]> git.proxmox.com Git - mirror_ovs.git/blame - lib/flow.c
ovs-command-completion: Avoid using negative subscript.
[mirror_ovs.git] / lib / flow.c
CommitLineData
064af421 1/*
18080541 2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
064af421 3 *
a14bc59f
BP
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
064af421 7 *
a14bc59f
BP
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
064af421
BP
15 */
16#include <config.h>
17#include <sys/types.h>
18#include "flow.h"
d31f1109 19#include <errno.h>
064af421 20#include <inttypes.h>
5cb7a798 21#include <limits.h>
064af421 22#include <netinet/in.h>
d31f1109
JP
23#include <netinet/icmp6.h>
24#include <netinet/ip6.h>
5cb7a798 25#include <stdint.h>
064af421
BP
26#include <stdlib.h>
27#include <string.h>
10a24935 28#include "byte-order.h"
064af421 29#include "coverage.h"
dc5a7ce7 30#include "csum.h"
064af421
BP
31#include "dynamic-string.h"
32#include "hash.h"
c49d1dd1 33#include "jhash.h"
aa6c9932 34#include "match.h"
064af421
BP
35#include "ofpbuf.h"
36#include "openflow/openflow.h"
064af421 37#include "packets.h"
b5e7e61a 38#include "odp-util.h"
94639963 39#include "random.h"
176aaa65 40#include "unaligned.h"
064af421 41
d76f09ea 42COVERAGE_DEFINE(flow_extract);
5cb7a798 43COVERAGE_DEFINE(miniflow_malloc);
d76f09ea 44
d70e8c28
JR
45/* U64 indices for segmented flow classification. */
46const uint8_t flow_segment_u64s[4] = {
47 FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t),
48 FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t),
49 FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t),
50 FLOW_U64S
476f36e8
JR
51};
52
419681da
JR
53/* miniflow_extract() assumes the following to be true to optimize the
54 * extraction process. */
55BUILD_ASSERT_DECL(offsetof(struct flow, dl_type) + 2
56 == offsetof(struct flow, vlan_tci) &&
57 offsetof(struct flow, dl_type) / 4
58 == offsetof(struct flow, vlan_tci) / 4 );
59
60BUILD_ASSERT_DECL(offsetof(struct flow, nw_frag) + 3
61 == offsetof(struct flow, nw_proto) &&
62 offsetof(struct flow, nw_tos) + 2
63 == offsetof(struct flow, nw_proto) &&
64 offsetof(struct flow, nw_ttl) + 1
65 == offsetof(struct flow, nw_proto) &&
66 offsetof(struct flow, nw_frag) / 4
67 == offsetof(struct flow, nw_tos) / 4 &&
68 offsetof(struct flow, nw_ttl) / 4
69 == offsetof(struct flow, nw_tos) / 4 &&
70 offsetof(struct flow, nw_proto) / 4
71 == offsetof(struct flow, nw_tos) / 4);
72
d70e8c28
JR
73/* TCP flags in the middle of a BE64, zeroes in the other half. */
74BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4);
75
419681da
JR
76#if WORDS_BIGENDIAN
77#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
78 << 16)
79#else
80#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
81#endif
82
83BUILD_ASSERT_DECL(offsetof(struct flow, tp_src) + 2
84 == offsetof(struct flow, tp_dst) &&
85 offsetof(struct flow, tp_src) / 4
86 == offsetof(struct flow, tp_dst) / 4);
87
88/* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
89 * must contain at least 'size' bytes of data. Returns the first byte of data
90 * removed. */
91static inline const void *
92data_pull(void **datap, size_t *sizep, size_t size)
a26ef517 93{
419681da
JR
94 char *data = (char *)*datap;
95 *datap = data + size;
96 *sizep -= size;
97 return data;
a26ef517
JP
98}
99
419681da
JR
100/* If '*datap' has at least 'size' bytes of data, removes that many bytes from
101 * the head end of '*datap' and returns the first byte removed. Otherwise,
102 * returns a null pointer without modifying '*datap'. */
103static inline const void *
104data_try_pull(void **datap, size_t *sizep, size_t size)
064af421 105{
419681da 106 return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
064af421
BP
107}
108
419681da
JR
109/* Context for pushing data to a miniflow. */
110struct mf_ctx {
111 uint64_t map;
d70e8c28
JR
112 uint64_t *data;
113 uint64_t * const end;
419681da 114};
064af421 115
419681da
JR
116/* miniflow_push_* macros allow filling in a miniflow data values in order.
117 * Assertions are needed only when the layout of the struct flow is modified.
118 * 'ofs' is a compile-time constant, which allows most of the code be optimized
694ffecc 119 * away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are
419681da
JR
120 * defined as macros. */
121
18080541 122#if (FLOW_WC_SEQ != 30)
419681da 123#define MINIFLOW_ASSERT(X) ovs_assert(X)
dce96af8
DDP
124BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
125 "assertions enabled. Consider updating FLOW_WC_SEQ after "
126 "testing")
419681da
JR
127#else
128#define MINIFLOW_ASSERT(X)
129#endif
130
d70e8c28 131#define miniflow_push_uint64_(MF, OFS, VALUE) \
419681da 132{ \
d70e8c28
JR
133 MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0 \
134 && !(MF.map & (UINT64_MAX << (OFS) / 8))); \
419681da 135 *MF.data++ = VALUE; \
d70e8c28 136 MF.map |= UINT64_C(1) << (OFS) / 8; \
d31f1109
JP
137}
138
d70e8c28
JR
139#define miniflow_push_be64_(MF, OFS, VALUE) \
140 miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE))
419681da 141
d70e8c28 142#define miniflow_push_uint32_(MF, OFS, VALUE) \
419681da
JR
143{ \
144 MINIFLOW_ASSERT(MF.data < MF.end && \
d70e8c28
JR
145 (((OFS) % 8 == 0 && !(MF.map & (UINT64_MAX << (OFS) / 8))) \
146 || ((OFS) % 8 == 4 && MF.map & (UINT64_C(1) << (OFS) / 8) \
147 && !(MF.map & (UINT64_MAX << ((OFS) / 8 + 1)))))); \
148 \
149 if ((OFS) % 8 == 0) { \
150 *(uint32_t *)MF.data = VALUE; \
151 MF.map |= UINT64_C(1) << (OFS) / 8; \
152 } else if ((OFS) % 8 == 4) { \
153 *((uint32_t *)MF.data + 1) = VALUE; \
154 MF.data++; \
155 } \
156}
157
158#define miniflow_push_be32_(MF, OFS, VALUE) \
159 miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))
160
161#define miniflow_push_uint16_(MF, OFS, VALUE) \
162{ \
163 MINIFLOW_ASSERT(MF.data < MF.end && \
164 (((OFS) % 8 == 0 && !(MF.map & (UINT64_MAX << (OFS) / 8))) \
165 || ((OFS) % 2 == 0 && MF.map & (UINT64_C(1) << (OFS) / 8) \
166 && !(MF.map & (UINT64_MAX << ((OFS) / 8 + 1)))))); \
419681da 167 \
d70e8c28 168 if ((OFS) % 8 == 0) { \
419681da 169 *(uint16_t *)MF.data = VALUE; \
d70e8c28
JR
170 MF.map |= UINT64_C(1) << (OFS) / 8; \
171 } else if ((OFS) % 8 == 2) { \
419681da 172 *((uint16_t *)MF.data + 1) = VALUE; \
d70e8c28
JR
173 } else if ((OFS) % 8 == 4) { \
174 *((uint16_t *)MF.data + 2) = VALUE; \
175 } else if ((OFS) % 8 == 6) { \
176 *((uint16_t *)MF.data + 3) = VALUE; \
419681da
JR
177 MF.data++; \
178 } \
b02475c5
SH
179}
180
d70e8c28
JR
181#define miniflow_pad_to_64_(MF, OFS) \
182{ \
183 MINIFLOW_ASSERT((OFS) % 8 != 0); \
184 MINIFLOW_ASSERT(MF.map & (UINT64_C(1) << (OFS) / 8)); \
185 MINIFLOW_ASSERT(!(MF.map & (UINT64_MAX << ((OFS) / 8 + 1)))); \
186 \
187 memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \
188 MF.data++; \
189}
190
191#define miniflow_push_be16_(MF, OFS, VALUE) \
419681da
JR
192 miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);
193
194/* Data at 'valuep' may be unaligned. */
195#define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \
196{ \
d70e8c28 197 int ofs64 = (OFS) / 8; \
419681da 198 \
d70e8c28
JR
199 MINIFLOW_ASSERT(MF.data + (N_WORDS) <= MF.end && (OFS) % 8 == 0 \
200 && !(MF.map & (UINT64_MAX << ofs64))); \
419681da
JR
201 \
202 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \
203 MF.data += (N_WORDS); \
d70e8c28 204 MF.map |= ((UINT64_MAX >> (64 - (N_WORDS))) << ofs64); \
064af421
BP
205}
206
d70e8c28
JR
207/* Push 32-bit words padded to 64-bits. */
208#define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \
209{ \
210 int ofs64 = (OFS) / 8; \
211 \
212 MINIFLOW_ASSERT(MF.data + DIV_ROUND_UP(N_WORDS, 2) <= MF.end \
213 && (OFS) % 8 == 0 \
214 && !(MF.map & (UINT64_MAX << ofs64))); \
215 \
216 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \
217 MF.data += DIV_ROUND_UP(N_WORDS, 2); \
218 MF.map |= ((UINT64_MAX >> (64 - DIV_ROUND_UP(N_WORDS, 2))) << ofs64); \
219 if ((N_WORDS) & 1) { \
220 *((uint32_t *)MF.data - 1) = 0; \
221 } \
222}
50f06e16 223
d70e8c28
JR
224/* Data at 'valuep' may be unaligned. */
225/* MACs start 64-aligned, and must be followed by other data or padding. */
226#define miniflow_push_macs_(MF, OFS, VALUEP) \
227{ \
228 int ofs64 = (OFS) / 8; \
229 \
230 MINIFLOW_ASSERT(MF.data + 2 <= MF.end && (OFS) % 8 == 0 \
231 && !(MF.map & (UINT64_MAX << ofs64))); \
232 \
233 memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \
234 MF.data += 1; /* First word only. */ \
235 MF.map |= UINT64_C(3) << ofs64; /* Both words. */ \
236}
50f06e16 237
d70e8c28
JR
238#define miniflow_push_uint32(MF, FIELD, VALUE) \
239 miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)
50f06e16 240
d70e8c28
JR
241#define miniflow_push_be32(MF, FIELD, VALUE) \
242 miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)
50f06e16 243
d70e8c28 244#define miniflow_push_uint16(MF, FIELD, VALUE) \
419681da 245 miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)
9e69bc5f 246
d70e8c28 247#define miniflow_push_be16(MF, FIELD, VALUE) \
419681da 248 miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)
9e69bc5f 249
d70e8c28
JR
250#define miniflow_pad_to_64(MF, FIELD) \
251 miniflow_pad_to_64_(MF, offsetof(struct flow, FIELD))
252
419681da
JR
253#define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \
254 miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
064af421 255
d70e8c28
JR
256#define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \
257 miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
258
259#define miniflow_push_macs(MF, FIELD, VALUEP) \
260 miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP)
261
419681da
JR
262/* Pulls the MPLS headers at '*datap' and returns the count of them. */
263static inline int
264parse_mpls(void **datap, size_t *sizep)
d31f1109 265{
419681da
JR
266 const struct mpls_hdr *mh;
267 int count = 0;
d31f1109 268
419681da
JR
269 while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
270 count++;
271 if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
d31f1109
JP
272 break;
273 }
419681da 274 }
ba8561c6 275 return MIN(count, FLOW_MAX_MPLS_LABELS);
419681da 276}
d31f1109 277
419681da
JR
278static inline ovs_be16
279parse_vlan(void **datap, size_t *sizep)
280{
281 const struct eth_header *eth = *datap;
d31f1109 282
419681da
JR
283 struct qtag_prefix {
284 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
285 ovs_be16 tci;
286 };
d31f1109 287
419681da 288 data_pull(datap, sizep, ETH_ADDR_LEN * 2);
d31f1109 289
419681da
JR
290 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
291 if (OVS_LIKELY(*sizep
292 >= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) {
293 const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp);
294 return qp->tci | htons(VLAN_CFI);
d31f1109
JP
295 }
296 }
88366484 297 return 0;
d31f1109
JP
298}
299
419681da
JR
300static inline ovs_be16
301parse_ethertype(void **datap, size_t *sizep)
88366484 302{
419681da
JR
303 const struct llc_snap_header *llc;
304 ovs_be16 proto;
5a51b2cd 305
419681da
JR
306 proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
307 if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
308 return proto;
88366484 309 }
5a51b2cd 310
419681da
JR
311 if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
312 return htons(FLOW_DL_TYPE_NONE);
88366484 313 }
5a51b2cd 314
419681da
JR
315 llc = *datap;
316 if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
317 || llc->llc.llc_ssap != LLC_SSAP_SNAP
318 || llc->llc.llc_cntl != LLC_CNTL_SNAP
319 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
320 sizeof llc->snap.snap_org))) {
321 return htons(FLOW_DL_TYPE_NONE);
c6bcb685 322 }
c6bcb685 323
419681da 324 data_pull(datap, sizep, sizeof *llc);
685a51a5 325
419681da
JR
326 if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
327 return llc->snap.snap_type;
685a51a5
JP
328 }
329
419681da
JR
330 return htons(FLOW_DL_TYPE_NONE);
331}
685a51a5 332
419681da
JR
333static inline bool
334parse_icmpv6(void **datap, size_t *sizep, const struct icmp6_hdr *icmp,
335 const struct in6_addr **nd_target,
336 uint8_t arp_buf[2][ETH_ADDR_LEN])
337{
88366484
JG
338 if (icmp->icmp6_code == 0 &&
339 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
340 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
685a51a5 341
b0e2ec32 342 *nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
419681da
JR
343 if (OVS_UNLIKELY(!*nd_target)) {
344 return false;
685a51a5 345 }
685a51a5 346
419681da 347 while (*sizep >= 8) {
685a51a5
JP
348 /* The minimum size of an option is 8 bytes, which also is
349 * the size of Ethernet link-layer options. */
419681da 350 const struct nd_opt_hdr *nd_opt = *datap;
88366484
JG
351 int opt_len = nd_opt->nd_opt_len * 8;
352
419681da 353 if (!opt_len || opt_len > *sizep) {
685a51a5
JP
354 goto invalid;
355 }
685a51a5
JP
356
357 /* Store the link layer address if the appropriate option is
358 * provided. It is considered an error if the same link
359 * layer option is specified twice. */
360 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
361 && opt_len == 8) {
419681da
JR
362 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
363 memcpy(arp_buf[0], nd_opt + 1, ETH_ADDR_LEN);
685a51a5
JP
364 } else {
365 goto invalid;
366 }
367 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
368 && opt_len == 8) {
419681da
JR
369 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
370 memcpy(arp_buf[1], nd_opt + 1, ETH_ADDR_LEN);
685a51a5
JP
371 } else {
372 goto invalid;
373 }
374 }
375
419681da 376 if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
685a51a5
JP
377 goto invalid;
378 }
685a51a5
JP
379 }
380 }
381
419681da 382 return true;
685a51a5
JP
383
384invalid:
419681da 385 return false;
685a51a5
JP
386}
387
b5e7e61a 388/* Initializes 'flow' members from 'packet' and 'md'
deedf7e7 389 *
437d0d22
JR
390 * Initializes 'packet' header l2 pointer to the start of the Ethernet
391 * header, and the layer offsets as follows:
ca78c6b6 392 *
437d0d22
JR
393 * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX
394 * when there is no MPLS shim header.
ca78c6b6 395 *
437d0d22 396 * - packet->l3_ofs to just past the Ethernet header, or just past the
ca78c6b6 397 * vlan_header if one is present, to the first byte of the payload of the
437d0d22
JR
398 * Ethernet frame. UINT16_MAX if the frame is too short to contain an
399 * Ethernet header.
ca78c6b6 400 *
437d0d22
JR
401 * - packet->l4_ofs to just past the IPv4 header, if one is present and
402 * has at least the content used for the fields of interest for the flow,
403 * otherwise UINT16_MAX.
ca78c6b6 404 */
7257b535 405void
b5e7e61a 406flow_extract(struct ofpbuf *packet, const struct pkt_metadata *md,
296e07ac 407 struct flow *flow)
064af421 408{
27bbe15d
JR
409 struct {
410 struct miniflow mf;
d70e8c28 411 uint64_t buf[FLOW_U64S];
27bbe15d 412 } m;
064af421
BP
413
414 COVERAGE_INC(flow_extract);
415
27bbe15d
JR
416 miniflow_initialize(&m.mf, m.buf);
417 miniflow_extract(packet, md, &m.mf);
418 miniflow_expand(&m.mf, flow);
419681da 419}
296e07ac 420
27bbe15d 421/* Caller is responsible for initializing 'dst' with enough storage for
d70e8c28 422 * FLOW_U64S * 8 bytes. */
419681da
JR
423void
424miniflow_extract(struct ofpbuf *packet, const struct pkt_metadata *md,
425 struct miniflow *dst)
426{
427 void *data = ofpbuf_data(packet);
428 size_t size = ofpbuf_size(packet);
d70e8c28
JR
429 uint64_t *values = miniflow_values(dst);
430 struct mf_ctx mf = { 0, values, values + FLOW_U64S };
419681da 431 char *l2;
419681da
JR
432 ovs_be16 dl_type;
433 uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
434
435 /* Metadata. */
b5e7e61a 436 if (md) {
419681da
JR
437 if (md->tunnel.ip_dst) {
438 miniflow_push_words(mf, tunnel, &md->tunnel,
d70e8c28
JR
439 sizeof md->tunnel / sizeof(uint64_t));
440 }
441 if (md->skb_priority || md->pkt_mark) {
442 miniflow_push_uint32(mf, skb_priority, md->skb_priority);
443 miniflow_push_uint32(mf, pkt_mark, md->pkt_mark);
419681da 444 }
d70e8c28 445 miniflow_push_uint32(mf, dp_hash, md->dp_hash);
419681da 446 miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
d70e8c28
JR
447 if (md->recirc_id) {
448 miniflow_push_uint32(mf, recirc_id, md->recirc_id);
18080541 449 miniflow_pad_to_64(mf, conj_id);
d70e8c28 450 }
296e07ac 451 }
064af421 452
419681da
JR
453 /* Initialize packet's layer pointer and offsets. */
454 l2 = data;
455 ofpbuf_set_frame(packet, data);
064af421 456
419681da
JR
457 /* Must have full Ethernet header to proceed. */
458 if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
459 goto out;
460 } else {
461 ovs_be16 vlan_tci;
50f06e16 462
419681da
JR
463 /* Link layer. */
464 BUILD_ASSERT(offsetof(struct flow, dl_dst) + 6
465 == offsetof(struct flow, dl_src));
d70e8c28 466 miniflow_push_macs(mf, dl_dst, data);
419681da
JR
467 /* dl_type, vlan_tci. */
468 vlan_tci = parse_vlan(&data, &size);
469 dl_type = parse_ethertype(&data, &size);
470 miniflow_push_be16(mf, dl_type, dl_type);
471 miniflow_push_be16(mf, vlan_tci, vlan_tci);
50f06e16 472 }
50f06e16 473
419681da
JR
474 /* Parse mpls. */
475 if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
476 int count;
477 const void *mpls = data;
478
479 packet->l2_5_ofs = (char *)data - l2;
480 count = parse_mpls(&data, &size);
d70e8c28 481 miniflow_push_words_32(mf, mpls_lse, mpls, count);
b02475c5
SH
482 }
483
ad128cc1 484 /* Network layer. */
419681da
JR
485 packet->l3_ofs = (char *)data - l2;
486
487 nw_frag = 0;
488 if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
489 const struct ip_header *nh = data;
490 int ip_len;
fa8d9001 491 uint16_t tot_len;
419681da
JR
492
493 if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
494 goto out;
495 }
496 ip_len = IP_IHL(nh->ip_ihl_ver) * 4;
497
498 if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
499 goto out;
500 }
fa8d9001
JR
501 if (OVS_UNLIKELY(size < ip_len)) {
502 goto out;
503 }
504 tot_len = ntohs(nh->ip_tot_len);
505 if (OVS_UNLIKELY(tot_len > size)) {
506 goto out;
507 }
508 if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) {
509 goto out;
510 }
511 ofpbuf_set_l2_pad_size(packet, size - tot_len);
512 size = tot_len; /* Never pull padding. */
419681da
JR
513
514 /* Push both source and destination address at once. */
d70e8c28
JR
515 miniflow_push_words(mf, nw_src, &nh->ip_src, 1);
516
517 miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */
419681da
JR
518
519 nw_tos = nh->ip_tos;
520 nw_ttl = nh->ip_ttl;
521 nw_proto = nh->ip_proto;
522 if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
523 nw_frag = FLOW_NW_FRAG_ANY;
524 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
525 nw_frag |= FLOW_NW_FRAG_LATER;
526 }
527 }
419681da 528 data_pull(&data, &size, ip_len);
419681da
JR
529 } else if (dl_type == htons(ETH_TYPE_IPV6)) {
530 const struct ovs_16aligned_ip6_hdr *nh;
531 ovs_be32 tc_flow;
fa8d9001 532 uint16_t plen;
419681da
JR
533
534 if (OVS_UNLIKELY(size < sizeof *nh)) {
535 goto out;
536 }
537 nh = data_pull(&data, &size, sizeof *nh);
538
fa8d9001
JR
539 plen = ntohs(nh->ip6_plen);
540 if (OVS_UNLIKELY(plen > size)) {
541 goto out;
542 }
543 /* Jumbo Payload option not supported yet. */
544 if (OVS_UNLIKELY(size - plen > UINT8_MAX)) {
545 goto out;
546 }
547 ofpbuf_set_l2_pad_size(packet, size - plen);
548 size = plen; /* Never pull padding. */
549
419681da 550 miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
d70e8c28 551 sizeof nh->ip6_src / 8);
419681da 552 miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
d70e8c28 553 sizeof nh->ip6_dst / 8);
419681da
JR
554
555 tc_flow = get_16aligned_be32(&nh->ip6_flow);
556 {
557 ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
d70e8c28 558 miniflow_push_be32(mf, ipv6_label, label);
419681da
JR
559 }
560
561 nw_tos = ntohl(tc_flow) >> 20;
562 nw_ttl = nh->ip6_hlim;
563 nw_proto = nh->ip6_nxt;
564
565 while (1) {
566 if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS)
567 && (nw_proto != IPPROTO_ROUTING)
568 && (nw_proto != IPPROTO_DSTOPTS)
569 && (nw_proto != IPPROTO_AH)
570 && (nw_proto != IPPROTO_FRAGMENT))) {
571 /* It's either a terminal header (e.g., TCP, UDP) or one we
572 * don't understand. In either case, we're done with the
573 * packet, so use it to fill in 'nw_proto'. */
574 break;
575 }
576
577 /* We only verify that at least 8 bytes of the next header are
578 * available, but many of these headers are longer. Ensure that
579 * accesses within the extension header are within those first 8
580 * bytes. All extension headers are required to be at least 8
581 * bytes. */
582 if (OVS_UNLIKELY(size < 8)) {
583 goto out;
7257b535 584 }
419681da
JR
585
586 if ((nw_proto == IPPROTO_HOPOPTS)
587 || (nw_proto == IPPROTO_ROUTING)
588 || (nw_proto == IPPROTO_DSTOPTS)) {
589 /* These headers, while different, have the fields we care
590 * about in the same location and with the same
591 * interpretation. */
592 const struct ip6_ext *ext_hdr = data;
593 nw_proto = ext_hdr->ip6e_nxt;
594 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
595 (ext_hdr->ip6e_len + 1) * 8))) {
596 goto out;
597 }
598 } else if (nw_proto == IPPROTO_AH) {
599 /* A standard AH definition isn't available, but the fields
600 * we care about are in the same location as the generic
601 * option header--only the header length is calculated
602 * differently. */
603 const struct ip6_ext *ext_hdr = data;
604 nw_proto = ext_hdr->ip6e_nxt;
605 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
606 (ext_hdr->ip6e_len + 2) * 4))) {
607 goto out;
608 }
609 } else if (nw_proto == IPPROTO_FRAGMENT) {
610 const struct ovs_16aligned_ip6_frag *frag_hdr = data;
611
612 nw_proto = frag_hdr->ip6f_nxt;
613 if (!data_try_pull(&data, &size, sizeof *frag_hdr)) {
614 goto out;
615 }
616
617 /* We only process the first fragment. */
618 if (frag_hdr->ip6f_offlg != htons(0)) {
619 nw_frag = FLOW_NW_FRAG_ANY;
620 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
621 nw_frag |= FLOW_NW_FRAG_LATER;
622 nw_proto = IPPROTO_FRAGMENT;
623 break;
064af421 624 }
064af421 625 }
50f06e16
BP
626 }
627 }
419681da
JR
628 } else {
629 if (dl_type == htons(ETH_TYPE_ARP) ||
630 dl_type == htons(ETH_TYPE_RARP)) {
631 uint8_t arp_buf[2][ETH_ADDR_LEN];
632 const struct arp_eth_header *arp = (const struct arp_eth_header *)
633 data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);
634
635 if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
636 && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
637 && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
638 && OVS_LIKELY(arp->ar_pln == 4)) {
d70e8c28
JR
639 miniflow_push_be32(mf, nw_src,
640 get_16aligned_be32(&arp->ar_spa));
641 miniflow_push_be32(mf, nw_dst,
642 get_16aligned_be32(&arp->ar_tpa));
419681da
JR
643
644 /* We only match on the lower 8 bits of the opcode. */
645 if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
d70e8c28 646 miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */
419681da
JR
647 miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
648 }
d31f1109 649
419681da
JR
650 /* Must be adjacent. */
651 BUILD_ASSERT(offsetof(struct flow, arp_sha) + 6
652 == offsetof(struct flow, arp_tha));
653
654 memcpy(arp_buf[0], arp->ar_sha, ETH_ADDR_LEN);
655 memcpy(arp_buf[1], arp->ar_tha, ETH_ADDR_LEN);
d70e8c28
JR
656 miniflow_push_macs(mf, arp_sha, arp_buf);
657 miniflow_pad_to_64(mf, tcp_flags);
419681da 658 }
d31f1109 659 }
419681da
JR
660 goto out;
661 }
662
663 packet->l4_ofs = (char *)data - l2;
664 miniflow_push_be32(mf, nw_frag,
665 BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto));
666
667 if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
668 if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
669 if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
670 const struct tcp_header *tcp = data;
671
d70e8c28 672 miniflow_push_be32(mf, arp_tha[2], 0);
419681da
JR
673 miniflow_push_be32(mf, tcp_flags,
674 TCP_FLAGS_BE32(tcp->tcp_ctl));
675 miniflow_push_words(mf, tp_src, &tcp->tcp_src, 1);
d70e8c28 676 miniflow_pad_to_64(mf, igmp_group_ip4);
419681da
JR
677 }
678 } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
679 if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
680 const struct udp_header *udp = data;
681
682 miniflow_push_words(mf, tp_src, &udp->udp_src, 1);
d70e8c28 683 miniflow_pad_to_64(mf, igmp_group_ip4);
064af421 684 }
419681da
JR
685 } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
686 if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
687 const struct sctp_header *sctp = data;
a26ef517 688
419681da 689 miniflow_push_words(mf, tp_src, &sctp->sctp_src, 1);
d70e8c28 690 miniflow_pad_to_64(mf, igmp_group_ip4);
419681da
JR
691 }
692 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
693 if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
694 const struct icmp_header *icmp = data;
695
696 miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
697 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
d70e8c28 698 miniflow_pad_to_64(mf, igmp_group_ip4);
419681da 699 }
0e612675
FL
700 } else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
701 if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
702 const struct igmp_header *igmp = data;
703
704 miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
705 miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
706 miniflow_push_be32(mf, igmp_group_ip4,
707 get_16aligned_be32(&igmp->group));
708 }
419681da
JR
709 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
710 if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) {
711 const struct in6_addr *nd_target = NULL;
712 uint8_t arp_buf[2][ETH_ADDR_LEN];
713 const struct icmp6_hdr *icmp = data_pull(&data, &size,
714 sizeof *icmp);
715 memset(arp_buf, 0, sizeof arp_buf);
716 if (OVS_LIKELY(parse_icmpv6(&data, &size, icmp, &nd_target,
717 arp_buf))) {
718 if (nd_target) {
719 miniflow_push_words(mf, nd_target, nd_target,
d70e8c28 720 sizeof *nd_target / 8);
419681da 721 }
d70e8c28
JR
722 miniflow_push_macs(mf, arp_sha, arp_buf);
723 miniflow_pad_to_64(mf, tcp_flags);
419681da
JR
724 miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
725 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
d70e8c28 726 miniflow_pad_to_64(mf, igmp_group_ip4);
419681da
JR
727 }
728 }
064af421
BP
729 }
730 }
419681da
JR
731 out:
732 dst->map = mf.map;
064af421
BP
733}
734
993410fb
BP
735/* For every bit of a field that is wildcarded in 'wildcards', sets the
736 * corresponding bit in 'flow' to zero. */
737void
738flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
739{
d70e8c28
JR
740 uint64_t *flow_u64 = (uint64_t *) flow;
741 const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks;
659c2346 742 size_t i;
993410fb 743
d70e8c28
JR
744 for (i = 0; i < FLOW_U64S; i++) {
745 flow_u64[i] &= wc_u64[i];
26720e24 746 }
993410fb
BP
747}
748
d8d9c698
EJ
749void
750flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
751{
752 if (flow->nw_proto != IPPROTO_ICMP) {
753 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
754 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
755 } else {
756 wc->masks.tp_src = htons(0xff);
757 wc->masks.tp_dst = htons(0xff);
758 }
759}
760
5d6c3af0
EJ
761/* Initializes 'fmd' with the metadata found in 'flow'. */
762void
763flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
764{
18080541 765 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 30);
e9358af6 766
a79f29f2
AZ
767 fmd->dp_hash = flow->dp_hash;
768 fmd->recirc_id = flow->recirc_id;
296e07ac 769 fmd->tun_id = flow->tunnel.tun_id;
0ad90c84
JR
770 fmd->tun_src = flow->tunnel.ip_src;
771 fmd->tun_dst = flow->tunnel.ip_dst;
969fc56c 772 fmd->metadata = flow->metadata;
5d6c3af0 773 memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
ac923e91 774 fmd->pkt_mark = flow->pkt_mark;
4e022ec0 775 fmd->in_port = flow->in_port.ofp_port;
5d6c3af0
EJ
776}
777
064af421 778char *
ae412e7d 779flow_to_string(const struct flow *flow)
064af421
BP
780{
781 struct ds ds = DS_EMPTY_INITIALIZER;
782 flow_format(&ds, flow);
783 return ds_cstr(&ds);
784}
785
4fe3445a
PS
786const char *
787flow_tun_flag_to_string(uint32_t flags)
788{
789 switch (flags) {
790 case FLOW_TNL_F_DONT_FRAGMENT:
791 return "df";
792 case FLOW_TNL_F_CSUM:
793 return "csum";
794 case FLOW_TNL_F_KEY:
795 return "key";
94872594
JG
796 case FLOW_TNL_F_OAM:
797 return "oam";
4fe3445a
PS
798 default:
799 return NULL;
800 }
801}
802
803void
804format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
805 uint32_t flags, char del)
806{
807 uint32_t bad = 0;
808
809 if (!flags) {
810 return;
811 }
812 while (flags) {
813 uint32_t bit = rightmost_1bit(flags);
814 const char *s;
815
816 s = bit_to_string(bit);
817 if (s) {
818 ds_put_format(ds, "%s%c", s, del);
819 } else {
820 bad |= bit;
821 }
822
823 flags &= ~bit;
824 }
825
826 if (bad) {
827 ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
828 }
829 ds_chomp(ds, del);
830}
831
61bf6666
JR
832void
833format_flags_masked(struct ds *ds, const char *name,
834 const char *(*bit_to_string)(uint32_t), uint32_t flags,
835 uint32_t mask)
836{
837 if (name) {
838 ds_put_format(ds, "%s=", name);
839 }
840 while (mask) {
841 uint32_t bit = rightmost_1bit(mask);
842 const char *s = bit_to_string(bit);
843
844 ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
845 s ? s : "[Unknown]");
846 mask &= ~bit;
847 }
848}
849
064af421 850void
ae412e7d 851flow_format(struct ds *ds, const struct flow *flow)
064af421 852{
aa6c9932 853 struct match match;
78c9486d 854 struct flow_wildcards *wc = &match.wc;
296e07ac 855
aa6c9932 856 match_wc_init(&match, flow);
78c9486d
JR
857
858 /* As this function is most often used for formatting a packet in a
859 * packet-in message, skip formatting the packet context fields that are
860 * all-zeroes (Openflow spec encourages leaving out all-zeroes context
861 * fields from the packet-in messages). We make an exception with the
862 * 'in_port' field, which we always format, as packets usually have an
863 * in_port, and 0 is a port just like any other port. */
864 if (!flow->skb_priority) {
865 WC_UNMASK_FIELD(wc, skb_priority);
866 }
867 if (!flow->pkt_mark) {
868 WC_UNMASK_FIELD(wc, pkt_mark);
869 }
870 if (!flow->recirc_id) {
871 WC_UNMASK_FIELD(wc, recirc_id);
872 }
873 for (int i = 0; i < FLOW_N_REGS; i++) {
874 if (!flow->regs[i]) {
875 WC_UNMASK_FIELD(wc, regs[i]);
876 }
877 }
878 if (!flow->metadata) {
879 WC_UNMASK_FIELD(wc, metadata);
880 }
881
3f78c3cc 882 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
064af421
BP
883}
884
885void
ae412e7d 886flow_print(FILE *stream, const struct flow *flow)
064af421
BP
887{
888 char *s = flow_to_string(flow);
889 fputs(s, stream);
890 free(s);
891}
54363004
BP
892\f
893/* flow_wildcards functions. */
894
d8ae4d67 895/* Initializes 'wc' as a set of wildcards that matches every packet. */
54363004 896void
d8ae4d67 897flow_wildcards_init_catchall(struct flow_wildcards *wc)
54363004 898{
659c2346 899 memset(&wc->masks, 0, sizeof wc->masks);
54363004
BP
900}
901
78c9486d
JR
902/* Converts a flow into flow wildcards. It sets the wildcard masks based on
903 * the packet headers extracted to 'flow'. It will not set the mask for fields
904 * that do not make sense for the packet type. OpenFlow-only metadata is
905 * wildcarded, but other metadata is unconditionally exact-matched. */
906void flow_wildcards_init_for_packet(struct flow_wildcards *wc,
907 const struct flow *flow)
908{
909 memset(&wc->masks, 0x0, sizeof wc->masks);
910
0de8783a 911 /* Update this function whenever struct flow changes. */
18080541 912 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 30);
0de8783a 913
78c9486d
JR
914 if (flow->tunnel.ip_dst) {
915 if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
916 WC_MASK_FIELD(wc, tunnel.tun_id);
917 }
918 WC_MASK_FIELD(wc, tunnel.ip_src);
919 WC_MASK_FIELD(wc, tunnel.ip_dst);
920 WC_MASK_FIELD(wc, tunnel.flags);
921 WC_MASK_FIELD(wc, tunnel.ip_tos);
922 WC_MASK_FIELD(wc, tunnel.ip_ttl);
923 WC_MASK_FIELD(wc, tunnel.tp_src);
924 WC_MASK_FIELD(wc, tunnel.tp_dst);
925 } else if (flow->tunnel.tun_id) {
926 WC_MASK_FIELD(wc, tunnel.tun_id);
927 }
928
18080541 929 /* metadata, regs, and conj_id wildcarded. */
78c9486d
JR
930
931 WC_MASK_FIELD(wc, skb_priority);
932 WC_MASK_FIELD(wc, pkt_mark);
933 WC_MASK_FIELD(wc, recirc_id);
934 WC_MASK_FIELD(wc, dp_hash);
935 WC_MASK_FIELD(wc, in_port);
936
c61f3870
BP
937 /* actset_output wildcarded. */
938
78c9486d
JR
939 WC_MASK_FIELD(wc, dl_dst);
940 WC_MASK_FIELD(wc, dl_src);
941 WC_MASK_FIELD(wc, dl_type);
942 WC_MASK_FIELD(wc, vlan_tci);
943
944 if (flow->dl_type == htons(ETH_TYPE_IP)) {
945 WC_MASK_FIELD(wc, nw_src);
946 WC_MASK_FIELD(wc, nw_dst);
947 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
948 WC_MASK_FIELD(wc, ipv6_src);
949 WC_MASK_FIELD(wc, ipv6_dst);
950 WC_MASK_FIELD(wc, ipv6_label);
951 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
952 flow->dl_type == htons(ETH_TYPE_RARP)) {
953 WC_MASK_FIELD(wc, nw_src);
954 WC_MASK_FIELD(wc, nw_dst);
955 WC_MASK_FIELD(wc, nw_proto);
956 WC_MASK_FIELD(wc, arp_sha);
957 WC_MASK_FIELD(wc, arp_tha);
958 return;
959 } else if (eth_type_mpls(flow->dl_type)) {
960 for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
961 WC_MASK_FIELD(wc, mpls_lse[i]);
962 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
963 break;
964 }
965 }
966 return;
967 } else {
968 return; /* Unknown ethertype. */
969 }
970
971 /* IPv4 or IPv6. */
972 WC_MASK_FIELD(wc, nw_frag);
973 WC_MASK_FIELD(wc, nw_tos);
974 WC_MASK_FIELD(wc, nw_ttl);
975 WC_MASK_FIELD(wc, nw_proto);
976
977 /* No transport layer header in later fragments. */
978 if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
979 (flow->nw_proto == IPPROTO_ICMP ||
980 flow->nw_proto == IPPROTO_ICMPV6 ||
981 flow->nw_proto == IPPROTO_TCP ||
982 flow->nw_proto == IPPROTO_UDP ||
983 flow->nw_proto == IPPROTO_SCTP ||
984 flow->nw_proto == IPPROTO_IGMP)) {
985 WC_MASK_FIELD(wc, tp_src);
986 WC_MASK_FIELD(wc, tp_dst);
987
988 if (flow->nw_proto == IPPROTO_TCP) {
989 WC_MASK_FIELD(wc, tcp_flags);
990 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
991 WC_MASK_FIELD(wc, arp_sha);
992 WC_MASK_FIELD(wc, arp_tha);
993 WC_MASK_FIELD(wc, nd_target);
994 } else if (flow->nw_proto == IPPROTO_IGMP) {
995 WC_MASK_FIELD(wc, igmp_group_ip4);
996 }
997 }
998}
999
0de8783a
JR
1000/* Return a map of possible fields for a packet of the same type as 'flow'.
1001 * Including extra bits in the returned mask is not wrong, it is just less
1002 * optimal.
1003 *
1004 * This is a less precise version of flow_wildcards_init_for_packet() above. */
1005uint64_t
1006flow_wc_map(const struct flow *flow)
1007{
1008 /* Update this function whenever struct flow changes. */
18080541 1009 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 30);
0de8783a
JR
1010
1011 uint64_t map = (flow->tunnel.ip_dst) ? MINIFLOW_MAP(tunnel) : 0;
1012
1013 /* Metadata fields that can appear on packet input. */
1014 map |= MINIFLOW_MAP(skb_priority) | MINIFLOW_MAP(pkt_mark)
1015 | MINIFLOW_MAP(recirc_id) | MINIFLOW_MAP(dp_hash)
1016 | MINIFLOW_MAP(in_port)
1017 | MINIFLOW_MAP(dl_dst) | MINIFLOW_MAP(dl_src)
1018 | MINIFLOW_MAP(dl_type) | MINIFLOW_MAP(vlan_tci);
1019
1020 /* Ethertype-dependent fields. */
1021 if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
1022 map |= MINIFLOW_MAP(nw_src) | MINIFLOW_MAP(nw_dst)
1023 | MINIFLOW_MAP(nw_proto) | MINIFLOW_MAP(nw_frag)
1024 | MINIFLOW_MAP(nw_tos) | MINIFLOW_MAP(nw_ttl);
1025 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
1026 map |= MINIFLOW_MAP(igmp_group_ip4);
1027 } else {
1028 map |= MINIFLOW_MAP(tcp_flags)
1029 | MINIFLOW_MAP(tp_src) | MINIFLOW_MAP(tp_dst);
1030 }
1031 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1032 map |= MINIFLOW_MAP(ipv6_src) | MINIFLOW_MAP(ipv6_dst)
1033 | MINIFLOW_MAP(ipv6_label)
1034 | MINIFLOW_MAP(nw_proto) | MINIFLOW_MAP(nw_frag)
1035 | MINIFLOW_MAP(nw_tos) | MINIFLOW_MAP(nw_ttl);
1036 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) {
1037 map |= MINIFLOW_MAP(nd_target)
1038 | MINIFLOW_MAP(arp_sha) | MINIFLOW_MAP(arp_tha);
1039 } else {
1040 map |= MINIFLOW_MAP(tcp_flags)
1041 | MINIFLOW_MAP(tp_src) | MINIFLOW_MAP(tp_dst);
1042 }
1043 } else if (eth_type_mpls(flow->dl_type)) {
1044 map |= MINIFLOW_MAP(mpls_lse);
1045 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1046 flow->dl_type == htons(ETH_TYPE_RARP)) {
1047 map |= MINIFLOW_MAP(nw_src) | MINIFLOW_MAP(nw_dst)
1048 | MINIFLOW_MAP(nw_proto)
1049 | MINIFLOW_MAP(arp_sha) | MINIFLOW_MAP(arp_tha);
1050 }
1051
1052 return map;
1053}
1054
c11c6faa
AZ
1055/* Clear the metadata and register wildcard masks. They are not packet
1056 * header fields. */
1057void
1058flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
1059{
0de8783a 1060 /* Update this function whenever struct flow changes. */
18080541 1061 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 30);
0de8783a 1062
c11c6faa
AZ
1063 memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
1064 memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
c61f3870 1065 wc->masks.actset_output = 0;
18080541 1066 wc->masks.conj_id = 0;
c11c6faa
AZ
1067}
1068
ecf1e7ac
BP
1069/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
1070 * fields. */
1071bool
1072flow_wildcards_is_catchall(const struct flow_wildcards *wc)
1073{
d70e8c28 1074 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
659c2346 1075 size_t i;
ecf1e7ac 1076
d70e8c28
JR
1077 for (i = 0; i < FLOW_U64S; i++) {
1078 if (wc_u64[i]) {
ecf1e7ac
BP
1079 return false;
1080 }
1081 }
ecf1e7ac
BP
1082 return true;
1083}
1084
368eefac
EJ
1085/* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
1086 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
1087 * in 'src1' or 'src2' or both. */
b5d97350 1088void
368eefac
EJ
1089flow_wildcards_and(struct flow_wildcards *dst,
1090 const struct flow_wildcards *src1,
1091 const struct flow_wildcards *src2)
b5d97350 1092{
d70e8c28
JR
1093 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1094 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1095 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
659c2346 1096 size_t i;
a79c50f3 1097
d70e8c28
JR
1098 for (i = 0; i < FLOW_U64S; i++) {
1099 dst_u64[i] = src1_u64[i] & src2_u64[i];
26720e24 1100 }
b5d97350
BP
1101}
1102
368eefac
EJ
1103/* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
1104 * is, a bit or a field is wildcarded in 'dst' if it is neither
1105 * wildcarded in 'src1' nor 'src2'. */
1106void
1107flow_wildcards_or(struct flow_wildcards *dst,
1108 const struct flow_wildcards *src1,
1109 const struct flow_wildcards *src2)
1110{
d70e8c28
JR
1111 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1112 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1113 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
368eefac
EJ
1114 size_t i;
1115
d70e8c28
JR
1116 for (i = 0; i < FLOW_U64S; i++) {
1117 dst_u64[i] = src1_u64[i] | src2_u64[i];
368eefac
EJ
1118 }
1119}
1120
b5d97350
BP
1121/* Returns a hash of the wildcards in 'wc'. */
1122uint32_t
1006cda6 1123flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
b5d97350 1124{
ac31c5af 1125 return flow_hash(&wc->masks, basis);
b5d97350
BP
1126}
1127
1128/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
1129 * different. */
1130bool
1131flow_wildcards_equal(const struct flow_wildcards *a,
1132 const struct flow_wildcards *b)
1133{
659c2346 1134 return flow_equal(&a->masks, &b->masks);
b5d97350
BP
1135}
1136
1137/* Returns true if at least one bit or field is wildcarded in 'a' but not in
1138 * 'b', false otherwise. */
1139bool
1140flow_wildcards_has_extra(const struct flow_wildcards *a,
1141 const struct flow_wildcards *b)
1142{
d70e8c28
JR
1143 const uint64_t *a_u64 = (const uint64_t *) &a->masks;
1144 const uint64_t *b_u64 = (const uint64_t *) &b->masks;
659c2346 1145 size_t i;
a79c50f3 1146
d70e8c28
JR
1147 for (i = 0; i < FLOW_U64S; i++) {
1148 if ((a_u64[i] & b_u64[i]) != b_u64[i]) {
b6c9e612
BP
1149 return true;
1150 }
1151 }
659c2346
BP
1152 return false;
1153}
b6c9e612 1154
659c2346
BP
1155/* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
1156 * in 'wc' do not need to be equal in 'a' and 'b'. */
1157bool
1158flow_equal_except(const struct flow *a, const struct flow *b,
1159 const struct flow_wildcards *wc)
1160{
d70e8c28
JR
1161 const uint64_t *a_u64 = (const uint64_t *) a;
1162 const uint64_t *b_u64 = (const uint64_t *) b;
1163 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
659c2346 1164 size_t i;
d31f1109 1165
d70e8c28
JR
1166 for (i = 0; i < FLOW_U64S; i++) {
1167 if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) {
659c2346
BP
1168 return false;
1169 }
47284b1f 1170 }
659c2346 1171 return true;
b5d97350
BP
1172}
1173
b6c9e612
BP
1174/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1175 * (A 0-bit indicates a wildcard bit.) */
1176void
1177flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
1178{
26720e24 1179 wc->masks.regs[idx] = mask;
b6c9e612 1180}
ff55ea1f 1181
79fe0f46
BP
1182/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1183 * (A 0-bit indicates a wildcard bit.) */
1184void
1185flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
1186{
1187 flow_set_xreg(&wc->masks, idx, mask);
1188}
1189
28a560d9
JR
1190/* Calculates the 5-tuple hash from the given miniflow.
1191 * This returns the same value as flow_hash_5tuple for the corresponding
1192 * flow. */
4f150744
JR
1193uint32_t
1194miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
1195{
28a560d9 1196 uint32_t hash = basis;
4f150744 1197
28a560d9
JR
1198 if (flow) {
1199 ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
1200
33c6a1b9 1201 hash = hash_add(hash, MINIFLOW_GET_U8(flow, nw_proto));
28a560d9
JR
1202
1203 /* Separate loops for better optimization. */
1204 if (dl_type == htons(ETH_TYPE_IPV6)) {
d70e8c28
JR
1205 uint64_t map = MINIFLOW_MAP(ipv6_src) | MINIFLOW_MAP(ipv6_dst);
1206 uint64_t value;
4f150744 1207
28a560d9 1208 MINIFLOW_FOR_EACH_IN_MAP(value, flow, map) {
d70e8c28 1209 hash = hash_add64(hash, value);
28a560d9
JR
1210 }
1211 } else {
d70e8c28
JR
1212 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src));
1213 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst));
28a560d9 1214 }
d70e8c28
JR
1215 /* Add both ports at once. */
1216 hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src));
33c6a1b9 1217 hash = hash_finish(hash, 42); /* Arbitrary number. */
28a560d9
JR
1218 }
1219 return hash;
4f150744
JR
1220}
1221
1222BUILD_ASSERT_DECL(offsetof(struct flow, tp_src) + 2
1223 == offsetof(struct flow, tp_dst) &&
1224 offsetof(struct flow, tp_src) / 4
1225 == offsetof(struct flow, tp_dst) / 4);
28a560d9
JR
1226BUILD_ASSERT_DECL(offsetof(struct flow, ipv6_src) + 16
1227 == offsetof(struct flow, ipv6_dst));
4f150744 1228
63be20be
AW
1229/* Calculates the 5-tuple hash from the given flow. */
1230uint32_t
1231flow_hash_5tuple(const struct flow *flow, uint32_t basis)
1232{
28a560d9 1233 uint32_t hash = basis;
63be20be 1234
28a560d9 1235 if (flow) {
33c6a1b9 1236 hash = hash_add(hash, flow->nw_proto);
28a560d9
JR
1237
1238 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
d70e8c28
JR
1239 const uint64_t *flow_u64 = (const uint64_t *)flow;
1240 int ofs = offsetof(struct flow, ipv6_src) / 8;
1241 int end = ofs + 2 * sizeof flow->ipv6_src / 8;
63be20be 1242
d70e8c28
JR
1243 for (;ofs < end; ofs++) {
1244 hash = hash_add64(hash, flow_u64[ofs]);
28a560d9
JR
1245 }
1246 } else {
33c6a1b9
JR
1247 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
1248 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
28a560d9 1249 }
d70e8c28
JR
1250 /* Add both ports at once. */
1251 hash = hash_add(hash,
1252 ((const uint32_t *)flow)[offsetof(struct flow, tp_src)
1253 / sizeof(uint32_t)]);
33c6a1b9 1254 hash = hash_finish(hash, 42); /* Arbitrary number. */
28a560d9
JR
1255 }
1256 return hash;
63be20be
AW
1257}
1258
ff55ea1f
EJ
1259/* Hashes 'flow' based on its L2 through L4 protocol information. */
1260uint32_t
1261flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
1262{
1263 struct {
d31f1109
JP
1264 union {
1265 ovs_be32 ipv4_addr;
1266 struct in6_addr ipv6_addr;
1267 };
ff55ea1f
EJ
1268 ovs_be16 eth_type;
1269 ovs_be16 vlan_tci;
5b909cbb 1270 ovs_be16 tp_port;
ff55ea1f
EJ
1271 uint8_t eth_addr[ETH_ADDR_LEN];
1272 uint8_t ip_proto;
1273 } fields;
1274
1275 int i;
1276
1277 memset(&fields, 0, sizeof fields);
1278 for (i = 0; i < ETH_ADDR_LEN; i++) {
1279 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
1280 }
1281 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
1282 fields.eth_type = flow->dl_type;
3e3eda95
EJ
1283
1284 /* UDP source and destination port are not taken into account because they
1285 * will not necessarily be symmetric in a bidirectional flow. */
ff55ea1f 1286 if (fields.eth_type == htons(ETH_TYPE_IP)) {
d31f1109
JP
1287 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
1288 fields.ip_proto = flow->nw_proto;
c6bcb685 1289 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
5b909cbb 1290 fields.tp_port = flow->tp_src ^ flow->tp_dst;
d31f1109
JP
1291 }
1292 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
1293 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
1294 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
1295 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
1296
1297 for (i=0; i<16; i++) {
1298 ipv6_addr[i] = a[i] ^ b[i];
1299 }
ff55ea1f 1300 fields.ip_proto = flow->nw_proto;
c6bcb685 1301 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
5b909cbb 1302 fields.tp_port = flow->tp_src ^ flow->tp_dst;
ff55ea1f 1303 }
ff55ea1f 1304 }
c49d1dd1 1305 return jhash_bytes(&fields, sizeof fields, basis);
ff55ea1f 1306}
520e9a2a 1307
94639963
JR
1308/* Initialize a flow with random fields that matter for nx_hash_fields. */
1309void
1310flow_random_hash_fields(struct flow *flow)
1311{
1312 uint16_t rnd = random_uint16();
1313
1314 /* Initialize to all zeros. */
1315 memset(flow, 0, sizeof *flow);
1316
1317 eth_addr_random(flow->dl_src);
1318 eth_addr_random(flow->dl_dst);
1319
1320 flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
1321
1322 /* Make most of the random flows IPv4, some IPv6, and rest random. */
1323 flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
1324 rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
1325
1326 if (dl_type_is_ip_any(flow->dl_type)) {
1327 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1328 flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
1329 flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
1330 } else {
1331 random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
1332 random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
1333 }
1334 /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
1335 rnd = random_uint16();
1336 flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
1337 rnd < 0xc000 ? IPPROTO_UDP :
1338 rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
1339 if (flow->nw_proto == IPPROTO_TCP ||
1340 flow->nw_proto == IPPROTO_UDP ||
1341 flow->nw_proto == IPPROTO_SCTP) {
1342 flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
1343 flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
1344 }
1345 }
1346}
1347
bcd2633a
JP
1348/* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
1349void
6cdd5145
JP
1350flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
1351 enum nx_hash_fields fields)
bcd2633a
JP
1352{
1353 switch (fields) {
1354 case NX_HASH_FIELDS_ETH_SRC:
1355 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1356 break;
1357
1358 case NX_HASH_FIELDS_SYMMETRIC_L4:
1359 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1360 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
6cdd5145
JP
1361 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1362 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1363 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
7f8a65ca 1364 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
6cdd5145
JP
1365 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
1366 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
1367 }
1368 if (is_ip_any(flow)) {
1369 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
d8d9c698 1370 flow_unwildcard_tp_ports(flow, wc);
6cdd5145 1371 }
1dd35f8a 1372 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
bcd2633a
JP
1373 break;
1374
1375 default:
428b2edd 1376 OVS_NOT_REACHED();
bcd2633a
JP
1377 }
1378}
1379
520e9a2a
EJ
1380/* Hashes the portions of 'flow' designated by 'fields'. */
1381uint32_t
1382flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
1383 uint16_t basis)
1384{
1385 switch (fields) {
1386
1387 case NX_HASH_FIELDS_ETH_SRC:
c49d1dd1 1388 return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
520e9a2a
EJ
1389
1390 case NX_HASH_FIELDS_SYMMETRIC_L4:
1391 return flow_hash_symmetric_l4(flow, basis);
1392 }
1393
428b2edd 1394 OVS_NOT_REACHED();
520e9a2a
EJ
1395}
1396
1397/* Returns a string representation of 'fields'. */
1398const char *
1399flow_hash_fields_to_str(enum nx_hash_fields fields)
1400{
1401 switch (fields) {
1402 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
1403 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
1404 default: return "<unknown>";
1405 }
1406}
1407
1408/* Returns true if the value of 'fields' is supported. Otherwise false. */
1409bool
1410flow_hash_fields_valid(enum nx_hash_fields fields)
1411{
1412 return fields == NX_HASH_FIELDS_ETH_SRC
1413 || fields == NX_HASH_FIELDS_SYMMETRIC_L4;
1414}
8b3b8dd1 1415
368eefac
EJ
1416/* Returns a hash value for the bits of 'flow' that are active based on
1417 * 'wc', given 'basis'. */
1418uint32_t
1419flow_hash_in_wildcards(const struct flow *flow,
1420 const struct flow_wildcards *wc, uint32_t basis)
1421{
d70e8c28
JR
1422 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1423 const uint64_t *flow_u64 = (const uint64_t *) flow;
368eefac
EJ
1424 uint32_t hash;
1425 size_t i;
1426
1427 hash = basis;
d70e8c28
JR
1428 for (i = 0; i < FLOW_U64S; i++) {
1429 hash = hash_add64(hash, flow_u64[i] & wc_u64[i]);
368eefac 1430 }
d70e8c28 1431 return hash_finish(hash, 8 * FLOW_U64S);
368eefac
EJ
1432}
1433
3719455c
BP
1434/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1435 * OpenFlow 1.0 "dl_vlan" value:
1436 *
1437 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
1438 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
1439 * 'flow' previously matched packets without a VLAN header).
1440 *
1441 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
1442 * without a VLAN tag.
1443 *
1444 * - Other values of 'vid' should not be used. */
1445void
fb0451d9 1446flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
3719455c 1447{
0c436519 1448 if (vid == htons(OFP10_VLAN_NONE)) {
3719455c
BP
1449 flow->vlan_tci = htons(0);
1450 } else {
1451 vid &= htons(VLAN_VID_MASK);
1452 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
1453 flow->vlan_tci |= htons(VLAN_CFI) | vid;
1454 }
1455}
1456
cc34bc8c
BP
1457/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1458 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
1459 * plus CFI). */
1460void
1461flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
1462{
1463 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
1464 flow->vlan_tci &= ~mask;
1465 flow->vlan_tci |= vid & mask;
1466}
1467
3719455c
BP
1468/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
1469 * range 0...7.
1470 *
1471 * This function has no effect on the VLAN ID that 'flow' matches.
1472 *
1473 * After calling this function, 'flow' will not match packets without a VLAN
1474 * header. */
1475void
1476flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
1477{
1478 pcp &= 0x07;
1479 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
1480 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
1481}
1482
8bfd0fda
BP
1483/* Returns the number of MPLS LSEs present in 'flow'
1484 *
1485 * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
1486 * Otherwise traverses 'flow''s MPLS label stack stopping at the
1487 * first entry that has the BoS bit set. If no such entry exists then
1488 * the maximum number of LSEs that can be stored in 'flow' is returned.
1489 */
1490int
1491flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
1492{
22d38fca 1493 /* dl_type is always masked. */
8bfd0fda
BP
1494 if (eth_type_mpls(flow->dl_type)) {
1495 int i;
5af43325 1496 int cnt;
8bfd0fda 1497
5af43325
PS
1498 cnt = 0;
1499 for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
8bfd0fda
BP
1500 if (wc) {
1501 wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
1502 }
1503 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1504 return i + 1;
1505 }
5af43325
PS
1506 if (flow->mpls_lse[i]) {
1507 cnt++;
1508 }
8bfd0fda 1509 }
5af43325 1510 return cnt;
8bfd0fda
BP
1511 } else {
1512 return 0;
1513 }
1514}
1515
1516/* Returns the number consecutive of MPLS LSEs, starting at the
1517 * innermost LSE, that are common in 'a' and 'b'.
1518 *
1519 * 'an' must be flow_count_mpls_labels(a).
1520 * 'bn' must be flow_count_mpls_labels(b).
1521 */
1522int
1523flow_count_common_mpls_labels(const struct flow *a, int an,
1524 const struct flow *b, int bn,
1525 struct flow_wildcards *wc)
1526{
1527 int min_n = MIN(an, bn);
1528 if (min_n == 0) {
1529 return 0;
1530 } else {
1531 int common_n = 0;
1532 int a_last = an - 1;
1533 int b_last = bn - 1;
1534 int i;
1535
1536 for (i = 0; i < min_n; i++) {
1537 if (wc) {
1538 wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
1539 wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
1540 }
1541 if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
1542 break;
1543 } else {
1544 common_n++;
1545 }
1546 }
1547
1548 return common_n;
1549 }
1550}
1551
1552/* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
1553 * to 'mpls_eth_type', which must be an MPLS Ethertype.
1554 *
1555 * If the new label is the first MPLS label in 'flow', it is generated as;
1556 *
1557 * - label: 2, if 'flow' is IPv6, otherwise 0.
1558 *
1559 * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
1560 *
1561 * - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
1562 *
1563 * - BoS: 1.
1564 *
22d38fca 1565 * If the new label is the second or later label MPLS label in 'flow', it is
8bfd0fda
BP
1566 * generated as;
1567 *
368fb7e6 1568 * - label: Copied from outer label.
8bfd0fda
BP
1569 *
1570 * - TTL: Copied from outer label.
1571 *
1572 * - TC: Copied from outer label.
1573 *
1574 * - BoS: 0.
1575 *
1576 * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
1577 * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
1578 */
1579void
1580flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
1581 struct flow_wildcards *wc)
1582{
1583 ovs_assert(eth_type_mpls(mpls_eth_type));
1584 ovs_assert(n < FLOW_MAX_MPLS_LABELS);
1585
8bfd0fda
BP
1586 if (n) {
1587 int i;
1588
22d38fca
JR
1589 if (wc) {
1590 memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
1591 }
8bfd0fda
BP
1592 for (i = n; i >= 1; i--) {
1593 flow->mpls_lse[i] = flow->mpls_lse[i - 1];
1594 }
22d38fca 1595 flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
8bfd0fda
BP
1596 } else {
1597 int label = 0; /* IPv4 Explicit Null. */
1598 int tc = 0;
1599 int ttl = 64;
1600
1601 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1602 label = 2;
1603 }
1604
1605 if (is_ip_any(flow)) {
1606 tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
22d38fca
JR
1607 if (wc) {
1608 wc->masks.nw_tos |= IP_DSCP_MASK;
1609 wc->masks.nw_ttl = 0xff;
1610 }
8bfd0fda
BP
1611
1612 if (flow->nw_ttl) {
1613 ttl = flow->nw_ttl;
1614 }
8bfd0fda
BP
1615 }
1616
1617 flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
1618
d70e8c28 1619 /* Clear all L3 and L4 fields and dp_hash. */
18080541 1620 BUILD_ASSERT(FLOW_WC_SEQ == 30);
8bfd0fda
BP
1621 memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
1622 sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
d70e8c28 1623 flow->dp_hash = 0;
8bfd0fda
BP
1624 }
1625 flow->dl_type = mpls_eth_type;
1626}
1627
1628/* Tries to remove the outermost MPLS label from 'flow'. Returns true if
1629 * successful, false otherwise. On success, sets 'flow''s Ethernet type to
1630 * 'eth_type'.
1631 *
1632 * 'n' must be flow_count_mpls_labels(flow). */
1633bool
1634flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
1635 struct flow_wildcards *wc)
1636{
1637 int i;
1638
1639 if (n == 0) {
1640 /* Nothing to pop. */
1641 return false;
22d38fca
JR
1642 } else if (n == FLOW_MAX_MPLS_LABELS) {
1643 if (wc) {
1644 wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
1645 }
1646 if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
1647 /* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
1648 return false;
1649 }
8bfd0fda
BP
1650 }
1651
22d38fca
JR
1652 if (wc) {
1653 memset(&wc->masks.mpls_lse[1], 0xff,
1654 sizeof *wc->masks.mpls_lse * (n - 1));
1655 }
8bfd0fda
BP
1656 for (i = 1; i < n; i++) {
1657 flow->mpls_lse[i - 1] = flow->mpls_lse[i];
1658 }
1659 flow->mpls_lse[n - 1] = 0;
1660 flow->dl_type = eth_type;
1661 return true;
1662}
1663
b02475c5
SH
1664/* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
1665 * as an OpenFlow 1.1 "mpls_label" value. */
1666void
8bfd0fda 1667flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
b02475c5 1668{
8bfd0fda 1669 set_mpls_lse_label(&flow->mpls_lse[idx], label);
b02475c5
SH
1670}
1671
b676167a
SH
1672/* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
1673 * range 0...255. */
1674void
8bfd0fda 1675flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
b676167a 1676{
8bfd0fda 1677 set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
b676167a
SH
1678}
1679
b02475c5
SH
1680/* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
1681 * range 0...7. */
1682void
8bfd0fda 1683flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
b02475c5 1684{
8bfd0fda 1685 set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
b02475c5
SH
1686}
1687
1688/* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
1689void
8bfd0fda 1690flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
b02475c5 1691{
8bfd0fda 1692 set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
b02475c5
SH
1693}
1694
8bfd0fda
BP
1695/* Sets the entire MPLS LSE. */
1696void
1697flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
1698{
1699 flow->mpls_lse[idx] = lse;
1700}
52105b67 1701
437d0d22 1702static size_t
52105b67
JR
1703flow_compose_l4(struct ofpbuf *b, const struct flow *flow)
1704{
437d0d22
JR
1705 size_t l4_len = 0;
1706
52105b67
JR
1707 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
1708 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1709 if (flow->nw_proto == IPPROTO_TCP) {
1710 struct tcp_header *tcp;
1711
437d0d22
JR
1712 l4_len = sizeof *tcp;
1713 tcp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1714 tcp->tcp_src = flow->tp_src;
1715 tcp->tcp_dst = flow->tp_dst;
1716 tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
52105b67
JR
1717 } else if (flow->nw_proto == IPPROTO_UDP) {
1718 struct udp_header *udp;
1719
437d0d22
JR
1720 l4_len = sizeof *udp;
1721 udp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1722 udp->udp_src = flow->tp_src;
1723 udp->udp_dst = flow->tp_dst;
52105b67
JR
1724 } else if (flow->nw_proto == IPPROTO_SCTP) {
1725 struct sctp_header *sctp;
1726
437d0d22
JR
1727 l4_len = sizeof *sctp;
1728 sctp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1729 sctp->sctp_src = flow->tp_src;
1730 sctp->sctp_dst = flow->tp_dst;
52105b67
JR
1731 } else if (flow->nw_proto == IPPROTO_ICMP) {
1732 struct icmp_header *icmp;
1733
437d0d22
JR
1734 l4_len = sizeof *icmp;
1735 icmp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1736 icmp->icmp_type = ntohs(flow->tp_src);
1737 icmp->icmp_code = ntohs(flow->tp_dst);
1738 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
0e612675
FL
1739 } else if (flow->nw_proto == IPPROTO_IGMP) {
1740 struct igmp_header *igmp;
1741
1742 l4_len = sizeof *igmp;
1743 igmp = ofpbuf_put_zeros(b, l4_len);
1744 igmp->igmp_type = ntohs(flow->tp_src);
1745 igmp->igmp_code = ntohs(flow->tp_dst);
1746 put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
1747 igmp->igmp_csum = csum(igmp, IGMP_HEADER_LEN);
52105b67
JR
1748 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
1749 struct icmp6_hdr *icmp;
1750
437d0d22
JR
1751 l4_len = sizeof *icmp;
1752 icmp = ofpbuf_put_zeros(b, l4_len);
52105b67
JR
1753 icmp->icmp6_type = ntohs(flow->tp_src);
1754 icmp->icmp6_code = ntohs(flow->tp_dst);
1755
1756 if (icmp->icmp6_code == 0 &&
1757 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
1758 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
1759 struct in6_addr *nd_target;
1760 struct nd_opt_hdr *nd_opt;
1761
437d0d22 1762 l4_len += sizeof *nd_target;
52105b67
JR
1763 nd_target = ofpbuf_put_zeros(b, sizeof *nd_target);
1764 *nd_target = flow->nd_target;
1765
1766 if (!eth_addr_is_zero(flow->arp_sha)) {
437d0d22 1767 l4_len += 8;
52105b67
JR
1768 nd_opt = ofpbuf_put_zeros(b, 8);
1769 nd_opt->nd_opt_len = 1;
1770 nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
1771 memcpy(nd_opt + 1, flow->arp_sha, ETH_ADDR_LEN);
1772 }
1773 if (!eth_addr_is_zero(flow->arp_tha)) {
437d0d22 1774 l4_len += 8;
52105b67
JR
1775 nd_opt = ofpbuf_put_zeros(b, 8);
1776 nd_opt->nd_opt_len = 1;
1777 nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
1778 memcpy(nd_opt + 1, flow->arp_tha, ETH_ADDR_LEN);
1779 }
1780 }
1781 icmp->icmp6_cksum = (OVS_FORCE uint16_t)
1782 csum(icmp, (char *)ofpbuf_tail(b) - (char *)icmp);
52105b67
JR
1783 }
1784 }
437d0d22 1785 return l4_len;
52105b67
JR
1786}
1787
8b3b8dd1
BP
1788/* Puts into 'b' a packet that flow_extract() would parse as having the given
1789 * 'flow'.
1790 *
1791 * (This is useful only for testing, obviously, and the packet isn't really
dc5a7ce7 1792 * valid. It hasn't got some checksums filled in, for one, and lots of fields
8b3b8dd1
BP
1793 * are just zeroed.) */
1794void
1795flow_compose(struct ofpbuf *b, const struct flow *flow)
1796{
437d0d22
JR
1797 size_t l4_len;
1798
52105b67 1799 /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
8b3b8dd1
BP
1800 eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
1801 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
cf3b7538 1802 struct eth_header *eth = ofpbuf_l2(b);
1f317cb5 1803 eth->eth_type = htons(ofpbuf_size(b));
8b3b8dd1
BP
1804 return;
1805 }
1806
1807 if (flow->vlan_tci & htons(VLAN_CFI)) {
1bf02876 1808 eth_push_vlan(b, htons(ETH_TYPE_VLAN), flow->vlan_tci);
8b3b8dd1
BP
1809 }
1810
cff78c88 1811 if (flow->dl_type == htons(ETH_TYPE_IP)) {
8b3b8dd1
BP
1812 struct ip_header *ip;
1813
52105b67 1814 ip = ofpbuf_put_zeros(b, sizeof *ip);
8b3b8dd1 1815 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
eadef313 1816 ip->ip_tos = flow->nw_tos;
aabf5352 1817 ip->ip_ttl = flow->nw_ttl;
8b3b8dd1 1818 ip->ip_proto = flow->nw_proto;
7c457c33
BP
1819 put_16aligned_be32(&ip->ip_src, flow->nw_src);
1820 put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
8b3b8dd1 1821
eadef313 1822 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
7257b535 1823 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
eadef313 1824 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
7257b535
BP
1825 ip->ip_frag_off |= htons(100);
1826 }
1827 }
df9b6612 1828
437d0d22 1829 ofpbuf_set_l4(b, ofpbuf_tail(b));
52105b67 1830
437d0d22 1831 l4_len = flow_compose_l4(b, flow);
52105b67 1832
1c98d0ad 1833 ip = ofpbuf_l3(b);
437d0d22 1834 ip->ip_tot_len = htons(b->l4_ofs - b->l3_ofs + l4_len);
dc5a7ce7 1835 ip->ip_csum = csum(ip, sizeof *ip);
cff78c88 1836 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
52105b67
JR
1837 struct ovs_16aligned_ip6_hdr *nh;
1838
1839 nh = ofpbuf_put_zeros(b, sizeof *nh);
1840 put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
1841 htonl(flow->nw_tos << 20) | flow->ipv6_label);
1842 nh->ip6_hlim = flow->nw_ttl;
1843 nh->ip6_nxt = flow->nw_proto;
1844
1845 memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
1846 memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
1847
437d0d22 1848 ofpbuf_set_l4(b, ofpbuf_tail(b));
52105b67 1849
437d0d22 1850 l4_len = flow_compose_l4(b, flow);
52105b67 1851
1c98d0ad 1852 nh = ofpbuf_l3(b);
437d0d22 1853 nh->ip6_plen = htons(l4_len);
cff78c88
SH
1854 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1855 flow->dl_type == htons(ETH_TYPE_RARP)) {
8b3b8dd1
BP
1856 struct arp_eth_header *arp;
1857
437d0d22
JR
1858 arp = ofpbuf_put_zeros(b, sizeof *arp);
1859 ofpbuf_set_l3(b, arp);
8b3b8dd1
BP
1860 arp->ar_hrd = htons(1);
1861 arp->ar_pro = htons(ETH_TYPE_IP);
1862 arp->ar_hln = ETH_ADDR_LEN;
1863 arp->ar_pln = 4;
1864 arp->ar_op = htons(flow->nw_proto);
1865
1866 if (flow->nw_proto == ARP_OP_REQUEST ||
1867 flow->nw_proto == ARP_OP_REPLY) {
7c457c33
BP
1868 put_16aligned_be32(&arp->ar_spa, flow->nw_src);
1869 put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
8b3b8dd1
BP
1870 memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
1871 memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
1872 }
1873 }
b02475c5
SH
1874
1875 if (eth_type_mpls(flow->dl_type)) {
8bfd0fda
BP
1876 int n;
1877
437d0d22 1878 b->l2_5_ofs = b->l3_ofs;
8bfd0fda
BP
1879 for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
1880 if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
1881 break;
1882 }
1883 }
1884 while (n > 0) {
1885 push_mpls(b, flow->dl_type, flow->mpls_lse[--n]);
1886 }
b02475c5 1887 }
8b3b8dd1 1888}
5cb7a798
BP
1889\f
1890/* Compressed flow. */
1891
1892static int
1893miniflow_n_values(const struct miniflow *flow)
1894{
fb9aefa3 1895 return count_1bits(flow->map);
5cb7a798
BP
1896}
1897
d70e8c28 1898static uint64_t *
5cb7a798
BP
1899miniflow_alloc_values(struct miniflow *flow, int n)
1900{
3016f3e4
JR
1901 int size = MINIFLOW_VALUES_SIZE(n);
1902
1903 if (size <= sizeof flow->inline_values) {
27bbe15d 1904 flow->values_inline = true;
5cb7a798
BP
1905 return flow->inline_values;
1906 } else {
1907 COVERAGE_INC(miniflow_malloc);
27bbe15d 1908 flow->values_inline = false;
3016f3e4 1909 flow->offline_values = xmalloc(size);
27bbe15d 1910 return flow->offline_values;
5cb7a798
BP
1911 }
1912}
1913
df40c152
BP
1914/* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
1915 * the caller. The caller must have already initialized 'dst->map' properly
d70e8c28 1916 * to indicate the significant uint64_t elements of 'src'. 'n' must be the
13751fd8
JR
1917 * number of 1-bits in 'dst->map'.
1918 *
1919 * Normally the significant elements are the ones that are non-zero. However,
1920 * when a miniflow is initialized from a (mini)mask, the values can be zeroes,
1921 * so that the flow and mask always have the same maps.
df40c152 1922 *
27bbe15d 1923 * This function initializes values (either inline if possible or with
d70e8c28 1924 * malloc() otherwise) and copies the uint64_t elements of 'src' indicated by
13751fd8 1925 * 'dst->map' into it. */
df40c152
BP
1926static void
1927miniflow_init__(struct miniflow *dst, const struct flow *src, int n)
1928{
d70e8c28
JR
1929 const uint64_t *src_u64 = (const uint64_t *) src;
1930 uint64_t *dst_u64 = miniflow_alloc_values(dst, n);
1cea007c 1931 int idx;
df40c152 1932
1cea007c 1933 MAP_FOR_EACH_INDEX(idx, dst->map) {
d70e8c28 1934 *dst_u64++ = src_u64[idx];
df40c152
BP
1935 }
1936}
1937
5cb7a798 1938/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
27bbe15d
JR
1939 * with miniflow_destroy().
1940 * Always allocates offline storage. */
5cb7a798
BP
1941void
1942miniflow_init(struct miniflow *dst, const struct flow *src)
1943{
d70e8c28 1944 const uint64_t *src_u64 = (const uint64_t *) src;
5cb7a798
BP
1945 unsigned int i;
1946 int n;
1947
1948 /* Initialize dst->map, counting the number of nonzero elements. */
1949 n = 0;
080e28d0
JR
1950 dst->map = 0;
1951
d70e8c28
JR
1952 for (i = 0; i < FLOW_U64S; i++) {
1953 if (src_u64[i]) {
080e28d0 1954 dst->map |= UINT64_C(1) << i;
5cb7a798
BP
1955 n++;
1956 }
1957 }
1958
df40c152
BP
1959 miniflow_init__(dst, src, n);
1960}
5cb7a798 1961
df40c152
BP
1962/* Initializes 'dst' as a copy of 'src', using 'mask->map' as 'dst''s map. The
1963 * caller must eventually free 'dst' with miniflow_destroy(). */
1964void
1965miniflow_init_with_minimask(struct miniflow *dst, const struct flow *src,
1966 const struct minimask *mask)
1967{
080e28d0 1968 dst->map = mask->masks.map;
df40c152 1969 miniflow_init__(dst, src, miniflow_n_values(dst));
5cb7a798
BP
1970}
1971
1972/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1973 * with miniflow_destroy(). */
1974void
1975miniflow_clone(struct miniflow *dst, const struct miniflow *src)
1976{
3016f3e4 1977 int size = MINIFLOW_VALUES_SIZE(miniflow_n_values(src));
d70e8c28 1978 uint64_t *values;
3016f3e4 1979
080e28d0 1980 dst->map = src->map;
3016f3e4
JR
1981 if (size <= sizeof dst->inline_values) {
1982 dst->values_inline = true;
1983 values = dst->inline_values;
1984 } else {
1985 dst->values_inline = false;
1986 COVERAGE_INC(miniflow_malloc);
1987 dst->offline_values = xmalloc(size);
1988 values = dst->offline_values;
1989 }
1990 memcpy(values, miniflow_get_values(src), size);
1991}
1992
1993/* Initializes 'dst' as a copy of 'src'. The caller must have allocated
1994 * 'dst' to have inline space all data in 'src'. */
1995void
1996miniflow_clone_inline(struct miniflow *dst, const struct miniflow *src,
1997 size_t n_values)
1998{
1999 dst->values_inline = true;
2000 dst->map = src->map;
2001 memcpy(dst->inline_values, miniflow_get_values(src),
2002 MINIFLOW_VALUES_SIZE(n_values));
5cb7a798
BP
2003}
2004
b2c1f00b 2005/* Initializes 'dst' with the data in 'src', destroying 'src'.
3016f3e4
JR
2006 * The caller must eventually free 'dst' with miniflow_destroy().
2007 * 'dst' must be regularly sized miniflow, but 'src' can have
3c30d111
JR
2008 * storage for more than the default MINI_N_INLINE inline
2009 * values. */
b2c1f00b
BP
2010void
2011miniflow_move(struct miniflow *dst, struct miniflow *src)
2012{
3016f3e4
JR
2013 int size = MINIFLOW_VALUES_SIZE(miniflow_n_values(src));
2014
2015 dst->map = src->map;
2016 if (size <= sizeof dst->inline_values) {
2017 dst->values_inline = true;
2018 memcpy(dst->inline_values, miniflow_get_values(src), size);
2019 miniflow_destroy(src);
097673a6
JR
2020 } else if (src->values_inline) {
2021 dst->values_inline = false;
2022 COVERAGE_INC(miniflow_malloc);
2023 dst->offline_values = xmalloc(size);
2024 memcpy(dst->offline_values, src->inline_values, size);
3016f3e4
JR
2025 } else {
2026 dst->values_inline = false;
2027 dst->offline_values = src->offline_values;
2028 }
b2c1f00b
BP
2029}
2030
5cb7a798
BP
2031/* Frees any memory owned by 'flow'. Does not free the storage in which 'flow'
2032 * itself resides; the caller is responsible for that. */
2033void
2034miniflow_destroy(struct miniflow *flow)
2035{
27bbe15d
JR
2036 if (!flow->values_inline) {
2037 free(flow->offline_values);
5cb7a798
BP
2038 }
2039}
2040
2041/* Initializes 'dst' as a copy of 'src'. */
2042void
2043miniflow_expand(const struct miniflow *src, struct flow *dst)
2044{
ad77e3c5
EJ
2045 memset(dst, 0, sizeof *dst);
2046 flow_union_with_miniflow(dst, src);
5cb7a798
BP
2047}
2048
8e86f090 2049/* Returns true if 'a' and 'b' are the equal miniflow, false otherwise. */
5cb7a798
BP
2050bool
2051miniflow_equal(const struct miniflow *a, const struct miniflow *b)
2052{
d70e8c28
JR
2053 const uint64_t *ap = miniflow_get_values(a);
2054 const uint64_t *bp = miniflow_get_values(b);
5cb7a798 2055
1cea007c 2056 if (OVS_LIKELY(a->map == b->map)) {
27bbe15d
JR
2057 int count = miniflow_n_values(a);
2058
8cc86801 2059 return !memcmp(ap, bp, count * sizeof *ap);
080e28d0 2060 } else {
27bbe15d
JR
2061 uint64_t map;
2062
1cea007c 2063 for (map = a->map | b->map; map; map = zero_rightmost_1bit(map)) {
080e28d0 2064 uint64_t bit = rightmost_1bit(map);
df40c152 2065
1cea007c 2066 if ((a->map & bit ? *ap++ : 0) != (b->map & bit ? *bp++ : 0)) {
080e28d0 2067 return false;
df40c152 2068 }
5cb7a798
BP
2069 }
2070 }
2071
df40c152 2072 return true;
5cb7a798
BP
2073}
2074
de4ad4a2
JR
2075/* Returns false if 'a' and 'b' differ at the places where there are 1-bits
2076 * in 'mask', true otherwise. */
5cb7a798
BP
2077bool
2078miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
2079 const struct minimask *mask)
2080{
d70e8c28 2081 const uint64_t *p = miniflow_get_values(&mask->masks);
1cea007c 2082 int idx;
5cb7a798 2083
1cea007c
JR
2084 MAP_FOR_EACH_INDEX(idx, mask->masks.map) {
2085 if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) {
080e28d0 2086 return false;
5cb7a798
BP
2087 }
2088 }
2089
2090 return true;
2091}
2092
2093/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
2094 * in 'mask', false if they differ. */
2095bool
2096miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
2097 const struct minimask *mask)
2098{
d70e8c28
JR
2099 const uint64_t *b_u64 = (const uint64_t *) b;
2100 const uint64_t *p = miniflow_get_values(&mask->masks);
1cea007c 2101 int idx;
5cb7a798 2102
1cea007c 2103 MAP_FOR_EACH_INDEX(idx, mask->masks.map) {
d70e8c28 2104 if ((miniflow_get(a, idx) ^ b_u64[idx]) & *p++) {
080e28d0 2105 return false;
5cb7a798
BP
2106 }
2107 }
2108
2109 return true;
2110}
2111
5cb7a798
BP
2112\f
2113/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
2114 * with minimask_destroy(). */
2115void
2116minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
2117{
2118 miniflow_init(&mask->masks, &wc->masks);
2119}
2120
2121/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
2122 * with minimask_destroy(). */
2123void
2124minimask_clone(struct minimask *dst, const struct minimask *src)
2125{
2126 miniflow_clone(&dst->masks, &src->masks);
2127}
2128
b2c1f00b
BP
2129/* Initializes 'dst' with the data in 'src', destroying 'src'.
2130 * The caller must eventually free 'dst' with minimask_destroy(). */
2131void
2132minimask_move(struct minimask *dst, struct minimask *src)
2133{
a24de7ee 2134 miniflow_move(&dst->masks, &src->masks);
b2c1f00b
BP
2135}
2136
5cb7a798
BP
2137/* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
2138 *
d70e8c28 2139 * The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', for use
5cb7a798
BP
2140 * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */
2141void
2142minimask_combine(struct minimask *dst_,
2143 const struct minimask *a_, const struct minimask *b_,
d70e8c28 2144 uint64_t storage[FLOW_U64S])
5cb7a798
BP
2145{
2146 struct miniflow *dst = &dst_->masks;
d70e8c28 2147 uint64_t *dst_values = storage;
5cb7a798
BP
2148 const struct miniflow *a = &a_->masks;
2149 const struct miniflow *b = &b_->masks;
1cea007c 2150 int idx;
5cb7a798 2151
27bbe15d
JR
2152 dst->values_inline = false;
2153 dst->offline_values = storage;
080e28d0
JR
2154
2155 dst->map = 0;
1cea007c 2156 MAP_FOR_EACH_INDEX(idx, a->map & b->map) {
03690ebb 2157 /* Both 'a' and 'b' have non-zero data at 'idx'. */
d70e8c28 2158 uint64_t mask = miniflow_get__(a, idx) & miniflow_get__(b, idx);
080e28d0
JR
2159
2160 if (mask) {
1cea007c
JR
2161 dst->map |= UINT64_C(1) << idx;
2162 *dst_values++ = mask;
5cb7a798
BP
2163 }
2164 }
2165}
2166
2167/* Frees any memory owned by 'mask'. Does not free the storage in which 'mask'
2168 * itself resides; the caller is responsible for that. */
2169void
2170minimask_destroy(struct minimask *mask)
2171{
2172 miniflow_destroy(&mask->masks);
2173}
2174
2175/* Initializes 'dst' as a copy of 'src'. */
2176void
2177minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
2178{
2179 miniflow_expand(&mask->masks, &wc->masks);
2180}
2181
f4d335e9
JR
2182/* Returns true if 'a' and 'b' are the same flow mask, false otherwise.
2183 * Minimasks may not have zero data values, so for the minimasks to be the
2184 * same, they need to have the same map and the same data values. */
5cb7a798
BP
2185bool
2186minimask_equal(const struct minimask *a, const struct minimask *b)
2187{
f4d335e9 2188 return a->masks.map == b->masks.map &&
d70e8c28
JR
2189 !memcmp(miniflow_get_values(&a->masks),
2190 miniflow_get_values(&b->masks),
f4d335e9 2191 count_1bits(a->masks.map) * sizeof *a->masks.inline_values);
5cb7a798
BP
2192}
2193
d4570fd8 2194/* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
5cb7a798
BP
2195 * false otherwise. */
2196bool
d4570fd8 2197minimask_has_extra(const struct minimask *a, const struct minimask *b)
5cb7a798 2198{
d70e8c28
JR
2199 const uint64_t *ap = miniflow_get_values(&a->masks);
2200 const uint64_t *bp = miniflow_get_values(&b->masks);
f4d335e9 2201 int idx;
5cb7a798 2202
f4d335e9 2203 MAP_FOR_EACH_INDEX(idx, b->masks.map) {
d70e8c28 2204 uint64_t b_u64 = *bp++;
5cb7a798 2205
d70e8c28
JR
2206 /* 'b_u64' is non-zero, check if the data in 'a' is either zero
2207 * or misses some of the bits in 'b_u64'. */
f4d335e9 2208 if (!(a->masks.map & (UINT64_C(1) << idx))
d70e8c28
JR
2209 || ((miniflow_values_get__(ap, a->masks.map, idx) & b_u64)
2210 != b_u64)) {
f4d335e9 2211 return true; /* 'a' wildcards some bits 'b' doesn't. */
5cb7a798
BP
2212 }
2213 }
2214
2215 return false;
2216}