LT
457 if (isspace(c))
458 continue;
459
460 /*
461 * If the last character was a space and the current
462 * character isn't '\0', we've got embedded whitespace.
463 * This is a no-no, so throw an error.
464 */
465 if (totaldigits && c && isspace(old_c))
466 return -EINVAL;
467
468 /* A '\0' or a ',' signal the end of the chunk */
469 if (c == '\0' || c == ',')
470 break;
471
472 if (!isxdigit(c))
473 return -EINVAL;
474
475 /*
476 * Make sure there are at least 4 free bits in 'chunk'.
477 * If not, this hexdigit will overflow 'chunk', so
478 * throw an error.
479 */
480 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
481 return -EOVERFLOW;
482
66f1991b 483 chunk = (chunk << 4) | hex_to_bin(c);
1da177e4
LT
484 ndigits++; totaldigits++;
485 }
486 if (ndigits == 0)
487 return -EINVAL;
488 if (nchunks == 0 && chunk == 0)
489 continue;
490
491 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
492 *maskp |= chunk;
493 nchunks++;
494 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
495 if (nbits > nmaskbits)
496 return -EOVERFLOW;
01a3ee2b 497 } while (buflen && c == ',');
1da177e4
LT
498
499 return 0;
500}
01a3ee2b
RC
501EXPORT_SYMBOL(__bitmap_parse);
502
503/**
9a86e2ba 504 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
505 *
506 * @ubuf: pointer to user buffer containing string.
507 * @ulen: buffer size in bytes. If string is smaller than this
508 * then it must be terminated with a \0.
509 * @maskp: pointer to bitmap array that will contain result.
510 * @nmaskbits: size of bitmap, in bits.
511 *
512 * Wrapper for __bitmap_parse(), providing it with user buffer.
513 *
514 * We cannot have this as an inline function in bitmap.h because it needs
515 * linux/uaccess.h to get the access_ok() declaration and this causes
516 * cyclic dependencies.
517 */
518int bitmap_parse_user(const char __user *ubuf,
519 unsigned int ulen, unsigned long *maskp,
520 int nmaskbits)
521{
522 if (!access_ok(VERIFY_READ, ubuf, ulen))
523 return -EFAULT;
b9c321fd
HS
524 return __bitmap_parse((const char __force *)ubuf,
525 ulen, 1, maskp, nmaskbits);
526
01a3ee2b
RC
527}
528EXPORT_SYMBOL(bitmap_parse_user);
1da177e4
LT
529
530/*
531 * bscnl_emit(buf, buflen, rbot, rtop, bp)
532 *
533 * Helper routine for bitmap_scnlistprintf(). Write decimal number
534 * or range to buf, suppressing output past buf+buflen, with optional
05a6c8a9
AM
535 * comma-prefix. Return len of what was written to *buf, excluding the
536 * trailing \0.
1da177e4
LT
537 */
538static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
539{
540 if (len > 0)
541 len += scnprintf(buf + len, buflen - len, ",");
542 if (rbot == rtop)
543 len += scnprintf(buf + len, buflen - len, "%d", rbot);
544 else
545 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
546 return len;
547}
548
549/**
550 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
551 * @buf: byte buffer into which string is placed
552 * @buflen: reserved size of @buf, in bytes
553 * @maskp: pointer to bitmap to convert
554 * @nmaskbits: size of bitmap, in bits
555 *
556 * Output format is a comma-separated list of decimal numbers and
557 * ranges. Consecutively set bits are shown as two hyphen-separated
558 * decimal numbers, the smallest and largest bit numbers set in
559 * the range. Output format is compatible with the format
560 * accepted as input by bitmap_parselist().
561 *
05a6c8a9
AM
562 * The return value is the number of characters which were written to *buf
563 * excluding the trailing '\0', as per ISO C99's scnprintf.
1da177e4
LT
564 */
565int bitmap_scnlistprintf(char *buf, unsigned int buflen,
566 const unsigned long *maskp, int nmaskbits)
567{
568 int len = 0;
569 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
570 int cur, rbot, rtop;
571
0b030c2c
AK
572 if (buflen == 0)
573 return 0;
574 buf[0] = 0;
575
1da177e4
LT
576 rbot = cur = find_first_bit(maskp, nmaskbits);
577 while (cur < nmaskbits) {
578 rtop = cur;
579 cur = find_next_bit(maskp, nmaskbits, cur+1);
580 if (cur >= nmaskbits || cur > rtop + 1) {
581 len = bscnl_emit(buf, buflen, rbot, rtop, len);
582 rbot = cur;
583 }
584 }
585 return len;
586}
587EXPORT_SYMBOL(bitmap_scnlistprintf);
588
5aaba363
SH
589/**
590 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
591 * @list: indicates whether the bitmap must be list
592 * @buf: page aligned buffer into which string is placed
593 * @maskp: pointer to bitmap to convert
594 * @nmaskbits: size of bitmap, in bits
595 *
596 * Output format is a comma-separated list of decimal numbers and
597 * ranges if list is specified or hex digits grouped into comma-separated
598 * sets of 8 digits/set. Returns the number of characters written to buf.
599 */
600int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
601 int nmaskbits)
602{
603 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf - 2;
604 int n = 0;
605
606 if (len > 1) {
607 n = list ? bitmap_scnlistprintf(buf, len, maskp, nmaskbits) :
608 bitmap_scnprintf(buf, len, maskp, nmaskbits);
609 buf[n++] = '\n';
610 buf[n] = '\0';
611 }
612 return n;
613}
614EXPORT_SYMBOL(bitmap_print_to_pagebuf);
615
1da177e4 616/**
4b060420 617 * __bitmap_parselist - convert list format ASCII string to bitmap
b0825ee3 618 * @buf: read nul-terminated user string from this buffer
4b060420
MT
619 * @buflen: buffer size in bytes. If string is smaller than this
620 * then it must be terminated with a \0.
621 * @is_user: location of buffer, 0 indicates kernel space
6e1907ff 622 * @maskp: write resulting mask here
1da177e4
LT
623 * @nmaskbits: number of bits in mask to be written
624 *
625 * Input format is a comma-separated list of decimal numbers and
626 * ranges. Consecutively set bits are shown as two hyphen-separated
627 * decimal numbers, the smallest and largest bit numbers set in
628 * the range.
629 *
6e1907ff
RD
630 * Returns 0 on success, -errno on invalid input strings.
631 * Error values:
632 * %-EINVAL: second number in range smaller than first
633 * %-EINVAL: invalid character in string
634 * %-ERANGE: bit number specified too large for mask
1da177e4 635 */
4b060420
MT
636static int __bitmap_parselist(const char *buf, unsigned int buflen,
637 int is_user, unsigned long *maskp,
638 int nmaskbits)
1da177e4
LT
639{
640 unsigned a, b;
4b060420 641 int c, old_c, totaldigits;
b9c321fd 642 const char __user __force *ubuf = (const char __user __force *)buf;
4b060420 643 int exp_digit, in_range;
1da177e4 644
4b060420 645 totaldigits = c = 0;
1da177e4
LT
646 bitmap_zero(maskp, nmaskbits);
647 do {
4b060420
MT
648 exp_digit = 1;
649 in_range = 0;
650 a = b = 0;
651
652 /* Get the next cpu# or a range of cpu#'s */
653 while (buflen) {
654 old_c = c;
655 if (is_user) {
656 if (__get_user(c, ubuf++))
657 return -EFAULT;
658 } else
659 c = *buf++;
660 buflen--;
661 if (isspace(c))
662 continue;
663
664 /*
665 * If the last character was a space and the current
666 * character isn't '\0', we've got embedded whitespace.
667 * This is a no-no, so throw an error.
668 */
669 if (totaldigits && c && isspace(old_c))
670 return -EINVAL;
671
672 /* A '\0' or a ',' signal the end of a cpu# or range */
673 if (c == '\0' || c == ',')
674 break;
675
676 if (c == '-') {
677 if (exp_digit || in_range)
678 return -EINVAL;
679 b = 0;
680 in_range = 1;
681 exp_digit = 1;
682 continue;
683 }
684
685 if (!isdigit(c))
1da177e4 686 return -EINVAL;
4b060420
MT
687
688 b = b * 10 + (c - '0');
689 if (!in_range)
690 a = b;
691 exp_digit = 0;
692 totaldigits++;
1da177e4
LT
693 }
694 if (!(a <= b))
695 return -EINVAL;
696 if (b >= nmaskbits)
697 return -ERANGE;
698 while (a <= b) {
699 set_bit(a, maskp);
700 a++;
701 }
4b060420 702 } while (buflen && c == ',');
1da177e4
LT
703 return 0;
704}
4b060420
MT
705
706int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
707{
bc5be182
RV
708 char *nl = strchrnul(bp, '\n');
709 int len = nl - bp;
4b060420
MT
710
711 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
712}
1da177e4
LT
713EXPORT_SYMBOL(bitmap_parselist);
714
4b060420
MT
715
716/**
717 * bitmap_parselist_user()
718 *
719 * @ubuf: pointer to user buffer containing string.
720 * @ulen: buffer size in bytes. If string is smaller than this
721 * then it must be terminated with a \0.
722 * @maskp: pointer to bitmap array that will contain result.
723 * @nmaskbits: size of bitmap, in bits.
724 *
725 * Wrapper for bitmap_parselist(), providing it with user buffer.
726 *
727 * We cannot have this as an inline function in bitmap.h because it needs
728 * linux/uaccess.h to get the access_ok() declaration and this causes
729 * cyclic dependencies.
730 */
731int bitmap_parselist_user(const char __user *ubuf,
732 unsigned int ulen, unsigned long *maskp,
733 int nmaskbits)
734{
735 if (!access_ok(VERIFY_READ, ubuf, ulen))
736 return -EFAULT;
b9c321fd 737 return __bitmap_parselist((const char __force *)ubuf,
4b060420
MT
738 ulen, 1, maskp, nmaskbits);
739}
740EXPORT_SYMBOL(bitmap_parselist_user);
741
742
72fd4a35 743/**
9a86e2ba 744 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 745 * @buf: pointer to a bitmap
df1d80a9
RV
746 * @pos: a bit position in @buf (0 <= @pos < @nbits)
747 * @nbits: number of valid bit positions in @buf
fb5eeeee 748 *
df1d80a9 749 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 750 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 751 * is not a valid bit position, map to -1.
fb5eeeee
PJ
752 *
753 * If for example, just bits 4 through 7 are set in @buf, then @pos
754 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 755 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
756 * gets mapped to (returns) @ord value 3 in this example, that means
757 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
758 *
759 * The bit positions 0 through @bits are valid positions in @buf.
760 */
df1d80a9 761static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 762{
df1d80a9 763 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 764 return -1;
fb5eeeee 765
df1d80a9 766 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
767}
768
769/**
9a86e2ba 770 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
771 * @buf: pointer to bitmap
772 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 773 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
774 *
775 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
776 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
777 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
778 *
779 * If for example, just bits 4 through 7 are set in @buf, then @ord
780 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 781 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
782 * gets mapped to (returns) @pos value 7 in this example, that means
783 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
784 *
f6a1f5db 785 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 786 */
f6a1f5db 787unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 788{
f6a1f5db 789 unsigned int pos;
fb5eeeee 790
f6a1f5db
RV
791 for (pos = find_first_bit(buf, nbits);
792 pos < nbits && ord;
793 pos = find_next_bit(buf, nbits, pos + 1))
794 ord--;
fb5eeeee
PJ
795
796 return pos;
797}
798
799/**
800 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 801 * @dst: remapped result
96b7f341 802 * @src: subset to be remapped
fb5eeeee
PJ
803 * @old: defines domain of map
804 * @new: defines range of map
9814ec13 805 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
806 *
807 * Let @old and @new define a mapping of bit positions, such that
808 * whatever position is held by the n-th set bit in @old is mapped
809 * to the n-th set bit in @new. In the more general case, allowing
810 * for the possibility that the weight 'w' of @new is less than the
811 * weight of @old, map the position of the n-th set bit in @old to
812 * the position of the m-th set bit in @new, where m == n % w.
813 *
96b7f341
PJ
814 * If either of the @old and @new bitmaps are empty, or if @src and
815 * @dst point to the same location, then this routine copies @src
816 * to @dst.
fb5eeeee 817 *
96b7f341
PJ
818 * The positions of unset bits in @old are mapped to themselves
819 * (the identify map).
fb5eeeee
PJ
820 *
821 * Apply the above specified mapping to @src, placing the result in
822 * @dst, clearing any bits previously set in @dst.
823 *
fb5eeeee
PJ
824 * For example, lets say that @old has bits 4 through 7 set, and
825 * @new has bits 12 through 15 set. This defines the mapping of bit
826 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
827 * bit positions unchanged. So if say @src comes into this routine
828 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
829 * 13 and 15 set.
fb5eeeee
PJ
830 */
831void bitmap_remap(unsigned long *dst, const unsigned long *src,
832 const unsigned long *old, const unsigned long *new,
9814ec13 833 unsigned int nbits)
fb5eeeee 834{
9814ec13 835 unsigned int oldbit, w;
fb5eeeee 836
fb5eeeee
PJ
837 if (dst == src) /* following doesn't handle inplace remaps */
838 return;
9814ec13 839 bitmap_zero(dst, nbits);
96b7f341 840
9814ec13
RV
841 w = bitmap_weight(new, nbits);
842 for_each_set_bit(oldbit, src, nbits) {
843 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 844
96b7f341
PJ
845 if (n < 0 || w == 0)
846 set_bit(oldbit, dst); /* identity map */
847 else
9814ec13 848 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
849 }
850}
851EXPORT_SYMBOL(bitmap_remap);
852
853/**
854 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
855 * @oldbit: bit position to be mapped
856 * @old: defines domain of map
857 * @new: defines range of map
858 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
859 *
860 * Let @old and @new define a mapping of bit positions, such that
861 * whatever position is held by the n-th set bit in @old is mapped
862 * to the n-th set bit in @new. In the more general case, allowing
863 * for the possibility that the weight 'w' of @new is less than the
864 * weight of @old, map the position of the n-th set bit in @old to
865 * the position of the m-th set bit in @new, where m == n % w.
866 *
96b7f341
PJ
867 * The positions of unset bits in @old are mapped to themselves
868 * (the identify map).
fb5eeeee
PJ
869 *
870 * Apply the above specified mapping to bit position @oldbit, returning
871 * the new bit position.
872 *
873 * For example, lets say that @old has bits 4 through 7 set, and
874 * @new has bits 12 through 15 set. This defines the mapping of bit
875 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
876 * bit positions unchanged. So if say @oldbit is 5, then this routine
877 * returns 13.
fb5eeeee
PJ
878 */
879int bitmap_bitremap(int oldbit, const unsigned long *old,
880 const unsigned long *new, int bits)
881{
96b7f341
PJ
882 int w = bitmap_weight(new, bits);
883 int n = bitmap_pos_to_ord(old, oldbit, bits);
884 if (n < 0 || w == 0)
885 return oldbit;
886 else
887 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee
PJ
888}
889EXPORT_SYMBOL(bitmap_bitremap);
890
7ea931c9
PJ
891/**
892 * bitmap_onto - translate one bitmap relative to another
893 * @dst: resulting translated bitmap
894 * @orig: original untranslated bitmap
895 * @relmap: bitmap relative to which translated
896 * @bits: number of bits in each of these bitmaps
897 *
898 * Set the n-th bit of @dst iff there exists some m such that the
899 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
900 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
901 * (If you understood the previous sentence the first time your
902 * read it, you're overqualified for your current job.)
903 *
904 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 905 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
906 * m-th set bit of @relmap }.
907 *
908 * Any set bits in @orig above bit number W, where W is the
909 * weight of (number of set bits in) @relmap are mapped nowhere.
910 * In particular, if for all bits m set in @orig, m >= W, then
911 * @dst will end up empty. In situations where the possibility
912 * of such an empty result is not desired, one way to avoid it is
913 * to use the bitmap_fold() operator, below, to first fold the
914 * @orig bitmap over itself so that all its set bits x are in the
915 * range 0 <= x < W. The bitmap_fold() operator does this by
916 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
917 *
918 * Example [1] for bitmap_onto():
919 * Let's say @relmap has bits 30-39 set, and @orig has bits
920 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
921 * @dst will have bits 31, 33, 35, 37 and 39 set.
922 *
923 * When bit 0 is set in @orig, it means turn on the bit in
924 * @dst corresponding to whatever is the first bit (if any)
925 * that is turned on in @relmap. Since bit 0 was off in the
926 * above example, we leave off that bit (bit 30) in @dst.
927 *
928 * When bit 1 is set in @orig (as in the above example), it
929 * means turn on the bit in @dst corresponding to whatever
930 * is the second bit that is turned on in @relmap. The second
931 * bit in @relmap that was turned on in the above example was
932 * bit 31, so we turned on bit 31 in @dst.
933 *
934 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
935 * because they were the 4th, 6th, 8th and 10th set bits
936 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
937 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
938 *
939 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 940 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
941 * turned on in @relmap. In the above example, there were
942 * only ten bits turned on in @relmap (30..39), so that bit
943 * 11 was set in @orig had no affect on @dst.
944 *
945 * Example [2] for bitmap_fold() + bitmap_onto():
946 * Let's say @relmap has these ten bits set:
947 * 40 41 42 43 45 48 53 61 74 95
948 * (for the curious, that's 40 plus the first ten terms of the
949 * Fibonacci sequence.)
950 *
951 * Further lets say we use the following code, invoking
952 * bitmap_fold() then bitmap_onto, as suggested above to
da3dae54 953 * avoid the possibility of an empty @dst result:
7ea931c9
PJ
954 *
955 * unsigned long *tmp; // a temporary bitmap's bits
956 *
957 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
958 * bitmap_onto(dst, tmp, relmap, bits);
959 *
960 * Then this table shows what various values of @dst would be, for
961 * various @orig's. I list the zero-based positions of each set bit.
962 * The tmp column shows the intermediate result, as computed by
963 * using bitmap_fold() to fold the @orig bitmap modulo ten
964 * (the weight of @relmap).
965 *
966 * @orig tmp @dst
967 * 0 0 40
968 * 1 1 41
969 * 9 9 95
970 * 10 0 40 (*)
971 * 1 3 5 7 1 3 5 7 41 43 48 61
972 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
973 * 0 9 18 27 0 9 8 7 40 61 74 95
974 * 0 10 20 30 0 40
975 * 0 11 22 33 0 1 2 3 40 41 42 43
976 * 0 12 24 36 0 2 4 6 40 42 45 53
977 * 78 102 211 1 2 8 41 42 74 (*)
978 *
979 * (*) For these marked lines, if we hadn't first done bitmap_fold()
980 * into tmp, then the @dst result would have been empty.
981 *
982 * If either of @orig or @relmap is empty (no set bits), then @dst
983 * will be returned empty.
984 *
985 * If (as explained above) the only set bits in @orig are in positions
986 * m where m >= W, (where W is the weight of @relmap) then @dst will
987 * once again be returned empty.
988 *
989 * All bits in @dst not set by the above rule are cleared.
990 */
991void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 992 const unsigned long *relmap, unsigned int bits)
7ea931c9 993{
eb569883 994 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
995
996 if (dst == orig) /* following doesn't handle inplace mappings */
997 return;
998 bitmap_zero(dst, bits);
999
1000 /*
1001 * The following code is a more efficient, but less
1002 * obvious, equivalent to the loop:
1003 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1004 * n = bitmap_ord_to_pos(orig, m, bits);
1005 * if (test_bit(m, orig))
1006 * set_bit(n, dst);
1007 * }
1008 */
1009
1010 m = 0;
08564fb7 1011 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
1012 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1013 if (test_bit(m, orig))
1014 set_bit(n, dst);
1015 m++;
1016 }
1017}
1018EXPORT_SYMBOL(bitmap_onto);
1019
1020/**
1021 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1022 * @dst: resulting smaller bitmap
1023 * @orig: original larger bitmap
1024 * @sz: specified size
b26ad583 1025 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
1026 *
1027 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1028 * Clear all other bits in @dst. See further the comment and
1029 * Example [2] for bitmap_onto() for why and how to use this.
1030 */
1031void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 1032 unsigned int sz, unsigned int nbits)
7ea931c9 1033{
b26ad583 1034 unsigned int oldbit;
7ea931c9
PJ
1035
1036 if (dst == orig) /* following doesn't handle inplace mappings */
1037 return;
b26ad583 1038 bitmap_zero(dst, nbits);
7ea931c9 1039
b26ad583 1040 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
1041 set_bit(oldbit % sz, dst);
1042}
1043EXPORT_SYMBOL(bitmap_fold);
1044
3cf64b93
PJ
1045/*
1046 * Common code for bitmap_*_region() routines.
1047 * bitmap: array of unsigned longs corresponding to the bitmap
1048 * pos: the beginning of the region
1049 * order: region size (log base 2 of number of bits)
1050 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 1051 *
3cf64b93
PJ
1052 * Can set, verify and/or release a region of bits in a bitmap,
1053 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 1054 *
3cf64b93
PJ
1055 * A region of a bitmap is a sequence of bits in the bitmap, of
1056 * some size '1 << order' (a power of two), aligned to that same
1057 * '1 << order' power of two.
1058 *
1059 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1060 * Returns 0 in all other cases and reg_ops.
1da177e4 1061 */
3cf64b93
PJ
1062
1063enum {
1064 REG_OP_ISFREE, /* true if region is all zero bits */
1065 REG_OP_ALLOC, /* set all bits in region */
1066 REG_OP_RELEASE, /* clear all bits in region */
1067};
1068
9279d328 1069static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 1070{
3cf64b93
PJ
1071 int nbits_reg; /* number of bits in region */
1072 int index; /* index first long of region in bitmap */
1073 int offset; /* bit offset region in bitmap[index] */
1074 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1075 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1076 unsigned long mask; /* bitmask for one long of region */
74373c6a 1077 int i; /* scans bitmap by longs */
3cf64b93 1078 int ret = 0; /* return value */
74373c6a 1079
3cf64b93
PJ
1080 /*
1081 * Either nlongs_reg == 1 (for small orders that fit in one long)
1082 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1083 */
1084 nbits_reg = 1 << order;
1085 index = pos / BITS_PER_LONG;
1086 offset = pos - (index * BITS_PER_LONG);
1087 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1088 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1089
3cf64b93
PJ
1090 /*
1091 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1092 * overflows if nbitsinlong == BITS_PER_LONG.
1093 */
74373c6a 1094 mask = (1UL << (nbitsinlong - 1));
1da177e4 1095 mask += mask - 1;
3cf64b93 1096 mask <<= offset;
1da177e4 1097
3cf64b93
PJ
1098 switch (reg_op) {
1099 case REG_OP_ISFREE:
1100 for (i = 0; i < nlongs_reg; i++) {
1101 if (bitmap[index + i] & mask)
1102 goto done;
1103 }
1104 ret = 1; /* all bits in region free (zero) */
1105 break;
1106
1107 case REG_OP_ALLOC:
1108 for (i = 0; i < nlongs_reg; i++)
1109 bitmap[index + i] |= mask;
1110 break;
1111
1112 case REG_OP_RELEASE:
1113 for (i = 0; i < nlongs_reg; i++)
1114 bitmap[index + i] &= ~mask;
1115 break;
1da177e4 1116 }
3cf64b93
PJ
1117done:
1118 return ret;
1119}
1120
1121/**
1122 * bitmap_find_free_region - find a contiguous aligned mem region
1123 * @bitmap: array of unsigned longs corresponding to the bitmap
1124 * @bits: number of bits in the bitmap
1125 * @order: region size (log base 2 of number of bits) to find
1126 *
1127 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1128 * allocate them (set them to one). Only consider regions of length
1129 * a power (@order) of two, aligned to that power of two, which
1130 * makes the search algorithm much faster.
1131 *
1132 * Return the bit offset in bitmap of the allocated region,
1133 * or -errno on failure.
1134 */
9279d328 1135int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1136{
9279d328 1137 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1138
9279d328 1139 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1140 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1141 continue;
1142 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1143 return pos;
1144 }
1145 return -ENOMEM;
1da177e4
LT
1146}
1147EXPORT_SYMBOL(bitmap_find_free_region);
1148
1149/**
87e24802 1150 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1151 * @bitmap: array of unsigned longs corresponding to the bitmap
1152 * @pos: beginning of bit region to release
1153 * @order: region size (log base 2 of number of bits) to release
1da177e4 1154 *
72fd4a35 1155 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1156 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1157 *
1158 * No return value.
1da177e4 1159 */
9279d328 1160void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1161{
3cf64b93 1162 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1163}
1164EXPORT_SYMBOL(bitmap_release_region);
1165
87e24802
PJ
1166/**
1167 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1168 * @bitmap: array of unsigned longs corresponding to the bitmap
1169 * @pos: beginning of bit region to allocate
1170 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1171 *
1172 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1173 *
6e1907ff 1174 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1175 * free (not all bits were zero).
1176 */
9279d328 1177int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1178{
3cf64b93
PJ
1179 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1180 return -EBUSY;
2ac521d3 1181 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1182}
1183EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1184
1185/**
1186 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1187 * @dst: destination buffer
1188 * @src: bitmap to copy
1189 * @nbits: number of bits in the bitmap
1190 *
1191 * Require nbits % BITS_PER_LONG == 0.
1192 */
e8f24278 1193#ifdef __BIG_ENDIAN
9b6c2d2e 1194void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1195{
9b6c2d2e 1196 unsigned int i;
ccbe329b
DV
1197
1198 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1199 if (BITS_PER_LONG == 64)
9b6c2d2e 1200 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1201 else
9b6c2d2e 1202 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1203 }
1204}
1205EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1206#endif