]> git.proxmox.com Git - mirror_ovs.git/blame - lib/flow.c
userspace: Define and use struct eth_addr.
[mirror_ovs.git] / lib / flow.c
CommitLineData
064af421 1/*
18080541 2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
064af421 3 *
a14bc59f
BP
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
064af421 7 *
a14bc59f
BP
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
064af421
BP
15 */
16#include <config.h>
17#include <sys/types.h>
18#include "flow.h"
d31f1109 19#include <errno.h>
064af421 20#include <inttypes.h>
5cb7a798 21#include <limits.h>
064af421 22#include <netinet/in.h>
d31f1109
JP
23#include <netinet/icmp6.h>
24#include <netinet/ip6.h>
5cb7a798 25#include <stdint.h>
064af421
BP
26#include <stdlib.h>
27#include <string.h>
10a24935 28#include "byte-order.h"
064af421 29#include "coverage.h"
dc5a7ce7 30#include "csum.h"
064af421
BP
31#include "dynamic-string.h"
32#include "hash.h"
c49d1dd1 33#include "jhash.h"
aa6c9932 34#include "match.h"
cf62fa4c 35#include "dp-packet.h"
064af421 36#include "openflow/openflow.h"
064af421 37#include "packets.h"
b5e7e61a 38#include "odp-util.h"
94639963 39#include "random.h"
176aaa65 40#include "unaligned.h"
064af421 41
d76f09ea 42COVERAGE_DEFINE(flow_extract);
5cb7a798 43COVERAGE_DEFINE(miniflow_malloc);
d76f09ea 44
d70e8c28
JR
45/* U64 indices for segmented flow classification. */
46const uint8_t flow_segment_u64s[4] = {
47 FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t),
48 FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t),
49 FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t),
50 FLOW_U64S
476f36e8
JR
51};
52
268eca11
BP
53/* Asserts that field 'f1' follows immediately after 'f0' in struct flow,
54 * without any intervening padding. */
55#define ASSERT_SEQUENTIAL(f0, f1) \
56 BUILD_ASSERT_DECL(offsetof(struct flow, f0) \
57 + MEMBER_SIZEOF(struct flow, f0) \
58 == offsetof(struct flow, f1))
59
60/* Asserts that fields 'f0' and 'f1' are in the same 32-bit aligned word within
61 * struct flow. */
62#define ASSERT_SAME_WORD(f0, f1) \
63 BUILD_ASSERT_DECL(offsetof(struct flow, f0) / 4 \
64 == offsetof(struct flow, f1) / 4)
65
66/* Asserts that 'f0' and 'f1' are both sequential and within the same 32-bit
67 * aligned word in struct flow. */
68#define ASSERT_SEQUENTIAL_SAME_WORD(f0, f1) \
69 ASSERT_SEQUENTIAL(f0, f1); \
70 ASSERT_SAME_WORD(f0, f1)
71
419681da
JR
72/* miniflow_extract() assumes the following to be true to optimize the
73 * extraction process. */
268eca11
BP
74ASSERT_SEQUENTIAL_SAME_WORD(dl_type, vlan_tci);
75
76ASSERT_SEQUENTIAL_SAME_WORD(nw_frag, nw_tos);
77ASSERT_SEQUENTIAL_SAME_WORD(nw_tos, nw_ttl);
78ASSERT_SEQUENTIAL_SAME_WORD(nw_ttl, nw_proto);
419681da 79
d70e8c28
JR
80/* TCP flags in the middle of a BE64, zeroes in the other half. */
81BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4);
82
419681da
JR
83#if WORDS_BIGENDIAN
84#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
85 << 16)
86#else
87#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
88#endif
89
268eca11 90ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
419681da
JR
91
92/* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
93 * must contain at least 'size' bytes of data. Returns the first byte of data
94 * removed. */
95static inline const void *
4c0e587c 96data_pull(const void **datap, size_t *sizep, size_t size)
a26ef517 97{
4c0e587c 98 const char *data = *datap;
419681da
JR
99 *datap = data + size;
100 *sizep -= size;
101 return data;
a26ef517
JP
102}
103
419681da
JR
104/* If '*datap' has at least 'size' bytes of data, removes that many bytes from
105 * the head end of '*datap' and returns the first byte removed. Otherwise,
106 * returns a null pointer without modifying '*datap'. */
107static inline const void *
4c0e587c 108data_try_pull(const void **datap, size_t *sizep, size_t size)
064af421 109{
419681da 110 return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
064af421
BP
111}
112
419681da
JR
113/* Context for pushing data to a miniflow. */
114struct mf_ctx {
5fcff47b 115 struct flowmap map;
d70e8c28
JR
116 uint64_t *data;
117 uint64_t * const end;
419681da 118};
064af421 119
419681da
JR
120/* miniflow_push_* macros allow filling in a miniflow data values in order.
121 * Assertions are needed only when the layout of the struct flow is modified.
122 * 'ofs' is a compile-time constant, which allows most of the code be optimized
694ffecc 123 * away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are
419681da
JR
124 * defined as macros. */
125
b666962b 126#if (FLOW_WC_SEQ != 33)
419681da 127#define MINIFLOW_ASSERT(X) ovs_assert(X)
dce96af8
DDP
128BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
129 "assertions enabled. Consider updating FLOW_WC_SEQ after "
130 "testing")
419681da
JR
131#else
132#define MINIFLOW_ASSERT(X)
133#endif
134
5fcff47b
JR
135/* True if 'IDX' and higher bits are not set. */
136#define ASSERT_FLOWMAP_NOT_SET(FM, IDX) \
c2581ccf 137{ \
5fcff47b
JR
138 MINIFLOW_ASSERT(!((FM)->bits[(IDX) / MAP_T_BITS] & \
139 (FLOWMAP_MAX << ((IDX) % MAP_T_BITS)))); \
140 for (size_t i = (IDX) / MAP_T_BITS + 1; i < FLOWMAP_UNITS; i++) { \
141 MINIFLOW_ASSERT(!(FM)->bits[i]); \
c2581ccf
JR
142 } \
143}
361d808d 144
5fcff47b
JR
145#define miniflow_set_map(MF, OFS) \
146 { \
147 ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS)); \
148 flowmap_set(&MF.map, (OFS), 1); \
c2581ccf 149}
361d808d 150
5fcff47b
JR
151#define miniflow_assert_in_map(MF, OFS) \
152 MINIFLOW_ASSERT(FLOWMAP_IS_SET(MF.map, (OFS))); \
153 ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS) + 1)
154
155#define miniflow_push_uint64_(MF, OFS, VALUE) \
156{ \
157 MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0); \
158 *MF.data++ = VALUE; \
159 miniflow_set_map(MF, OFS / 8); \
d31f1109
JP
160}
161
5fcff47b 162#define miniflow_push_be64_(MF, OFS, VALUE) \
d70e8c28 163 miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE))
419681da 164
5fcff47b
JR
165#define miniflow_push_uint32_(MF, OFS, VALUE) \
166 { \
167 MINIFLOW_ASSERT(MF.data < MF.end); \
168 \
169 if ((OFS) % 8 == 0) { \
170 miniflow_set_map(MF, OFS / 8); \
171 *(uint32_t *)MF.data = VALUE; \
172 } else if ((OFS) % 8 == 4) { \
173 miniflow_assert_in_map(MF, OFS / 8); \
174 *((uint32_t *)MF.data + 1) = VALUE; \
175 MF.data++; \
176 } \
d70e8c28
JR
177}
178
179#define miniflow_push_be32_(MF, OFS, VALUE) \
180 miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))
181
5fcff47b
JR
182#define miniflow_push_uint16_(MF, OFS, VALUE) \
183{ \
184 MINIFLOW_ASSERT(MF.data < MF.end); \
185 \
186 if ((OFS) % 8 == 0) { \
187 miniflow_set_map(MF, OFS / 8); \
188 *(uint16_t *)MF.data = VALUE; \
189 } else if ((OFS) % 8 == 2) { \
190 miniflow_assert_in_map(MF, OFS / 8); \
191 *((uint16_t *)MF.data + 1) = VALUE; \
192 } else if ((OFS) % 8 == 4) { \
193 miniflow_assert_in_map(MF, OFS / 8); \
194 *((uint16_t *)MF.data + 2) = VALUE; \
195 } else if ((OFS) % 8 == 6) { \
196 miniflow_assert_in_map(MF, OFS / 8); \
197 *((uint16_t *)MF.data + 3) = VALUE; \
198 MF.data++; \
199 } \
200}
201
202#define miniflow_pad_to_64_(MF, OFS) \
203{ \
204 MINIFLOW_ASSERT((OFS) % 8 != 0); \
205 miniflow_assert_in_map(MF, OFS / 8); \
206 \
207 memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \
208 MF.data++; \
d70e8c28
JR
209}
210
211#define miniflow_push_be16_(MF, OFS, VALUE) \
419681da
JR
212 miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);
213
5fcff47b
JR
214#define miniflow_set_maps(MF, OFS, N_WORDS) \
215{ \
216 size_t ofs = (OFS); \
217 size_t n_words = (N_WORDS); \
218 \
219 MINIFLOW_ASSERT(n_words && MF.data + n_words <= MF.end); \
220 ASSERT_FLOWMAP_NOT_SET(&MF.map, ofs); \
221 flowmap_set(&MF.map, ofs, n_words); \
361d808d
JR
222}
223
419681da
JR
224/* Data at 'valuep' may be unaligned. */
225#define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \
226{ \
361d808d
JR
227 MINIFLOW_ASSERT((OFS) % 8 == 0); \
228 miniflow_set_maps(MF, (OFS) / 8, (N_WORDS)); \
229 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \
230 MF.data += (N_WORDS); \
064af421
BP
231}
232
d70e8c28
JR
233/* Push 32-bit words padded to 64-bits. */
234#define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \
235{ \
361d808d 236 miniflow_set_maps(MF, (OFS) / 8, DIV_ROUND_UP(N_WORDS, 2)); \
d70e8c28
JR
237 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \
238 MF.data += DIV_ROUND_UP(N_WORDS, 2); \
d70e8c28
JR
239 if ((N_WORDS) & 1) { \
240 *((uint32_t *)MF.data - 1) = 0; \
241 } \
242}
50f06e16 243
d70e8c28
JR
244/* Data at 'valuep' may be unaligned. */
245/* MACs start 64-aligned, and must be followed by other data or padding. */
246#define miniflow_push_macs_(MF, OFS, VALUEP) \
247{ \
361d808d 248 miniflow_set_maps(MF, (OFS) / 8, 2); \
d70e8c28
JR
249 memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \
250 MF.data += 1; /* First word only. */ \
d70e8c28 251}
50f06e16 252
d70e8c28
JR
253#define miniflow_push_uint32(MF, FIELD, VALUE) \
254 miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)
50f06e16 255
d70e8c28
JR
256#define miniflow_push_be32(MF, FIELD, VALUE) \
257 miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)
50f06e16 258
d70e8c28 259#define miniflow_push_uint16(MF, FIELD, VALUE) \
419681da 260 miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)
9e69bc5f 261
d70e8c28 262#define miniflow_push_be16(MF, FIELD, VALUE) \
419681da 263 miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)
9e69bc5f 264
d70e8c28
JR
265#define miniflow_pad_to_64(MF, FIELD) \
266 miniflow_pad_to_64_(MF, offsetof(struct flow, FIELD))
267
419681da
JR
268#define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \
269 miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
064af421 270
d70e8c28
JR
271#define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \
272 miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
273
274#define miniflow_push_macs(MF, FIELD, VALUEP) \
275 miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP)
276
419681da
JR
277/* Pulls the MPLS headers at '*datap' and returns the count of them. */
278static inline int
4c0e587c 279parse_mpls(const void **datap, size_t *sizep)
d31f1109 280{
419681da
JR
281 const struct mpls_hdr *mh;
282 int count = 0;
d31f1109 283
419681da
JR
284 while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
285 count++;
286 if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
d31f1109
JP
287 break;
288 }
419681da 289 }
ba8561c6 290 return MIN(count, FLOW_MAX_MPLS_LABELS);
419681da 291}
d31f1109 292
419681da 293static inline ovs_be16
4c0e587c 294parse_vlan(const void **datap, size_t *sizep)
419681da
JR
295{
296 const struct eth_header *eth = *datap;
d31f1109 297
419681da
JR
298 struct qtag_prefix {
299 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
300 ovs_be16 tci;
301 };
d31f1109 302
419681da 303 data_pull(datap, sizep, ETH_ADDR_LEN * 2);
d31f1109 304
419681da
JR
305 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
306 if (OVS_LIKELY(*sizep
307 >= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) {
308 const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp);
309 return qp->tci | htons(VLAN_CFI);
d31f1109
JP
310 }
311 }
88366484 312 return 0;
d31f1109
JP
313}
314
419681da 315static inline ovs_be16
4c0e587c 316parse_ethertype(const void **datap, size_t *sizep)
88366484 317{
419681da
JR
318 const struct llc_snap_header *llc;
319 ovs_be16 proto;
5a51b2cd 320
419681da
JR
321 proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
322 if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
323 return proto;
88366484 324 }
5a51b2cd 325
419681da
JR
326 if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
327 return htons(FLOW_DL_TYPE_NONE);
88366484 328 }
5a51b2cd 329
419681da
JR
330 llc = *datap;
331 if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
332 || llc->llc.llc_ssap != LLC_SSAP_SNAP
333 || llc->llc.llc_cntl != LLC_CNTL_SNAP
334 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
335 sizeof llc->snap.snap_org))) {
336 return htons(FLOW_DL_TYPE_NONE);
c6bcb685 337 }
c6bcb685 338
419681da 339 data_pull(datap, sizep, sizeof *llc);
685a51a5 340
419681da
JR
341 if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
342 return llc->snap.snap_type;
685a51a5
JP
343 }
344
419681da
JR
345 return htons(FLOW_DL_TYPE_NONE);
346}
685a51a5 347
cc5dba2f 348static inline void
4c0e587c 349parse_icmpv6(const void **datap, size_t *sizep, const struct icmp6_hdr *icmp,
419681da 350 const struct in6_addr **nd_target,
74ff3298 351 struct eth_addr arp_buf[2])
419681da 352{
88366484
JG
353 if (icmp->icmp6_code == 0 &&
354 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
355 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
685a51a5 356
b0e2ec32 357 *nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
419681da 358 if (OVS_UNLIKELY(!*nd_target)) {
cc5dba2f 359 return;
685a51a5 360 }
685a51a5 361
419681da 362 while (*sizep >= 8) {
685a51a5
JP
363 /* The minimum size of an option is 8 bytes, which also is
364 * the size of Ethernet link-layer options. */
74ff3298
JR
365 const struct ovs_nd_opt *nd_opt = *datap;
366 int opt_len = nd_opt->nd_opt_len * ND_OPT_LEN;
88366484 367
419681da 368 if (!opt_len || opt_len > *sizep) {
cc5dba2f 369 return;
685a51a5 370 }
685a51a5
JP
371
372 /* Store the link layer address if the appropriate option is
373 * provided. It is considered an error if the same link
374 * layer option is specified twice. */
375 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
74ff3298 376 && opt_len == 8) {
419681da 377 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
74ff3298 378 arp_buf[0] = nd_opt->nd_opt_mac;
685a51a5
JP
379 } else {
380 goto invalid;
381 }
382 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
74ff3298 383 && opt_len == 8) {
419681da 384 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
74ff3298 385 arp_buf[1] = nd_opt->nd_opt_mac;
685a51a5
JP
386 } else {
387 goto invalid;
388 }
389 }
390
419681da 391 if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
cc5dba2f 392 return;
685a51a5 393 }
685a51a5
JP
394 }
395 }
396
cc5dba2f 397 return;
685a51a5
JP
398
399invalid:
cc5dba2f 400 *nd_target = NULL;
74ff3298
JR
401 arp_buf[0] = eth_addr_zero;
402 arp_buf[1] = eth_addr_zero;
685a51a5
JP
403}
404
b5e7e61a 405/* Initializes 'flow' members from 'packet' and 'md'
deedf7e7 406 *
437d0d22
JR
407 * Initializes 'packet' header l2 pointer to the start of the Ethernet
408 * header, and the layer offsets as follows:
ca78c6b6 409 *
437d0d22
JR
410 * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX
411 * when there is no MPLS shim header.
ca78c6b6 412 *
437d0d22 413 * - packet->l3_ofs to just past the Ethernet header, or just past the
ca78c6b6 414 * vlan_header if one is present, to the first byte of the payload of the
437d0d22
JR
415 * Ethernet frame. UINT16_MAX if the frame is too short to contain an
416 * Ethernet header.
ca78c6b6 417 *
437d0d22
JR
418 * - packet->l4_ofs to just past the IPv4 header, if one is present and
419 * has at least the content used for the fields of interest for the flow,
420 * otherwise UINT16_MAX.
ca78c6b6 421 */
7257b535 422void
cf62fa4c 423flow_extract(struct dp_packet *packet, struct flow *flow)
064af421 424{
27bbe15d
JR
425 struct {
426 struct miniflow mf;
d70e8c28 427 uint64_t buf[FLOW_U64S];
27bbe15d 428 } m;
064af421
BP
429
430 COVERAGE_INC(flow_extract);
431
cf62fa4c 432 miniflow_extract(packet, &m.mf);
27bbe15d 433 miniflow_expand(&m.mf, flow);
419681da 434}
296e07ac 435
27bbe15d 436/* Caller is responsible for initializing 'dst' with enough storage for
d70e8c28 437 * FLOW_U64S * 8 bytes. */
419681da 438void
cf62fa4c 439miniflow_extract(struct dp_packet *packet, struct miniflow *dst)
419681da 440{
cf62fa4c 441 const struct pkt_metadata *md = &packet->md;
4c0e587c 442 const void *data = dp_packet_data(packet);
cf62fa4c 443 size_t size = dp_packet_size(packet);
09b0fa9c 444 uint64_t *values = miniflow_values(dst);
5fcff47b
JR
445 struct mf_ctx mf = { FLOWMAP_EMPTY_INITIALIZER, values,
446 values + FLOW_U64S };
4c0e587c 447 const char *l2;
419681da
JR
448 ovs_be16 dl_type;
449 uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
450
451 /* Metadata. */
cf62fa4c
PS
452 if (md->tunnel.ip_dst) {
453 miniflow_push_words(mf, tunnel, &md->tunnel,
9ad11dbe
JG
454 offsetof(struct flow_tnl, metadata) /
455 sizeof(uint64_t));
6728d578
JG
456
457 if (!(md->tunnel.flags & FLOW_TNL_F_UDPIF)) {
458 if (md->tunnel.metadata.present.map) {
459 miniflow_push_words(mf, tunnel.metadata, &md->tunnel.metadata,
460 sizeof md->tunnel.metadata /
461 sizeof(uint64_t));
462 }
463 } else {
464 if (md->tunnel.metadata.present.len) {
465 miniflow_push_words(mf, tunnel.metadata.present,
466 &md->tunnel.metadata.present, 1);
467 miniflow_push_words(mf, tunnel.metadata.opts.gnv,
468 md->tunnel.metadata.opts.gnv,
469 DIV_ROUND_UP(md->tunnel.metadata.present.len,
470 sizeof(uint64_t)));
471 }
9ad11dbe 472 }
cf62fa4c
PS
473 }
474 if (md->skb_priority || md->pkt_mark) {
475 miniflow_push_uint32(mf, skb_priority, md->skb_priority);
476 miniflow_push_uint32(mf, pkt_mark, md->pkt_mark);
477 }
478 miniflow_push_uint32(mf, dp_hash, md->dp_hash);
479 miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
480 if (md->recirc_id) {
481 miniflow_push_uint32(mf, recirc_id, md->recirc_id);
482 miniflow_pad_to_64(mf, conj_id);
296e07ac 483 }
064af421 484
419681da
JR
485 /* Initialize packet's layer pointer and offsets. */
486 l2 = data;
82eb5b0a 487 dp_packet_reset_offsets(packet);
064af421 488
419681da
JR
489 /* Must have full Ethernet header to proceed. */
490 if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
491 goto out;
492 } else {
493 ovs_be16 vlan_tci;
50f06e16 494
419681da 495 /* Link layer. */
268eca11 496 ASSERT_SEQUENTIAL(dl_dst, dl_src);
d70e8c28 497 miniflow_push_macs(mf, dl_dst, data);
419681da
JR
498 /* dl_type, vlan_tci. */
499 vlan_tci = parse_vlan(&data, &size);
500 dl_type = parse_ethertype(&data, &size);
501 miniflow_push_be16(mf, dl_type, dl_type);
502 miniflow_push_be16(mf, vlan_tci, vlan_tci);
50f06e16 503 }
50f06e16 504
419681da
JR
505 /* Parse mpls. */
506 if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
507 int count;
508 const void *mpls = data;
509
510 packet->l2_5_ofs = (char *)data - l2;
511 count = parse_mpls(&data, &size);
d70e8c28 512 miniflow_push_words_32(mf, mpls_lse, mpls, count);
b02475c5
SH
513 }
514
ad128cc1 515 /* Network layer. */
419681da
JR
516 packet->l3_ofs = (char *)data - l2;
517
518 nw_frag = 0;
519 if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
520 const struct ip_header *nh = data;
521 int ip_len;
fa8d9001 522 uint16_t tot_len;
419681da
JR
523
524 if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
525 goto out;
526 }
527 ip_len = IP_IHL(nh->ip_ihl_ver) * 4;
528
529 if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
530 goto out;
531 }
fa8d9001
JR
532 if (OVS_UNLIKELY(size < ip_len)) {
533 goto out;
534 }
535 tot_len = ntohs(nh->ip_tot_len);
536 if (OVS_UNLIKELY(tot_len > size)) {
537 goto out;
538 }
539 if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) {
540 goto out;
541 }
cf62fa4c 542 dp_packet_set_l2_pad_size(packet, size - tot_len);
fa8d9001 543 size = tot_len; /* Never pull padding. */
419681da
JR
544
545 /* Push both source and destination address at once. */
d70e8c28
JR
546 miniflow_push_words(mf, nw_src, &nh->ip_src, 1);
547
548 miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */
419681da
JR
549
550 nw_tos = nh->ip_tos;
551 nw_ttl = nh->ip_ttl;
552 nw_proto = nh->ip_proto;
553 if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
554 nw_frag = FLOW_NW_FRAG_ANY;
555 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
556 nw_frag |= FLOW_NW_FRAG_LATER;
557 }
558 }
419681da 559 data_pull(&data, &size, ip_len);
419681da
JR
560 } else if (dl_type == htons(ETH_TYPE_IPV6)) {
561 const struct ovs_16aligned_ip6_hdr *nh;
562 ovs_be32 tc_flow;
fa8d9001 563 uint16_t plen;
419681da
JR
564
565 if (OVS_UNLIKELY(size < sizeof *nh)) {
566 goto out;
567 }
568 nh = data_pull(&data, &size, sizeof *nh);
569
fa8d9001
JR
570 plen = ntohs(nh->ip6_plen);
571 if (OVS_UNLIKELY(plen > size)) {
572 goto out;
573 }
574 /* Jumbo Payload option not supported yet. */
575 if (OVS_UNLIKELY(size - plen > UINT8_MAX)) {
576 goto out;
577 }
cf62fa4c 578 dp_packet_set_l2_pad_size(packet, size - plen);
fa8d9001
JR
579 size = plen; /* Never pull padding. */
580
419681da 581 miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
d70e8c28 582 sizeof nh->ip6_src / 8);
419681da 583 miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
d70e8c28 584 sizeof nh->ip6_dst / 8);
419681da
JR
585
586 tc_flow = get_16aligned_be32(&nh->ip6_flow);
587 {
588 ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
d70e8c28 589 miniflow_push_be32(mf, ipv6_label, label);
419681da
JR
590 }
591
592 nw_tos = ntohl(tc_flow) >> 20;
593 nw_ttl = nh->ip6_hlim;
594 nw_proto = nh->ip6_nxt;
595
596 while (1) {
597 if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS)
598 && (nw_proto != IPPROTO_ROUTING)
599 && (nw_proto != IPPROTO_DSTOPTS)
600 && (nw_proto != IPPROTO_AH)
601 && (nw_proto != IPPROTO_FRAGMENT))) {
602 /* It's either a terminal header (e.g., TCP, UDP) or one we
603 * don't understand. In either case, we're done with the
604 * packet, so use it to fill in 'nw_proto'. */
605 break;
606 }
607
608 /* We only verify that at least 8 bytes of the next header are
609 * available, but many of these headers are longer. Ensure that
610 * accesses within the extension header are within those first 8
611 * bytes. All extension headers are required to be at least 8
612 * bytes. */
613 if (OVS_UNLIKELY(size < 8)) {
614 goto out;
7257b535 615 }
419681da
JR
616
617 if ((nw_proto == IPPROTO_HOPOPTS)
618 || (nw_proto == IPPROTO_ROUTING)
619 || (nw_proto == IPPROTO_DSTOPTS)) {
620 /* These headers, while different, have the fields we care
621 * about in the same location and with the same
622 * interpretation. */
623 const struct ip6_ext *ext_hdr = data;
624 nw_proto = ext_hdr->ip6e_nxt;
625 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
626 (ext_hdr->ip6e_len + 1) * 8))) {
627 goto out;
628 }
629 } else if (nw_proto == IPPROTO_AH) {
630 /* A standard AH definition isn't available, but the fields
631 * we care about are in the same location as the generic
632 * option header--only the header length is calculated
633 * differently. */
634 const struct ip6_ext *ext_hdr = data;
635 nw_proto = ext_hdr->ip6e_nxt;
636 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
637 (ext_hdr->ip6e_len + 2) * 4))) {
638 goto out;
639 }
640 } else if (nw_proto == IPPROTO_FRAGMENT) {
641 const struct ovs_16aligned_ip6_frag *frag_hdr = data;
642
643 nw_proto = frag_hdr->ip6f_nxt;
644 if (!data_try_pull(&data, &size, sizeof *frag_hdr)) {
645 goto out;
646 }
647
648 /* We only process the first fragment. */
649 if (frag_hdr->ip6f_offlg != htons(0)) {
650 nw_frag = FLOW_NW_FRAG_ANY;
651 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
652 nw_frag |= FLOW_NW_FRAG_LATER;
653 nw_proto = IPPROTO_FRAGMENT;
654 break;
064af421 655 }
064af421 656 }
50f06e16
BP
657 }
658 }
419681da
JR
659 } else {
660 if (dl_type == htons(ETH_TYPE_ARP) ||
661 dl_type == htons(ETH_TYPE_RARP)) {
74ff3298 662 struct eth_addr arp_buf[2];
419681da
JR
663 const struct arp_eth_header *arp = (const struct arp_eth_header *)
664 data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);
665
666 if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
667 && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
668 && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
669 && OVS_LIKELY(arp->ar_pln == 4)) {
d70e8c28
JR
670 miniflow_push_be32(mf, nw_src,
671 get_16aligned_be32(&arp->ar_spa));
672 miniflow_push_be32(mf, nw_dst,
673 get_16aligned_be32(&arp->ar_tpa));
419681da
JR
674
675 /* We only match on the lower 8 bits of the opcode. */
676 if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
d70e8c28 677 miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */
419681da
JR
678 miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
679 }
d31f1109 680
419681da 681 /* Must be adjacent. */
268eca11 682 ASSERT_SEQUENTIAL(arp_sha, arp_tha);
419681da 683
74ff3298
JR
684 arp_buf[0] = arp->ar_sha;
685 arp_buf[1] = arp->ar_tha;
d70e8c28
JR
686 miniflow_push_macs(mf, arp_sha, arp_buf);
687 miniflow_pad_to_64(mf, tcp_flags);
419681da 688 }
d31f1109 689 }
419681da
JR
690 goto out;
691 }
692
693 packet->l4_ofs = (char *)data - l2;
694 miniflow_push_be32(mf, nw_frag,
695 BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto));
696
697 if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
698 if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
699 if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
700 const struct tcp_header *tcp = data;
701
74ff3298 702 miniflow_push_be32(mf, arp_tha.ea[2], 0);
419681da
JR
703 miniflow_push_be32(mf, tcp_flags,
704 TCP_FLAGS_BE32(tcp->tcp_ctl));
115f2481
JR
705 miniflow_push_be16(mf, tp_src, tcp->tcp_src);
706 miniflow_push_be16(mf, tp_dst, tcp->tcp_dst);
d70e8c28 707 miniflow_pad_to_64(mf, igmp_group_ip4);
419681da
JR
708 }
709 } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
710 if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
711 const struct udp_header *udp = data;
712
115f2481
JR
713 miniflow_push_be16(mf, tp_src, udp->udp_src);
714 miniflow_push_be16(mf, tp_dst, udp->udp_dst);
d70e8c28 715 miniflow_pad_to_64(mf, igmp_group_ip4);
064af421 716 }
419681da
JR
717 } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
718 if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
719 const struct sctp_header *sctp = data;
a26ef517 720
115f2481
JR
721 miniflow_push_be16(mf, tp_src, sctp->sctp_src);
722 miniflow_push_be16(mf, tp_dst, sctp->sctp_dst);
d70e8c28 723 miniflow_pad_to_64(mf, igmp_group_ip4);
419681da
JR
724 }
725 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
726 if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
727 const struct icmp_header *icmp = data;
728
729 miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
730 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
d70e8c28 731 miniflow_pad_to_64(mf, igmp_group_ip4);
419681da 732 }
0e612675
FL
733 } else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
734 if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
735 const struct igmp_header *igmp = data;
736
737 miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
738 miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
739 miniflow_push_be32(mf, igmp_group_ip4,
740 get_16aligned_be32(&igmp->group));
741 }
419681da
JR
742 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
743 if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) {
744 const struct in6_addr *nd_target = NULL;
74ff3298 745 struct eth_addr arp_buf[2] = { };
419681da
JR
746 const struct icmp6_hdr *icmp = data_pull(&data, &size,
747 sizeof *icmp);
cc5dba2f
SH
748 parse_icmpv6(&data, &size, icmp, &nd_target, arp_buf);
749 if (nd_target) {
750 miniflow_push_words(mf, nd_target, nd_target,
74ff3298 751 sizeof *nd_target / sizeof(uint64_t));
419681da 752 }
cc5dba2f
SH
753 miniflow_push_macs(mf, arp_sha, arp_buf);
754 miniflow_pad_to_64(mf, tcp_flags);
755 miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
756 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
757 miniflow_pad_to_64(mf, igmp_group_ip4);
419681da 758 }
064af421
BP
759 }
760 }
419681da 761 out:
5fcff47b 762 dst->map = mf.map;
064af421
BP
763}
764
993410fb
BP
765/* For every bit of a field that is wildcarded in 'wildcards', sets the
766 * corresponding bit in 'flow' to zero. */
767void
768flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
769{
d70e8c28
JR
770 uint64_t *flow_u64 = (uint64_t *) flow;
771 const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks;
659c2346 772 size_t i;
993410fb 773
d70e8c28
JR
774 for (i = 0; i < FLOW_U64S; i++) {
775 flow_u64[i] &= wc_u64[i];
26720e24 776 }
993410fb
BP
777}
778
d8d9c698
EJ
779void
780flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
781{
782 if (flow->nw_proto != IPPROTO_ICMP) {
783 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
784 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
785 } else {
786 wc->masks.tp_src = htons(0xff);
787 wc->masks.tp_dst = htons(0xff);
788 }
789}
790
50dcbd8e 791/* Initializes 'flow_metadata' with the metadata found in 'flow'. */
5d6c3af0 792void
50dcbd8e 793flow_get_metadata(const struct flow *flow, struct match *flow_metadata)
5d6c3af0 794{
50dcbd8e
JG
795 int i;
796
b666962b 797 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 33);
e9358af6 798
50dcbd8e
JG
799 match_init_catchall(flow_metadata);
800 if (flow->tunnel.tun_id != htonll(0)) {
801 match_set_tun_id(flow_metadata, flow->tunnel.tun_id);
802 }
b666962b
JG
803 if (flow->tunnel.flags & FLOW_TNL_PUB_F_MASK) {
804 match_set_tun_flags(flow_metadata,
805 flow->tunnel.flags & FLOW_TNL_PUB_F_MASK);
806 }
50dcbd8e
JG
807 if (flow->tunnel.ip_src != htonl(0)) {
808 match_set_tun_src(flow_metadata, flow->tunnel.ip_src);
809 }
810 if (flow->tunnel.ip_dst != htonl(0)) {
811 match_set_tun_dst(flow_metadata, flow->tunnel.ip_dst);
812 }
813 if (flow->tunnel.gbp_id != htons(0)) {
814 match_set_tun_gbp_id(flow_metadata, flow->tunnel.gbp_id);
815 }
816 if (flow->tunnel.gbp_flags) {
817 match_set_tun_gbp_flags(flow_metadata, flow->tunnel.gbp_flags);
818 }
6728d578 819 tun_metadata_get_fmd(&flow->tunnel, flow_metadata);
50dcbd8e
JG
820 if (flow->metadata != htonll(0)) {
821 match_set_metadata(flow_metadata, flow->metadata);
822 }
823
824 for (i = 0; i < FLOW_N_REGS; i++) {
825 if (flow->regs[i]) {
826 match_set_reg(flow_metadata, i, flow->regs[i]);
827 }
828 }
829
830 if (flow->pkt_mark != 0) {
831 match_set_pkt_mark(flow_metadata, flow->pkt_mark);
832 }
833
834 match_set_in_port(flow_metadata, flow->in_port.ofp_port);
5d6c3af0
EJ
835}
836
064af421 837char *
ae412e7d 838flow_to_string(const struct flow *flow)
064af421
BP
839{
840 struct ds ds = DS_EMPTY_INITIALIZER;
841 flow_format(&ds, flow);
842 return ds_cstr(&ds);
843}
844
4fe3445a
PS
845const char *
846flow_tun_flag_to_string(uint32_t flags)
847{
848 switch (flags) {
849 case FLOW_TNL_F_DONT_FRAGMENT:
850 return "df";
851 case FLOW_TNL_F_CSUM:
852 return "csum";
853 case FLOW_TNL_F_KEY:
854 return "key";
94872594
JG
855 case FLOW_TNL_F_OAM:
856 return "oam";
4fe3445a
PS
857 default:
858 return NULL;
859 }
860}
861
862void
863format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
864 uint32_t flags, char del)
865{
866 uint32_t bad = 0;
867
868 if (!flags) {
8e4c1621 869 ds_put_char(ds, '0');
4fe3445a
PS
870 return;
871 }
872 while (flags) {
873 uint32_t bit = rightmost_1bit(flags);
874 const char *s;
875
876 s = bit_to_string(bit);
877 if (s) {
878 ds_put_format(ds, "%s%c", s, del);
879 } else {
880 bad |= bit;
881 }
882
883 flags &= ~bit;
884 }
885
886 if (bad) {
887 ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
888 }
889 ds_chomp(ds, del);
890}
891
61bf6666
JR
892void
893format_flags_masked(struct ds *ds, const char *name,
894 const char *(*bit_to_string)(uint32_t), uint32_t flags,
8e4c1621 895 uint32_t mask, uint32_t max_mask)
61bf6666
JR
896{
897 if (name) {
898 ds_put_format(ds, "%s=", name);
899 }
8e4c1621
JG
900
901 if (mask == max_mask) {
902 format_flags(ds, bit_to_string, flags, '|');
903 return;
904 }
905
906 if (!mask) {
907 ds_put_cstr(ds, "0/0");
908 return;
909 }
910
61bf6666
JR
911 while (mask) {
912 uint32_t bit = rightmost_1bit(mask);
913 const char *s = bit_to_string(bit);
914
915 ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
916 s ? s : "[Unknown]");
917 mask &= ~bit;
918 }
919}
920
8e4c1621
JG
921/* Scans a string 's' of flags to determine their numerical value and
922 * returns the number of characters parsed using 'bit_to_string' to
923 * lookup flag names. Scanning continues until the character 'end' is
924 * reached.
925 *
926 * In the event of a failure, a negative error code will be returned. In
927 * addition, if 'res_string' is non-NULL then a descriptive string will
928 * be returned incorporating the identifying string 'field_name'. This
929 * error string must be freed by the caller.
930 *
931 * Upon success, the flag values will be stored in 'res_flags' and
932 * optionally 'res_mask', if it is non-NULL (if it is NULL then any masks
933 * present in the original string will be considered an error). The
934 * caller may restrict the acceptable set of values through the mask
935 * 'allowed'. */
936int
937parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
938 char end, const char *field_name, char **res_string,
939 uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask)
940{
941 uint32_t result = 0;
942 int n;
943
944 /* Parse masked flags in numeric format? */
945 if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n",
946 res_flags, res_mask, &n) && n > 0) {
947 if (*res_flags & ~allowed || *res_mask & ~allowed) {
948 goto unknown;
949 }
950 return n;
951 }
952
953 n = 0;
954
955 if (res_mask && (*s == '+' || *s == '-')) {
956 uint32_t flags = 0, mask = 0;
957
958 /* Parse masked flags. */
959 while (s[0] != end) {
960 bool set;
961 uint32_t bit;
962 size_t len;
963
964 if (s[0] == '+') {
965 set = true;
966 } else if (s[0] == '-') {
967 set = false;
968 } else {
969 if (res_string) {
970 *res_string = xasprintf("%s: %s must be preceded by '+' "
971 "(for SET) or '-' (NOT SET)", s,
972 field_name);
973 }
974 return -EINVAL;
975 }
976 s++;
977 n++;
978
979 for (bit = 1; bit; bit <<= 1) {
980 const char *fname = bit_to_string(bit);
981
982 if (!fname) {
983 continue;
984 }
985
986 len = strlen(fname);
987 if (strncmp(s, fname, len) ||
988 (s[len] != '+' && s[len] != '-' && s[len] != end)) {
989 continue;
990 }
991
992 if (mask & bit) {
993 /* bit already set. */
994 if (res_string) {
995 *res_string = xasprintf("%s: Each %s flag can be "
996 "specified only once", s,
997 field_name);
998 }
999 return -EINVAL;
1000 }
1001 if (!(bit & allowed)) {
1002 goto unknown;
1003 }
1004 if (set) {
1005 flags |= bit;
1006 }
1007 mask |= bit;
1008 break;
1009 }
1010
1011 if (!bit) {
1012 goto unknown;
1013 }
1014 s += len;
1015 n += len;
1016 }
1017
1018 *res_flags = flags;
1019 *res_mask = mask;
1020 return n;
1021 }
1022
1023 /* Parse unmasked flags. If a flag is present, it is set, otherwise
1024 * it is not set. */
1025 while (s[n] != end) {
1026 unsigned long long int flags;
1027 uint32_t bit;
1028 int n0;
1029
1030 if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) {
1031 if (flags & ~allowed) {
1032 goto unknown;
1033 }
1034 n += n0 + (s[n + n0] == '|');
1035 result |= flags;
1036 continue;
1037 }
1038
1039 for (bit = 1; bit; bit <<= 1) {
1040 const char *name = bit_to_string(bit);
1041 size_t len;
1042
1043 if (!name) {
1044 continue;
1045 }
1046
1047 len = strlen(name);
1048 if (!strncmp(s + n, name, len) &&
1049 (s[n + len] == '|' || s[n + len] == end)) {
1050 if (!(bit & allowed)) {
1051 goto unknown;
1052 }
1053 result |= bit;
1054 n += len + (s[n + len] == '|');
1055 break;
1056 }
1057 }
1058
1059 if (!bit) {
1060 goto unknown;
1061 }
1062 }
1063
1064 *res_flags = result;
1065 if (res_mask) {
1066 *res_mask = UINT32_MAX;
1067 }
1068 if (res_string) {
1069 *res_string = NULL;
1070 }
1071 return n;
1072
1073unknown:
1074 if (res_string) {
1075 *res_string = xasprintf("%s: unknown %s flag(s)", s, field_name);
1076 }
1077 return -EINVAL;
1078}
1079
064af421 1080void
ae412e7d 1081flow_format(struct ds *ds, const struct flow *flow)
064af421 1082{
aa6c9932 1083 struct match match;
78c9486d 1084 struct flow_wildcards *wc = &match.wc;
296e07ac 1085
aa6c9932 1086 match_wc_init(&match, flow);
78c9486d
JR
1087
1088 /* As this function is most often used for formatting a packet in a
1089 * packet-in message, skip formatting the packet context fields that are
e6d9ab56
JR
1090 * all-zeroes to make the print-out easier on the eyes. This means that a
1091 * missing context field implies a zero value for that field. This is
1092 * similar to OpenFlow encoding of these fields, as the specification
1093 * states that all-zeroes context fields should not be encoded in the
1094 * packet-in messages. */
1095 if (!flow->in_port.ofp_port) {
1096 WC_UNMASK_FIELD(wc, in_port);
1097 }
78c9486d
JR
1098 if (!flow->skb_priority) {
1099 WC_UNMASK_FIELD(wc, skb_priority);
1100 }
1101 if (!flow->pkt_mark) {
1102 WC_UNMASK_FIELD(wc, pkt_mark);
1103 }
1104 if (!flow->recirc_id) {
1105 WC_UNMASK_FIELD(wc, recirc_id);
1106 }
330de069
JR
1107 if (!flow->dp_hash) {
1108 WC_UNMASK_FIELD(wc, dp_hash);
1109 }
78c9486d
JR
1110 for (int i = 0; i < FLOW_N_REGS; i++) {
1111 if (!flow->regs[i]) {
1112 WC_UNMASK_FIELD(wc, regs[i]);
1113 }
1114 }
1115 if (!flow->metadata) {
1116 WC_UNMASK_FIELD(wc, metadata);
1117 }
1118
3f78c3cc 1119 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
064af421
BP
1120}
1121
1122void
ae412e7d 1123flow_print(FILE *stream, const struct flow *flow)
064af421
BP
1124{
1125 char *s = flow_to_string(flow);
1126 fputs(s, stream);
1127 free(s);
1128}
54363004
BP
1129\f
1130/* flow_wildcards functions. */
1131
d8ae4d67 1132/* Initializes 'wc' as a set of wildcards that matches every packet. */
54363004 1133void
d8ae4d67 1134flow_wildcards_init_catchall(struct flow_wildcards *wc)
54363004 1135{
659c2346 1136 memset(&wc->masks, 0, sizeof wc->masks);
54363004
BP
1137}
1138
78c9486d
JR
1139/* Converts a flow into flow wildcards. It sets the wildcard masks based on
1140 * the packet headers extracted to 'flow'. It will not set the mask for fields
1141 * that do not make sense for the packet type. OpenFlow-only metadata is
1142 * wildcarded, but other metadata is unconditionally exact-matched. */
1143void flow_wildcards_init_for_packet(struct flow_wildcards *wc,
1144 const struct flow *flow)
1145{
1146 memset(&wc->masks, 0x0, sizeof wc->masks);
1147
0de8783a 1148 /* Update this function whenever struct flow changes. */
b666962b 1149 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 33);
0de8783a 1150
78c9486d
JR
1151 if (flow->tunnel.ip_dst) {
1152 if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
1153 WC_MASK_FIELD(wc, tunnel.tun_id);
1154 }
1155 WC_MASK_FIELD(wc, tunnel.ip_src);
1156 WC_MASK_FIELD(wc, tunnel.ip_dst);
1157 WC_MASK_FIELD(wc, tunnel.flags);
1158 WC_MASK_FIELD(wc, tunnel.ip_tos);
1159 WC_MASK_FIELD(wc, tunnel.ip_ttl);
1160 WC_MASK_FIELD(wc, tunnel.tp_src);
1161 WC_MASK_FIELD(wc, tunnel.tp_dst);
ac6073e3
MC
1162 WC_MASK_FIELD(wc, tunnel.gbp_id);
1163 WC_MASK_FIELD(wc, tunnel.gbp_flags);
9558d2a5 1164
6728d578
JG
1165 if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
1166 if (flow->tunnel.metadata.present.map) {
1167 wc->masks.tunnel.metadata.present.map =
1168 flow->tunnel.metadata.present.map;
1169 WC_MASK_FIELD(wc, tunnel.metadata.opts.u8);
1170 }
1171 } else {
1172 WC_MASK_FIELD(wc, tunnel.metadata.present.len);
1173 memset(wc->masks.tunnel.metadata.opts.gnv, 0xff,
1174 flow->tunnel.metadata.present.len);
9558d2a5 1175 }
78c9486d
JR
1176 } else if (flow->tunnel.tun_id) {
1177 WC_MASK_FIELD(wc, tunnel.tun_id);
1178 }
1179
18080541 1180 /* metadata, regs, and conj_id wildcarded. */
78c9486d
JR
1181
1182 WC_MASK_FIELD(wc, skb_priority);
1183 WC_MASK_FIELD(wc, pkt_mark);
1184 WC_MASK_FIELD(wc, recirc_id);
1185 WC_MASK_FIELD(wc, dp_hash);
1186 WC_MASK_FIELD(wc, in_port);
1187
c61f3870
BP
1188 /* actset_output wildcarded. */
1189
78c9486d
JR
1190 WC_MASK_FIELD(wc, dl_dst);
1191 WC_MASK_FIELD(wc, dl_src);
1192 WC_MASK_FIELD(wc, dl_type);
1193 WC_MASK_FIELD(wc, vlan_tci);
1194
1195 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1196 WC_MASK_FIELD(wc, nw_src);
1197 WC_MASK_FIELD(wc, nw_dst);
1198 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1199 WC_MASK_FIELD(wc, ipv6_src);
1200 WC_MASK_FIELD(wc, ipv6_dst);
1201 WC_MASK_FIELD(wc, ipv6_label);
1202 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1203 flow->dl_type == htons(ETH_TYPE_RARP)) {
1204 WC_MASK_FIELD(wc, nw_src);
1205 WC_MASK_FIELD(wc, nw_dst);
1206 WC_MASK_FIELD(wc, nw_proto);
1207 WC_MASK_FIELD(wc, arp_sha);
1208 WC_MASK_FIELD(wc, arp_tha);
1209 return;
1210 } else if (eth_type_mpls(flow->dl_type)) {
1211 for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
1212 WC_MASK_FIELD(wc, mpls_lse[i]);
1213 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1214 break;
1215 }
1216 }
1217 return;
1218 } else {
1219 return; /* Unknown ethertype. */
1220 }
1221
1222 /* IPv4 or IPv6. */
1223 WC_MASK_FIELD(wc, nw_frag);
1224 WC_MASK_FIELD(wc, nw_tos);
1225 WC_MASK_FIELD(wc, nw_ttl);
1226 WC_MASK_FIELD(wc, nw_proto);
1227
1228 /* No transport layer header in later fragments. */
1229 if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
1230 (flow->nw_proto == IPPROTO_ICMP ||
1231 flow->nw_proto == IPPROTO_ICMPV6 ||
1232 flow->nw_proto == IPPROTO_TCP ||
1233 flow->nw_proto == IPPROTO_UDP ||
1234 flow->nw_proto == IPPROTO_SCTP ||
1235 flow->nw_proto == IPPROTO_IGMP)) {
1236 WC_MASK_FIELD(wc, tp_src);
1237 WC_MASK_FIELD(wc, tp_dst);
1238
1239 if (flow->nw_proto == IPPROTO_TCP) {
1240 WC_MASK_FIELD(wc, tcp_flags);
1241 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
1242 WC_MASK_FIELD(wc, arp_sha);
1243 WC_MASK_FIELD(wc, arp_tha);
1244 WC_MASK_FIELD(wc, nd_target);
1245 } else if (flow->nw_proto == IPPROTO_IGMP) {
1246 WC_MASK_FIELD(wc, igmp_group_ip4);
1247 }
1248 }
1249}
1250
0de8783a
JR
1251/* Return a map of possible fields for a packet of the same type as 'flow'.
1252 * Including extra bits in the returned mask is not wrong, it is just less
1253 * optimal.
1254 *
1255 * This is a less precise version of flow_wildcards_init_for_packet() above. */
361d808d 1256void
5fcff47b 1257flow_wc_map(const struct flow *flow, struct flowmap *map)
0de8783a
JR
1258{
1259 /* Update this function whenever struct flow changes. */
b666962b 1260 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 33);
0de8783a 1261
5fcff47b
JR
1262 flowmap_init(map);
1263
361d808d 1264 if (flow->tunnel.ip_dst) {
5fcff47b 1265 FLOWMAP_SET__(map, tunnel, offsetof(struct flow_tnl, metadata));
6728d578
JG
1266 if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
1267 if (flow->tunnel.metadata.present.map) {
5fcff47b 1268 FLOWMAP_SET(map, tunnel.metadata);
6728d578
JG
1269 }
1270 } else {
5fcff47b
JR
1271 FLOWMAP_SET(map, tunnel.metadata.present.len);
1272 FLOWMAP_SET__(map, tunnel.metadata.opts.gnv,
1273 flow->tunnel.metadata.present.len);
361d808d
JR
1274 }
1275 }
0de8783a
JR
1276
1277 /* Metadata fields that can appear on packet input. */
5fcff47b
JR
1278 FLOWMAP_SET(map, skb_priority);
1279 FLOWMAP_SET(map, pkt_mark);
1280 FLOWMAP_SET(map, recirc_id);
1281 FLOWMAP_SET(map, dp_hash);
1282 FLOWMAP_SET(map, in_port);
1283 FLOWMAP_SET(map, dl_dst);
1284 FLOWMAP_SET(map, dl_src);
1285 FLOWMAP_SET(map, dl_type);
1286 FLOWMAP_SET(map, vlan_tci);
0de8783a
JR
1287
1288 /* Ethertype-dependent fields. */
1289 if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
5fcff47b
JR
1290 FLOWMAP_SET(map, nw_src);
1291 FLOWMAP_SET(map, nw_dst);
1292 FLOWMAP_SET(map, nw_proto);
1293 FLOWMAP_SET(map, nw_frag);
1294 FLOWMAP_SET(map, nw_tos);
1295 FLOWMAP_SET(map, nw_ttl);
1296
0de8783a 1297 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
5fcff47b 1298 FLOWMAP_SET(map, igmp_group_ip4);
0de8783a 1299 } else {
5fcff47b
JR
1300 FLOWMAP_SET(map, tcp_flags);
1301 FLOWMAP_SET(map, tp_src);
1302 FLOWMAP_SET(map, tp_dst);
0de8783a
JR
1303 }
1304 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
5fcff47b
JR
1305 FLOWMAP_SET(map, ipv6_src);
1306 FLOWMAP_SET(map, ipv6_dst);
1307 FLOWMAP_SET(map, ipv6_label);
1308 FLOWMAP_SET(map, nw_proto);
1309 FLOWMAP_SET(map, nw_frag);
1310 FLOWMAP_SET(map, nw_tos);
1311 FLOWMAP_SET(map, nw_ttl);
1312
0de8783a 1313 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) {
5fcff47b
JR
1314 FLOWMAP_SET(map, nd_target);
1315 FLOWMAP_SET(map, arp_sha);
1316 FLOWMAP_SET(map, arp_tha);
0de8783a 1317 } else {
5fcff47b
JR
1318 FLOWMAP_SET(map, tcp_flags);
1319 FLOWMAP_SET(map, tp_src);
1320 FLOWMAP_SET(map, tp_dst);
0de8783a
JR
1321 }
1322 } else if (eth_type_mpls(flow->dl_type)) {
5fcff47b 1323 FLOWMAP_SET(map, mpls_lse);
0de8783a
JR
1324 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1325 flow->dl_type == htons(ETH_TYPE_RARP)) {
5fcff47b
JR
1326 FLOWMAP_SET(map, nw_src);
1327 FLOWMAP_SET(map, nw_dst);
1328 FLOWMAP_SET(map, nw_proto);
1329 FLOWMAP_SET(map, arp_sha);
1330 FLOWMAP_SET(map, arp_tha);
0de8783a 1331 }
0de8783a
JR
1332}
1333
c11c6faa
AZ
1334/* Clear the metadata and register wildcard masks. They are not packet
1335 * header fields. */
1336void
1337flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
1338{
0de8783a 1339 /* Update this function whenever struct flow changes. */
b666962b 1340 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 33);
0de8783a 1341
c11c6faa
AZ
1342 memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
1343 memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
c61f3870 1344 wc->masks.actset_output = 0;
18080541 1345 wc->masks.conj_id = 0;
c11c6faa
AZ
1346}
1347
ecf1e7ac
BP
1348/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
1349 * fields. */
1350bool
1351flow_wildcards_is_catchall(const struct flow_wildcards *wc)
1352{
d70e8c28 1353 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
659c2346 1354 size_t i;
ecf1e7ac 1355
d70e8c28
JR
1356 for (i = 0; i < FLOW_U64S; i++) {
1357 if (wc_u64[i]) {
ecf1e7ac
BP
1358 return false;
1359 }
1360 }
ecf1e7ac
BP
1361 return true;
1362}
1363
368eefac
EJ
1364/* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
1365 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
1366 * in 'src1' or 'src2' or both. */
b5d97350 1367void
368eefac
EJ
1368flow_wildcards_and(struct flow_wildcards *dst,
1369 const struct flow_wildcards *src1,
1370 const struct flow_wildcards *src2)
b5d97350 1371{
d70e8c28
JR
1372 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1373 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1374 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
659c2346 1375 size_t i;
a79c50f3 1376
d70e8c28
JR
1377 for (i = 0; i < FLOW_U64S; i++) {
1378 dst_u64[i] = src1_u64[i] & src2_u64[i];
26720e24 1379 }
b5d97350
BP
1380}
1381
368eefac
EJ
1382/* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
1383 * is, a bit or a field is wildcarded in 'dst' if it is neither
1384 * wildcarded in 'src1' nor 'src2'. */
1385void
1386flow_wildcards_or(struct flow_wildcards *dst,
1387 const struct flow_wildcards *src1,
1388 const struct flow_wildcards *src2)
1389{
d70e8c28
JR
1390 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1391 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1392 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
368eefac
EJ
1393 size_t i;
1394
d70e8c28
JR
1395 for (i = 0; i < FLOW_U64S; i++) {
1396 dst_u64[i] = src1_u64[i] | src2_u64[i];
368eefac
EJ
1397 }
1398}
1399
b5d97350
BP
1400/* Returns a hash of the wildcards in 'wc'. */
1401uint32_t
1006cda6 1402flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
b5d97350 1403{
ac31c5af 1404 return flow_hash(&wc->masks, basis);
b5d97350
BP
1405}
1406
1407/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
1408 * different. */
1409bool
1410flow_wildcards_equal(const struct flow_wildcards *a,
1411 const struct flow_wildcards *b)
1412{
659c2346 1413 return flow_equal(&a->masks, &b->masks);
b5d97350
BP
1414}
1415
1416/* Returns true if at least one bit or field is wildcarded in 'a' but not in
1417 * 'b', false otherwise. */
1418bool
1419flow_wildcards_has_extra(const struct flow_wildcards *a,
1420 const struct flow_wildcards *b)
1421{
d70e8c28
JR
1422 const uint64_t *a_u64 = (const uint64_t *) &a->masks;
1423 const uint64_t *b_u64 = (const uint64_t *) &b->masks;
659c2346 1424 size_t i;
a79c50f3 1425
d70e8c28
JR
1426 for (i = 0; i < FLOW_U64S; i++) {
1427 if ((a_u64[i] & b_u64[i]) != b_u64[i]) {
b6c9e612
BP
1428 return true;
1429 }
1430 }
659c2346
BP
1431 return false;
1432}
b6c9e612 1433
659c2346
BP
1434/* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
1435 * in 'wc' do not need to be equal in 'a' and 'b'. */
1436bool
1437flow_equal_except(const struct flow *a, const struct flow *b,
1438 const struct flow_wildcards *wc)
1439{
d70e8c28
JR
1440 const uint64_t *a_u64 = (const uint64_t *) a;
1441 const uint64_t *b_u64 = (const uint64_t *) b;
1442 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
659c2346 1443 size_t i;
d31f1109 1444
d70e8c28
JR
1445 for (i = 0; i < FLOW_U64S; i++) {
1446 if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) {
659c2346
BP
1447 return false;
1448 }
47284b1f 1449 }
659c2346 1450 return true;
b5d97350
BP
1451}
1452
b6c9e612
BP
1453/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1454 * (A 0-bit indicates a wildcard bit.) */
1455void
1456flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
1457{
26720e24 1458 wc->masks.regs[idx] = mask;
b6c9e612 1459}
ff55ea1f 1460
79fe0f46
BP
1461/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1462 * (A 0-bit indicates a wildcard bit.) */
1463void
1464flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
1465{
1466 flow_set_xreg(&wc->masks, idx, mask);
1467}
1468
28a560d9
JR
1469/* Calculates the 5-tuple hash from the given miniflow.
1470 * This returns the same value as flow_hash_5tuple for the corresponding
1471 * flow. */
4f150744
JR
1472uint32_t
1473miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
1474{
28a560d9 1475 uint32_t hash = basis;
4f150744 1476
28a560d9
JR
1477 if (flow) {
1478 ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
1479
33c6a1b9 1480 hash = hash_add(hash, MINIFLOW_GET_U8(flow, nw_proto));
28a560d9
JR
1481
1482 /* Separate loops for better optimization. */
1483 if (dl_type == htons(ETH_TYPE_IPV6)) {
5fcff47b 1484 struct flowmap map = FLOWMAP_EMPTY_INITIALIZER;
d70e8c28 1485 uint64_t value;
4f150744 1486
5fcff47b
JR
1487 FLOWMAP_SET(&map, ipv6_src);
1488 FLOWMAP_SET(&map, ipv6_dst);
1489
1490 MINIFLOW_FOR_EACH_IN_FLOWMAP(value, flow, map) {
d70e8c28 1491 hash = hash_add64(hash, value);
28a560d9
JR
1492 }
1493 } else {
d70e8c28
JR
1494 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src));
1495 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst));
28a560d9 1496 }
d70e8c28
JR
1497 /* Add both ports at once. */
1498 hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src));
33c6a1b9 1499 hash = hash_finish(hash, 42); /* Arbitrary number. */
28a560d9
JR
1500 }
1501 return hash;
4f150744
JR
1502}
1503
268eca11
BP
1504ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
1505ASSERT_SEQUENTIAL(ipv6_src, ipv6_dst);
4f150744 1506
63be20be
AW
1507/* Calculates the 5-tuple hash from the given flow. */
1508uint32_t
1509flow_hash_5tuple(const struct flow *flow, uint32_t basis)
1510{
28a560d9 1511 uint32_t hash = basis;
63be20be 1512
28a560d9 1513 if (flow) {
33c6a1b9 1514 hash = hash_add(hash, flow->nw_proto);
28a560d9
JR
1515
1516 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
d70e8c28
JR
1517 const uint64_t *flow_u64 = (const uint64_t *)flow;
1518 int ofs = offsetof(struct flow, ipv6_src) / 8;
1519 int end = ofs + 2 * sizeof flow->ipv6_src / 8;
63be20be 1520
d70e8c28
JR
1521 for (;ofs < end; ofs++) {
1522 hash = hash_add64(hash, flow_u64[ofs]);
28a560d9
JR
1523 }
1524 } else {
33c6a1b9
JR
1525 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
1526 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
28a560d9 1527 }
d70e8c28
JR
1528 /* Add both ports at once. */
1529 hash = hash_add(hash,
1530 ((const uint32_t *)flow)[offsetof(struct flow, tp_src)
1531 / sizeof(uint32_t)]);
33c6a1b9 1532 hash = hash_finish(hash, 42); /* Arbitrary number. */
28a560d9
JR
1533 }
1534 return hash;
63be20be
AW
1535}
1536
ff55ea1f
EJ
1537/* Hashes 'flow' based on its L2 through L4 protocol information. */
1538uint32_t
1539flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
1540{
1541 struct {
d31f1109
JP
1542 union {
1543 ovs_be32 ipv4_addr;
1544 struct in6_addr ipv6_addr;
1545 };
ff55ea1f
EJ
1546 ovs_be16 eth_type;
1547 ovs_be16 vlan_tci;
5b909cbb 1548 ovs_be16 tp_port;
74ff3298 1549 struct eth_addr eth_addr;
ff55ea1f
EJ
1550 uint8_t ip_proto;
1551 } fields;
1552
1553 int i;
1554
1555 memset(&fields, 0, sizeof fields);
74ff3298
JR
1556 for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) {
1557 fields.eth_addr.be16[i] = flow->dl_src.be16[i] ^ flow->dl_dst.be16[i];
ff55ea1f
EJ
1558 }
1559 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
1560 fields.eth_type = flow->dl_type;
3e3eda95
EJ
1561
1562 /* UDP source and destination port are not taken into account because they
1563 * will not necessarily be symmetric in a bidirectional flow. */
ff55ea1f 1564 if (fields.eth_type == htons(ETH_TYPE_IP)) {
d31f1109
JP
1565 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
1566 fields.ip_proto = flow->nw_proto;
c6bcb685 1567 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
5b909cbb 1568 fields.tp_port = flow->tp_src ^ flow->tp_dst;
d31f1109
JP
1569 }
1570 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
1571 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
1572 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
1573 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
1574
1575 for (i=0; i<16; i++) {
1576 ipv6_addr[i] = a[i] ^ b[i];
1577 }
ff55ea1f 1578 fields.ip_proto = flow->nw_proto;
c6bcb685 1579 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
5b909cbb 1580 fields.tp_port = flow->tp_src ^ flow->tp_dst;
ff55ea1f 1581 }
ff55ea1f 1582 }
c49d1dd1 1583 return jhash_bytes(&fields, sizeof fields, basis);
ff55ea1f 1584}
520e9a2a 1585
4249b547
JB
1586/* Hashes 'flow' based on its L3 through L4 protocol information */
1587uint32_t
1588flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
1589 bool inc_udp_ports)
1590{
1591 uint32_t hash = basis;
1592
1593 /* UDP source and destination port are also taken into account. */
1594 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1595 hash = hash_add(hash,
1596 (OVS_FORCE uint32_t) (flow->nw_src ^ flow->nw_dst));
1597 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1598 /* IPv6 addresses are 64-bit aligned inside struct flow. */
1599 const uint64_t *a = ALIGNED_CAST(uint64_t *, flow->ipv6_src.s6_addr);
1600 const uint64_t *b = ALIGNED_CAST(uint64_t *, flow->ipv6_dst.s6_addr);
1601
1602 for (int i = 0; i < 4; i++) {
1603 hash = hash_add64(hash, a[i] ^ b[i]);
1604 }
1605 } else {
1606 /* Cannot hash non-IP flows */
1607 return 0;
1608 }
1609
1610 hash = hash_add(hash, flow->nw_proto);
1611 if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP ||
1612 (inc_udp_ports && flow->nw_proto == IPPROTO_UDP)) {
1613 hash = hash_add(hash,
1614 (OVS_FORCE uint16_t) (flow->tp_src ^ flow->tp_dst));
1615 }
1616
1617 return hash_finish(hash, basis);
1618}
1619
94639963
JR
1620/* Initialize a flow with random fields that matter for nx_hash_fields. */
1621void
1622flow_random_hash_fields(struct flow *flow)
1623{
1624 uint16_t rnd = random_uint16();
1625
1626 /* Initialize to all zeros. */
1627 memset(flow, 0, sizeof *flow);
1628
74ff3298
JR
1629 eth_addr_random(&flow->dl_src);
1630 eth_addr_random(&flow->dl_dst);
94639963
JR
1631
1632 flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
1633
1634 /* Make most of the random flows IPv4, some IPv6, and rest random. */
1635 flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
1636 rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
1637
1638 if (dl_type_is_ip_any(flow->dl_type)) {
1639 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1640 flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
1641 flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
1642 } else {
1643 random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
1644 random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
1645 }
1646 /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
1647 rnd = random_uint16();
1648 flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
1649 rnd < 0xc000 ? IPPROTO_UDP :
1650 rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
1651 if (flow->nw_proto == IPPROTO_TCP ||
1652 flow->nw_proto == IPPROTO_UDP ||
1653 flow->nw_proto == IPPROTO_SCTP) {
1654 flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
1655 flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
1656 }
1657 }
1658}
1659
bcd2633a
JP
1660/* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
1661void
6cdd5145
JP
1662flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
1663 enum nx_hash_fields fields)
bcd2633a
JP
1664{
1665 switch (fields) {
1666 case NX_HASH_FIELDS_ETH_SRC:
1667 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1668 break;
1669
1670 case NX_HASH_FIELDS_SYMMETRIC_L4:
1671 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1672 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
6cdd5145
JP
1673 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1674 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1675 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
7f8a65ca 1676 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
6cdd5145
JP
1677 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
1678 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
1679 }
1680 if (is_ip_any(flow)) {
1681 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
d8d9c698 1682 flow_unwildcard_tp_ports(flow, wc);
6cdd5145 1683 }
1dd35f8a 1684 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
bcd2633a
JP
1685 break;
1686
4249b547
JB
1687 case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
1688 if (is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP) {
1689 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
1690 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
1691 }
1692 /* no break */
1693 case NX_HASH_FIELDS_SYMMETRIC_L3L4:
1694 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1695 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1696 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
1697 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1698 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
1699 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
1700 } else {
1701 break; /* non-IP flow */
1702 }
1703
1704 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
1705 if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP) {
1706 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
1707 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
1708 }
1709 break;
1710
bcd2633a 1711 default:
428b2edd 1712 OVS_NOT_REACHED();
bcd2633a
JP
1713 }
1714}
1715
520e9a2a
EJ
1716/* Hashes the portions of 'flow' designated by 'fields'. */
1717uint32_t
1718flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
1719 uint16_t basis)
1720{
1721 switch (fields) {
1722
1723 case NX_HASH_FIELDS_ETH_SRC:
74ff3298 1724 return jhash_bytes(&flow->dl_src, sizeof flow->dl_src, basis);
520e9a2a
EJ
1725
1726 case NX_HASH_FIELDS_SYMMETRIC_L4:
1727 return flow_hash_symmetric_l4(flow, basis);
4249b547
JB
1728
1729 case NX_HASH_FIELDS_SYMMETRIC_L3L4:
1730 return flow_hash_symmetric_l3l4(flow, basis, false);
1731
1732 case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
1733 return flow_hash_symmetric_l3l4(flow, basis, true);
1734
520e9a2a
EJ
1735 }
1736
428b2edd 1737 OVS_NOT_REACHED();
520e9a2a
EJ
1738}
1739
1740/* Returns a string representation of 'fields'. */
1741const char *
1742flow_hash_fields_to_str(enum nx_hash_fields fields)
1743{
1744 switch (fields) {
1745 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
1746 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
4249b547
JB
1747 case NX_HASH_FIELDS_SYMMETRIC_L3L4: return "symmetric_l3l4";
1748 case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return "symmetric_l3l4+udp";
520e9a2a
EJ
1749 default: return "<unknown>";
1750 }
1751}
1752
1753/* Returns true if the value of 'fields' is supported. Otherwise false. */
1754bool
1755flow_hash_fields_valid(enum nx_hash_fields fields)
1756{
1757 return fields == NX_HASH_FIELDS_ETH_SRC
4249b547
JB
1758 || fields == NX_HASH_FIELDS_SYMMETRIC_L4
1759 || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4
1760 || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP;
520e9a2a 1761}
8b3b8dd1 1762
368eefac
EJ
1763/* Returns a hash value for the bits of 'flow' that are active based on
1764 * 'wc', given 'basis'. */
1765uint32_t
1766flow_hash_in_wildcards(const struct flow *flow,
1767 const struct flow_wildcards *wc, uint32_t basis)
1768{
d70e8c28
JR
1769 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1770 const uint64_t *flow_u64 = (const uint64_t *) flow;
368eefac
EJ
1771 uint32_t hash;
1772 size_t i;
1773
1774 hash = basis;
d70e8c28
JR
1775 for (i = 0; i < FLOW_U64S; i++) {
1776 hash = hash_add64(hash, flow_u64[i] & wc_u64[i]);
368eefac 1777 }
d70e8c28 1778 return hash_finish(hash, 8 * FLOW_U64S);
368eefac
EJ
1779}
1780
3719455c
BP
1781/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1782 * OpenFlow 1.0 "dl_vlan" value:
1783 *
1784 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
1785 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
1786 * 'flow' previously matched packets without a VLAN header).
1787 *
1788 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
1789 * without a VLAN tag.
1790 *
1791 * - Other values of 'vid' should not be used. */
1792void
fb0451d9 1793flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
3719455c 1794{
0c436519 1795 if (vid == htons(OFP10_VLAN_NONE)) {
3719455c
BP
1796 flow->vlan_tci = htons(0);
1797 } else {
1798 vid &= htons(VLAN_VID_MASK);
1799 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
1800 flow->vlan_tci |= htons(VLAN_CFI) | vid;
1801 }
1802}
1803
cc34bc8c
BP
1804/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1805 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
1806 * plus CFI). */
1807void
1808flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
1809{
1810 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
1811 flow->vlan_tci &= ~mask;
1812 flow->vlan_tci |= vid & mask;
1813}
1814
3719455c
BP
1815/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
1816 * range 0...7.
1817 *
1818 * This function has no effect on the VLAN ID that 'flow' matches.
1819 *
1820 * After calling this function, 'flow' will not match packets without a VLAN
1821 * header. */
1822void
1823flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
1824{
1825 pcp &= 0x07;
1826 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
1827 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
1828}
1829
8bfd0fda
BP
1830/* Returns the number of MPLS LSEs present in 'flow'
1831 *
1832 * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
1833 * Otherwise traverses 'flow''s MPLS label stack stopping at the
1834 * first entry that has the BoS bit set. If no such entry exists then
1835 * the maximum number of LSEs that can be stored in 'flow' is returned.
1836 */
1837int
1838flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
1839{
22d38fca 1840 /* dl_type is always masked. */
8bfd0fda
BP
1841 if (eth_type_mpls(flow->dl_type)) {
1842 int i;
5af43325 1843 int cnt;
8bfd0fda 1844
5af43325
PS
1845 cnt = 0;
1846 for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
8bfd0fda
BP
1847 if (wc) {
1848 wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
1849 }
1850 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1851 return i + 1;
1852 }
5af43325
PS
1853 if (flow->mpls_lse[i]) {
1854 cnt++;
1855 }
8bfd0fda 1856 }
5af43325 1857 return cnt;
8bfd0fda
BP
1858 } else {
1859 return 0;
1860 }
1861}
1862
1863/* Returns the number consecutive of MPLS LSEs, starting at the
1864 * innermost LSE, that are common in 'a' and 'b'.
1865 *
1866 * 'an' must be flow_count_mpls_labels(a).
1867 * 'bn' must be flow_count_mpls_labels(b).
1868 */
1869int
1870flow_count_common_mpls_labels(const struct flow *a, int an,
1871 const struct flow *b, int bn,
1872 struct flow_wildcards *wc)
1873{
1874 int min_n = MIN(an, bn);
1875 if (min_n == 0) {
1876 return 0;
1877 } else {
1878 int common_n = 0;
1879 int a_last = an - 1;
1880 int b_last = bn - 1;
1881 int i;
1882
1883 for (i = 0; i < min_n; i++) {
1884 if (wc) {
1885 wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
1886 wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
1887 }
1888 if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
1889 break;
1890 } else {
1891 common_n++;
1892 }
1893 }
1894
1895 return common_n;
1896 }
1897}
1898
1899/* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
1900 * to 'mpls_eth_type', which must be an MPLS Ethertype.
1901 *
1902 * If the new label is the first MPLS label in 'flow', it is generated as;
1903 *
1904 * - label: 2, if 'flow' is IPv6, otherwise 0.
1905 *
1906 * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
1907 *
1908 * - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
1909 *
1910 * - BoS: 1.
1911 *
22d38fca 1912 * If the new label is the second or later label MPLS label in 'flow', it is
8bfd0fda
BP
1913 * generated as;
1914 *
368fb7e6 1915 * - label: Copied from outer label.
8bfd0fda
BP
1916 *
1917 * - TTL: Copied from outer label.
1918 *
1919 * - TC: Copied from outer label.
1920 *
1921 * - BoS: 0.
1922 *
1923 * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
1924 * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
1925 */
1926void
1927flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
1928 struct flow_wildcards *wc)
1929{
1930 ovs_assert(eth_type_mpls(mpls_eth_type));
1931 ovs_assert(n < FLOW_MAX_MPLS_LABELS);
1932
8bfd0fda
BP
1933 if (n) {
1934 int i;
1935
22d38fca
JR
1936 if (wc) {
1937 memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
1938 }
8bfd0fda
BP
1939 for (i = n; i >= 1; i--) {
1940 flow->mpls_lse[i] = flow->mpls_lse[i - 1];
1941 }
22d38fca 1942 flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
8bfd0fda
BP
1943 } else {
1944 int label = 0; /* IPv4 Explicit Null. */
1945 int tc = 0;
1946 int ttl = 64;
1947
1948 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1949 label = 2;
1950 }
1951
1952 if (is_ip_any(flow)) {
1953 tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
22d38fca
JR
1954 if (wc) {
1955 wc->masks.nw_tos |= IP_DSCP_MASK;
1956 wc->masks.nw_ttl = 0xff;
1957 }
8bfd0fda
BP
1958
1959 if (flow->nw_ttl) {
1960 ttl = flow->nw_ttl;
1961 }
8bfd0fda
BP
1962 }
1963
1964 flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
1965
d70e8c28 1966 /* Clear all L3 and L4 fields and dp_hash. */
b666962b 1967 BUILD_ASSERT(FLOW_WC_SEQ == 33);
8bfd0fda
BP
1968 memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
1969 sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
d70e8c28 1970 flow->dp_hash = 0;
8bfd0fda
BP
1971 }
1972 flow->dl_type = mpls_eth_type;
1973}
1974
1975/* Tries to remove the outermost MPLS label from 'flow'. Returns true if
1976 * successful, false otherwise. On success, sets 'flow''s Ethernet type to
1977 * 'eth_type'.
1978 *
1979 * 'n' must be flow_count_mpls_labels(flow). */
1980bool
1981flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
1982 struct flow_wildcards *wc)
1983{
1984 int i;
1985
1986 if (n == 0) {
1987 /* Nothing to pop. */
1988 return false;
22d38fca
JR
1989 } else if (n == FLOW_MAX_MPLS_LABELS) {
1990 if (wc) {
1991 wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
1992 }
1993 if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
1994 /* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
1995 return false;
1996 }
8bfd0fda
BP
1997 }
1998
22d38fca
JR
1999 if (wc) {
2000 memset(&wc->masks.mpls_lse[1], 0xff,
2001 sizeof *wc->masks.mpls_lse * (n - 1));
2002 }
8bfd0fda
BP
2003 for (i = 1; i < n; i++) {
2004 flow->mpls_lse[i - 1] = flow->mpls_lse[i];
2005 }
2006 flow->mpls_lse[n - 1] = 0;
2007 flow->dl_type = eth_type;
2008 return true;
2009}
2010
b02475c5
SH
2011/* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
2012 * as an OpenFlow 1.1 "mpls_label" value. */
2013void
8bfd0fda 2014flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
b02475c5 2015{
8bfd0fda 2016 set_mpls_lse_label(&flow->mpls_lse[idx], label);
b02475c5
SH
2017}
2018
b676167a
SH
2019/* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
2020 * range 0...255. */
2021void
8bfd0fda 2022flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
b676167a 2023{
8bfd0fda 2024 set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
b676167a
SH
2025}
2026
b02475c5
SH
2027/* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
2028 * range 0...7. */
2029void
8bfd0fda 2030flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
b02475c5 2031{
8bfd0fda 2032 set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
b02475c5
SH
2033}
2034
2035/* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
2036void
8bfd0fda 2037flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
b02475c5 2038{
8bfd0fda 2039 set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
b02475c5
SH
2040}
2041
8bfd0fda
BP
2042/* Sets the entire MPLS LSE. */
2043void
2044flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
2045{
2046 flow->mpls_lse[idx] = lse;
2047}
52105b67 2048
437d0d22 2049static size_t
cf62fa4c 2050flow_compose_l4(struct dp_packet *p, const struct flow *flow)
52105b67 2051{
437d0d22
JR
2052 size_t l4_len = 0;
2053
52105b67
JR
2054 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
2055 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
2056 if (flow->nw_proto == IPPROTO_TCP) {
2057 struct tcp_header *tcp;
2058
437d0d22 2059 l4_len = sizeof *tcp;
cf62fa4c 2060 tcp = dp_packet_put_zeros(p, l4_len);
52105b67
JR
2061 tcp->tcp_src = flow->tp_src;
2062 tcp->tcp_dst = flow->tp_dst;
2063 tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
52105b67
JR
2064 } else if (flow->nw_proto == IPPROTO_UDP) {
2065 struct udp_header *udp;
2066
437d0d22 2067 l4_len = sizeof *udp;
cf62fa4c 2068 udp = dp_packet_put_zeros(p, l4_len);
52105b67
JR
2069 udp->udp_src = flow->tp_src;
2070 udp->udp_dst = flow->tp_dst;
52105b67
JR
2071 } else if (flow->nw_proto == IPPROTO_SCTP) {
2072 struct sctp_header *sctp;
2073
437d0d22 2074 l4_len = sizeof *sctp;
cf62fa4c 2075 sctp = dp_packet_put_zeros(p, l4_len);
52105b67
JR
2076 sctp->sctp_src = flow->tp_src;
2077 sctp->sctp_dst = flow->tp_dst;
52105b67
JR
2078 } else if (flow->nw_proto == IPPROTO_ICMP) {
2079 struct icmp_header *icmp;
2080
437d0d22 2081 l4_len = sizeof *icmp;
cf62fa4c 2082 icmp = dp_packet_put_zeros(p, l4_len);
52105b67
JR
2083 icmp->icmp_type = ntohs(flow->tp_src);
2084 icmp->icmp_code = ntohs(flow->tp_dst);
2085 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
0e612675
FL
2086 } else if (flow->nw_proto == IPPROTO_IGMP) {
2087 struct igmp_header *igmp;
2088
2089 l4_len = sizeof *igmp;
cf62fa4c 2090 igmp = dp_packet_put_zeros(p, l4_len);
0e612675
FL
2091 igmp->igmp_type = ntohs(flow->tp_src);
2092 igmp->igmp_code = ntohs(flow->tp_dst);
2093 put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
2094 igmp->igmp_csum = csum(igmp, IGMP_HEADER_LEN);
52105b67
JR
2095 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
2096 struct icmp6_hdr *icmp;
2097
437d0d22 2098 l4_len = sizeof *icmp;
cf62fa4c 2099 icmp = dp_packet_put_zeros(p, l4_len);
52105b67
JR
2100 icmp->icmp6_type = ntohs(flow->tp_src);
2101 icmp->icmp6_code = ntohs(flow->tp_dst);
2102
2103 if (icmp->icmp6_code == 0 &&
2104 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
2105 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
2106 struct in6_addr *nd_target;
74ff3298 2107 struct ovs_nd_opt *nd_opt;
52105b67 2108
437d0d22 2109 l4_len += sizeof *nd_target;
cf62fa4c 2110 nd_target = dp_packet_put_zeros(p, sizeof *nd_target);
52105b67
JR
2111 *nd_target = flow->nd_target;
2112
2113 if (!eth_addr_is_zero(flow->arp_sha)) {
437d0d22 2114 l4_len += 8;
cf62fa4c 2115 nd_opt = dp_packet_put_zeros(p, 8);
52105b67
JR
2116 nd_opt->nd_opt_len = 1;
2117 nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
74ff3298 2118 nd_opt->nd_opt_mac = flow->arp_sha;
52105b67
JR
2119 }
2120 if (!eth_addr_is_zero(flow->arp_tha)) {
437d0d22 2121 l4_len += 8;
cf62fa4c 2122 nd_opt = dp_packet_put_zeros(p, 8);
52105b67
JR
2123 nd_opt->nd_opt_len = 1;
2124 nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
74ff3298 2125 nd_opt->nd_opt_mac = flow->arp_tha;
52105b67
JR
2126 }
2127 }
2128 icmp->icmp6_cksum = (OVS_FORCE uint16_t)
cf62fa4c 2129 csum(icmp, (char *)dp_packet_tail(p) - (char *)icmp);
52105b67
JR
2130 }
2131 }
437d0d22 2132 return l4_len;
52105b67
JR
2133}
2134
8b3b8dd1
BP
2135/* Puts into 'b' a packet that flow_extract() would parse as having the given
2136 * 'flow'.
2137 *
2138 * (This is useful only for testing, obviously, and the packet isn't really
dc5a7ce7 2139 * valid. It hasn't got some checksums filled in, for one, and lots of fields
8b3b8dd1
BP
2140 * are just zeroed.) */
2141void
cf62fa4c 2142flow_compose(struct dp_packet *p, const struct flow *flow)
8b3b8dd1 2143{
437d0d22
JR
2144 size_t l4_len;
2145
52105b67 2146 /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
cf62fa4c 2147 eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
8b3b8dd1 2148 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
cf62fa4c
PS
2149 struct eth_header *eth = dp_packet_l2(p);
2150 eth->eth_type = htons(dp_packet_size(p));
8b3b8dd1
BP
2151 return;
2152 }
2153
2154 if (flow->vlan_tci & htons(VLAN_CFI)) {
cf62fa4c 2155 eth_push_vlan(p, htons(ETH_TYPE_VLAN), flow->vlan_tci);
8b3b8dd1
BP
2156 }
2157
cff78c88 2158 if (flow->dl_type == htons(ETH_TYPE_IP)) {
8b3b8dd1
BP
2159 struct ip_header *ip;
2160
cf62fa4c 2161 ip = dp_packet_put_zeros(p, sizeof *ip);
8b3b8dd1 2162 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
eadef313 2163 ip->ip_tos = flow->nw_tos;
aabf5352 2164 ip->ip_ttl = flow->nw_ttl;
8b3b8dd1 2165 ip->ip_proto = flow->nw_proto;
7c457c33
BP
2166 put_16aligned_be32(&ip->ip_src, flow->nw_src);
2167 put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
8b3b8dd1 2168
eadef313 2169 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
7257b535 2170 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
eadef313 2171 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
7257b535
BP
2172 ip->ip_frag_off |= htons(100);
2173 }
2174 }
df9b6612 2175
cf62fa4c 2176 dp_packet_set_l4(p, dp_packet_tail(p));
52105b67 2177
cf62fa4c 2178 l4_len = flow_compose_l4(p, flow);
52105b67 2179
cf62fa4c
PS
2180 ip = dp_packet_l3(p);
2181 ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
dc5a7ce7 2182 ip->ip_csum = csum(ip, sizeof *ip);
cff78c88 2183 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
52105b67
JR
2184 struct ovs_16aligned_ip6_hdr *nh;
2185
cf62fa4c 2186 nh = dp_packet_put_zeros(p, sizeof *nh);
52105b67
JR
2187 put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
2188 htonl(flow->nw_tos << 20) | flow->ipv6_label);
2189 nh->ip6_hlim = flow->nw_ttl;
2190 nh->ip6_nxt = flow->nw_proto;
2191
2192 memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
2193 memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
2194
cf62fa4c 2195 dp_packet_set_l4(p, dp_packet_tail(p));
52105b67 2196
cf62fa4c 2197 l4_len = flow_compose_l4(p, flow);
52105b67 2198
cf62fa4c 2199 nh = dp_packet_l3(p);
437d0d22 2200 nh->ip6_plen = htons(l4_len);
cff78c88
SH
2201 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
2202 flow->dl_type == htons(ETH_TYPE_RARP)) {
8b3b8dd1
BP
2203 struct arp_eth_header *arp;
2204
cf62fa4c
PS
2205 arp = dp_packet_put_zeros(p, sizeof *arp);
2206 dp_packet_set_l3(p, arp);
8b3b8dd1
BP
2207 arp->ar_hrd = htons(1);
2208 arp->ar_pro = htons(ETH_TYPE_IP);
2209 arp->ar_hln = ETH_ADDR_LEN;
2210 arp->ar_pln = 4;
2211 arp->ar_op = htons(flow->nw_proto);
2212
2213 if (flow->nw_proto == ARP_OP_REQUEST ||
2214 flow->nw_proto == ARP_OP_REPLY) {
7c457c33
BP
2215 put_16aligned_be32(&arp->ar_spa, flow->nw_src);
2216 put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
74ff3298
JR
2217 arp->ar_sha = flow->arp_sha;
2218 arp->ar_tha = flow->arp_tha;
8b3b8dd1
BP
2219 }
2220 }
b02475c5
SH
2221
2222 if (eth_type_mpls(flow->dl_type)) {
8bfd0fda
BP
2223 int n;
2224
cf62fa4c 2225 p->l2_5_ofs = p->l3_ofs;
8bfd0fda
BP
2226 for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
2227 if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
2228 break;
2229 }
2230 }
2231 while (n > 0) {
cf62fa4c 2232 push_mpls(p, flow->dl_type, flow->mpls_lse[--n]);
8bfd0fda 2233 }
b02475c5 2234 }
8b3b8dd1 2235}
5cb7a798
BP
2236\f
2237/* Compressed flow. */
2238
df40c152 2239/* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
5fcff47b
JR
2240 * the caller. The caller must have already computed 'dst->map' properly to
2241 * indicate the significant uint64_t elements of 'src'.
13751fd8
JR
2242 *
2243 * Normally the significant elements are the ones that are non-zero. However,
2244 * when a miniflow is initialized from a (mini)mask, the values can be zeroes,
ceb3bd67
JR
2245 * so that the flow and mask always have the same maps. */
2246void
2247miniflow_init(struct miniflow *dst, const struct flow *src)
df40c152 2248{
09b0fa9c 2249 uint64_t *dst_u64 = miniflow_values(dst);
361d808d 2250 size_t idx;
df40c152 2251
5fcff47b
JR
2252 FLOWMAP_FOR_EACH_INDEX(idx, dst->map) {
2253 *dst_u64++ = flow_u64_value(src, idx);
df40c152
BP
2254 }
2255}
2256
361d808d 2257/* Initialize the maps of 'flow' from 'src'. */
ceb3bd67
JR
2258void
2259miniflow_map_init(struct miniflow *flow, const struct flow *src)
5cb7a798 2260{
ceb3bd67 2261 /* Initialize map, counting the number of nonzero elements. */
5fcff47b
JR
2262 flowmap_init(&flow->map);
2263 for (size_t i = 0; i < FLOW_U64S; i++) {
2264 if (flow_u64_value(src, i)) {
2265 flowmap_set(&flow->map, i, 1);
5cb7a798
BP
2266 }
2267 }
ceb3bd67 2268}
5cb7a798 2269
ceb3bd67
JR
2270/* Allocates 'n' count of miniflows, consecutive in memory, initializing the
2271 * map of each from 'src'.
2272 * Returns the size of the miniflow data. */
2273size_t
2274miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src)
2275{
361d808d
JR
2276 size_t n_values = miniflow_n_values(src);
2277 size_t data_size = MINIFLOW_VALUES_SIZE(n_values);
2278 struct miniflow *dst = xmalloc(n * (sizeof *src + data_size));
5fcff47b 2279 size_t i;
ceb3bd67
JR
2280
2281 COVERAGE_INC(miniflow_malloc);
2282
2283 for (i = 0; i < n; i++) {
361d808d 2284 *dst = *src; /* Copy maps. */
ceb3bd67 2285 dsts[i] = dst;
361d808d
JR
2286 dst += 1; /* Just past the maps. */
2287 dst = (struct miniflow *)((uint64_t *)dst + n_values); /* Skip data. */
ceb3bd67
JR
2288 }
2289 return data_size;
df40c152 2290}
5cb7a798 2291
ceb3bd67
JR
2292/* Returns a miniflow copy of 'src'. The caller must eventually free() the
2293 * returned miniflow. */
8fd47924 2294struct miniflow *
ceb3bd67 2295miniflow_create(const struct flow *src)
df40c152 2296{
ceb3bd67
JR
2297 struct miniflow tmp;
2298 struct miniflow *dst;
2299
2300 miniflow_map_init(&tmp, src);
2301
2302 miniflow_alloc(&dst, 1, &tmp);
2303 miniflow_init(dst, src);
2304 return dst;
5cb7a798
BP
2305}
2306
3016f3e4 2307/* Initializes 'dst' as a copy of 'src'. The caller must have allocated
8fd47924 2308 * 'dst' to have inline space for 'n_values' data in 'src'. */
3016f3e4 2309void
a851eb94
JR
2310miniflow_clone(struct miniflow *dst, const struct miniflow *src,
2311 size_t n_values)
3016f3e4 2312{
361d808d 2313 *dst = *src; /* Copy maps. */
09b0fa9c
JR
2314 memcpy(miniflow_values(dst), miniflow_get_values(src),
2315 MINIFLOW_VALUES_SIZE(n_values));
5cb7a798
BP
2316}
2317
2318/* Initializes 'dst' as a copy of 'src'. */
2319void
2320miniflow_expand(const struct miniflow *src, struct flow *dst)
2321{
ad77e3c5
EJ
2322 memset(dst, 0, sizeof *dst);
2323 flow_union_with_miniflow(dst, src);
5cb7a798
BP
2324}
2325
8fd47924 2326/* Returns true if 'a' and 'b' are equal miniflows, false otherwise. */
5cb7a798
BP
2327bool
2328miniflow_equal(const struct miniflow *a, const struct miniflow *b)
2329{
09b0fa9c
JR
2330 const uint64_t *ap = miniflow_get_values(a);
2331 const uint64_t *bp = miniflow_get_values(b);
5cb7a798 2332
5fcff47b
JR
2333 /* This is mostly called after a matching hash, so it is highly likely that
2334 * the maps are equal as well. */
2335 if (OVS_LIKELY(flowmap_equal(a->map, b->map))) {
361d808d 2336 return !memcmp(ap, bp, miniflow_n_values(a) * sizeof *ap);
080e28d0 2337 } else {
5fcff47b 2338 size_t idx;
df40c152 2339
5fcff47b
JR
2340 FLOWMAP_FOR_EACH_INDEX (idx, flowmap_or(a->map, b->map)) {
2341 if ((flowmap_is_set(&a->map, idx) ? *ap++ : 0)
2342 != (flowmap_is_set(&b->map, idx) ? *bp++ : 0)) {
080e28d0 2343 return false;
df40c152 2344 }
5cb7a798
BP
2345 }
2346 }
2347
df40c152 2348 return true;
5cb7a798
BP
2349}
2350
de4ad4a2
JR
2351/* Returns false if 'a' and 'b' differ at the places where there are 1-bits
2352 * in 'mask', true otherwise. */
5cb7a798
BP
2353bool
2354miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
2355 const struct minimask *mask)
2356{
09b0fa9c 2357 const uint64_t *p = miniflow_get_values(&mask->masks);
361d808d 2358 size_t idx;
5cb7a798 2359
5fcff47b 2360 FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
1cea007c 2361 if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) {
080e28d0 2362 return false;
5cb7a798
BP
2363 }
2364 }
2365
2366 return true;
2367}
2368
2369/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
2370 * in 'mask', false if they differ. */
2371bool
2372miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
2373 const struct minimask *mask)
2374{
09b0fa9c 2375 const uint64_t *p = miniflow_get_values(&mask->masks);
361d808d 2376 size_t idx;
5cb7a798 2377
5fcff47b
JR
2378 FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
2379 if ((miniflow_get(a, idx) ^ flow_u64_value(b, idx)) & *p++) {
080e28d0 2380 return false;
5cb7a798
BP
2381 }
2382 }
2383
2384 return true;
2385}
2386
5cb7a798 2387\f
ceb3bd67
JR
2388void
2389minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
2390{
2391 miniflow_init(&mask->masks, &wc->masks);
2392}
2393
8fd47924
JR
2394/* Returns a minimask copy of 'wc'. The caller must eventually free the
2395 * returned minimask with free(). */
2396struct minimask *
2397minimask_create(const struct flow_wildcards *wc)
5cb7a798 2398{
8fd47924 2399 return (struct minimask *)miniflow_create(&wc->masks);
5cb7a798
BP
2400}
2401
2402/* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
2403 *
8fd47924
JR
2404 * The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', which
2405 * must follow '*dst_' in memory, for use by 'dst_'. The caller must *not*
2406 * free 'dst_' free(). */
5cb7a798
BP
2407void
2408minimask_combine(struct minimask *dst_,
2409 const struct minimask *a_, const struct minimask *b_,
d70e8c28 2410 uint64_t storage[FLOW_U64S])
5cb7a798
BP
2411{
2412 struct miniflow *dst = &dst_->masks;
d70e8c28 2413 uint64_t *dst_values = storage;
5cb7a798
BP
2414 const struct miniflow *a = &a_->masks;
2415 const struct miniflow *b = &b_->masks;
361d808d 2416 size_t idx;
5cb7a798 2417
5fcff47b 2418 flowmap_init(&dst->map);
080e28d0 2419
5fcff47b 2420 FLOWMAP_FOR_EACH_INDEX(idx, flowmap_and(a->map, b->map)) {
361d808d 2421 /* Both 'a' and 'b' have non-zero data at 'idx'. */
5fcff47b 2422 uint64_t mask = *miniflow_get__(a, idx) & *miniflow_get__(b, idx);
361d808d
JR
2423
2424 if (mask) {
5fcff47b 2425 flowmap_set(&dst->map, idx, 1);
1cea007c 2426 *dst_values++ = mask;
5cb7a798
BP
2427 }
2428 }
2429}
2430
8fd47924 2431/* Initializes 'wc' as a copy of 'mask'. */
5cb7a798
BP
2432void
2433minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
2434{
2435 miniflow_expand(&mask->masks, &wc->masks);
2436}
2437
f4d335e9
JR
2438/* Returns true if 'a' and 'b' are the same flow mask, false otherwise.
2439 * Minimasks may not have zero data values, so for the minimasks to be the
2440 * same, they need to have the same map and the same data values. */
5cb7a798
BP
2441bool
2442minimask_equal(const struct minimask *a, const struct minimask *b)
2443{
5fcff47b
JR
2444 return !memcmp(a, b, sizeof *a
2445 + MINIFLOW_VALUES_SIZE(miniflow_n_values(&a->masks)));
5cb7a798
BP
2446}
2447
d4570fd8 2448/* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
5cb7a798
BP
2449 * false otherwise. */
2450bool
d4570fd8 2451minimask_has_extra(const struct minimask *a, const struct minimask *b)
5cb7a798 2452{
09b0fa9c 2453 const uint64_t *bp = miniflow_get_values(&b->masks);
361d808d 2454 size_t idx;
5cb7a798 2455
5fcff47b 2456 FLOWMAP_FOR_EACH_INDEX(idx, b->masks.map) {
d70e8c28 2457 uint64_t b_u64 = *bp++;
5cb7a798 2458
d70e8c28
JR
2459 /* 'b_u64' is non-zero, check if the data in 'a' is either zero
2460 * or misses some of the bits in 'b_u64'. */
5fcff47b
JR
2461 if (!MINIFLOW_IN_MAP(&a->masks, idx)
2462 || ((*miniflow_get__(&a->masks, idx) & b_u64) != b_u64)) {
f4d335e9 2463 return true; /* 'a' wildcards some bits 'b' doesn't. */
5cb7a798
BP
2464 }
2465 }
2466
2467 return false;
2468}