]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> | |
3 | * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks! | |
4 | * Code was from the public domain, copyright abandoned. Code was | |
5 | * subsequently included in the kernel, thus was re-licensed under the | |
6 | * GNU GPL v2. | |
7 | * | |
8 | * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> | |
9 | * Same crc32 function was used in 5 other places in the kernel. | |
10 | * I made one version, and deleted the others. | |
11 | * There are various incantations of crc32(). Some use a seed of 0 or ~0. | |
12 | * Some xor at the end with ~0. The generic crc32() function takes | |
13 | * seed as an argument, and doesn't xor at the end. Then individual | |
14 | * users can do whatever they need. | |
15 | * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. | |
16 | * fs/jffs2 uses seed 0, doesn't xor with ~0. | |
17 | * fs/partitions/efi.c uses seed ~0, xor's with ~0. | |
18 | * | |
19 | * This source code is licensed under the GNU General Public License, | |
20 | * Version 2. See the file COPYING for more details. | |
21 | */ | |
22 | ||
23 | #include <linux/crc32.h> | |
24 | #include <linux/kernel.h> | |
25 | #include <linux/module.h> | |
26 | #include <linux/compiler.h> | |
27 | #include <linux/types.h> | |
1da177e4 | 28 | #include <linux/init.h> |
60063497 | 29 | #include <linux/atomic.h> |
1da177e4 LT |
30 | #include "crc32defs.h" |
31 | #if CRC_LE_BITS == 8 | |
4f2a9463 | 32 | # define tole(x) __constant_cpu_to_le32(x) |
1da177e4 | 33 | #else |
4f2a9463 JT |
34 | # define tole(x) (x) |
35 | #endif | |
36 | ||
37 | #if CRC_BE_BITS == 8 | |
38 | # define tobe(x) __constant_cpu_to_be32(x) | |
39 | #else | |
40 | # define tobe(x) (x) | |
1da177e4 LT |
41 | #endif |
42 | #include "crc32table.h" | |
43 | ||
44 | MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); | |
45 | MODULE_DESCRIPTION("Ethernet CRC32 calculations"); | |
46 | MODULE_LICENSE("GPL"); | |
47 | ||
ddcaccbc JT |
48 | #if CRC_LE_BITS == 8 || CRC_BE_BITS == 8 |
49 | ||
50 | static inline u32 | |
836e2af9 | 51 | crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256]) |
ddcaccbc | 52 | { |
0d2daf5c | 53 | # ifdef __LITTLE_ENDIAN |
836e2af9 JT |
54 | # define DO_CRC(x) crc = tab[0][(crc ^ (x)) & 255] ^ (crc >> 8) |
55 | # define DO_CRC4 crc = tab[3][(crc) & 255] ^ \ | |
56 | tab[2][(crc >> 8) & 255] ^ \ | |
57 | tab[1][(crc >> 16) & 255] ^ \ | |
58 | tab[0][(crc >> 24) & 255] | |
ddcaccbc | 59 | # else |
836e2af9 JT |
60 | # define DO_CRC(x) crc = tab[0][((crc >> 24) ^ (x)) & 255] ^ (crc << 8) |
61 | # define DO_CRC4 crc = tab[0][(crc) & 255] ^ \ | |
62 | tab[1][(crc >> 8) & 255] ^ \ | |
63 | tab[2][(crc >> 16) & 255] ^ \ | |
64 | tab[3][(crc >> 24) & 255] | |
ddcaccbc | 65 | # endif |
4f2a9463 | 66 | const u32 *b; |
ddcaccbc JT |
67 | size_t rem_len; |
68 | ||
69 | /* Align it */ | |
4f2a9463 | 70 | if (unlikely((long)buf & 3 && len)) { |
ddcaccbc | 71 | do { |
4f2a9463 JT |
72 | DO_CRC(*buf++); |
73 | } while ((--len) && ((long)buf)&3); | |
ddcaccbc JT |
74 | } |
75 | rem_len = len & 3; | |
76 | /* load data 32 bits wide, xor data 32 bits wide. */ | |
77 | len = len >> 2; | |
4f2a9463 | 78 | b = (const u32 *)buf; |
ddcaccbc JT |
79 | for (--b; len; --len) { |
80 | crc ^= *++b; /* use pre increment for speed */ | |
836e2af9 | 81 | DO_CRC4; |
ddcaccbc JT |
82 | } |
83 | len = rem_len; | |
84 | /* And the last few bytes */ | |
85 | if (len) { | |
86 | u8 *p = (u8 *)(b + 1) - 1; | |
87 | do { | |
88 | DO_CRC(*++p); /* use pre increment for speed */ | |
89 | } while (--len); | |
90 | } | |
91 | return crc; | |
4f2a9463 | 92 | #undef DO_CRC |
836e2af9 | 93 | #undef DO_CRC4 |
ddcaccbc JT |
94 | } |
95 | #endif | |
2f72100c RD |
96 | /** |
97 | * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 | |
98 | * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for | |
99 | * other uses, or the previous crc32 value if computing incrementally. | |
100 | * @p: pointer to buffer over which CRC is run | |
101 | * @len: length of buffer @p | |
102 | */ | |
e8c44319 | 103 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len); |
2f72100c | 104 | |
1da177e4 LT |
105 | #if CRC_LE_BITS == 1 |
106 | /* | |
107 | * In fact, the table-based code will work in this case, but it can be | |
108 | * simplified by inlining the table in ?: form. | |
109 | */ | |
110 | ||
e8c44319 | 111 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) |
1da177e4 LT |
112 | { |
113 | int i; | |
114 | while (len--) { | |
115 | crc ^= *p++; | |
116 | for (i = 0; i < 8; i++) | |
117 | crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); | |
118 | } | |
119 | return crc; | |
120 | } | |
121 | #else /* Table-based approach */ | |
122 | ||
e8c44319 | 123 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) |
1da177e4 LT |
124 | { |
125 | # if CRC_LE_BITS == 8 | |
836e2af9 | 126 | const u32 (*tab)[] = crc32table_le; |
1da177e4 | 127 | |
1da177e4 | 128 | crc = __cpu_to_le32(crc); |
ddcaccbc | 129 | crc = crc32_body(crc, p, len, tab); |
1da177e4 | 130 | return __le32_to_cpu(crc); |
1da177e4 LT |
131 | # elif CRC_LE_BITS == 4 |
132 | while (len--) { | |
133 | crc ^= *p++; | |
134 | crc = (crc >> 4) ^ crc32table_le[crc & 15]; | |
135 | crc = (crc >> 4) ^ crc32table_le[crc & 15]; | |
136 | } | |
137 | return crc; | |
138 | # elif CRC_LE_BITS == 2 | |
139 | while (len--) { | |
140 | crc ^= *p++; | |
141 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | |
142 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | |
143 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | |
144 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | |
145 | } | |
146 | return crc; | |
147 | # endif | |
148 | } | |
149 | #endif | |
150 | ||
2f72100c RD |
151 | /** |
152 | * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 | |
153 | * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for | |
154 | * other uses, or the previous crc32 value if computing incrementally. | |
155 | * @p: pointer to buffer over which CRC is run | |
156 | * @len: length of buffer @p | |
157 | */ | |
e8c44319 | 158 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len); |
2f72100c | 159 | |
1da177e4 LT |
160 | #if CRC_BE_BITS == 1 |
161 | /* | |
162 | * In fact, the table-based code will work in this case, but it can be | |
163 | * simplified by inlining the table in ?: form. | |
164 | */ | |
165 | ||
e8c44319 | 166 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) |
1da177e4 LT |
167 | { |
168 | int i; | |
169 | while (len--) { | |
170 | crc ^= *p++ << 24; | |
171 | for (i = 0; i < 8; i++) | |
172 | crc = | |
173 | (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : | |
174 | 0); | |
175 | } | |
176 | return crc; | |
177 | } | |
178 | ||
179 | #else /* Table-based approach */ | |
e8c44319 | 180 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) |
1da177e4 LT |
181 | { |
182 | # if CRC_BE_BITS == 8 | |
836e2af9 | 183 | const u32 (*tab)[] = crc32table_be; |
1da177e4 | 184 | |
1da177e4 | 185 | crc = __cpu_to_be32(crc); |
ddcaccbc | 186 | crc = crc32_body(crc, p, len, tab); |
1da177e4 | 187 | return __be32_to_cpu(crc); |
1da177e4 LT |
188 | # elif CRC_BE_BITS == 4 |
189 | while (len--) { | |
190 | crc ^= *p++ << 24; | |
191 | crc = (crc << 4) ^ crc32table_be[crc >> 28]; | |
192 | crc = (crc << 4) ^ crc32table_be[crc >> 28]; | |
193 | } | |
194 | return crc; | |
195 | # elif CRC_BE_BITS == 2 | |
196 | while (len--) { | |
197 | crc ^= *p++ << 24; | |
198 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | |
199 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | |
200 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | |
201 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | |
202 | } | |
203 | return crc; | |
204 | # endif | |
205 | } | |
206 | #endif | |
207 | ||
1da177e4 LT |
208 | EXPORT_SYMBOL(crc32_le); |
209 | EXPORT_SYMBOL(crc32_be); | |
1da177e4 LT |
210 | |
211 | /* | |
212 | * A brief CRC tutorial. | |
213 | * | |
214 | * A CRC is a long-division remainder. You add the CRC to the message, | |
215 | * and the whole thing (message+CRC) is a multiple of the given | |
216 | * CRC polynomial. To check the CRC, you can either check that the | |
217 | * CRC matches the recomputed value, *or* you can check that the | |
218 | * remainder computed on the message+CRC is 0. This latter approach | |
219 | * is used by a lot of hardware implementations, and is why so many | |
220 | * protocols put the end-of-frame flag after the CRC. | |
221 | * | |
222 | * It's actually the same long division you learned in school, except that | |
223 | * - We're working in binary, so the digits are only 0 and 1, and | |
224 | * - When dividing polynomials, there are no carries. Rather than add and | |
225 | * subtract, we just xor. Thus, we tend to get a bit sloppy about | |
226 | * the difference between adding and subtracting. | |
227 | * | |
228 | * A 32-bit CRC polynomial is actually 33 bits long. But since it's | |
229 | * 33 bits long, bit 32 is always going to be set, so usually the CRC | |
230 | * is written in hex with the most significant bit omitted. (If you're | |
231 | * familiar with the IEEE 754 floating-point format, it's the same idea.) | |
232 | * | |
233 | * Note that a CRC is computed over a string of *bits*, so you have | |
234 | * to decide on the endianness of the bits within each byte. To get | |
235 | * the best error-detecting properties, this should correspond to the | |
236 | * order they're actually sent. For example, standard RS-232 serial is | |
237 | * little-endian; the most significant bit (sometimes used for parity) | |
238 | * is sent last. And when appending a CRC word to a message, you should | |
239 | * do it in the right order, matching the endianness. | |
240 | * | |
241 | * Just like with ordinary division, the remainder is always smaller than | |
242 | * the divisor (the CRC polynomial) you're dividing by. Each step of the | |
243 | * division, you take one more digit (bit) of the dividend and append it | |
244 | * to the current remainder. Then you figure out the appropriate multiple | |
245 | * of the divisor to subtract to being the remainder back into range. | |
246 | * In binary, it's easy - it has to be either 0 or 1, and to make the | |
247 | * XOR cancel, it's just a copy of bit 32 of the remainder. | |
248 | * | |
249 | * When computing a CRC, we don't care about the quotient, so we can | |
250 | * throw the quotient bit away, but subtract the appropriate multiple of | |
251 | * the polynomial from the remainder and we're back to where we started, | |
252 | * ready to process the next bit. | |
253 | * | |
254 | * A big-endian CRC written this way would be coded like: | |
255 | * for (i = 0; i < input_bits; i++) { | |
256 | * multiple = remainder & 0x80000000 ? CRCPOLY : 0; | |
257 | * remainder = (remainder << 1 | next_input_bit()) ^ multiple; | |
258 | * } | |
259 | * Notice how, to get at bit 32 of the shifted remainder, we look | |
260 | * at bit 31 of the remainder *before* shifting it. | |
261 | * | |
262 | * But also notice how the next_input_bit() bits we're shifting into | |
263 | * the remainder don't actually affect any decision-making until | |
264 | * 32 bits later. Thus, the first 32 cycles of this are pretty boring. | |
265 | * Also, to add the CRC to a message, we need a 32-bit-long hole for it at | |
266 | * the end, so we have to add 32 extra cycles shifting in zeros at the | |
267 | * end of every message, | |
268 | * | |
269 | * So the standard trick is to rearrage merging in the next_input_bit() | |
270 | * until the moment it's needed. Then the first 32 cycles can be precomputed, | |
271 | * and merging in the final 32 zero bits to make room for the CRC can be | |
272 | * skipped entirely. | |
273 | * This changes the code to: | |
274 | * for (i = 0; i < input_bits; i++) { | |
275 | * remainder ^= next_input_bit() << 31; | |
276 | * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | |
277 | * remainder = (remainder << 1) ^ multiple; | |
278 | * } | |
279 | * With this optimization, the little-endian code is simpler: | |
280 | * for (i = 0; i < input_bits; i++) { | |
281 | * remainder ^= next_input_bit(); | |
282 | * multiple = (remainder & 1) ? CRCPOLY : 0; | |
283 | * remainder = (remainder >> 1) ^ multiple; | |
284 | * } | |
285 | * | |
286 | * Note that the other details of endianness have been hidden in CRCPOLY | |
287 | * (which must be bit-reversed) and next_input_bit(). | |
288 | * | |
289 | * However, as long as next_input_bit is returning the bits in a sensible | |
290 | * order, we can actually do the merging 8 or more bits at a time rather | |
291 | * than one bit at a time: | |
292 | * for (i = 0; i < input_bytes; i++) { | |
293 | * remainder ^= next_input_byte() << 24; | |
294 | * for (j = 0; j < 8; j++) { | |
295 | * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | |
296 | * remainder = (remainder << 1) ^ multiple; | |
297 | * } | |
298 | * } | |
299 | * Or in little-endian: | |
300 | * for (i = 0; i < input_bytes; i++) { | |
301 | * remainder ^= next_input_byte(); | |
302 | * for (j = 0; j < 8; j++) { | |
303 | * multiple = (remainder & 1) ? CRCPOLY : 0; | |
304 | * remainder = (remainder << 1) ^ multiple; | |
305 | * } | |
306 | * } | |
307 | * If the input is a multiple of 32 bits, you can even XOR in a 32-bit | |
308 | * word at a time and increase the inner loop count to 32. | |
309 | * | |
310 | * You can also mix and match the two loop styles, for example doing the | |
311 | * bulk of a message byte-at-a-time and adding bit-at-a-time processing | |
312 | * for any fractional bytes at the end. | |
313 | * | |
314 | * The only remaining optimization is to the byte-at-a-time table method. | |
315 | * Here, rather than just shifting one bit of the remainder to decide | |
316 | * in the correct multiple to subtract, we can shift a byte at a time. | |
317 | * This produces a 40-bit (rather than a 33-bit) intermediate remainder, | |
318 | * but again the multiple of the polynomial to subtract depends only on | |
319 | * the high bits, the high 8 bits in this case. | |
320 | * | |
643d1f7f | 321 | * The multiple we need in that case is the low 32 bits of a 40-bit |
1da177e4 LT |
322 | * value whose high 8 bits are given, and which is a multiple of the |
323 | * generator polynomial. This is simply the CRC-32 of the given | |
324 | * one-byte message. | |
325 | * | |
326 | * Two more details: normally, appending zero bits to a message which | |
327 | * is already a multiple of a polynomial produces a larger multiple of that | |
328 | * polynomial. To enable a CRC to detect this condition, it's common to | |
329 | * invert the CRC before appending it. This makes the remainder of the | |
330 | * message+crc come out not as zero, but some fixed non-zero value. | |
331 | * | |
332 | * The same problem applies to zero bits prepended to the message, and | |
333 | * a similar solution is used. Instead of starting with a remainder of | |
334 | * 0, an initial remainder of all ones is used. As long as you start | |
335 | * the same way on decoding, it doesn't make a difference. | |
336 | */ | |
337 | ||
338 | #ifdef UNITTEST | |
339 | ||
340 | #include <stdlib.h> | |
341 | #include <stdio.h> | |
342 | ||
343 | #if 0 /*Not used at present */ | |
344 | static void | |
345 | buf_dump(char const *prefix, unsigned char const *buf, size_t len) | |
346 | { | |
347 | fputs(prefix, stdout); | |
348 | while (len--) | |
349 | printf(" %02x", *buf++); | |
350 | putchar('\n'); | |
351 | ||
352 | } | |
353 | #endif | |
354 | ||
355 | static void bytereverse(unsigned char *buf, size_t len) | |
356 | { | |
357 | while (len--) { | |
906d66df | 358 | unsigned char x = bitrev8(*buf); |
1da177e4 LT |
359 | *buf++ = x; |
360 | } | |
361 | } | |
362 | ||
363 | static void random_garbage(unsigned char *buf, size_t len) | |
364 | { | |
365 | while (len--) | |
366 | *buf++ = (unsigned char) random(); | |
367 | } | |
368 | ||
369 | #if 0 /* Not used at present */ | |
370 | static void store_le(u32 x, unsigned char *buf) | |
371 | { | |
372 | buf[0] = (unsigned char) x; | |
373 | buf[1] = (unsigned char) (x >> 8); | |
374 | buf[2] = (unsigned char) (x >> 16); | |
375 | buf[3] = (unsigned char) (x >> 24); | |
376 | } | |
377 | #endif | |
378 | ||
379 | static void store_be(u32 x, unsigned char *buf) | |
380 | { | |
381 | buf[0] = (unsigned char) (x >> 24); | |
382 | buf[1] = (unsigned char) (x >> 16); | |
383 | buf[2] = (unsigned char) (x >> 8); | |
384 | buf[3] = (unsigned char) x; | |
385 | } | |
386 | ||
387 | /* | |
388 | * This checks that CRC(buf + CRC(buf)) = 0, and that | |
389 | * CRC commutes with bit-reversal. This has the side effect | |
390 | * of bytewise bit-reversing the input buffer, and returns | |
391 | * the CRC of the reversed buffer. | |
392 | */ | |
393 | static u32 test_step(u32 init, unsigned char *buf, size_t len) | |
394 | { | |
395 | u32 crc1, crc2; | |
396 | size_t i; | |
397 | ||
398 | crc1 = crc32_be(init, buf, len); | |
399 | store_be(crc1, buf + len); | |
400 | crc2 = crc32_be(init, buf, len + 4); | |
401 | if (crc2) | |
402 | printf("\nCRC cancellation fail: 0x%08x should be 0\n", | |
403 | crc2); | |
404 | ||
405 | for (i = 0; i <= len + 4; i++) { | |
406 | crc2 = crc32_be(init, buf, i); | |
407 | crc2 = crc32_be(crc2, buf + i, len + 4 - i); | |
408 | if (crc2) | |
409 | printf("\nCRC split fail: 0x%08x\n", crc2); | |
410 | } | |
411 | ||
412 | /* Now swap it around for the other test */ | |
413 | ||
414 | bytereverse(buf, len + 4); | |
906d66df AM |
415 | init = bitrev32(init); |
416 | crc2 = bitrev32(crc1); | |
417 | if (crc1 != bitrev32(crc2)) | |
cfc646fa | 418 | printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n", |
906d66df | 419 | crc1, crc2, bitrev32(crc2)); |
1da177e4 LT |
420 | crc1 = crc32_le(init, buf, len); |
421 | if (crc1 != crc2) | |
422 | printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1, | |
423 | crc2); | |
424 | crc2 = crc32_le(init, buf, len + 4); | |
425 | if (crc2) | |
426 | printf("\nCRC cancellation fail: 0x%08x should be 0\n", | |
427 | crc2); | |
428 | ||
429 | for (i = 0; i <= len + 4; i++) { | |
430 | crc2 = crc32_le(init, buf, i); | |
431 | crc2 = crc32_le(crc2, buf + i, len + 4 - i); | |
432 | if (crc2) | |
433 | printf("\nCRC split fail: 0x%08x\n", crc2); | |
434 | } | |
435 | ||
436 | return crc1; | |
437 | } | |
438 | ||
439 | #define SIZE 64 | |
440 | #define INIT1 0 | |
441 | #define INIT2 0 | |
442 | ||
443 | int main(void) | |
444 | { | |
445 | unsigned char buf1[SIZE + 4]; | |
446 | unsigned char buf2[SIZE + 4]; | |
447 | unsigned char buf3[SIZE + 4]; | |
448 | int i, j; | |
449 | u32 crc1, crc2, crc3; | |
450 | ||
451 | for (i = 0; i <= SIZE; i++) { | |
452 | printf("\rTesting length %d...", i); | |
453 | fflush(stdout); | |
454 | random_garbage(buf1, i); | |
455 | random_garbage(buf2, i); | |
456 | for (j = 0; j < i; j++) | |
457 | buf3[j] = buf1[j] ^ buf2[j]; | |
458 | ||
459 | crc1 = test_step(INIT1, buf1, i); | |
460 | crc2 = test_step(INIT2, buf2, i); | |
461 | /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */ | |
462 | crc3 = test_step(INIT1 ^ INIT2, buf3, i); | |
463 | if (crc3 != (crc1 ^ crc2)) | |
464 | printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n", | |
465 | crc3, crc1, crc2); | |
466 | } | |
467 | printf("\nAll test complete. No failures expected.\n"); | |
468 | return 0; | |
469 | } | |
470 | ||
471 | #endif /* UNITTEST */ |