]> git.proxmox.com Git - ovs.git/blame - lib/flow.c
datapath-windows: Avoid BSOD when switch context is NULL
[ovs.git] / lib / flow.c
CommitLineData
064af421 1/*
8bfd0fda 2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
064af421 3 *
a14bc59f
BP
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
064af421 7 *
a14bc59f
BP
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
064af421
BP
15 */
16#include <config.h>
17#include <sys/types.h>
18#include "flow.h"
d31f1109 19#include <errno.h>
064af421 20#include <inttypes.h>
5cb7a798 21#include <limits.h>
064af421 22#include <netinet/in.h>
d31f1109
JP
23#include <netinet/icmp6.h>
24#include <netinet/ip6.h>
5cb7a798 25#include <stdint.h>
064af421
BP
26#include <stdlib.h>
27#include <string.h>
10a24935 28#include "byte-order.h"
064af421 29#include "coverage.h"
dc5a7ce7 30#include "csum.h"
064af421
BP
31#include "dynamic-string.h"
32#include "hash.h"
c49d1dd1 33#include "jhash.h"
aa6c9932 34#include "match.h"
064af421
BP
35#include "ofpbuf.h"
36#include "openflow/openflow.h"
064af421 37#include "packets.h"
b5e7e61a 38#include "odp-util.h"
94639963 39#include "random.h"
176aaa65 40#include "unaligned.h"
064af421 41
d76f09ea 42COVERAGE_DEFINE(flow_extract);
5cb7a798 43COVERAGE_DEFINE(miniflow_malloc);
d76f09ea 44
476f36e8
JR
45/* U32 indices for segmented flow classification. */
46const uint8_t flow_segment_u32s[4] = {
47 FLOW_SEGMENT_1_ENDS_AT / 4,
48 FLOW_SEGMENT_2_ENDS_AT / 4,
49 FLOW_SEGMENT_3_ENDS_AT / 4,
50 FLOW_U32S
51};
52
419681da
JR
53/* miniflow_extract() assumes the following to be true to optimize the
54 * extraction process. */
55BUILD_ASSERT_DECL(offsetof(struct flow, dl_type) + 2
56 == offsetof(struct flow, vlan_tci) &&
57 offsetof(struct flow, dl_type) / 4
58 == offsetof(struct flow, vlan_tci) / 4 );
59
60BUILD_ASSERT_DECL(offsetof(struct flow, nw_frag) + 3
61 == offsetof(struct flow, nw_proto) &&
62 offsetof(struct flow, nw_tos) + 2
63 == offsetof(struct flow, nw_proto) &&
64 offsetof(struct flow, nw_ttl) + 1
65 == offsetof(struct flow, nw_proto) &&
66 offsetof(struct flow, nw_frag) / 4
67 == offsetof(struct flow, nw_tos) / 4 &&
68 offsetof(struct flow, nw_ttl) / 4
69 == offsetof(struct flow, nw_tos) / 4 &&
70 offsetof(struct flow, nw_proto) / 4
71 == offsetof(struct flow, nw_tos) / 4);
72
73/* TCP flags in the first half of a BE32, zeroes in the other half. */
74BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) + 2
c61f3870 75 == offsetof(struct flow, pad2) &&
419681da 76 offsetof(struct flow, tcp_flags) / 4
c61f3870 77 == offsetof(struct flow, pad2) / 4);
419681da
JR
78#if WORDS_BIGENDIAN
79#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
80 << 16)
81#else
82#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
83#endif
84
85BUILD_ASSERT_DECL(offsetof(struct flow, tp_src) + 2
86 == offsetof(struct flow, tp_dst) &&
87 offsetof(struct flow, tp_src) / 4
88 == offsetof(struct flow, tp_dst) / 4);
89
90/* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
91 * must contain at least 'size' bytes of data. Returns the first byte of data
92 * removed. */
93static inline const void *
94data_pull(void **datap, size_t *sizep, size_t size)
a26ef517 95{
419681da
JR
96 char *data = (char *)*datap;
97 *datap = data + size;
98 *sizep -= size;
99 return data;
a26ef517
JP
100}
101
419681da
JR
102/* If '*datap' has at least 'size' bytes of data, removes that many bytes from
103 * the head end of '*datap' and returns the first byte removed. Otherwise,
104 * returns a null pointer without modifying '*datap'. */
105static inline const void *
106data_try_pull(void **datap, size_t *sizep, size_t size)
064af421 107{
419681da 108 return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
064af421
BP
109}
110
419681da
JR
111/* Context for pushing data to a miniflow. */
112struct mf_ctx {
113 uint64_t map;
114 uint32_t *data;
115 uint32_t * const end;
116};
064af421 117
419681da
JR
118/* miniflow_push_* macros allow filling in a miniflow data values in order.
119 * Assertions are needed only when the layout of the struct flow is modified.
120 * 'ofs' is a compile-time constant, which allows most of the code be optimized
694ffecc 121 * away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are
419681da
JR
122 * defined as macros. */
123
c61f3870 124#if (FLOW_WC_SEQ != 28)
419681da 125#define MINIFLOW_ASSERT(X) ovs_assert(X)
dce96af8
DDP
126BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
127 "assertions enabled. Consider updating FLOW_WC_SEQ after "
128 "testing")
419681da
JR
129#else
130#define MINIFLOW_ASSERT(X)
131#endif
132
133#define miniflow_push_uint32_(MF, OFS, VALUE) \
134{ \
135 MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 4 == 0 \
136 && !(MF.map & (UINT64_MAX << (OFS) / 4))); \
137 *MF.data++ = VALUE; \
138 MF.map |= UINT64_C(1) << (OFS) / 4; \
d31f1109
JP
139}
140
419681da
JR
141#define miniflow_push_be32_(MF, OFS, VALUE) \
142 miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))
143
144#define miniflow_push_uint16_(MF, OFS, VALUE) \
145{ \
146 MINIFLOW_ASSERT(MF.data < MF.end && \
147 (((OFS) % 4 == 0 && !(MF.map & (UINT64_MAX << (OFS) / 4))) \
148 || ((OFS) % 4 == 2 && MF.map & (UINT64_C(1) << (OFS) / 4) \
149 && !(MF.map & (UINT64_MAX << ((OFS) / 4 + 1)))))); \
150 \
151 if ((OFS) % 4 == 0) { \
152 *(uint16_t *)MF.data = VALUE; \
153 MF.map |= UINT64_C(1) << (OFS) / 4; \
154 } else if ((OFS) % 4 == 2) { \
155 *((uint16_t *)MF.data + 1) = VALUE; \
156 MF.data++; \
157 } \
b02475c5
SH
158}
159
419681da
JR
160#define miniflow_push_be16_(MF, OFS, VALUE) \
161 miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);
162
163/* Data at 'valuep' may be unaligned. */
164#define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \
165{ \
166 int ofs32 = (OFS) / 4; \
167 \
168 MINIFLOW_ASSERT(MF.data + (N_WORDS) <= MF.end && (OFS) % 4 == 0 \
169 && !(MF.map & (UINT64_MAX << ofs32))); \
170 \
171 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \
172 MF.data += (N_WORDS); \
173 MF.map |= ((UINT64_MAX >> (64 - (N_WORDS))) << ofs32); \
064af421
BP
174}
175
419681da
JR
176#define miniflow_push_uint32(MF, FIELD, VALUE) \
177 miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)
50f06e16 178
419681da
JR
179#define miniflow_push_be32(MF, FIELD, VALUE) \
180 miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)
50f06e16 181
419681da
JR
182#define miniflow_push_uint32_check(MF, FIELD, VALUE) \
183 { if (OVS_LIKELY(VALUE)) { \
184 miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE); \
185 } \
50f06e16
BP
186 }
187
419681da
JR
188#define miniflow_push_be32_check(MF, FIELD, VALUE) \
189 { if (OVS_LIKELY(VALUE)) { \
190 miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE); \
191 } \
50f06e16
BP
192 }
193
419681da
JR
194#define miniflow_push_uint16(MF, FIELD, VALUE) \
195 miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)
9e69bc5f 196
419681da
JR
197#define miniflow_push_be16(MF, FIELD, VALUE) \
198 miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)
9e69bc5f 199
419681da
JR
200#define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \
201 miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
064af421 202
419681da
JR
203/* Pulls the MPLS headers at '*datap' and returns the count of them. */
204static inline int
205parse_mpls(void **datap, size_t *sizep)
d31f1109 206{
419681da
JR
207 const struct mpls_hdr *mh;
208 int count = 0;
d31f1109 209
419681da
JR
210 while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
211 count++;
212 if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
d31f1109
JP
213 break;
214 }
419681da 215 }
ba8561c6 216 return MIN(count, FLOW_MAX_MPLS_LABELS);
419681da 217}
d31f1109 218
419681da
JR
219static inline ovs_be16
220parse_vlan(void **datap, size_t *sizep)
221{
222 const struct eth_header *eth = *datap;
d31f1109 223
419681da
JR
224 struct qtag_prefix {
225 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
226 ovs_be16 tci;
227 };
d31f1109 228
419681da 229 data_pull(datap, sizep, ETH_ADDR_LEN * 2);
d31f1109 230
419681da
JR
231 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
232 if (OVS_LIKELY(*sizep
233 >= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) {
234 const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp);
235 return qp->tci | htons(VLAN_CFI);
d31f1109
JP
236 }
237 }
88366484 238 return 0;
d31f1109
JP
239}
240
419681da
JR
241static inline ovs_be16
242parse_ethertype(void **datap, size_t *sizep)
88366484 243{
419681da
JR
244 const struct llc_snap_header *llc;
245 ovs_be16 proto;
5a51b2cd 246
419681da
JR
247 proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
248 if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
249 return proto;
88366484 250 }
5a51b2cd 251
419681da
JR
252 if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
253 return htons(FLOW_DL_TYPE_NONE);
88366484 254 }
5a51b2cd 255
419681da
JR
256 llc = *datap;
257 if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
258 || llc->llc.llc_ssap != LLC_SSAP_SNAP
259 || llc->llc.llc_cntl != LLC_CNTL_SNAP
260 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
261 sizeof llc->snap.snap_org))) {
262 return htons(FLOW_DL_TYPE_NONE);
c6bcb685 263 }
c6bcb685 264
419681da 265 data_pull(datap, sizep, sizeof *llc);
685a51a5 266
419681da
JR
267 if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
268 return llc->snap.snap_type;
685a51a5
JP
269 }
270
419681da
JR
271 return htons(FLOW_DL_TYPE_NONE);
272}
685a51a5 273
419681da
JR
274static inline bool
275parse_icmpv6(void **datap, size_t *sizep, const struct icmp6_hdr *icmp,
276 const struct in6_addr **nd_target,
277 uint8_t arp_buf[2][ETH_ADDR_LEN])
278{
88366484
JG
279 if (icmp->icmp6_code == 0 &&
280 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
281 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
685a51a5 282
b0e2ec32 283 *nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
419681da
JR
284 if (OVS_UNLIKELY(!*nd_target)) {
285 return false;
685a51a5 286 }
685a51a5 287
419681da 288 while (*sizep >= 8) {
685a51a5
JP
289 /* The minimum size of an option is 8 bytes, which also is
290 * the size of Ethernet link-layer options. */
419681da 291 const struct nd_opt_hdr *nd_opt = *datap;
88366484
JG
292 int opt_len = nd_opt->nd_opt_len * 8;
293
419681da 294 if (!opt_len || opt_len > *sizep) {
685a51a5
JP
295 goto invalid;
296 }
685a51a5
JP
297
298 /* Store the link layer address if the appropriate option is
299 * provided. It is considered an error if the same link
300 * layer option is specified twice. */
301 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
302 && opt_len == 8) {
419681da
JR
303 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
304 memcpy(arp_buf[0], nd_opt + 1, ETH_ADDR_LEN);
685a51a5
JP
305 } else {
306 goto invalid;
307 }
308 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
309 && opt_len == 8) {
419681da
JR
310 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
311 memcpy(arp_buf[1], nd_opt + 1, ETH_ADDR_LEN);
685a51a5
JP
312 } else {
313 goto invalid;
314 }
315 }
316
419681da 317 if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
685a51a5
JP
318 goto invalid;
319 }
685a51a5
JP
320 }
321 }
322
419681da 323 return true;
685a51a5
JP
324
325invalid:
419681da 326 return false;
685a51a5
JP
327}
328
b5e7e61a 329/* Initializes 'flow' members from 'packet' and 'md'
deedf7e7 330 *
437d0d22
JR
331 * Initializes 'packet' header l2 pointer to the start of the Ethernet
332 * header, and the layer offsets as follows:
ca78c6b6 333 *
437d0d22
JR
334 * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX
335 * when there is no MPLS shim header.
ca78c6b6 336 *
437d0d22 337 * - packet->l3_ofs to just past the Ethernet header, or just past the
ca78c6b6 338 * vlan_header if one is present, to the first byte of the payload of the
437d0d22
JR
339 * Ethernet frame. UINT16_MAX if the frame is too short to contain an
340 * Ethernet header.
ca78c6b6 341 *
437d0d22
JR
342 * - packet->l4_ofs to just past the IPv4 header, if one is present and
343 * has at least the content used for the fields of interest for the flow,
344 * otherwise UINT16_MAX.
ca78c6b6 345 */
7257b535 346void
b5e7e61a 347flow_extract(struct ofpbuf *packet, const struct pkt_metadata *md,
296e07ac 348 struct flow *flow)
064af421 349{
27bbe15d
JR
350 struct {
351 struct miniflow mf;
352 uint32_t buf[FLOW_U32S];
353 } m;
064af421
BP
354
355 COVERAGE_INC(flow_extract);
356
27bbe15d
JR
357 miniflow_initialize(&m.mf, m.buf);
358 miniflow_extract(packet, md, &m.mf);
359 miniflow_expand(&m.mf, flow);
419681da 360}
296e07ac 361
27bbe15d
JR
362/* Caller is responsible for initializing 'dst' with enough storage for
363 * FLOW_U32S * 4 bytes. */
419681da
JR
364void
365miniflow_extract(struct ofpbuf *packet, const struct pkt_metadata *md,
366 struct miniflow *dst)
367{
368 void *data = ofpbuf_data(packet);
369 size_t size = ofpbuf_size(packet);
27bbe15d
JR
370 uint32_t *values = miniflow_values(dst);
371 struct mf_ctx mf = { 0, values, values + FLOW_U32S };
419681da 372 char *l2;
419681da
JR
373 ovs_be16 dl_type;
374 uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
375
376 /* Metadata. */
b5e7e61a 377 if (md) {
419681da
JR
378 if (md->tunnel.ip_dst) {
379 miniflow_push_words(mf, tunnel, &md->tunnel,
380 sizeof md->tunnel / 4);
381 }
382 miniflow_push_uint32_check(mf, skb_priority, md->skb_priority);
383 miniflow_push_uint32_check(mf, pkt_mark, md->pkt_mark);
384 miniflow_push_uint32_check(mf, recirc_id, md->recirc_id);
385 miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
296e07ac 386 }
064af421 387
419681da
JR
388 /* Initialize packet's layer pointer and offsets. */
389 l2 = data;
390 ofpbuf_set_frame(packet, data);
064af421 391
419681da
JR
392 /* Must have full Ethernet header to proceed. */
393 if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
394 goto out;
395 } else {
396 ovs_be16 vlan_tci;
50f06e16 397
419681da
JR
398 /* Link layer. */
399 BUILD_ASSERT(offsetof(struct flow, dl_dst) + 6
400 == offsetof(struct flow, dl_src));
401 miniflow_push_words(mf, dl_dst, data, ETH_ADDR_LEN * 2 / 4);
402 /* dl_type, vlan_tci. */
403 vlan_tci = parse_vlan(&data, &size);
404 dl_type = parse_ethertype(&data, &size);
405 miniflow_push_be16(mf, dl_type, dl_type);
406 miniflow_push_be16(mf, vlan_tci, vlan_tci);
50f06e16 407 }
50f06e16 408
419681da
JR
409 /* Parse mpls. */
410 if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
411 int count;
412 const void *mpls = data;
413
414 packet->l2_5_ofs = (char *)data - l2;
415 count = parse_mpls(&data, &size);
416 miniflow_push_words(mf, mpls_lse, mpls, count);
b02475c5
SH
417 }
418
ad128cc1 419 /* Network layer. */
419681da
JR
420 packet->l3_ofs = (char *)data - l2;
421
422 nw_frag = 0;
423 if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
424 const struct ip_header *nh = data;
425 int ip_len;
fa8d9001 426 uint16_t tot_len;
419681da
JR
427
428 if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
429 goto out;
430 }
431 ip_len = IP_IHL(nh->ip_ihl_ver) * 4;
432
433 if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
434 goto out;
435 }
fa8d9001
JR
436 if (OVS_UNLIKELY(size < ip_len)) {
437 goto out;
438 }
439 tot_len = ntohs(nh->ip_tot_len);
440 if (OVS_UNLIKELY(tot_len > size)) {
441 goto out;
442 }
443 if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) {
444 goto out;
445 }
446 ofpbuf_set_l2_pad_size(packet, size - tot_len);
447 size = tot_len; /* Never pull padding. */
419681da
JR
448
449 /* Push both source and destination address at once. */
450 miniflow_push_words(mf, nw_src, &nh->ip_src, 2);
451
452 nw_tos = nh->ip_tos;
453 nw_ttl = nh->ip_ttl;
454 nw_proto = nh->ip_proto;
455 if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
456 nw_frag = FLOW_NW_FRAG_ANY;
457 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
458 nw_frag |= FLOW_NW_FRAG_LATER;
459 }
460 }
419681da 461 data_pull(&data, &size, ip_len);
419681da
JR
462 } else if (dl_type == htons(ETH_TYPE_IPV6)) {
463 const struct ovs_16aligned_ip6_hdr *nh;
464 ovs_be32 tc_flow;
fa8d9001 465 uint16_t plen;
419681da
JR
466
467 if (OVS_UNLIKELY(size < sizeof *nh)) {
468 goto out;
469 }
470 nh = data_pull(&data, &size, sizeof *nh);
471
fa8d9001
JR
472 plen = ntohs(nh->ip6_plen);
473 if (OVS_UNLIKELY(plen > size)) {
474 goto out;
475 }
476 /* Jumbo Payload option not supported yet. */
477 if (OVS_UNLIKELY(size - plen > UINT8_MAX)) {
478 goto out;
479 }
480 ofpbuf_set_l2_pad_size(packet, size - plen);
481 size = plen; /* Never pull padding. */
482
419681da
JR
483 miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
484 sizeof nh->ip6_src / 4);
485 miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
486 sizeof nh->ip6_dst / 4);
487
488 tc_flow = get_16aligned_be32(&nh->ip6_flow);
489 {
490 ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
491 miniflow_push_be32_check(mf, ipv6_label, label);
492 }
493
494 nw_tos = ntohl(tc_flow) >> 20;
495 nw_ttl = nh->ip6_hlim;
496 nw_proto = nh->ip6_nxt;
497
498 while (1) {
499 if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS)
500 && (nw_proto != IPPROTO_ROUTING)
501 && (nw_proto != IPPROTO_DSTOPTS)
502 && (nw_proto != IPPROTO_AH)
503 && (nw_proto != IPPROTO_FRAGMENT))) {
504 /* It's either a terminal header (e.g., TCP, UDP) or one we
505 * don't understand. In either case, we're done with the
506 * packet, so use it to fill in 'nw_proto'. */
507 break;
508 }
509
510 /* We only verify that at least 8 bytes of the next header are
511 * available, but many of these headers are longer. Ensure that
512 * accesses within the extension header are within those first 8
513 * bytes. All extension headers are required to be at least 8
514 * bytes. */
515 if (OVS_UNLIKELY(size < 8)) {
516 goto out;
7257b535 517 }
419681da
JR
518
519 if ((nw_proto == IPPROTO_HOPOPTS)
520 || (nw_proto == IPPROTO_ROUTING)
521 || (nw_proto == IPPROTO_DSTOPTS)) {
522 /* These headers, while different, have the fields we care
523 * about in the same location and with the same
524 * interpretation. */
525 const struct ip6_ext *ext_hdr = data;
526 nw_proto = ext_hdr->ip6e_nxt;
527 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
528 (ext_hdr->ip6e_len + 1) * 8))) {
529 goto out;
530 }
531 } else if (nw_proto == IPPROTO_AH) {
532 /* A standard AH definition isn't available, but the fields
533 * we care about are in the same location as the generic
534 * option header--only the header length is calculated
535 * differently. */
536 const struct ip6_ext *ext_hdr = data;
537 nw_proto = ext_hdr->ip6e_nxt;
538 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
539 (ext_hdr->ip6e_len + 2) * 4))) {
540 goto out;
541 }
542 } else if (nw_proto == IPPROTO_FRAGMENT) {
543 const struct ovs_16aligned_ip6_frag *frag_hdr = data;
544
545 nw_proto = frag_hdr->ip6f_nxt;
546 if (!data_try_pull(&data, &size, sizeof *frag_hdr)) {
547 goto out;
548 }
549
550 /* We only process the first fragment. */
551 if (frag_hdr->ip6f_offlg != htons(0)) {
552 nw_frag = FLOW_NW_FRAG_ANY;
553 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
554 nw_frag |= FLOW_NW_FRAG_LATER;
555 nw_proto = IPPROTO_FRAGMENT;
556 break;
064af421 557 }
064af421 558 }
50f06e16
BP
559 }
560 }
419681da
JR
561 } else {
562 if (dl_type == htons(ETH_TYPE_ARP) ||
563 dl_type == htons(ETH_TYPE_RARP)) {
564 uint8_t arp_buf[2][ETH_ADDR_LEN];
565 const struct arp_eth_header *arp = (const struct arp_eth_header *)
566 data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);
567
568 if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
569 && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
570 && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
571 && OVS_LIKELY(arp->ar_pln == 4)) {
572 miniflow_push_words(mf, nw_src, &arp->ar_spa, 1);
573 miniflow_push_words(mf, nw_dst, &arp->ar_tpa, 1);
574
575 /* We only match on the lower 8 bits of the opcode. */
576 if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
577 miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
578 }
d31f1109 579
419681da
JR
580 /* Must be adjacent. */
581 BUILD_ASSERT(offsetof(struct flow, arp_sha) + 6
582 == offsetof(struct flow, arp_tha));
583
584 memcpy(arp_buf[0], arp->ar_sha, ETH_ADDR_LEN);
585 memcpy(arp_buf[1], arp->ar_tha, ETH_ADDR_LEN);
586 miniflow_push_words(mf, arp_sha, arp_buf,
587 ETH_ADDR_LEN * 2 / 4);
588 }
d31f1109 589 }
419681da
JR
590 goto out;
591 }
592
593 packet->l4_ofs = (char *)data - l2;
594 miniflow_push_be32(mf, nw_frag,
595 BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto));
596
597 if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
598 if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
599 if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
600 const struct tcp_header *tcp = data;
601
602 miniflow_push_be32(mf, tcp_flags,
603 TCP_FLAGS_BE32(tcp->tcp_ctl));
604 miniflow_push_words(mf, tp_src, &tcp->tcp_src, 1);
605 }
606 } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
607 if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
608 const struct udp_header *udp = data;
609
610 miniflow_push_words(mf, tp_src, &udp->udp_src, 1);
064af421 611 }
419681da
JR
612 } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
613 if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
614 const struct sctp_header *sctp = data;
a26ef517 615
419681da
JR
616 miniflow_push_words(mf, tp_src, &sctp->sctp_src, 1);
617 }
618 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
619 if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
620 const struct icmp_header *icmp = data;
621
622 miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
623 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
624 }
0e612675
FL
625 } else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
626 if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
627 const struct igmp_header *igmp = data;
628
629 miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
630 miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
631 miniflow_push_be32(mf, igmp_group_ip4,
632 get_16aligned_be32(&igmp->group));
633 }
419681da
JR
634 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
635 if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) {
636 const struct in6_addr *nd_target = NULL;
637 uint8_t arp_buf[2][ETH_ADDR_LEN];
638 const struct icmp6_hdr *icmp = data_pull(&data, &size,
639 sizeof *icmp);
640 memset(arp_buf, 0, sizeof arp_buf);
641 if (OVS_LIKELY(parse_icmpv6(&data, &size, icmp, &nd_target,
642 arp_buf))) {
b0e2ec32
JR
643 miniflow_push_words(mf, arp_sha, arp_buf,
644 ETH_ADDR_LEN * 2 / 4);
419681da
JR
645 if (nd_target) {
646 miniflow_push_words(mf, nd_target, nd_target,
647 sizeof *nd_target / 4);
648 }
419681da
JR
649 miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
650 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
651 }
652 }
064af421
BP
653 }
654 }
419681da
JR
655 if (md) {
656 miniflow_push_uint32_check(mf, dp_hash, md->dp_hash);
657 }
658 out:
659 dst->map = mf.map;
064af421
BP
660}
661
993410fb
BP
662/* For every bit of a field that is wildcarded in 'wildcards', sets the
663 * corresponding bit in 'flow' to zero. */
664void
665flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
666{
659c2346
BP
667 uint32_t *flow_u32 = (uint32_t *) flow;
668 const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks;
669 size_t i;
993410fb 670
659c2346
BP
671 for (i = 0; i < FLOW_U32S; i++) {
672 flow_u32[i] &= wc_u32[i];
26720e24 673 }
993410fb
BP
674}
675
d8d9c698
EJ
676void
677flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
678{
679 if (flow->nw_proto != IPPROTO_ICMP) {
680 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
681 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
682 } else {
683 wc->masks.tp_src = htons(0xff);
684 wc->masks.tp_dst = htons(0xff);
685 }
686}
687
5d6c3af0
EJ
688/* Initializes 'fmd' with the metadata found in 'flow'. */
689void
690flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
691{
c61f3870 692 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 28);
e9358af6 693
a79f29f2
AZ
694 fmd->dp_hash = flow->dp_hash;
695 fmd->recirc_id = flow->recirc_id;
296e07ac 696 fmd->tun_id = flow->tunnel.tun_id;
0ad90c84
JR
697 fmd->tun_src = flow->tunnel.ip_src;
698 fmd->tun_dst = flow->tunnel.ip_dst;
969fc56c 699 fmd->metadata = flow->metadata;
5d6c3af0 700 memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
ac923e91 701 fmd->pkt_mark = flow->pkt_mark;
4e022ec0 702 fmd->in_port = flow->in_port.ofp_port;
5d6c3af0
EJ
703}
704
064af421 705char *
ae412e7d 706flow_to_string(const struct flow *flow)
064af421
BP
707{
708 struct ds ds = DS_EMPTY_INITIALIZER;
709 flow_format(&ds, flow);
710 return ds_cstr(&ds);
711}
712
4fe3445a
PS
713const char *
714flow_tun_flag_to_string(uint32_t flags)
715{
716 switch (flags) {
717 case FLOW_TNL_F_DONT_FRAGMENT:
718 return "df";
719 case FLOW_TNL_F_CSUM:
720 return "csum";
721 case FLOW_TNL_F_KEY:
722 return "key";
94872594
JG
723 case FLOW_TNL_F_OAM:
724 return "oam";
4fe3445a
PS
725 default:
726 return NULL;
727 }
728}
729
730void
731format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
732 uint32_t flags, char del)
733{
734 uint32_t bad = 0;
735
736 if (!flags) {
737 return;
738 }
739 while (flags) {
740 uint32_t bit = rightmost_1bit(flags);
741 const char *s;
742
743 s = bit_to_string(bit);
744 if (s) {
745 ds_put_format(ds, "%s%c", s, del);
746 } else {
747 bad |= bit;
748 }
749
750 flags &= ~bit;
751 }
752
753 if (bad) {
754 ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
755 }
756 ds_chomp(ds, del);
757}
758
61bf6666
JR
759void
760format_flags_masked(struct ds *ds, const char *name,
761 const char *(*bit_to_string)(uint32_t), uint32_t flags,
762 uint32_t mask)
763{
764 if (name) {
765 ds_put_format(ds, "%s=", name);
766 }
767 while (mask) {
768 uint32_t bit = rightmost_1bit(mask);
769 const char *s = bit_to_string(bit);
770
771 ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
772 s ? s : "[Unknown]");
773 mask &= ~bit;
774 }
775}
776
064af421 777void
ae412e7d 778flow_format(struct ds *ds, const struct flow *flow)
064af421 779{
aa6c9932 780 struct match match;
78c9486d 781 struct flow_wildcards *wc = &match.wc;
296e07ac 782
aa6c9932 783 match_wc_init(&match, flow);
78c9486d
JR
784
785 /* As this function is most often used for formatting a packet in a
786 * packet-in message, skip formatting the packet context fields that are
787 * all-zeroes (Openflow spec encourages leaving out all-zeroes context
788 * fields from the packet-in messages). We make an exception with the
789 * 'in_port' field, which we always format, as packets usually have an
790 * in_port, and 0 is a port just like any other port. */
791 if (!flow->skb_priority) {
792 WC_UNMASK_FIELD(wc, skb_priority);
793 }
794 if (!flow->pkt_mark) {
795 WC_UNMASK_FIELD(wc, pkt_mark);
796 }
797 if (!flow->recirc_id) {
798 WC_UNMASK_FIELD(wc, recirc_id);
799 }
800 for (int i = 0; i < FLOW_N_REGS; i++) {
801 if (!flow->regs[i]) {
802 WC_UNMASK_FIELD(wc, regs[i]);
803 }
804 }
805 if (!flow->metadata) {
806 WC_UNMASK_FIELD(wc, metadata);
807 }
808
3f78c3cc 809 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
064af421
BP
810}
811
812void
ae412e7d 813flow_print(FILE *stream, const struct flow *flow)
064af421
BP
814{
815 char *s = flow_to_string(flow);
816 fputs(s, stream);
817 free(s);
818}
54363004
BP
819\f
820/* flow_wildcards functions. */
821
d8ae4d67 822/* Initializes 'wc' as a set of wildcards that matches every packet. */
54363004 823void
d8ae4d67 824flow_wildcards_init_catchall(struct flow_wildcards *wc)
54363004 825{
659c2346 826 memset(&wc->masks, 0, sizeof wc->masks);
54363004
BP
827}
828
78c9486d
JR
829/* Converts a flow into flow wildcards. It sets the wildcard masks based on
830 * the packet headers extracted to 'flow'. It will not set the mask for fields
831 * that do not make sense for the packet type. OpenFlow-only metadata is
832 * wildcarded, but other metadata is unconditionally exact-matched. */
833void flow_wildcards_init_for_packet(struct flow_wildcards *wc,
834 const struct flow *flow)
835{
836 memset(&wc->masks, 0x0, sizeof wc->masks);
837
0de8783a 838 /* Update this function whenever struct flow changes. */
c61f3870 839 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 28);
0de8783a 840
78c9486d
JR
841 if (flow->tunnel.ip_dst) {
842 if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
843 WC_MASK_FIELD(wc, tunnel.tun_id);
844 }
845 WC_MASK_FIELD(wc, tunnel.ip_src);
846 WC_MASK_FIELD(wc, tunnel.ip_dst);
847 WC_MASK_FIELD(wc, tunnel.flags);
848 WC_MASK_FIELD(wc, tunnel.ip_tos);
849 WC_MASK_FIELD(wc, tunnel.ip_ttl);
850 WC_MASK_FIELD(wc, tunnel.tp_src);
851 WC_MASK_FIELD(wc, tunnel.tp_dst);
852 } else if (flow->tunnel.tun_id) {
853 WC_MASK_FIELD(wc, tunnel.tun_id);
854 }
855
856 /* metadata and regs wildcarded. */
857
858 WC_MASK_FIELD(wc, skb_priority);
859 WC_MASK_FIELD(wc, pkt_mark);
860 WC_MASK_FIELD(wc, recirc_id);
861 WC_MASK_FIELD(wc, dp_hash);
862 WC_MASK_FIELD(wc, in_port);
863
c61f3870
BP
864 /* actset_output wildcarded. */
865
78c9486d
JR
866 WC_MASK_FIELD(wc, dl_dst);
867 WC_MASK_FIELD(wc, dl_src);
868 WC_MASK_FIELD(wc, dl_type);
869 WC_MASK_FIELD(wc, vlan_tci);
870
871 if (flow->dl_type == htons(ETH_TYPE_IP)) {
872 WC_MASK_FIELD(wc, nw_src);
873 WC_MASK_FIELD(wc, nw_dst);
874 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
875 WC_MASK_FIELD(wc, ipv6_src);
876 WC_MASK_FIELD(wc, ipv6_dst);
877 WC_MASK_FIELD(wc, ipv6_label);
878 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
879 flow->dl_type == htons(ETH_TYPE_RARP)) {
880 WC_MASK_FIELD(wc, nw_src);
881 WC_MASK_FIELD(wc, nw_dst);
882 WC_MASK_FIELD(wc, nw_proto);
883 WC_MASK_FIELD(wc, arp_sha);
884 WC_MASK_FIELD(wc, arp_tha);
885 return;
886 } else if (eth_type_mpls(flow->dl_type)) {
887 for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
888 WC_MASK_FIELD(wc, mpls_lse[i]);
889 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
890 break;
891 }
892 }
893 return;
894 } else {
895 return; /* Unknown ethertype. */
896 }
897
898 /* IPv4 or IPv6. */
899 WC_MASK_FIELD(wc, nw_frag);
900 WC_MASK_FIELD(wc, nw_tos);
901 WC_MASK_FIELD(wc, nw_ttl);
902 WC_MASK_FIELD(wc, nw_proto);
903
904 /* No transport layer header in later fragments. */
905 if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
906 (flow->nw_proto == IPPROTO_ICMP ||
907 flow->nw_proto == IPPROTO_ICMPV6 ||
908 flow->nw_proto == IPPROTO_TCP ||
909 flow->nw_proto == IPPROTO_UDP ||
910 flow->nw_proto == IPPROTO_SCTP ||
911 flow->nw_proto == IPPROTO_IGMP)) {
912 WC_MASK_FIELD(wc, tp_src);
913 WC_MASK_FIELD(wc, tp_dst);
914
915 if (flow->nw_proto == IPPROTO_TCP) {
916 WC_MASK_FIELD(wc, tcp_flags);
917 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
918 WC_MASK_FIELD(wc, arp_sha);
919 WC_MASK_FIELD(wc, arp_tha);
920 WC_MASK_FIELD(wc, nd_target);
921 } else if (flow->nw_proto == IPPROTO_IGMP) {
922 WC_MASK_FIELD(wc, igmp_group_ip4);
923 }
924 }
925}
926
0de8783a
JR
927/* Return a map of possible fields for a packet of the same type as 'flow'.
928 * Including extra bits in the returned mask is not wrong, it is just less
929 * optimal.
930 *
931 * This is a less precise version of flow_wildcards_init_for_packet() above. */
932uint64_t
933flow_wc_map(const struct flow *flow)
934{
935 /* Update this function whenever struct flow changes. */
c61f3870 936 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 28);
0de8783a
JR
937
938 uint64_t map = (flow->tunnel.ip_dst) ? MINIFLOW_MAP(tunnel) : 0;
939
940 /* Metadata fields that can appear on packet input. */
941 map |= MINIFLOW_MAP(skb_priority) | MINIFLOW_MAP(pkt_mark)
942 | MINIFLOW_MAP(recirc_id) | MINIFLOW_MAP(dp_hash)
943 | MINIFLOW_MAP(in_port)
944 | MINIFLOW_MAP(dl_dst) | MINIFLOW_MAP(dl_src)
945 | MINIFLOW_MAP(dl_type) | MINIFLOW_MAP(vlan_tci);
946
947 /* Ethertype-dependent fields. */
948 if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
949 map |= MINIFLOW_MAP(nw_src) | MINIFLOW_MAP(nw_dst)
950 | MINIFLOW_MAP(nw_proto) | MINIFLOW_MAP(nw_frag)
951 | MINIFLOW_MAP(nw_tos) | MINIFLOW_MAP(nw_ttl);
952 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
953 map |= MINIFLOW_MAP(igmp_group_ip4);
954 } else {
955 map |= MINIFLOW_MAP(tcp_flags)
956 | MINIFLOW_MAP(tp_src) | MINIFLOW_MAP(tp_dst);
957 }
958 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
959 map |= MINIFLOW_MAP(ipv6_src) | MINIFLOW_MAP(ipv6_dst)
960 | MINIFLOW_MAP(ipv6_label)
961 | MINIFLOW_MAP(nw_proto) | MINIFLOW_MAP(nw_frag)
962 | MINIFLOW_MAP(nw_tos) | MINIFLOW_MAP(nw_ttl);
963 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) {
964 map |= MINIFLOW_MAP(nd_target)
965 | MINIFLOW_MAP(arp_sha) | MINIFLOW_MAP(arp_tha);
966 } else {
967 map |= MINIFLOW_MAP(tcp_flags)
968 | MINIFLOW_MAP(tp_src) | MINIFLOW_MAP(tp_dst);
969 }
970 } else if (eth_type_mpls(flow->dl_type)) {
971 map |= MINIFLOW_MAP(mpls_lse);
972 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
973 flow->dl_type == htons(ETH_TYPE_RARP)) {
974 map |= MINIFLOW_MAP(nw_src) | MINIFLOW_MAP(nw_dst)
975 | MINIFLOW_MAP(nw_proto)
976 | MINIFLOW_MAP(arp_sha) | MINIFLOW_MAP(arp_tha);
977 }
978
979 return map;
980}
981
c11c6faa
AZ
982/* Clear the metadata and register wildcard masks. They are not packet
983 * header fields. */
984void
985flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
986{
0de8783a 987 /* Update this function whenever struct flow changes. */
c61f3870 988 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 28);
0de8783a 989
c11c6faa
AZ
990 memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
991 memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
c61f3870 992 wc->masks.actset_output = 0;
c11c6faa
AZ
993}
994
ecf1e7ac
BP
995/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
996 * fields. */
997bool
998flow_wildcards_is_catchall(const struct flow_wildcards *wc)
999{
659c2346
BP
1000 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
1001 size_t i;
ecf1e7ac 1002
659c2346
BP
1003 for (i = 0; i < FLOW_U32S; i++) {
1004 if (wc_u32[i]) {
ecf1e7ac
BP
1005 return false;
1006 }
1007 }
ecf1e7ac
BP
1008 return true;
1009}
1010
368eefac
EJ
1011/* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
1012 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
1013 * in 'src1' or 'src2' or both. */
b5d97350 1014void
368eefac
EJ
1015flow_wildcards_and(struct flow_wildcards *dst,
1016 const struct flow_wildcards *src1,
1017 const struct flow_wildcards *src2)
b5d97350 1018{
659c2346
BP
1019 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
1020 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
1021 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
1022 size_t i;
a79c50f3 1023
659c2346
BP
1024 for (i = 0; i < FLOW_U32S; i++) {
1025 dst_u32[i] = src1_u32[i] & src2_u32[i];
26720e24 1026 }
b5d97350
BP
1027}
1028
368eefac
EJ
1029/* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
1030 * is, a bit or a field is wildcarded in 'dst' if it is neither
1031 * wildcarded in 'src1' nor 'src2'. */
1032void
1033flow_wildcards_or(struct flow_wildcards *dst,
1034 const struct flow_wildcards *src1,
1035 const struct flow_wildcards *src2)
1036{
1037 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
1038 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
1039 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
1040 size_t i;
1041
1042 for (i = 0; i < FLOW_U32S; i++) {
1043 dst_u32[i] = src1_u32[i] | src2_u32[i];
1044 }
1045}
1046
b5d97350
BP
1047/* Returns a hash of the wildcards in 'wc'. */
1048uint32_t
1006cda6 1049flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
b5d97350 1050{
ac31c5af 1051 return flow_hash(&wc->masks, basis);
b5d97350
BP
1052}
1053
1054/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
1055 * different. */
1056bool
1057flow_wildcards_equal(const struct flow_wildcards *a,
1058 const struct flow_wildcards *b)
1059{
659c2346 1060 return flow_equal(&a->masks, &b->masks);
b5d97350
BP
1061}
1062
1063/* Returns true if at least one bit or field is wildcarded in 'a' but not in
1064 * 'b', false otherwise. */
1065bool
1066flow_wildcards_has_extra(const struct flow_wildcards *a,
1067 const struct flow_wildcards *b)
1068{
659c2346
BP
1069 const uint32_t *a_u32 = (const uint32_t *) &a->masks;
1070 const uint32_t *b_u32 = (const uint32_t *) &b->masks;
1071 size_t i;
a79c50f3 1072
659c2346
BP
1073 for (i = 0; i < FLOW_U32S; i++) {
1074 if ((a_u32[i] & b_u32[i]) != b_u32[i]) {
b6c9e612
BP
1075 return true;
1076 }
1077 }
659c2346
BP
1078 return false;
1079}
b6c9e612 1080
659c2346
BP
1081/* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
1082 * in 'wc' do not need to be equal in 'a' and 'b'. */
1083bool
1084flow_equal_except(const struct flow *a, const struct flow *b,
1085 const struct flow_wildcards *wc)
1086{
1087 const uint32_t *a_u32 = (const uint32_t *) a;
1088 const uint32_t *b_u32 = (const uint32_t *) b;
1089 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
1090 size_t i;
d31f1109 1091
659c2346
BP
1092 for (i = 0; i < FLOW_U32S; i++) {
1093 if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) {
1094 return false;
1095 }
47284b1f 1096 }
659c2346 1097 return true;
b5d97350
BP
1098}
1099
b6c9e612
BP
1100/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1101 * (A 0-bit indicates a wildcard bit.) */
1102void
1103flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
1104{
26720e24 1105 wc->masks.regs[idx] = mask;
b6c9e612 1106}
ff55ea1f 1107
79fe0f46
BP
1108/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1109 * (A 0-bit indicates a wildcard bit.) */
1110void
1111flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
1112{
1113 flow_set_xreg(&wc->masks, idx, mask);
1114}
1115
28a560d9
JR
1116/* Calculates the 5-tuple hash from the given miniflow.
1117 * This returns the same value as flow_hash_5tuple for the corresponding
1118 * flow. */
4f150744
JR
1119uint32_t
1120miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
1121{
28a560d9 1122 uint32_t hash = basis;
4f150744 1123
28a560d9
JR
1124 if (flow) {
1125 ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
1126
33c6a1b9 1127 hash = hash_add(hash, MINIFLOW_GET_U8(flow, nw_proto));
28a560d9
JR
1128
1129 /* Separate loops for better optimization. */
1130 if (dl_type == htons(ETH_TYPE_IPV6)) {
1131 uint64_t map = MINIFLOW_MAP(ipv6_src) | MINIFLOW_MAP(ipv6_dst)
1132 | MINIFLOW_MAP(tp_src); /* Covers both ports */
1133 uint32_t value;
4f150744 1134
28a560d9 1135 MINIFLOW_FOR_EACH_IN_MAP(value, flow, map) {
33c6a1b9 1136 hash = hash_add(hash, value);
28a560d9
JR
1137 }
1138 } else {
1139 uint64_t map = MINIFLOW_MAP(nw_src) | MINIFLOW_MAP(nw_dst)
1140 | MINIFLOW_MAP(tp_src); /* Covers both ports */
1141 uint32_t value;
4f150744 1142
28a560d9 1143 MINIFLOW_FOR_EACH_IN_MAP(value, flow, map) {
33c6a1b9 1144 hash = hash_add(hash, value);
28a560d9
JR
1145 }
1146 }
33c6a1b9 1147 hash = hash_finish(hash, 42); /* Arbitrary number. */
28a560d9
JR
1148 }
1149 return hash;
4f150744
JR
1150}
1151
1152BUILD_ASSERT_DECL(offsetof(struct flow, tp_src) + 2
1153 == offsetof(struct flow, tp_dst) &&
1154 offsetof(struct flow, tp_src) / 4
1155 == offsetof(struct flow, tp_dst) / 4);
28a560d9
JR
1156BUILD_ASSERT_DECL(offsetof(struct flow, ipv6_src) + 16
1157 == offsetof(struct flow, ipv6_dst));
4f150744 1158
63be20be
AW
1159/* Calculates the 5-tuple hash from the given flow. */
1160uint32_t
1161flow_hash_5tuple(const struct flow *flow, uint32_t basis)
1162{
28a560d9 1163 uint32_t hash = basis;
63be20be 1164
28a560d9
JR
1165 if (flow) {
1166 const uint32_t *flow_u32 = (const uint32_t *)flow;
1167
33c6a1b9 1168 hash = hash_add(hash, flow->nw_proto);
28a560d9
JR
1169
1170 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1171 int ofs = offsetof(struct flow, ipv6_src) / 4;
1172 int end = ofs + 2 * sizeof flow->ipv6_src / 4;
63be20be 1173
28a560d9 1174 while (ofs < end) {
33c6a1b9 1175 hash = hash_add(hash, flow_u32[ofs++]);
28a560d9
JR
1176 }
1177 } else {
33c6a1b9
JR
1178 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
1179 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
28a560d9 1180 }
33c6a1b9 1181 hash = hash_add(hash, flow_u32[offsetof(struct flow, tp_src) / 4]);
63be20be 1182
33c6a1b9 1183 hash = hash_finish(hash, 42); /* Arbitrary number. */
28a560d9
JR
1184 }
1185 return hash;
63be20be
AW
1186}
1187
ff55ea1f
EJ
1188/* Hashes 'flow' based on its L2 through L4 protocol information. */
1189uint32_t
1190flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
1191{
1192 struct {
d31f1109
JP
1193 union {
1194 ovs_be32 ipv4_addr;
1195 struct in6_addr ipv6_addr;
1196 };
ff55ea1f
EJ
1197 ovs_be16 eth_type;
1198 ovs_be16 vlan_tci;
5b909cbb 1199 ovs_be16 tp_port;
ff55ea1f
EJ
1200 uint8_t eth_addr[ETH_ADDR_LEN];
1201 uint8_t ip_proto;
1202 } fields;
1203
1204 int i;
1205
1206 memset(&fields, 0, sizeof fields);
1207 for (i = 0; i < ETH_ADDR_LEN; i++) {
1208 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
1209 }
1210 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
1211 fields.eth_type = flow->dl_type;
3e3eda95
EJ
1212
1213 /* UDP source and destination port are not taken into account because they
1214 * will not necessarily be symmetric in a bidirectional flow. */
ff55ea1f 1215 if (fields.eth_type == htons(ETH_TYPE_IP)) {
d31f1109
JP
1216 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
1217 fields.ip_proto = flow->nw_proto;
c6bcb685 1218 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
5b909cbb 1219 fields.tp_port = flow->tp_src ^ flow->tp_dst;
d31f1109
JP
1220 }
1221 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
1222 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
1223 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
1224 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
1225
1226 for (i=0; i<16; i++) {
1227 ipv6_addr[i] = a[i] ^ b[i];
1228 }
ff55ea1f 1229 fields.ip_proto = flow->nw_proto;
c6bcb685 1230 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
5b909cbb 1231 fields.tp_port = flow->tp_src ^ flow->tp_dst;
ff55ea1f 1232 }
ff55ea1f 1233 }
c49d1dd1 1234 return jhash_bytes(&fields, sizeof fields, basis);
ff55ea1f 1235}
520e9a2a 1236
94639963
JR
1237/* Initialize a flow with random fields that matter for nx_hash_fields. */
1238void
1239flow_random_hash_fields(struct flow *flow)
1240{
1241 uint16_t rnd = random_uint16();
1242
1243 /* Initialize to all zeros. */
1244 memset(flow, 0, sizeof *flow);
1245
1246 eth_addr_random(flow->dl_src);
1247 eth_addr_random(flow->dl_dst);
1248
1249 flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
1250
1251 /* Make most of the random flows IPv4, some IPv6, and rest random. */
1252 flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
1253 rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
1254
1255 if (dl_type_is_ip_any(flow->dl_type)) {
1256 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1257 flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
1258 flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
1259 } else {
1260 random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
1261 random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
1262 }
1263 /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
1264 rnd = random_uint16();
1265 flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
1266 rnd < 0xc000 ? IPPROTO_UDP :
1267 rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
1268 if (flow->nw_proto == IPPROTO_TCP ||
1269 flow->nw_proto == IPPROTO_UDP ||
1270 flow->nw_proto == IPPROTO_SCTP) {
1271 flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
1272 flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
1273 }
1274 }
1275}
1276
bcd2633a
JP
1277/* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
1278void
6cdd5145
JP
1279flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
1280 enum nx_hash_fields fields)
bcd2633a
JP
1281{
1282 switch (fields) {
1283 case NX_HASH_FIELDS_ETH_SRC:
1284 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1285 break;
1286
1287 case NX_HASH_FIELDS_SYMMETRIC_L4:
1288 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1289 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
6cdd5145
JP
1290 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1291 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1292 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
7f8a65ca 1293 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
6cdd5145
JP
1294 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
1295 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
1296 }
1297 if (is_ip_any(flow)) {
1298 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
d8d9c698 1299 flow_unwildcard_tp_ports(flow, wc);
6cdd5145 1300 }
1dd35f8a 1301 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
bcd2633a
JP
1302 break;
1303
1304 default:
428b2edd 1305 OVS_NOT_REACHED();
bcd2633a
JP
1306 }
1307}
1308
520e9a2a
EJ
1309/* Hashes the portions of 'flow' designated by 'fields'. */
1310uint32_t
1311flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
1312 uint16_t basis)
1313{
1314 switch (fields) {
1315
1316 case NX_HASH_FIELDS_ETH_SRC:
c49d1dd1 1317 return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
520e9a2a
EJ
1318
1319 case NX_HASH_FIELDS_SYMMETRIC_L4:
1320 return flow_hash_symmetric_l4(flow, basis);
1321 }
1322
428b2edd 1323 OVS_NOT_REACHED();
520e9a2a
EJ
1324}
1325
1326/* Returns a string representation of 'fields'. */
1327const char *
1328flow_hash_fields_to_str(enum nx_hash_fields fields)
1329{
1330 switch (fields) {
1331 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
1332 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
1333 default: return "<unknown>";
1334 }
1335}
1336
1337/* Returns true if the value of 'fields' is supported. Otherwise false. */
1338bool
1339flow_hash_fields_valid(enum nx_hash_fields fields)
1340{
1341 return fields == NX_HASH_FIELDS_ETH_SRC
1342 || fields == NX_HASH_FIELDS_SYMMETRIC_L4;
1343}
8b3b8dd1 1344
368eefac
EJ
1345/* Returns a hash value for the bits of 'flow' that are active based on
1346 * 'wc', given 'basis'. */
1347uint32_t
1348flow_hash_in_wildcards(const struct flow *flow,
1349 const struct flow_wildcards *wc, uint32_t basis)
1350{
1351 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
1352 const uint32_t *flow_u32 = (const uint32_t *) flow;
1353 uint32_t hash;
1354 size_t i;
1355
1356 hash = basis;
1357 for (i = 0; i < FLOW_U32S; i++) {
33c6a1b9 1358 hash = hash_add(hash, flow_u32[i] & wc_u32[i]);
368eefac 1359 }
33c6a1b9 1360 return hash_finish(hash, 4 * FLOW_U32S);
368eefac
EJ
1361}
1362
3719455c
BP
1363/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1364 * OpenFlow 1.0 "dl_vlan" value:
1365 *
1366 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
1367 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
1368 * 'flow' previously matched packets without a VLAN header).
1369 *
1370 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
1371 * without a VLAN tag.
1372 *
1373 * - Other values of 'vid' should not be used. */
1374void
fb0451d9 1375flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
3719455c 1376{
0c436519 1377 if (vid == htons(OFP10_VLAN_NONE)) {
3719455c
BP
1378 flow->vlan_tci = htons(0);
1379 } else {
1380 vid &= htons(VLAN_VID_MASK);
1381 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
1382 flow->vlan_tci |= htons(VLAN_CFI) | vid;
1383 }
1384}
1385
cc34bc8c
BP
1386/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1387 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
1388 * plus CFI). */
1389void
1390flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
1391{
1392 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
1393 flow->vlan_tci &= ~mask;
1394 flow->vlan_tci |= vid & mask;
1395}
1396
3719455c
BP
1397/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
1398 * range 0...7.
1399 *
1400 * This function has no effect on the VLAN ID that 'flow' matches.
1401 *
1402 * After calling this function, 'flow' will not match packets without a VLAN
1403 * header. */
1404void
1405flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
1406{
1407 pcp &= 0x07;
1408 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
1409 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
1410}
1411
8bfd0fda
BP
1412/* Returns the number of MPLS LSEs present in 'flow'
1413 *
1414 * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
1415 * Otherwise traverses 'flow''s MPLS label stack stopping at the
1416 * first entry that has the BoS bit set. If no such entry exists then
1417 * the maximum number of LSEs that can be stored in 'flow' is returned.
1418 */
1419int
1420flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
1421{
22d38fca 1422 /* dl_type is always masked. */
8bfd0fda
BP
1423 if (eth_type_mpls(flow->dl_type)) {
1424 int i;
1425 int len = FLOW_MAX_MPLS_LABELS;
1426
1427 for (i = 0; i < len; i++) {
1428 if (wc) {
1429 wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
1430 }
1431 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1432 return i + 1;
1433 }
1434 }
1435
1436 return len;
1437 } else {
1438 return 0;
1439 }
1440}
1441
1442/* Returns the number consecutive of MPLS LSEs, starting at the
1443 * innermost LSE, that are common in 'a' and 'b'.
1444 *
1445 * 'an' must be flow_count_mpls_labels(a).
1446 * 'bn' must be flow_count_mpls_labels(b).
1447 */
1448int
1449flow_count_common_mpls_labels(const struct flow *a, int an,
1450 const struct flow *b, int bn,
1451 struct flow_wildcards *wc)
1452{
1453 int min_n = MIN(an, bn);
1454 if (min_n == 0) {
1455 return 0;
1456 } else {
1457 int common_n = 0;
1458 int a_last = an - 1;
1459 int b_last = bn - 1;
1460 int i;
1461
1462 for (i = 0; i < min_n; i++) {
1463 if (wc) {
1464 wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
1465 wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
1466 }
1467 if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
1468 break;
1469 } else {
1470 common_n++;
1471 }
1472 }
1473
1474 return common_n;
1475 }
1476}
1477
1478/* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
1479 * to 'mpls_eth_type', which must be an MPLS Ethertype.
1480 *
1481 * If the new label is the first MPLS label in 'flow', it is generated as;
1482 *
1483 * - label: 2, if 'flow' is IPv6, otherwise 0.
1484 *
1485 * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
1486 *
1487 * - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
1488 *
1489 * - BoS: 1.
1490 *
22d38fca 1491 * If the new label is the second or later label MPLS label in 'flow', it is
8bfd0fda
BP
1492 * generated as;
1493 *
368fb7e6 1494 * - label: Copied from outer label.
8bfd0fda
BP
1495 *
1496 * - TTL: Copied from outer label.
1497 *
1498 * - TC: Copied from outer label.
1499 *
1500 * - BoS: 0.
1501 *
1502 * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
1503 * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
1504 */
1505void
1506flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
1507 struct flow_wildcards *wc)
1508{
1509 ovs_assert(eth_type_mpls(mpls_eth_type));
1510 ovs_assert(n < FLOW_MAX_MPLS_LABELS);
1511
8bfd0fda
BP
1512 if (n) {
1513 int i;
1514
22d38fca
JR
1515 if (wc) {
1516 memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
1517 }
8bfd0fda
BP
1518 for (i = n; i >= 1; i--) {
1519 flow->mpls_lse[i] = flow->mpls_lse[i - 1];
1520 }
22d38fca 1521 flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
8bfd0fda
BP
1522 } else {
1523 int label = 0; /* IPv4 Explicit Null. */
1524 int tc = 0;
1525 int ttl = 64;
1526
1527 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1528 label = 2;
1529 }
1530
1531 if (is_ip_any(flow)) {
1532 tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
22d38fca
JR
1533 if (wc) {
1534 wc->masks.nw_tos |= IP_DSCP_MASK;
1535 wc->masks.nw_ttl = 0xff;
1536 }
8bfd0fda
BP
1537
1538 if (flow->nw_ttl) {
1539 ttl = flow->nw_ttl;
1540 }
8bfd0fda
BP
1541 }
1542
1543 flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
1544
1545 /* Clear all L3 and L4 fields. */
c61f3870 1546 BUILD_ASSERT(FLOW_WC_SEQ == 28);
8bfd0fda
BP
1547 memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
1548 sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
1549 }
1550 flow->dl_type = mpls_eth_type;
1551}
1552
1553/* Tries to remove the outermost MPLS label from 'flow'. Returns true if
1554 * successful, false otherwise. On success, sets 'flow''s Ethernet type to
1555 * 'eth_type'.
1556 *
1557 * 'n' must be flow_count_mpls_labels(flow). */
1558bool
1559flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
1560 struct flow_wildcards *wc)
1561{
1562 int i;
1563
1564 if (n == 0) {
1565 /* Nothing to pop. */
1566 return false;
22d38fca
JR
1567 } else if (n == FLOW_MAX_MPLS_LABELS) {
1568 if (wc) {
1569 wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
1570 }
1571 if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
1572 /* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
1573 return false;
1574 }
8bfd0fda
BP
1575 }
1576
22d38fca
JR
1577 if (wc) {
1578 memset(&wc->masks.mpls_lse[1], 0xff,
1579 sizeof *wc->masks.mpls_lse * (n - 1));
1580 }
8bfd0fda
BP
1581 for (i = 1; i < n; i++) {
1582 flow->mpls_lse[i - 1] = flow->mpls_lse[i];
1583 }
1584 flow->mpls_lse[n - 1] = 0;
1585 flow->dl_type = eth_type;
1586 return true;
1587}
1588
b02475c5
SH
1589/* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
1590 * as an OpenFlow 1.1 "mpls_label" value. */
1591void
8bfd0fda 1592flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
b02475c5 1593{
8bfd0fda 1594 set_mpls_lse_label(&flow->mpls_lse[idx], label);
b02475c5
SH
1595}
1596
b676167a
SH
1597/* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
1598 * range 0...255. */
1599void
8bfd0fda 1600flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
b676167a 1601{
8bfd0fda 1602 set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
b676167a
SH
1603}
1604
b02475c5
SH
1605/* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
1606 * range 0...7. */
1607void
8bfd0fda 1608flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
b02475c5 1609{
8bfd0fda 1610 set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
b02475c5
SH
1611}
1612
1613/* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
1614void
8bfd0fda 1615flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
b02475c5 1616{
8bfd0fda 1617 set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
b02475c5
SH
1618}
1619
8bfd0fda
BP
1620/* Sets the entire MPLS LSE. */
1621void
1622flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
1623{
1624 flow->mpls_lse[idx] = lse;
1625}
52105b67 1626
437d0d22 1627static size_t
52105b67
JR
1628flow_compose_l4(struct ofpbuf *b, const struct flow *flow)
1629{
437d0d22
JR
1630 size_t l4_len = 0;
1631
52105b67
JR
1632 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
1633 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1634 if (flow->nw_proto == IPPROTO_TCP) {
1635 struct tcp_header *tcp;
1636
437d0d22
JR
1637 l4_len = sizeof *tcp;
1638 tcp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1639 tcp->tcp_src = flow->tp_src;
1640 tcp->tcp_dst = flow->tp_dst;
1641 tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
52105b67
JR
1642 } else if (flow->nw_proto == IPPROTO_UDP) {
1643 struct udp_header *udp;
1644
437d0d22
JR
1645 l4_len = sizeof *udp;
1646 udp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1647 udp->udp_src = flow->tp_src;
1648 udp->udp_dst = flow->tp_dst;
52105b67
JR
1649 } else if (flow->nw_proto == IPPROTO_SCTP) {
1650 struct sctp_header *sctp;
1651
437d0d22
JR
1652 l4_len = sizeof *sctp;
1653 sctp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1654 sctp->sctp_src = flow->tp_src;
1655 sctp->sctp_dst = flow->tp_dst;
52105b67
JR
1656 } else if (flow->nw_proto == IPPROTO_ICMP) {
1657 struct icmp_header *icmp;
1658
437d0d22
JR
1659 l4_len = sizeof *icmp;
1660 icmp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1661 icmp->icmp_type = ntohs(flow->tp_src);
1662 icmp->icmp_code = ntohs(flow->tp_dst);
1663 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
0e612675
FL
1664 } else if (flow->nw_proto == IPPROTO_IGMP) {
1665 struct igmp_header *igmp;
1666
1667 l4_len = sizeof *igmp;
1668 igmp = ofpbuf_put_zeros(b, l4_len);
1669 igmp->igmp_type = ntohs(flow->tp_src);
1670 igmp->igmp_code = ntohs(flow->tp_dst);
1671 put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
1672 igmp->igmp_csum = csum(igmp, IGMP_HEADER_LEN);
52105b67
JR
1673 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
1674 struct icmp6_hdr *icmp;
1675
437d0d22
JR
1676 l4_len = sizeof *icmp;
1677 icmp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1678 icmp->icmp6_type = ntohs(flow->tp_src);
1679 icmp->icmp6_code = ntohs(flow->tp_dst);
1680
1681 if (icmp->icmp6_code == 0 &&
1682 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
1683 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
1684 struct in6_addr *nd_target;
1685 struct nd_opt_hdr *nd_opt;
1686
437d0d22 1687 l4_len += sizeof *nd_target;
52105b67
JR
1688 nd_target = ofpbuf_put_zeros(b, sizeof *nd_target);
1689 *nd_target = flow->nd_target;
1690
1691 if (!eth_addr_is_zero(flow->arp_sha)) {
437d0d22 1692 l4_len += 8;
52105b67
JR
1693 nd_opt = ofpbuf_put_zeros(b, 8);
1694 nd_opt->nd_opt_len = 1;
1695 nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
1696 memcpy(nd_opt + 1, flow->arp_sha, ETH_ADDR_LEN);
1697 }
1698 if (!eth_addr_is_zero(flow->arp_tha)) {
437d0d22 1699 l4_len += 8;
52105b67
JR
1700 nd_opt = ofpbuf_put_zeros(b, 8);
1701 nd_opt->nd_opt_len = 1;
1702 nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
1703 memcpy(nd_opt + 1, flow->arp_tha, ETH_ADDR_LEN);
1704 }
1705 }
1706 icmp->icmp6_cksum = (OVS_FORCE uint16_t)
1707 csum(icmp, (char *)ofpbuf_tail(b) - (char *)icmp);
52105b67
JR
1708 }
1709 }
437d0d22 1710 return l4_len;
52105b67
JR
1711}
1712
8b3b8dd1
BP
1713/* Puts into 'b' a packet that flow_extract() would parse as having the given
1714 * 'flow'.
1715 *
1716 * (This is useful only for testing, obviously, and the packet isn't really
dc5a7ce7 1717 * valid. It hasn't got some checksums filled in, for one, and lots of fields
8b3b8dd1
BP
1718 * are just zeroed.) */
1719void
1720flow_compose(struct ofpbuf *b, const struct flow *flow)
1721{
437d0d22
JR
1722 size_t l4_len;
1723
52105b67 1724 /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
8b3b8dd1
BP
1725 eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
1726 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
cf3b7538 1727 struct eth_header *eth = ofpbuf_l2(b);
1f317cb5 1728 eth->eth_type = htons(ofpbuf_size(b));
8b3b8dd1
BP
1729 return;
1730 }
1731
1732 if (flow->vlan_tci & htons(VLAN_CFI)) {
1bf02876 1733 eth_push_vlan(b, htons(ETH_TYPE_VLAN), flow->vlan_tci);
8b3b8dd1
BP
1734 }
1735
cff78c88 1736 if (flow->dl_type == htons(ETH_TYPE_IP)) {
8b3b8dd1
BP
1737 struct ip_header *ip;
1738
52105b67 1739 ip = ofpbuf_put_zeros(b, sizeof *ip);
8b3b8dd1 1740 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
eadef313 1741 ip->ip_tos = flow->nw_tos;
aabf5352 1742 ip->ip_ttl = flow->nw_ttl;
8b3b8dd1 1743 ip->ip_proto = flow->nw_proto;
7c457c33
BP
1744 put_16aligned_be32(&ip->ip_src, flow->nw_src);
1745 put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
8b3b8dd1 1746
eadef313 1747 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
7257b535 1748 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
eadef313 1749 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
7257b535
BP
1750 ip->ip_frag_off |= htons(100);
1751 }
1752 }
df9b6612 1753
437d0d22 1754 ofpbuf_set_l4(b, ofpbuf_tail(b));
52105b67 1755
437d0d22 1756 l4_len = flow_compose_l4(b, flow);
52105b67 1757
1c98d0ad 1758 ip = ofpbuf_l3(b);
437d0d22 1759 ip->ip_tot_len = htons(b->l4_ofs - b->l3_ofs + l4_len);
dc5a7ce7 1760 ip->ip_csum = csum(ip, sizeof *ip);
cff78c88 1761 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
52105b67
JR
1762 struct ovs_16aligned_ip6_hdr *nh;
1763
1764 nh = ofpbuf_put_zeros(b, sizeof *nh);
1765 put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
1766 htonl(flow->nw_tos << 20) | flow->ipv6_label);
1767 nh->ip6_hlim = flow->nw_ttl;
1768 nh->ip6_nxt = flow->nw_proto;
1769
1770 memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
1771 memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
1772
437d0d22 1773 ofpbuf_set_l4(b, ofpbuf_tail(b));
52105b67 1774
437d0d22 1775 l4_len = flow_compose_l4(b, flow);
52105b67 1776
1c98d0ad 1777 nh = ofpbuf_l3(b);
437d0d22 1778 nh->ip6_plen = htons(l4_len);
cff78c88
SH
1779 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1780 flow->dl_type == htons(ETH_TYPE_RARP)) {
8b3b8dd1
BP
1781 struct arp_eth_header *arp;
1782
437d0d22
JR
1783 arp = ofpbuf_put_zeros(b, sizeof *arp);
1784 ofpbuf_set_l3(b, arp);
8b3b8dd1
BP
1785 arp->ar_hrd = htons(1);
1786 arp->ar_pro = htons(ETH_TYPE_IP);
1787 arp->ar_hln = ETH_ADDR_LEN;
1788 arp->ar_pln = 4;
1789 arp->ar_op = htons(flow->nw_proto);
1790
1791 if (flow->nw_proto == ARP_OP_REQUEST ||
1792 flow->nw_proto == ARP_OP_REPLY) {
7c457c33
BP
1793 put_16aligned_be32(&arp->ar_spa, flow->nw_src);
1794 put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
8b3b8dd1
BP
1795 memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
1796 memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
1797 }
1798 }
b02475c5
SH
1799
1800 if (eth_type_mpls(flow->dl_type)) {
8bfd0fda
BP
1801 int n;
1802
437d0d22 1803 b->l2_5_ofs = b->l3_ofs;
8bfd0fda
BP
1804 for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
1805 if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
1806 break;
1807 }
1808 }
1809 while (n > 0) {
1810 push_mpls(b, flow->dl_type, flow->mpls_lse[--n]);
1811 }
b02475c5 1812 }
8b3b8dd1 1813}
5cb7a798
BP
1814\f
1815/* Compressed flow. */
1816
1817static int
1818miniflow_n_values(const struct miniflow *flow)
1819{
fb9aefa3 1820 return count_1bits(flow->map);
5cb7a798
BP
1821}
1822
1823static uint32_t *
1824miniflow_alloc_values(struct miniflow *flow, int n)
1825{
3016f3e4
JR
1826 int size = MINIFLOW_VALUES_SIZE(n);
1827
1828 if (size <= sizeof flow->inline_values) {
27bbe15d 1829 flow->values_inline = true;
5cb7a798
BP
1830 return flow->inline_values;
1831 } else {
1832 COVERAGE_INC(miniflow_malloc);
27bbe15d 1833 flow->values_inline = false;
3016f3e4 1834 flow->offline_values = xmalloc(size);
27bbe15d 1835 return flow->offline_values;
5cb7a798
BP
1836 }
1837}
1838
df40c152
BP
1839/* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
1840 * the caller. The caller must have already initialized 'dst->map' properly
13751fd8
JR
1841 * to indicate the significant uint32_t elements of 'src'. 'n' must be the
1842 * number of 1-bits in 'dst->map'.
1843 *
1844 * Normally the significant elements are the ones that are non-zero. However,
1845 * when a miniflow is initialized from a (mini)mask, the values can be zeroes,
1846 * so that the flow and mask always have the same maps.
df40c152 1847 *
27bbe15d 1848 * This function initializes values (either inline if possible or with
13751fd8
JR
1849 * malloc() otherwise) and copies the uint32_t elements of 'src' indicated by
1850 * 'dst->map' into it. */
df40c152
BP
1851static void
1852miniflow_init__(struct miniflow *dst, const struct flow *src, int n)
1853{
1854 const uint32_t *src_u32 = (const uint32_t *) src;
27bbe15d 1855 uint32_t *dst_u32 = miniflow_alloc_values(dst, n);
080e28d0 1856 uint64_t map;
df40c152 1857
080e28d0 1858 for (map = dst->map; map; map = zero_rightmost_1bit(map)) {
27bbe15d 1859 *dst_u32++ = src_u32[raw_ctz(map)];
df40c152
BP
1860 }
1861}
1862
5cb7a798 1863/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
27bbe15d
JR
1864 * with miniflow_destroy().
1865 * Always allocates offline storage. */
5cb7a798
BP
1866void
1867miniflow_init(struct miniflow *dst, const struct flow *src)
1868{
1869 const uint32_t *src_u32 = (const uint32_t *) src;
5cb7a798
BP
1870 unsigned int i;
1871 int n;
1872
1873 /* Initialize dst->map, counting the number of nonzero elements. */
1874 n = 0;
080e28d0
JR
1875 dst->map = 0;
1876
5cb7a798
BP
1877 for (i = 0; i < FLOW_U32S; i++) {
1878 if (src_u32[i]) {
080e28d0 1879 dst->map |= UINT64_C(1) << i;
5cb7a798
BP
1880 n++;
1881 }
1882 }
1883
df40c152
BP
1884 miniflow_init__(dst, src, n);
1885}
5cb7a798 1886
df40c152
BP
1887/* Initializes 'dst' as a copy of 'src', using 'mask->map' as 'dst''s map. The
1888 * caller must eventually free 'dst' with miniflow_destroy(). */
1889void
1890miniflow_init_with_minimask(struct miniflow *dst, const struct flow *src,
1891 const struct minimask *mask)
1892{
080e28d0 1893 dst->map = mask->masks.map;
df40c152 1894 miniflow_init__(dst, src, miniflow_n_values(dst));
5cb7a798
BP
1895}
1896
1897/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1898 * with miniflow_destroy(). */
1899void
1900miniflow_clone(struct miniflow *dst, const struct miniflow *src)
1901{
3016f3e4
JR
1902 int size = MINIFLOW_VALUES_SIZE(miniflow_n_values(src));
1903 uint32_t *values;
1904
080e28d0 1905 dst->map = src->map;
3016f3e4
JR
1906 if (size <= sizeof dst->inline_values) {
1907 dst->values_inline = true;
1908 values = dst->inline_values;
1909 } else {
1910 dst->values_inline = false;
1911 COVERAGE_INC(miniflow_malloc);
1912 dst->offline_values = xmalloc(size);
1913 values = dst->offline_values;
1914 }
1915 memcpy(values, miniflow_get_values(src), size);
1916}
1917
1918/* Initializes 'dst' as a copy of 'src'. The caller must have allocated
1919 * 'dst' to have inline space all data in 'src'. */
1920void
1921miniflow_clone_inline(struct miniflow *dst, const struct miniflow *src,
1922 size_t n_values)
1923{
1924 dst->values_inline = true;
1925 dst->map = src->map;
1926 memcpy(dst->inline_values, miniflow_get_values(src),
1927 MINIFLOW_VALUES_SIZE(n_values));
5cb7a798
BP
1928}
1929
b2c1f00b 1930/* Initializes 'dst' with the data in 'src', destroying 'src'.
3016f3e4
JR
1931 * The caller must eventually free 'dst' with miniflow_destroy().
1932 * 'dst' must be regularly sized miniflow, but 'src' can have
3c30d111
JR
1933 * storage for more than the default MINI_N_INLINE inline
1934 * values. */
b2c1f00b
BP
1935void
1936miniflow_move(struct miniflow *dst, struct miniflow *src)
1937{
3016f3e4
JR
1938 int size = MINIFLOW_VALUES_SIZE(miniflow_n_values(src));
1939
1940 dst->map = src->map;
1941 if (size <= sizeof dst->inline_values) {
1942 dst->values_inline = true;
1943 memcpy(dst->inline_values, miniflow_get_values(src), size);
1944 miniflow_destroy(src);
097673a6
JR
1945 } else if (src->values_inline) {
1946 dst->values_inline = false;
1947 COVERAGE_INC(miniflow_malloc);
1948 dst->offline_values = xmalloc(size);
1949 memcpy(dst->offline_values, src->inline_values, size);
3016f3e4
JR
1950 } else {
1951 dst->values_inline = false;
1952 dst->offline_values = src->offline_values;
1953 }
b2c1f00b
BP
1954}
1955
5cb7a798
BP
1956/* Frees any memory owned by 'flow'. Does not free the storage in which 'flow'
1957 * itself resides; the caller is responsible for that. */
1958void
1959miniflow_destroy(struct miniflow *flow)
1960{
27bbe15d
JR
1961 if (!flow->values_inline) {
1962 free(flow->offline_values);
5cb7a798
BP
1963 }
1964}
1965
1966/* Initializes 'dst' as a copy of 'src'. */
1967void
1968miniflow_expand(const struct miniflow *src, struct flow *dst)
1969{
ad77e3c5
EJ
1970 memset(dst, 0, sizeof *dst);
1971 flow_union_with_miniflow(dst, src);
5cb7a798
BP
1972}
1973
5cb7a798
BP
1974/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow'
1975 * were expanded into a "struct flow". */
b7807e4f 1976static uint32_t
5cb7a798
BP
1977miniflow_get(const struct miniflow *flow, unsigned int u32_ofs)
1978{
b7807e4f 1979 return (flow->map & UINT64_C(1) << u32_ofs)
27bbe15d 1980 ? *(miniflow_get_u32_values(flow) +
b7807e4f
JR
1981 count_1bits(flow->map & ((UINT64_C(1) << u32_ofs) - 1)))
1982 : 0;
5cb7a798
BP
1983}
1984
8e86f090 1985/* Returns true if 'a' and 'b' are the equal miniflow, false otherwise. */
5cb7a798
BP
1986bool
1987miniflow_equal(const struct miniflow *a, const struct miniflow *b)
1988{
27bbe15d
JR
1989 const uint32_t *ap = miniflow_get_u32_values(a);
1990 const uint32_t *bp = miniflow_get_u32_values(b);
080e28d0
JR
1991 const uint64_t a_map = a->map;
1992 const uint64_t b_map = b->map;
5cb7a798 1993
27bbe15d
JR
1994 if (OVS_LIKELY(a_map == b_map)) {
1995 int count = miniflow_n_values(a);
1996
8cc86801 1997 return !memcmp(ap, bp, count * sizeof *ap);
080e28d0 1998 } else {
27bbe15d
JR
1999 uint64_t map;
2000
080e28d0
JR
2001 for (map = a_map | b_map; map; map = zero_rightmost_1bit(map)) {
2002 uint64_t bit = rightmost_1bit(map);
2003 uint64_t a_value = a_map & bit ? *ap++ : 0;
2004 uint64_t b_value = b_map & bit ? *bp++ : 0;
df40c152 2005
080e28d0
JR
2006 if (a_value != b_value) {
2007 return false;
df40c152 2008 }
5cb7a798
BP
2009 }
2010 }
2011
df40c152 2012 return true;
5cb7a798
BP
2013}
2014
de4ad4a2
JR
2015/* Returns false if 'a' and 'b' differ at the places where there are 1-bits
2016 * in 'mask', true otherwise. */
5cb7a798
BP
2017bool
2018miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
2019 const struct minimask *mask)
2020{
27bbe15d 2021 const uint32_t *p = miniflow_get_u32_values(&mask->masks);
080e28d0 2022 uint64_t map;
5cb7a798 2023
080e28d0 2024 for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
d43d314e 2025 int ofs = raw_ctz(map);
5cb7a798 2026
27bbe15d 2027 if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p++) {
080e28d0 2028 return false;
5cb7a798
BP
2029 }
2030 }
2031
2032 return true;
2033}
2034
2035/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
2036 * in 'mask', false if they differ. */
2037bool
2038miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
2039 const struct minimask *mask)
2040{
2041 const uint32_t *b_u32 = (const uint32_t *) b;
27bbe15d 2042 const uint32_t *p = miniflow_get_u32_values(&mask->masks);
080e28d0 2043 uint64_t map;
5cb7a798 2044
080e28d0 2045 for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
d43d314e 2046 int ofs = raw_ctz(map);
5cb7a798 2047
27bbe15d 2048 if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p++) {
080e28d0 2049 return false;
5cb7a798
BP
2050 }
2051 }
2052
2053 return true;
2054}
2055
5cb7a798
BP
2056\f
2057/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
2058 * with minimask_destroy(). */
2059void
2060minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
2061{
2062 miniflow_init(&mask->masks, &wc->masks);
2063}
2064
2065/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
2066 * with minimask_destroy(). */
2067void
2068minimask_clone(struct minimask *dst, const struct minimask *src)
2069{
2070 miniflow_clone(&dst->masks, &src->masks);
2071}
2072
b2c1f00b
BP
2073/* Initializes 'dst' with the data in 'src', destroying 'src'.
2074 * The caller must eventually free 'dst' with minimask_destroy(). */
2075void
2076minimask_move(struct minimask *dst, struct minimask *src)
2077{
a24de7ee 2078 miniflow_move(&dst->masks, &src->masks);
b2c1f00b
BP
2079}
2080
5cb7a798
BP
2081/* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
2082 *
2083 * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use
2084 * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */
2085void
2086minimask_combine(struct minimask *dst_,
2087 const struct minimask *a_, const struct minimask *b_,
2088 uint32_t storage[FLOW_U32S])
2089{
2090 struct miniflow *dst = &dst_->masks;
27bbe15d 2091 uint32_t *dst_values = storage;
5cb7a798
BP
2092 const struct miniflow *a = &a_->masks;
2093 const struct miniflow *b = &b_->masks;
080e28d0
JR
2094 uint64_t map;
2095 int n = 0;
5cb7a798 2096
27bbe15d
JR
2097 dst->values_inline = false;
2098 dst->offline_values = storage;
080e28d0
JR
2099
2100 dst->map = 0;
2101 for (map = a->map & b->map; map; map = zero_rightmost_1bit(map)) {
d43d314e 2102 int ofs = raw_ctz(map);
080e28d0
JR
2103 uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs);
2104
2105 if (mask) {
2106 dst->map |= rightmost_1bit(map);
27bbe15d 2107 dst_values[n++] = mask;
5cb7a798
BP
2108 }
2109 }
2110}
2111
2112/* Frees any memory owned by 'mask'. Does not free the storage in which 'mask'
2113 * itself resides; the caller is responsible for that. */
2114void
2115minimask_destroy(struct minimask *mask)
2116{
2117 miniflow_destroy(&mask->masks);
2118}
2119
2120/* Initializes 'dst' as a copy of 'src'. */
2121void
2122minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
2123{
2124 miniflow_expand(&mask->masks, &wc->masks);
2125}
2126
2127/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
2128 * were expanded into a "struct flow_wildcards". */
2129uint32_t
2130minimask_get(const struct minimask *mask, unsigned int u32_ofs)
2131{
2132 return miniflow_get(&mask->masks, u32_ofs);
2133}
2134
5cb7a798
BP
2135/* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */
2136bool
2137minimask_equal(const struct minimask *a, const struct minimask *b)
2138{
2139 return miniflow_equal(&a->masks, &b->masks);
2140}
2141
d4570fd8 2142/* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
5cb7a798
BP
2143 * false otherwise. */
2144bool
d4570fd8 2145minimask_has_extra(const struct minimask *a, const struct minimask *b)
5cb7a798 2146{
27bbe15d 2147 const uint32_t *p = miniflow_get_u32_values(&b->masks);
080e28d0 2148 uint64_t map;
5cb7a798 2149
d4570fd8
JR
2150 for (map = b->masks.map; map; map = zero_rightmost_1bit(map)) {
2151 uint32_t a_u32 = minimask_get(a, raw_ctz(map));
2152 uint32_t b_u32 = *p++;
5cb7a798 2153
080e28d0
JR
2154 if ((a_u32 & b_u32) != b_u32) {
2155 return true;
5cb7a798
BP
2156 }
2157 }
2158
2159 return false;
2160}