]>
Commit | Line | Data |
---|---|---|
5db53f3e JE |
1 | /* |
2 | * lib/btree.c - Simple In-memory B+Tree | |
3 | * | |
4 | * As should be obvious for Linux kernel code, license is GPLv2 | |
5 | * | |
6 | * Copyright (c) 2007-2008 Joern Engel <joern@logfs.org> | |
7 | * Bits and pieces stolen from Peter Zijlstra's code, which is | |
8 | * Copyright 2007, Red Hat Inc. Peter Zijlstra <pzijlstr@redhat.com> | |
9 | * GPLv2 | |
10 | * | |
11 | * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch | |
12 | * | |
13 | * A relatively simple B+Tree implementation. I have written it as a learning | |
25985edc | 14 | * exercise to understand how B+Trees work. Turned out to be useful as well. |
5db53f3e JE |
15 | * |
16 | * B+Trees can be used similar to Linux radix trees (which don't have anything | |
17 | * in common with textbook radix trees, beware). Prerequisite for them working | |
18 | * well is that access to a random tree node is much faster than a large number | |
19 | * of operations within each node. | |
20 | * | |
21 | * Disks have fulfilled the prerequisite for a long time. More recently DRAM | |
22 | * has gained similar properties, as memory access times, when measured in cpu | |
23 | * cycles, have increased. Cacheline sizes have increased as well, which also | |
24 | * helps B+Trees. | |
25 | * | |
26 | * Compared to radix trees, B+Trees are more efficient when dealing with a | |
27 | * sparsely populated address space. Between 25% and 50% of the memory is | |
28 | * occupied with valid pointers. When densely populated, radix trees contain | |
29 | * ~98% pointers - hard to beat. Very sparse radix trees contain only ~2% | |
30 | * pointers. | |
31 | * | |
32 | * This particular implementation stores pointers identified by a long value. | |
33 | * Storing NULL pointers is illegal, lookup will return NULL when no entry | |
34 | * was found. | |
35 | * | |
36 | * A tricks was used that is not commonly found in textbooks. The lowest | |
37 | * values are to the right, not to the left. All used slots within a node | |
38 | * are on the left, all unused slots contain NUL values. Most operations | |
39 | * simply loop once over all slots and terminate on the first NUL. | |
40 | */ | |
41 | ||
42 | #include <linux/btree.h> | |
43 | #include <linux/cache.h> | |
44 | #include <linux/kernel.h> | |
45 | #include <linux/slab.h> | |
46 | #include <linux/module.h> | |
47 | ||
48 | #define MAX(a, b) ((a) > (b) ? (a) : (b)) | |
49 | #define NODESIZE MAX(L1_CACHE_BYTES, 128) | |
50 | ||
51 | struct btree_geo { | |
52 | int keylen; | |
53 | int no_pairs; | |
54 | int no_longs; | |
55 | }; | |
56 | ||
57 | struct btree_geo btree_geo32 = { | |
58 | .keylen = 1, | |
59 | .no_pairs = NODESIZE / sizeof(long) / 2, | |
60 | .no_longs = NODESIZE / sizeof(long) / 2, | |
61 | }; | |
62 | EXPORT_SYMBOL_GPL(btree_geo32); | |
63 | ||
64 | #define LONG_PER_U64 (64 / BITS_PER_LONG) | |
65 | struct btree_geo btree_geo64 = { | |
66 | .keylen = LONG_PER_U64, | |
67 | .no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64), | |
68 | .no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)), | |
69 | }; | |
70 | EXPORT_SYMBOL_GPL(btree_geo64); | |
71 | ||
72 | struct btree_geo btree_geo128 = { | |
73 | .keylen = 2 * LONG_PER_U64, | |
74 | .no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64), | |
75 | .no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)), | |
76 | }; | |
77 | EXPORT_SYMBOL_GPL(btree_geo128); | |
78 | ||
79 | static struct kmem_cache *btree_cachep; | |
80 | ||
81 | void *btree_alloc(gfp_t gfp_mask, void *pool_data) | |
82 | { | |
83 | return kmem_cache_alloc(btree_cachep, gfp_mask); | |
84 | } | |
85 | EXPORT_SYMBOL_GPL(btree_alloc); | |
86 | ||
87 | void btree_free(void *element, void *pool_data) | |
88 | { | |
89 | kmem_cache_free(btree_cachep, element); | |
90 | } | |
91 | EXPORT_SYMBOL_GPL(btree_free); | |
92 | ||
93 | static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp) | |
94 | { | |
95 | unsigned long *node; | |
96 | ||
97 | node = mempool_alloc(head->mempool, gfp); | |
43aa7ac7 | 98 | if (likely(node)) |
99 | memset(node, 0, NODESIZE); | |
5db53f3e JE |
100 | return node; |
101 | } | |
102 | ||
103 | static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n) | |
104 | { | |
105 | size_t i; | |
106 | ||
107 | for (i = 0; i < n; i++) { | |
108 | if (l1[i] < l2[i]) | |
109 | return -1; | |
110 | if (l1[i] > l2[i]) | |
111 | return 1; | |
112 | } | |
113 | return 0; | |
114 | } | |
115 | ||
116 | static unsigned long *longcpy(unsigned long *dest, const unsigned long *src, | |
117 | size_t n) | |
118 | { | |
119 | size_t i; | |
120 | ||
121 | for (i = 0; i < n; i++) | |
122 | dest[i] = src[i]; | |
123 | return dest; | |
124 | } | |
125 | ||
126 | static unsigned long *longset(unsigned long *s, unsigned long c, size_t n) | |
127 | { | |
128 | size_t i; | |
129 | ||
130 | for (i = 0; i < n; i++) | |
131 | s[i] = c; | |
132 | return s; | |
133 | } | |
134 | ||
135 | static void dec_key(struct btree_geo *geo, unsigned long *key) | |
136 | { | |
137 | unsigned long val; | |
138 | int i; | |
139 | ||
140 | for (i = geo->keylen - 1; i >= 0; i--) { | |
141 | val = key[i]; | |
142 | key[i] = val - 1; | |
143 | if (val) | |
144 | break; | |
145 | } | |
146 | } | |
147 | ||
148 | static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n) | |
149 | { | |
150 | return &node[n * geo->keylen]; | |
151 | } | |
152 | ||
153 | static void *bval(struct btree_geo *geo, unsigned long *node, int n) | |
154 | { | |
155 | return (void *)node[geo->no_longs + n]; | |
156 | } | |
157 | ||
158 | static void setkey(struct btree_geo *geo, unsigned long *node, int n, | |
159 | unsigned long *key) | |
160 | { | |
161 | longcpy(bkey(geo, node, n), key, geo->keylen); | |
162 | } | |
163 | ||
164 | static void setval(struct btree_geo *geo, unsigned long *node, int n, | |
165 | void *val) | |
166 | { | |
167 | node[geo->no_longs + n] = (unsigned long) val; | |
168 | } | |
169 | ||
170 | static void clearpair(struct btree_geo *geo, unsigned long *node, int n) | |
171 | { | |
172 | longset(bkey(geo, node, n), 0, geo->keylen); | |
173 | node[geo->no_longs + n] = 0; | |
174 | } | |
175 | ||
176 | static inline void __btree_init(struct btree_head *head) | |
177 | { | |
178 | head->node = NULL; | |
179 | head->height = 0; | |
180 | } | |
181 | ||
182 | void btree_init_mempool(struct btree_head *head, mempool_t *mempool) | |
183 | { | |
184 | __btree_init(head); | |
185 | head->mempool = mempool; | |
186 | } | |
187 | EXPORT_SYMBOL_GPL(btree_init_mempool); | |
188 | ||
189 | int btree_init(struct btree_head *head) | |
190 | { | |
191 | __btree_init(head); | |
192 | head->mempool = mempool_create(0, btree_alloc, btree_free, NULL); | |
193 | if (!head->mempool) | |
194 | return -ENOMEM; | |
195 | return 0; | |
196 | } | |
197 | EXPORT_SYMBOL_GPL(btree_init); | |
198 | ||
199 | void btree_destroy(struct btree_head *head) | |
200 | { | |
201 | mempool_destroy(head->mempool); | |
202 | head->mempool = NULL; | |
203 | } | |
204 | EXPORT_SYMBOL_GPL(btree_destroy); | |
205 | ||
206 | void *btree_last(struct btree_head *head, struct btree_geo *geo, | |
207 | unsigned long *key) | |
208 | { | |
209 | int height = head->height; | |
210 | unsigned long *node = head->node; | |
211 | ||
212 | if (height == 0) | |
213 | return NULL; | |
214 | ||
215 | for ( ; height > 1; height--) | |
216 | node = bval(geo, node, 0); | |
217 | ||
218 | longcpy(key, bkey(geo, node, 0), geo->keylen); | |
219 | return bval(geo, node, 0); | |
220 | } | |
221 | EXPORT_SYMBOL_GPL(btree_last); | |
222 | ||
223 | static int keycmp(struct btree_geo *geo, unsigned long *node, int pos, | |
224 | unsigned long *key) | |
225 | { | |
226 | return longcmp(bkey(geo, node, pos), key, geo->keylen); | |
227 | } | |
228 | ||
229 | static int keyzero(struct btree_geo *geo, unsigned long *key) | |
230 | { | |
231 | int i; | |
232 | ||
233 | for (i = 0; i < geo->keylen; i++) | |
234 | if (key[i]) | |
235 | return 0; | |
236 | ||
237 | return 1; | |
238 | } | |
239 | ||
240 | void *btree_lookup(struct btree_head *head, struct btree_geo *geo, | |
241 | unsigned long *key) | |
242 | { | |
243 | int i, height = head->height; | |
244 | unsigned long *node = head->node; | |
245 | ||
246 | if (height == 0) | |
247 | return NULL; | |
248 | ||
249 | for ( ; height > 1; height--) { | |
250 | for (i = 0; i < geo->no_pairs; i++) | |
251 | if (keycmp(geo, node, i, key) <= 0) | |
252 | break; | |
253 | if (i == geo->no_pairs) | |
254 | return NULL; | |
255 | node = bval(geo, node, i); | |
256 | if (!node) | |
257 | return NULL; | |
258 | } | |
259 | ||
260 | if (!node) | |
261 | return NULL; | |
262 | ||
263 | for (i = 0; i < geo->no_pairs; i++) | |
264 | if (keycmp(geo, node, i, key) == 0) | |
265 | return bval(geo, node, i); | |
266 | return NULL; | |
267 | } | |
268 | EXPORT_SYMBOL_GPL(btree_lookup); | |
269 | ||
270 | int btree_update(struct btree_head *head, struct btree_geo *geo, | |
271 | unsigned long *key, void *val) | |
272 | { | |
273 | int i, height = head->height; | |
274 | unsigned long *node = head->node; | |
275 | ||
276 | if (height == 0) | |
277 | return -ENOENT; | |
278 | ||
279 | for ( ; height > 1; height--) { | |
280 | for (i = 0; i < geo->no_pairs; i++) | |
281 | if (keycmp(geo, node, i, key) <= 0) | |
282 | break; | |
283 | if (i == geo->no_pairs) | |
284 | return -ENOENT; | |
285 | node = bval(geo, node, i); | |
286 | if (!node) | |
287 | return -ENOENT; | |
288 | } | |
289 | ||
290 | if (!node) | |
291 | return -ENOENT; | |
292 | ||
293 | for (i = 0; i < geo->no_pairs; i++) | |
294 | if (keycmp(geo, node, i, key) == 0) { | |
295 | setval(geo, node, i, val); | |
296 | return 0; | |
297 | } | |
298 | return -ENOENT; | |
299 | } | |
300 | EXPORT_SYMBOL_GPL(btree_update); | |
301 | ||
302 | /* | |
303 | * Usually this function is quite similar to normal lookup. But the key of | |
304 | * a parent node may be smaller than the smallest key of all its siblings. | |
305 | * In such a case we cannot just return NULL, as we have only proven that no | |
306 | * key smaller than __key, but larger than this parent key exists. | |
307 | * So we set __key to the parent key and retry. We have to use the smallest | |
308 | * such parent key, which is the last parent key we encountered. | |
309 | */ | |
310 | void *btree_get_prev(struct btree_head *head, struct btree_geo *geo, | |
311 | unsigned long *__key) | |
312 | { | |
313 | int i, height; | |
314 | unsigned long *node, *oldnode; | |
315 | unsigned long *retry_key = NULL, key[geo->keylen]; | |
316 | ||
317 | if (keyzero(geo, __key)) | |
318 | return NULL; | |
319 | ||
320 | if (head->height == 0) | |
321 | return NULL; | |
322 | retry: | |
323 | longcpy(key, __key, geo->keylen); | |
324 | dec_key(geo, key); | |
325 | ||
326 | node = head->node; | |
327 | for (height = head->height ; height > 1; height--) { | |
328 | for (i = 0; i < geo->no_pairs; i++) | |
329 | if (keycmp(geo, node, i, key) <= 0) | |
330 | break; | |
331 | if (i == geo->no_pairs) | |
332 | goto miss; | |
333 | oldnode = node; | |
334 | node = bval(geo, node, i); | |
335 | if (!node) | |
336 | goto miss; | |
337 | retry_key = bkey(geo, oldnode, i); | |
338 | } | |
339 | ||
340 | if (!node) | |
341 | goto miss; | |
342 | ||
343 | for (i = 0; i < geo->no_pairs; i++) { | |
344 | if (keycmp(geo, node, i, key) <= 0) { | |
345 | if (bval(geo, node, i)) { | |
346 | longcpy(__key, bkey(geo, node, i), geo->keylen); | |
347 | return bval(geo, node, i); | |
348 | } else | |
349 | goto miss; | |
350 | } | |
351 | } | |
352 | miss: | |
353 | if (retry_key) { | |
354 | __key = retry_key; | |
355 | retry_key = NULL; | |
356 | goto retry; | |
357 | } | |
358 | return NULL; | |
359 | } | |
360 | ||
361 | static int getpos(struct btree_geo *geo, unsigned long *node, | |
362 | unsigned long *key) | |
363 | { | |
364 | int i; | |
365 | ||
366 | for (i = 0; i < geo->no_pairs; i++) { | |
367 | if (keycmp(geo, node, i, key) <= 0) | |
368 | break; | |
369 | } | |
370 | return i; | |
371 | } | |
372 | ||
373 | static int getfill(struct btree_geo *geo, unsigned long *node, int start) | |
374 | { | |
375 | int i; | |
376 | ||
377 | for (i = start; i < geo->no_pairs; i++) | |
378 | if (!bval(geo, node, i)) | |
379 | break; | |
380 | return i; | |
381 | } | |
382 | ||
383 | /* | |
384 | * locate the correct leaf node in the btree | |
385 | */ | |
386 | static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo, | |
387 | unsigned long *key, int level) | |
388 | { | |
389 | unsigned long *node = head->node; | |
390 | int i, height; | |
391 | ||
392 | for (height = head->height; height > level; height--) { | |
393 | for (i = 0; i < geo->no_pairs; i++) | |
394 | if (keycmp(geo, node, i, key) <= 0) | |
395 | break; | |
396 | ||
397 | if ((i == geo->no_pairs) || !bval(geo, node, i)) { | |
398 | /* right-most key is too large, update it */ | |
399 | /* FIXME: If the right-most key on higher levels is | |
400 | * always zero, this wouldn't be necessary. */ | |
401 | i--; | |
402 | setkey(geo, node, i, key); | |
403 | } | |
404 | BUG_ON(i < 0); | |
405 | node = bval(geo, node, i); | |
406 | } | |
407 | BUG_ON(!node); | |
408 | return node; | |
409 | } | |
410 | ||
411 | static int btree_grow(struct btree_head *head, struct btree_geo *geo, | |
412 | gfp_t gfp) | |
413 | { | |
414 | unsigned long *node; | |
415 | int fill; | |
416 | ||
417 | node = btree_node_alloc(head, gfp); | |
418 | if (!node) | |
419 | return -ENOMEM; | |
420 | if (head->node) { | |
421 | fill = getfill(geo, head->node, 0); | |
422 | setkey(geo, node, 0, bkey(geo, head->node, fill - 1)); | |
423 | setval(geo, node, 0, head->node); | |
424 | } | |
425 | head->node = node; | |
426 | head->height++; | |
427 | return 0; | |
428 | } | |
429 | ||
430 | static void btree_shrink(struct btree_head *head, struct btree_geo *geo) | |
431 | { | |
432 | unsigned long *node; | |
433 | int fill; | |
434 | ||
435 | if (head->height <= 1) | |
436 | return; | |
437 | ||
438 | node = head->node; | |
439 | fill = getfill(geo, node, 0); | |
440 | BUG_ON(fill > 1); | |
441 | head->node = bval(geo, node, 0); | |
442 | head->height--; | |
443 | mempool_free(node, head->mempool); | |
444 | } | |
445 | ||
446 | static int btree_insert_level(struct btree_head *head, struct btree_geo *geo, | |
447 | unsigned long *key, void *val, int level, | |
448 | gfp_t gfp) | |
449 | { | |
450 | unsigned long *node; | |
451 | int i, pos, fill, err; | |
452 | ||
453 | BUG_ON(!val); | |
454 | if (head->height < level) { | |
455 | err = btree_grow(head, geo, gfp); | |
456 | if (err) | |
457 | return err; | |
458 | } | |
459 | ||
460 | retry: | |
461 | node = find_level(head, geo, key, level); | |
462 | pos = getpos(geo, node, key); | |
463 | fill = getfill(geo, node, pos); | |
464 | /* two identical keys are not allowed */ | |
465 | BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0); | |
466 | ||
467 | if (fill == geo->no_pairs) { | |
468 | /* need to split node */ | |
469 | unsigned long *new; | |
470 | ||
471 | new = btree_node_alloc(head, gfp); | |
472 | if (!new) | |
473 | return -ENOMEM; | |
474 | err = btree_insert_level(head, geo, | |
475 | bkey(geo, node, fill / 2 - 1), | |
476 | new, level + 1, gfp); | |
477 | if (err) { | |
478 | mempool_free(new, head->mempool); | |
479 | return err; | |
480 | } | |
481 | for (i = 0; i < fill / 2; i++) { | |
482 | setkey(geo, new, i, bkey(geo, node, i)); | |
483 | setval(geo, new, i, bval(geo, node, i)); | |
484 | setkey(geo, node, i, bkey(geo, node, i + fill / 2)); | |
485 | setval(geo, node, i, bval(geo, node, i + fill / 2)); | |
486 | clearpair(geo, node, i + fill / 2); | |
487 | } | |
488 | if (fill & 1) { | |
489 | setkey(geo, node, i, bkey(geo, node, fill - 1)); | |
490 | setval(geo, node, i, bval(geo, node, fill - 1)); | |
491 | clearpair(geo, node, fill - 1); | |
492 | } | |
493 | goto retry; | |
494 | } | |
495 | BUG_ON(fill >= geo->no_pairs); | |
496 | ||
497 | /* shift and insert */ | |
498 | for (i = fill; i > pos; i--) { | |
499 | setkey(geo, node, i, bkey(geo, node, i - 1)); | |
500 | setval(geo, node, i, bval(geo, node, i - 1)); | |
501 | } | |
502 | setkey(geo, node, pos, key); | |
503 | setval(geo, node, pos, val); | |
504 | ||
505 | return 0; | |
506 | } | |
507 | ||
508 | int btree_insert(struct btree_head *head, struct btree_geo *geo, | |
509 | unsigned long *key, void *val, gfp_t gfp) | |
510 | { | |
511 | return btree_insert_level(head, geo, key, val, 1, gfp); | |
512 | } | |
513 | EXPORT_SYMBOL_GPL(btree_insert); | |
514 | ||
515 | static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo, | |
516 | unsigned long *key, int level); | |
517 | static void merge(struct btree_head *head, struct btree_geo *geo, int level, | |
518 | unsigned long *left, int lfill, | |
519 | unsigned long *right, int rfill, | |
520 | unsigned long *parent, int lpos) | |
521 | { | |
522 | int i; | |
523 | ||
524 | for (i = 0; i < rfill; i++) { | |
525 | /* Move all keys to the left */ | |
526 | setkey(geo, left, lfill + i, bkey(geo, right, i)); | |
527 | setval(geo, left, lfill + i, bval(geo, right, i)); | |
528 | } | |
529 | /* Exchange left and right child in parent */ | |
530 | setval(geo, parent, lpos, right); | |
531 | setval(geo, parent, lpos + 1, left); | |
532 | /* Remove left (formerly right) child from parent */ | |
533 | btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1); | |
534 | mempool_free(right, head->mempool); | |
535 | } | |
536 | ||
537 | static void rebalance(struct btree_head *head, struct btree_geo *geo, | |
538 | unsigned long *key, int level, unsigned long *child, int fill) | |
539 | { | |
540 | unsigned long *parent, *left = NULL, *right = NULL; | |
541 | int i, no_left, no_right; | |
542 | ||
543 | if (fill == 0) { | |
25985edc | 544 | /* Because we don't steal entries from a neighbour, this case |
5db53f3e JE |
545 | * can happen. Parent node contains a single child, this |
546 | * node, so merging with a sibling never happens. | |
547 | */ | |
548 | btree_remove_level(head, geo, key, level + 1); | |
549 | mempool_free(child, head->mempool); | |
550 | return; | |
551 | } | |
552 | ||
553 | parent = find_level(head, geo, key, level + 1); | |
554 | i = getpos(geo, parent, key); | |
555 | BUG_ON(bval(geo, parent, i) != child); | |
556 | ||
557 | if (i > 0) { | |
558 | left = bval(geo, parent, i - 1); | |
559 | no_left = getfill(geo, left, 0); | |
560 | if (fill + no_left <= geo->no_pairs) { | |
561 | merge(head, geo, level, | |
562 | left, no_left, | |
563 | child, fill, | |
564 | parent, i - 1); | |
565 | return; | |
566 | } | |
567 | } | |
568 | if (i + 1 < getfill(geo, parent, i)) { | |
569 | right = bval(geo, parent, i + 1); | |
570 | no_right = getfill(geo, right, 0); | |
571 | if (fill + no_right <= geo->no_pairs) { | |
572 | merge(head, geo, level, | |
573 | child, fill, | |
574 | right, no_right, | |
575 | parent, i); | |
576 | return; | |
577 | } | |
578 | } | |
579 | /* | |
580 | * We could also try to steal one entry from the left or right | |
581 | * neighbor. By not doing so we changed the invariant from | |
582 | * "all nodes are at least half full" to "no two neighboring | |
583 | * nodes can be merged". Which means that the average fill of | |
584 | * all nodes is still half or better. | |
585 | */ | |
586 | } | |
587 | ||
588 | static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo, | |
589 | unsigned long *key, int level) | |
590 | { | |
591 | unsigned long *node; | |
592 | int i, pos, fill; | |
593 | void *ret; | |
594 | ||
595 | if (level > head->height) { | |
596 | /* we recursed all the way up */ | |
597 | head->height = 0; | |
598 | head->node = NULL; | |
599 | return NULL; | |
600 | } | |
601 | ||
602 | node = find_level(head, geo, key, level); | |
603 | pos = getpos(geo, node, key); | |
604 | fill = getfill(geo, node, pos); | |
605 | if ((level == 1) && (keycmp(geo, node, pos, key) != 0)) | |
606 | return NULL; | |
607 | ret = bval(geo, node, pos); | |
608 | ||
609 | /* remove and shift */ | |
610 | for (i = pos; i < fill - 1; i++) { | |
611 | setkey(geo, node, i, bkey(geo, node, i + 1)); | |
612 | setval(geo, node, i, bval(geo, node, i + 1)); | |
613 | } | |
614 | clearpair(geo, node, fill - 1); | |
615 | ||
616 | if (fill - 1 < geo->no_pairs / 2) { | |
617 | if (level < head->height) | |
618 | rebalance(head, geo, key, level, node, fill - 1); | |
619 | else if (fill - 1 == 1) | |
620 | btree_shrink(head, geo); | |
621 | } | |
622 | ||
623 | return ret; | |
624 | } | |
625 | ||
626 | void *btree_remove(struct btree_head *head, struct btree_geo *geo, | |
627 | unsigned long *key) | |
628 | { | |
629 | if (head->height == 0) | |
630 | return NULL; | |
631 | ||
632 | return btree_remove_level(head, geo, key, 1); | |
633 | } | |
634 | EXPORT_SYMBOL_GPL(btree_remove); | |
635 | ||
636 | int btree_merge(struct btree_head *target, struct btree_head *victim, | |
637 | struct btree_geo *geo, gfp_t gfp) | |
638 | { | |
639 | unsigned long key[geo->keylen]; | |
640 | unsigned long dup[geo->keylen]; | |
641 | void *val; | |
642 | int err; | |
643 | ||
644 | BUG_ON(target == victim); | |
645 | ||
646 | if (!(target->node)) { | |
647 | /* target is empty, just copy fields over */ | |
648 | target->node = victim->node; | |
649 | target->height = victim->height; | |
650 | __btree_init(victim); | |
651 | return 0; | |
652 | } | |
653 | ||
654 | /* TODO: This needs some optimizations. Currently we do three tree | |
655 | * walks to remove a single object from the victim. | |
656 | */ | |
657 | for (;;) { | |
658 | if (!btree_last(victim, geo, key)) | |
659 | break; | |
660 | val = btree_lookup(victim, geo, key); | |
661 | err = btree_insert(target, geo, key, val, gfp); | |
662 | if (err) | |
663 | return err; | |
664 | /* We must make a copy of the key, as the original will get | |
665 | * mangled inside btree_remove. */ | |
666 | longcpy(dup, key, geo->keylen); | |
667 | btree_remove(victim, geo, dup); | |
668 | } | |
669 | return 0; | |
670 | } | |
671 | EXPORT_SYMBOL_GPL(btree_merge); | |
672 | ||
673 | static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo, | |
674 | unsigned long *node, unsigned long opaque, | |
675 | void (*func)(void *elem, unsigned long opaque, | |
676 | unsigned long *key, size_t index, | |
677 | void *func2), | |
678 | void *func2, int reap, int height, size_t count) | |
679 | { | |
680 | int i; | |
681 | unsigned long *child; | |
682 | ||
683 | for (i = 0; i < geo->no_pairs; i++) { | |
684 | child = bval(geo, node, i); | |
685 | if (!child) | |
686 | break; | |
687 | if (height > 1) | |
688 | count = __btree_for_each(head, geo, child, opaque, | |
689 | func, func2, reap, height - 1, count); | |
690 | else | |
691 | func(child, opaque, bkey(geo, node, i), count++, | |
692 | func2); | |
693 | } | |
694 | if (reap) | |
695 | mempool_free(node, head->mempool); | |
696 | return count; | |
697 | } | |
698 | ||
699 | static void empty(void *elem, unsigned long opaque, unsigned long *key, | |
700 | size_t index, void *func2) | |
701 | { | |
702 | } | |
703 | ||
704 | void visitorl(void *elem, unsigned long opaque, unsigned long *key, | |
705 | size_t index, void *__func) | |
706 | { | |
707 | visitorl_t func = __func; | |
708 | ||
709 | func(elem, opaque, *key, index); | |
710 | } | |
711 | EXPORT_SYMBOL_GPL(visitorl); | |
712 | ||
713 | void visitor32(void *elem, unsigned long opaque, unsigned long *__key, | |
714 | size_t index, void *__func) | |
715 | { | |
716 | visitor32_t func = __func; | |
717 | u32 *key = (void *)__key; | |
718 | ||
719 | func(elem, opaque, *key, index); | |
720 | } | |
721 | EXPORT_SYMBOL_GPL(visitor32); | |
722 | ||
723 | void visitor64(void *elem, unsigned long opaque, unsigned long *__key, | |
724 | size_t index, void *__func) | |
725 | { | |
726 | visitor64_t func = __func; | |
727 | u64 *key = (void *)__key; | |
728 | ||
729 | func(elem, opaque, *key, index); | |
730 | } | |
731 | EXPORT_SYMBOL_GPL(visitor64); | |
732 | ||
733 | void visitor128(void *elem, unsigned long opaque, unsigned long *__key, | |
734 | size_t index, void *__func) | |
735 | { | |
736 | visitor128_t func = __func; | |
737 | u64 *key = (void *)__key; | |
738 | ||
739 | func(elem, opaque, key[0], key[1], index); | |
740 | } | |
741 | EXPORT_SYMBOL_GPL(visitor128); | |
742 | ||
743 | size_t btree_visitor(struct btree_head *head, struct btree_geo *geo, | |
744 | unsigned long opaque, | |
745 | void (*func)(void *elem, unsigned long opaque, | |
746 | unsigned long *key, | |
747 | size_t index, void *func2), | |
748 | void *func2) | |
749 | { | |
750 | size_t count = 0; | |
751 | ||
752 | if (!func2) | |
753 | func = empty; | |
754 | if (head->node) | |
755 | count = __btree_for_each(head, geo, head->node, opaque, func, | |
756 | func2, 0, head->height, 0); | |
757 | return count; | |
758 | } | |
759 | EXPORT_SYMBOL_GPL(btree_visitor); | |
760 | ||
761 | size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo, | |
762 | unsigned long opaque, | |
763 | void (*func)(void *elem, unsigned long opaque, | |
764 | unsigned long *key, | |
765 | size_t index, void *func2), | |
766 | void *func2) | |
767 | { | |
768 | size_t count = 0; | |
769 | ||
770 | if (!func2) | |
771 | func = empty; | |
772 | if (head->node) | |
773 | count = __btree_for_each(head, geo, head->node, opaque, func, | |
774 | func2, 1, head->height, 0); | |
775 | __btree_init(head); | |
776 | return count; | |
777 | } | |
778 | EXPORT_SYMBOL_GPL(btree_grim_visitor); | |
779 | ||
780 | static int __init btree_module_init(void) | |
781 | { | |
782 | btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0, | |
783 | SLAB_HWCACHE_ALIGN, NULL); | |
784 | return 0; | |
785 | } | |
786 | ||
787 | static void __exit btree_module_exit(void) | |
788 | { | |
789 | kmem_cache_destroy(btree_cachep); | |
790 | } | |
791 | ||
792 | /* If core code starts using btree, initialization should happen even earlier */ | |
793 | module_init(btree_module_init); | |
794 | module_exit(btree_module_exit); | |
795 | ||
796 | MODULE_AUTHOR("Joern Engel <joern@logfs.org>"); | |
797 | MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); | |
798 | MODULE_LICENSE("GPL"); |