]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/flex_array.c
flex_array: poison free elements
[mirror_ubuntu-artful-kernel.git] / lib / flex_array.c
CommitLineData
534acc05
DH
1/*
2 * Flexible array managed in PAGE_SIZE parts
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2009
19 *
20 * Author: Dave Hansen <dave@linux.vnet.ibm.com>
21 */
22
23#include <linux/flex_array.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26
27struct flex_array_part {
28 char elements[FLEX_ARRAY_PART_SIZE];
29};
30
31static inline int __elements_per_part(int element_size)
32{
33 return FLEX_ARRAY_PART_SIZE / element_size;
34}
35
36static inline int bytes_left_in_base(void)
37{
38 int element_offset = offsetof(struct flex_array, parts);
39 int bytes_left = FLEX_ARRAY_BASE_SIZE - element_offset;
40 return bytes_left;
41}
42
43static inline int nr_base_part_ptrs(void)
44{
45 return bytes_left_in_base() / sizeof(struct flex_array_part *);
46}
47
48/*
49 * If a user requests an allocation which is small
50 * enough, we may simply use the space in the
51 * flex_array->parts[] array to store the user
52 * data.
53 */
54static inline int elements_fit_in_base(struct flex_array *fa)
55{
56 int data_size = fa->element_size * fa->total_nr_elements;
57 if (data_size <= bytes_left_in_base())
58 return 1;
59 return 0;
60}
61
62/**
63 * flex_array_alloc - allocate a new flexible array
64 * @element_size: the size of individual elements in the array
65 * @total: total number of elements that this should hold
66 *
67 * Note: all locking must be provided by the caller.
68 *
69 * @total is used to size internal structures. If the user ever
70 * accesses any array indexes >=@total, it will produce errors.
71 *
72 * The maximum number of elements is defined as: the number of
73 * elements that can be stored in a page times the number of
74 * page pointers that we can fit in the base structure or (using
75 * integer math):
76 *
77 * (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
78 *
79 * Here's a table showing example capacities. Note that the maximum
80 * index that the get/put() functions is just nr_objects-1. This
81 * basically means that you get 4MB of storage on 32-bit and 2MB on
82 * 64-bit.
83 *
84 *
85 * Element size | Objects | Objects |
86 * PAGE_SIZE=4k | 32-bit | 64-bit |
87 * ---------------------------------|
88 * 1 bytes | 4186112 | 2093056 |
89 * 2 bytes | 2093056 | 1046528 |
90 * 3 bytes | 1395030 | 697515 |
91 * 4 bytes | 1046528 | 523264 |
92 * 32 bytes | 130816 | 65408 |
93 * 33 bytes | 126728 | 63364 |
94 * 2048 bytes | 2044 | 1022 |
95 * 2049 bytes | 1022 | 511 |
96 * void * | 1046528 | 261632 |
97 *
98 * Since 64-bit pointers are twice the size, we lose half the
99 * capacity in the base structure. Also note that no effort is made
100 * to efficiently pack objects across page boundaries.
101 */
b62e408c
DR
102struct flex_array *flex_array_alloc(int element_size, unsigned int total,
103 gfp_t flags)
534acc05
DH
104{
105 struct flex_array *ret;
106 int max_size = nr_base_part_ptrs() * __elements_per_part(element_size);
107
108 /* max_size will end up 0 if element_size > PAGE_SIZE */
109 if (total > max_size)
110 return NULL;
111 ret = kzalloc(sizeof(struct flex_array), flags);
112 if (!ret)
113 return NULL;
114 ret->element_size = element_size;
115 ret->total_nr_elements = total;
19da3dd1
DR
116 if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
117 memset(ret->parts[0], FLEX_ARRAY_FREE, bytes_left_in_base());
534acc05
DH
118 return ret;
119}
120
b62e408c
DR
121static int fa_element_to_part_nr(struct flex_array *fa,
122 unsigned int element_nr)
534acc05
DH
123{
124 return element_nr / __elements_per_part(fa->element_size);
125}
126
127/**
128 * flex_array_free_parts - just free the second-level pages
534acc05
DH
129 *
130 * This is to be used in cases where the base 'struct flex_array'
131 * has been statically allocated and should not be free.
132 */
133void flex_array_free_parts(struct flex_array *fa)
134{
135 int part_nr;
136 int max_part = nr_base_part_ptrs();
137
138 if (elements_fit_in_base(fa))
139 return;
140 for (part_nr = 0; part_nr < max_part; part_nr++)
141 kfree(fa->parts[part_nr]);
142}
143
144void flex_array_free(struct flex_array *fa)
145{
146 flex_array_free_parts(fa);
147 kfree(fa);
148}
149
b62e408c
DR
150static unsigned int index_inside_part(struct flex_array *fa,
151 unsigned int element_nr)
534acc05 152{
b62e408c 153 unsigned int part_offset;
534acc05 154
b62e408c 155 part_offset = element_nr % __elements_per_part(fa->element_size);
534acc05
DH
156 return part_offset * fa->element_size;
157}
158
159static struct flex_array_part *
160__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
161{
162 struct flex_array_part *part = fa->parts[part_nr];
163 if (!part) {
19da3dd1 164 part = kmalloc(sizeof(struct flex_array_part), flags);
534acc05
DH
165 if (!part)
166 return NULL;
19da3dd1
DR
167 if (!(flags & __GFP_ZERO))
168 memset(part, FLEX_ARRAY_FREE,
169 sizeof(struct flex_array_part));
534acc05
DH
170 fa->parts[part_nr] = part;
171 }
172 return part;
173}
174
175/**
176 * flex_array_put - copy data into the array at @element_nr
177 * @src: address of data to copy into the array
178 * @element_nr: index of the position in which to insert
179 * the new element.
180 *
181 * Note that this *copies* the contents of @src into
182 * the array. If you are trying to store an array of
183 * pointers, make sure to pass in &ptr instead of ptr.
184 *
185 * Locking must be provided by the caller.
186 */
b62e408c
DR
187int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
188 gfp_t flags)
534acc05
DH
189{
190 int part_nr = fa_element_to_part_nr(fa, element_nr);
191 struct flex_array_part *part;
192 void *dst;
193
194 if (element_nr >= fa->total_nr_elements)
195 return -ENOSPC;
196 if (elements_fit_in_base(fa))
197 part = (struct flex_array_part *)&fa->parts[0];
a30b595d 198 else {
534acc05 199 part = __fa_get_part(fa, part_nr, flags);
a30b595d
DR
200 if (!part)
201 return -ENOMEM;
202 }
534acc05
DH
203 dst = &part->elements[index_inside_part(fa, element_nr)];
204 memcpy(dst, src, fa->element_size);
205 return 0;
206}
207
e6de3988
DR
208/**
209 * flex_array_clear - clear element in array at @element_nr
210 * @element_nr: index of the position to clear.
211 *
212 * Locking must be provided by the caller.
213 */
214int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
215{
216 int part_nr = fa_element_to_part_nr(fa, element_nr);
217 struct flex_array_part *part;
218 void *dst;
219
220 if (element_nr >= fa->total_nr_elements)
221 return -ENOSPC;
222 if (elements_fit_in_base(fa))
223 part = (struct flex_array_part *)&fa->parts[0];
224 else {
225 part = fa->parts[part_nr];
226 if (!part)
227 return -EINVAL;
228 }
229 dst = &part->elements[index_inside_part(fa, element_nr)];
19da3dd1 230 memset(dst, FLEX_ARRAY_FREE, fa->element_size);
e6de3988
DR
231 return 0;
232}
233
534acc05
DH
234/**
235 * flex_array_prealloc - guarantee that array space exists
236 * @start: index of first array element for which space is allocated
237 * @end: index of last (inclusive) element for which space is allocated
238 *
239 * This will guarantee that no future calls to flex_array_put()
240 * will allocate memory. It can be used if you are expecting to
241 * be holding a lock or in some atomic context while writing
242 * data into the array.
243 *
244 * Locking must be provided by the caller.
245 */
b62e408c
DR
246int flex_array_prealloc(struct flex_array *fa, unsigned int start,
247 unsigned int end, gfp_t flags)
534acc05
DH
248{
249 int start_part;
250 int end_part;
251 int part_nr;
252 struct flex_array_part *part;
253
254 if (start >= fa->total_nr_elements || end >= fa->total_nr_elements)
255 return -ENOSPC;
256 if (elements_fit_in_base(fa))
257 return 0;
258 start_part = fa_element_to_part_nr(fa, start);
259 end_part = fa_element_to_part_nr(fa, end);
260 for (part_nr = start_part; part_nr <= end_part; part_nr++) {
261 part = __fa_get_part(fa, part_nr, flags);
262 if (!part)
263 return -ENOMEM;
264 }
265 return 0;
266}
267
268/**
269 * flex_array_get - pull data back out of the array
270 * @element_nr: index of the element to fetch from the array
271 *
272 * Returns a pointer to the data at index @element_nr. Note
273 * that this is a copy of the data that was passed in. If you
274 * are using this to store pointers, you'll get back &ptr.
275 *
276 * Locking must be provided by the caller.
277 */
b62e408c 278void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
534acc05
DH
279{
280 int part_nr = fa_element_to_part_nr(fa, element_nr);
281 struct flex_array_part *part;
534acc05
DH
282
283 if (element_nr >= fa->total_nr_elements)
284 return NULL;
534acc05
DH
285 if (elements_fit_in_base(fa))
286 part = (struct flex_array_part *)&fa->parts[0];
a30b595d 287 else {
534acc05 288 part = fa->parts[part_nr];
a30b595d
DR
289 if (!part)
290 return NULL;
291 }
534acc05
DH
292 return &part->elements[index_inside_part(fa, element_nr)];
293}