]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> | |
3 | * | |
4 | * Based on former do_div() implementation from asm-parisc/div64.h: | |
5 | * Copyright (C) 1999 Hewlett-Packard Co | |
6 | * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> | |
7 | * | |
8 | * | |
9 | * Generic C version of 64bit/32bit division and modulo, with | |
10 | * 64bit result and 32bit remainder. | |
11 | * | |
12 | * The fast case for (n>>32 == 0) is handled inline by do_div(). | |
13 | * | |
14 | * Code generated for this function might be very inefficient | |
15 | * for some CPUs. __div64_32() can be overridden by linking arch-specific | |
16 | * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S. | |
17 | */ | |
18 | ||
8bc3bcc9 PG |
19 | #include <linux/export.h> |
20 | #include <linux/kernel.h> | |
2418f4f2 | 21 | #include <linux/math64.h> |
1da177e4 LT |
22 | |
23 | /* Not needed on 64bit architectures */ | |
24 | #if BITS_PER_LONG == 32 | |
25 | ||
cb8c181f | 26 | uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) |
1da177e4 LT |
27 | { |
28 | uint64_t rem = *n; | |
29 | uint64_t b = base; | |
30 | uint64_t res, d = 1; | |
31 | uint32_t high = rem >> 32; | |
32 | ||
33 | /* Reduce the thing a bit first */ | |
34 | res = 0; | |
35 | if (high >= base) { | |
36 | high /= base; | |
37 | res = (uint64_t) high << 32; | |
38 | rem -= (uint64_t) (high*base) << 32; | |
39 | } | |
40 | ||
41 | while ((int64_t)b > 0 && b < rem) { | |
42 | b = b+b; | |
43 | d = d+d; | |
44 | } | |
45 | ||
46 | do { | |
47 | if (rem >= b) { | |
48 | rem -= b; | |
49 | res += d; | |
50 | } | |
51 | b >>= 1; | |
52 | d >>= 1; | |
53 | } while (d); | |
54 | ||
55 | *n = res; | |
56 | return rem; | |
57 | } | |
58 | ||
59 | EXPORT_SYMBOL(__div64_32); | |
60 | ||
2418f4f2 RZ |
61 | #ifndef div_s64_rem |
62 | s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) | |
63 | { | |
64 | u64 quotient; | |
65 | ||
66 | if (dividend < 0) { | |
67 | quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); | |
68 | *remainder = -*remainder; | |
69 | if (divisor > 0) | |
70 | quotient = -quotient; | |
71 | } else { | |
72 | quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); | |
73 | if (divisor < 0) | |
74 | quotient = -quotient; | |
75 | } | |
76 | return quotient; | |
77 | } | |
78 | EXPORT_SYMBOL(div_s64_rem); | |
79 | #endif | |
80 | ||
658716d1 | 81 | /** |
f7926850 | 82 | * div64_u64_rem - unsigned 64bit divide with 64bit divisor and 64bit remainder |
658716d1 BB |
83 | * @dividend: 64bit dividend |
84 | * @divisor: 64bit divisor | |
f7926850 | 85 | * @remainder: 64bit remainder |
658716d1 BB |
86 | * |
87 | * This implementation is a modified version of the algorithm proposed | |
88 | * by the book 'Hacker's Delight'. The original source and full proof | |
89 | * can be found here and is available for use without restriction. | |
90 | * | |
422aa274 | 91 | * 'http://www.hackersdelight.org/HDcode/newCode/divDouble.c.txt' |
658716d1 | 92 | */ |
f7926850 FW |
93 | #ifndef div64_u64_rem |
94 | u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) | |
3927f2e8 | 95 | { |
658716d1 BB |
96 | u32 high = divisor >> 32; |
97 | u64 quot; | |
3927f2e8 | 98 | |
658716d1 | 99 | if (high == 0) { |
f7926850 FW |
100 | u32 rem32; |
101 | quot = div_u64_rem(dividend, divisor, &rem32); | |
102 | *remainder = rem32; | |
658716d1 BB |
103 | } else { |
104 | int n = 1 + fls(high); | |
105 | quot = div_u64(dividend >> n, divisor >> n); | |
3927f2e8 | 106 | |
658716d1 BB |
107 | if (quot != 0) |
108 | quot--; | |
f7926850 FW |
109 | |
110 | *remainder = dividend - quot * divisor; | |
111 | if (*remainder >= divisor) { | |
658716d1 | 112 | quot++; |
f7926850 FW |
113 | *remainder -= divisor; |
114 | } | |
658716d1 | 115 | } |
3927f2e8 | 116 | |
658716d1 | 117 | return quot; |
3927f2e8 | 118 | } |
f7926850 | 119 | EXPORT_SYMBOL(div64_u64_rem); |
6f6d6a1a | 120 | #endif |
3927f2e8 | 121 | |
658716d1 BB |
122 | /** |
123 | * div64_s64 - signed 64bit divide with 64bit divisor | |
124 | * @dividend: 64bit dividend | |
125 | * @divisor: 64bit divisor | |
126 | */ | |
127 | #ifndef div64_s64 | |
128 | s64 div64_s64(s64 dividend, s64 divisor) | |
129 | { | |
130 | s64 quot, t; | |
131 | ||
132 | quot = div64_u64(abs64(dividend), abs64(divisor)); | |
133 | t = (dividend ^ divisor) >> 63; | |
134 | ||
135 | return (quot ^ t) - t; | |
136 | } | |
137 | EXPORT_SYMBOL(div64_s64); | |
138 | #endif | |
139 | ||
1da177e4 | 140 | #endif /* BITS_PER_LONG == 32 */ |
f595ec96 JF |
141 | |
142 | /* | |
143 | * Iterative div/mod for use when dividend is not expected to be much | |
144 | * bigger than divisor. | |
145 | */ | |
146 | u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) | |
147 | { | |
d5e181f7 | 148 | return __iter_div_u64_rem(dividend, divisor, remainder); |
f595ec96 JF |
149 | } |
150 | EXPORT_SYMBOL(iter_div_u64_rem); |