]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * 2002-10-18 written by Jim Houston jim.houston@ccur.com | |
3 | * Copyright (C) 2002 by Concurrent Computer Corporation | |
4 | * Distributed under the GNU GPL license version 2. | |
5 | * | |
6 | * Modified by George Anzinger to reuse immediately and to use | |
7 | * find bit instructions. Also removed _irq on spinlocks. | |
8 | * | |
3219b3b7 ND |
9 | * Modified by Nadia Derbey to make it RCU safe. |
10 | * | |
e15ae2dd | 11 | * Small id to pointer translation service. |
1da177e4 | 12 | * |
e15ae2dd | 13 | * It uses a radix tree like structure as a sparse array indexed |
1da177e4 | 14 | * by the id to obtain the pointer. The bitmap makes allocating |
e15ae2dd | 15 | * a new id quick. |
1da177e4 LT |
16 | * |
17 | * You call it to allocate an id (an int) an associate with that id a | |
18 | * pointer or what ever, we treat it as a (void *). You can pass this | |
19 | * id to a user for him to pass back at a later time. You then pass | |
20 | * that id to this code and it returns your pointer. | |
21 | ||
e15ae2dd | 22 | * You can release ids at any time. When all ids are released, most of |
1da177e4 | 23 | * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we |
e15ae2dd | 24 | * don't need to go to the memory "store" during an id allocate, just |
1da177e4 LT |
25 | * so you don't need to be too concerned about locking and conflicts |
26 | * with the slab allocator. | |
27 | */ | |
28 | ||
29 | #ifndef TEST // to test in user space... | |
30 | #include <linux/slab.h> | |
31 | #include <linux/init.h> | |
32 | #include <linux/module.h> | |
33 | #endif | |
5806f07c | 34 | #include <linux/err.h> |
1da177e4 LT |
35 | #include <linux/string.h> |
36 | #include <linux/idr.h> | |
37 | ||
e18b890b | 38 | static struct kmem_cache *idr_layer_cache; |
1da177e4 | 39 | |
4ae53789 | 40 | static struct idr_layer *get_from_free_list(struct idr *idp) |
1da177e4 LT |
41 | { |
42 | struct idr_layer *p; | |
c259cc28 | 43 | unsigned long flags; |
1da177e4 | 44 | |
c259cc28 | 45 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
46 | if ((p = idp->id_free)) { |
47 | idp->id_free = p->ary[0]; | |
48 | idp->id_free_cnt--; | |
49 | p->ary[0] = NULL; | |
50 | } | |
c259cc28 | 51 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
52 | return(p); |
53 | } | |
54 | ||
cf481c20 ND |
55 | static void idr_layer_rcu_free(struct rcu_head *head) |
56 | { | |
57 | struct idr_layer *layer; | |
58 | ||
59 | layer = container_of(head, struct idr_layer, rcu_head); | |
60 | kmem_cache_free(idr_layer_cache, layer); | |
61 | } | |
62 | ||
63 | static inline void free_layer(struct idr_layer *p) | |
64 | { | |
65 | call_rcu(&p->rcu_head, idr_layer_rcu_free); | |
66 | } | |
67 | ||
1eec0056 | 68 | /* only called when idp->lock is held */ |
4ae53789 | 69 | static void __move_to_free_list(struct idr *idp, struct idr_layer *p) |
1eec0056 SR |
70 | { |
71 | p->ary[0] = idp->id_free; | |
72 | idp->id_free = p; | |
73 | idp->id_free_cnt++; | |
74 | } | |
75 | ||
4ae53789 | 76 | static void move_to_free_list(struct idr *idp, struct idr_layer *p) |
1da177e4 | 77 | { |
c259cc28 RD |
78 | unsigned long flags; |
79 | ||
1da177e4 LT |
80 | /* |
81 | * Depends on the return element being zeroed. | |
82 | */ | |
c259cc28 | 83 | spin_lock_irqsave(&idp->lock, flags); |
4ae53789 | 84 | __move_to_free_list(idp, p); |
c259cc28 | 85 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
86 | } |
87 | ||
e33ac8bd TH |
88 | static void idr_mark_full(struct idr_layer **pa, int id) |
89 | { | |
90 | struct idr_layer *p = pa[0]; | |
91 | int l = 0; | |
92 | ||
93 | __set_bit(id & IDR_MASK, &p->bitmap); | |
94 | /* | |
95 | * If this layer is full mark the bit in the layer above to | |
96 | * show that this part of the radix tree is full. This may | |
97 | * complete the layer above and require walking up the radix | |
98 | * tree. | |
99 | */ | |
100 | while (p->bitmap == IDR_FULL) { | |
101 | if (!(p = pa[++l])) | |
102 | break; | |
103 | id = id >> IDR_BITS; | |
104 | __set_bit((id & IDR_MASK), &p->bitmap); | |
105 | } | |
106 | } | |
107 | ||
1da177e4 LT |
108 | /** |
109 | * idr_pre_get - reserver resources for idr allocation | |
110 | * @idp: idr handle | |
111 | * @gfp_mask: memory allocation flags | |
112 | * | |
113 | * This function should be called prior to locking and calling the | |
3219b3b7 | 114 | * idr_get_new* functions. It preallocates enough memory to satisfy |
1da177e4 LT |
115 | * the worst possible allocation. |
116 | * | |
117 | * If the system is REALLY out of memory this function returns 0, | |
118 | * otherwise 1. | |
119 | */ | |
fd4f2df2 | 120 | int idr_pre_get(struct idr *idp, gfp_t gfp_mask) |
1da177e4 LT |
121 | { |
122 | while (idp->id_free_cnt < IDR_FREE_MAX) { | |
123 | struct idr_layer *new; | |
124 | new = kmem_cache_alloc(idr_layer_cache, gfp_mask); | |
e15ae2dd | 125 | if (new == NULL) |
1da177e4 | 126 | return (0); |
4ae53789 | 127 | move_to_free_list(idp, new); |
1da177e4 LT |
128 | } |
129 | return 1; | |
130 | } | |
131 | EXPORT_SYMBOL(idr_pre_get); | |
132 | ||
e33ac8bd | 133 | static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa) |
1da177e4 LT |
134 | { |
135 | int n, m, sh; | |
136 | struct idr_layer *p, *new; | |
7aae6dd8 | 137 | int l, id, oid; |
5ba25331 | 138 | unsigned long bm; |
1da177e4 LT |
139 | |
140 | id = *starting_id; | |
7aae6dd8 | 141 | restart: |
1da177e4 LT |
142 | p = idp->top; |
143 | l = idp->layers; | |
144 | pa[l--] = NULL; | |
145 | while (1) { | |
146 | /* | |
147 | * We run around this while until we reach the leaf node... | |
148 | */ | |
149 | n = (id >> (IDR_BITS*l)) & IDR_MASK; | |
150 | bm = ~p->bitmap; | |
151 | m = find_next_bit(&bm, IDR_SIZE, n); | |
152 | if (m == IDR_SIZE) { | |
153 | /* no space available go back to previous layer. */ | |
154 | l++; | |
7aae6dd8 | 155 | oid = id; |
e15ae2dd | 156 | id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; |
7aae6dd8 TH |
157 | |
158 | /* if already at the top layer, we need to grow */ | |
1da177e4 LT |
159 | if (!(p = pa[l])) { |
160 | *starting_id = id; | |
944ca05c | 161 | return IDR_NEED_TO_GROW; |
1da177e4 | 162 | } |
7aae6dd8 TH |
163 | |
164 | /* If we need to go up one layer, continue the | |
165 | * loop; otherwise, restart from the top. | |
166 | */ | |
167 | sh = IDR_BITS * (l + 1); | |
168 | if (oid >> sh == id >> sh) | |
169 | continue; | |
170 | else | |
171 | goto restart; | |
1da177e4 LT |
172 | } |
173 | if (m != n) { | |
174 | sh = IDR_BITS*l; | |
175 | id = ((id >> sh) ^ n ^ m) << sh; | |
176 | } | |
177 | if ((id >= MAX_ID_BIT) || (id < 0)) | |
944ca05c | 178 | return IDR_NOMORE_SPACE; |
1da177e4 LT |
179 | if (l == 0) |
180 | break; | |
181 | /* | |
182 | * Create the layer below if it is missing. | |
183 | */ | |
184 | if (!p->ary[m]) { | |
4ae53789 ND |
185 | new = get_from_free_list(idp); |
186 | if (!new) | |
1da177e4 | 187 | return -1; |
6ff2d39b | 188 | new->layer = l-1; |
3219b3b7 | 189 | rcu_assign_pointer(p->ary[m], new); |
1da177e4 LT |
190 | p->count++; |
191 | } | |
192 | pa[l--] = p; | |
193 | p = p->ary[m]; | |
194 | } | |
e33ac8bd TH |
195 | |
196 | pa[l] = p; | |
197 | return id; | |
1da177e4 LT |
198 | } |
199 | ||
e33ac8bd TH |
200 | static int idr_get_empty_slot(struct idr *idp, int starting_id, |
201 | struct idr_layer **pa) | |
1da177e4 LT |
202 | { |
203 | struct idr_layer *p, *new; | |
204 | int layers, v, id; | |
c259cc28 | 205 | unsigned long flags; |
e15ae2dd | 206 | |
1da177e4 LT |
207 | id = starting_id; |
208 | build_up: | |
209 | p = idp->top; | |
210 | layers = idp->layers; | |
211 | if (unlikely(!p)) { | |
4ae53789 | 212 | if (!(p = get_from_free_list(idp))) |
1da177e4 | 213 | return -1; |
6ff2d39b | 214 | p->layer = 0; |
1da177e4 LT |
215 | layers = 1; |
216 | } | |
217 | /* | |
218 | * Add a new layer to the top of the tree if the requested | |
219 | * id is larger than the currently allocated space. | |
220 | */ | |
589777ea | 221 | while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) { |
1da177e4 | 222 | layers++; |
711a49a0 MS |
223 | if (!p->count) { |
224 | /* special case: if the tree is currently empty, | |
225 | * then we grow the tree by moving the top node | |
226 | * upwards. | |
227 | */ | |
228 | p->layer++; | |
1da177e4 | 229 | continue; |
711a49a0 | 230 | } |
4ae53789 | 231 | if (!(new = get_from_free_list(idp))) { |
1da177e4 LT |
232 | /* |
233 | * The allocation failed. If we built part of | |
234 | * the structure tear it down. | |
235 | */ | |
c259cc28 | 236 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
237 | for (new = p; p && p != idp->top; new = p) { |
238 | p = p->ary[0]; | |
239 | new->ary[0] = NULL; | |
240 | new->bitmap = new->count = 0; | |
4ae53789 | 241 | __move_to_free_list(idp, new); |
1da177e4 | 242 | } |
c259cc28 | 243 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
244 | return -1; |
245 | } | |
246 | new->ary[0] = p; | |
247 | new->count = 1; | |
6ff2d39b | 248 | new->layer = layers-1; |
1da177e4 LT |
249 | if (p->bitmap == IDR_FULL) |
250 | __set_bit(0, &new->bitmap); | |
251 | p = new; | |
252 | } | |
3219b3b7 | 253 | rcu_assign_pointer(idp->top, p); |
1da177e4 | 254 | idp->layers = layers; |
e33ac8bd | 255 | v = sub_alloc(idp, &id, pa); |
944ca05c | 256 | if (v == IDR_NEED_TO_GROW) |
1da177e4 LT |
257 | goto build_up; |
258 | return(v); | |
259 | } | |
260 | ||
e33ac8bd TH |
261 | static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) |
262 | { | |
263 | struct idr_layer *pa[MAX_LEVEL]; | |
264 | int id; | |
265 | ||
266 | id = idr_get_empty_slot(idp, starting_id, pa); | |
267 | if (id >= 0) { | |
268 | /* | |
269 | * Successfully found an empty slot. Install the user | |
270 | * pointer and mark the slot full. | |
271 | */ | |
3219b3b7 ND |
272 | rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], |
273 | (struct idr_layer *)ptr); | |
e33ac8bd TH |
274 | pa[0]->count++; |
275 | idr_mark_full(pa, id); | |
276 | } | |
277 | ||
278 | return id; | |
279 | } | |
280 | ||
1da177e4 | 281 | /** |
7c657f2f | 282 | * idr_get_new_above - allocate new idr entry above or equal to a start id |
1da177e4 LT |
283 | * @idp: idr handle |
284 | * @ptr: pointer you want associated with the ide | |
285 | * @start_id: id to start search at | |
286 | * @id: pointer to the allocated handle | |
287 | * | |
288 | * This is the allocate id function. It should be called with any | |
289 | * required locks. | |
290 | * | |
291 | * If memory is required, it will return -EAGAIN, you should unlock | |
292 | * and go back to the idr_pre_get() call. If the idr is full, it will | |
293 | * return -ENOSPC. | |
294 | * | |
295 | * @id returns a value in the range 0 ... 0x7fffffff | |
296 | */ | |
297 | int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) | |
298 | { | |
299 | int rv; | |
e15ae2dd | 300 | |
1da177e4 LT |
301 | rv = idr_get_new_above_int(idp, ptr, starting_id); |
302 | /* | |
303 | * This is a cheap hack until the IDR code can be fixed to | |
304 | * return proper error values. | |
305 | */ | |
944ca05c ND |
306 | if (rv < 0) |
307 | return _idr_rc_to_errno(rv); | |
1da177e4 LT |
308 | *id = rv; |
309 | return 0; | |
310 | } | |
311 | EXPORT_SYMBOL(idr_get_new_above); | |
312 | ||
313 | /** | |
314 | * idr_get_new - allocate new idr entry | |
315 | * @idp: idr handle | |
316 | * @ptr: pointer you want associated with the ide | |
317 | * @id: pointer to the allocated handle | |
318 | * | |
319 | * This is the allocate id function. It should be called with any | |
320 | * required locks. | |
321 | * | |
322 | * If memory is required, it will return -EAGAIN, you should unlock | |
323 | * and go back to the idr_pre_get() call. If the idr is full, it will | |
324 | * return -ENOSPC. | |
325 | * | |
326 | * @id returns a value in the range 0 ... 0x7fffffff | |
327 | */ | |
328 | int idr_get_new(struct idr *idp, void *ptr, int *id) | |
329 | { | |
330 | int rv; | |
e15ae2dd | 331 | |
1da177e4 LT |
332 | rv = idr_get_new_above_int(idp, ptr, 0); |
333 | /* | |
334 | * This is a cheap hack until the IDR code can be fixed to | |
335 | * return proper error values. | |
336 | */ | |
944ca05c ND |
337 | if (rv < 0) |
338 | return _idr_rc_to_errno(rv); | |
1da177e4 LT |
339 | *id = rv; |
340 | return 0; | |
341 | } | |
342 | EXPORT_SYMBOL(idr_get_new); | |
343 | ||
344 | static void idr_remove_warning(int id) | |
345 | { | |
f098ad65 ND |
346 | printk(KERN_WARNING |
347 | "idr_remove called for id=%d which is not allocated.\n", id); | |
1da177e4 LT |
348 | dump_stack(); |
349 | } | |
350 | ||
351 | static void sub_remove(struct idr *idp, int shift, int id) | |
352 | { | |
353 | struct idr_layer *p = idp->top; | |
354 | struct idr_layer **pa[MAX_LEVEL]; | |
355 | struct idr_layer ***paa = &pa[0]; | |
cf481c20 | 356 | struct idr_layer *to_free; |
1da177e4 LT |
357 | int n; |
358 | ||
359 | *paa = NULL; | |
360 | *++paa = &idp->top; | |
361 | ||
362 | while ((shift > 0) && p) { | |
363 | n = (id >> shift) & IDR_MASK; | |
364 | __clear_bit(n, &p->bitmap); | |
365 | *++paa = &p->ary[n]; | |
366 | p = p->ary[n]; | |
367 | shift -= IDR_BITS; | |
368 | } | |
369 | n = id & IDR_MASK; | |
370 | if (likely(p != NULL && test_bit(n, &p->bitmap))){ | |
371 | __clear_bit(n, &p->bitmap); | |
cf481c20 ND |
372 | rcu_assign_pointer(p->ary[n], NULL); |
373 | to_free = NULL; | |
1da177e4 | 374 | while(*paa && ! --((**paa)->count)){ |
cf481c20 ND |
375 | if (to_free) |
376 | free_layer(to_free); | |
377 | to_free = **paa; | |
1da177e4 LT |
378 | **paa-- = NULL; |
379 | } | |
e15ae2dd | 380 | if (!*paa) |
1da177e4 | 381 | idp->layers = 0; |
cf481c20 ND |
382 | if (to_free) |
383 | free_layer(to_free); | |
e15ae2dd | 384 | } else |
1da177e4 | 385 | idr_remove_warning(id); |
1da177e4 LT |
386 | } |
387 | ||
388 | /** | |
389 | * idr_remove - remove the given id and free it's slot | |
72fd4a35 RD |
390 | * @idp: idr handle |
391 | * @id: unique key | |
1da177e4 LT |
392 | */ |
393 | void idr_remove(struct idr *idp, int id) | |
394 | { | |
395 | struct idr_layer *p; | |
cf481c20 | 396 | struct idr_layer *to_free; |
1da177e4 LT |
397 | |
398 | /* Mask off upper bits we don't use for the search. */ | |
399 | id &= MAX_ID_MASK; | |
400 | ||
401 | sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); | |
e15ae2dd | 402 | if (idp->top && idp->top->count == 1 && (idp->layers > 1) && |
cf481c20 ND |
403 | idp->top->ary[0]) { |
404 | /* | |
405 | * Single child at leftmost slot: we can shrink the tree. | |
406 | * This level is not needed anymore since when layers are | |
407 | * inserted, they are inserted at the top of the existing | |
408 | * tree. | |
409 | */ | |
410 | to_free = idp->top; | |
1da177e4 | 411 | p = idp->top->ary[0]; |
cf481c20 | 412 | rcu_assign_pointer(idp->top, p); |
1da177e4 | 413 | --idp->layers; |
cf481c20 ND |
414 | to_free->bitmap = to_free->count = 0; |
415 | free_layer(to_free); | |
1da177e4 LT |
416 | } |
417 | while (idp->id_free_cnt >= IDR_FREE_MAX) { | |
4ae53789 | 418 | p = get_from_free_list(idp); |
cf481c20 ND |
419 | /* |
420 | * Note: we don't call the rcu callback here, since the only | |
421 | * layers that fall into the freelist are those that have been | |
422 | * preallocated. | |
423 | */ | |
1da177e4 | 424 | kmem_cache_free(idr_layer_cache, p); |
1da177e4 | 425 | } |
af8e2a4c | 426 | return; |
1da177e4 LT |
427 | } |
428 | EXPORT_SYMBOL(idr_remove); | |
429 | ||
23936cc0 KH |
430 | /** |
431 | * idr_remove_all - remove all ids from the given idr tree | |
432 | * @idp: idr handle | |
433 | * | |
434 | * idr_destroy() only frees up unused, cached idp_layers, but this | |
435 | * function will remove all id mappings and leave all idp_layers | |
436 | * unused. | |
437 | * | |
438 | * A typical clean-up sequence for objects stored in an idr tree, will | |
439 | * use idr_for_each() to free all objects, if necessay, then | |
440 | * idr_remove_all() to remove all ids, and idr_destroy() to free | |
441 | * up the cached idr_layers. | |
442 | */ | |
443 | void idr_remove_all(struct idr *idp) | |
444 | { | |
6ace06dc | 445 | int n, id, max; |
23936cc0 KH |
446 | struct idr_layer *p; |
447 | struct idr_layer *pa[MAX_LEVEL]; | |
448 | struct idr_layer **paa = &pa[0]; | |
449 | ||
450 | n = idp->layers * IDR_BITS; | |
451 | p = idp->top; | |
452 | max = 1 << n; | |
453 | ||
454 | id = 0; | |
6ace06dc | 455 | while (id < max) { |
23936cc0 KH |
456 | while (n > IDR_BITS && p) { |
457 | n -= IDR_BITS; | |
458 | *paa++ = p; | |
459 | p = p->ary[(id >> n) & IDR_MASK]; | |
460 | } | |
461 | ||
462 | id += 1 << n; | |
463 | while (n < fls(id)) { | |
cf481c20 ND |
464 | if (p) |
465 | free_layer(p); | |
23936cc0 KH |
466 | n += IDR_BITS; |
467 | p = *--paa; | |
468 | } | |
469 | } | |
cf481c20 | 470 | rcu_assign_pointer(idp->top, NULL); |
23936cc0 KH |
471 | idp->layers = 0; |
472 | } | |
473 | EXPORT_SYMBOL(idr_remove_all); | |
474 | ||
8d3b3591 AM |
475 | /** |
476 | * idr_destroy - release all cached layers within an idr tree | |
477 | * idp: idr handle | |
478 | */ | |
479 | void idr_destroy(struct idr *idp) | |
480 | { | |
481 | while (idp->id_free_cnt) { | |
4ae53789 | 482 | struct idr_layer *p = get_from_free_list(idp); |
8d3b3591 AM |
483 | kmem_cache_free(idr_layer_cache, p); |
484 | } | |
485 | } | |
486 | EXPORT_SYMBOL(idr_destroy); | |
487 | ||
1da177e4 LT |
488 | /** |
489 | * idr_find - return pointer for given id | |
490 | * @idp: idr handle | |
491 | * @id: lookup key | |
492 | * | |
493 | * Return the pointer given the id it has been registered with. A %NULL | |
494 | * return indicates that @id is not valid or you passed %NULL in | |
495 | * idr_get_new(). | |
496 | * | |
f9c46d6e ND |
497 | * This function can be called under rcu_read_lock(), given that the leaf |
498 | * pointers lifetimes are correctly managed. | |
1da177e4 LT |
499 | */ |
500 | void *idr_find(struct idr *idp, int id) | |
501 | { | |
502 | int n; | |
503 | struct idr_layer *p; | |
504 | ||
f9c46d6e | 505 | p = rcu_dereference(idp->top); |
6ff2d39b MS |
506 | if (!p) |
507 | return NULL; | |
508 | n = (p->layer+1) * IDR_BITS; | |
1da177e4 LT |
509 | |
510 | /* Mask off upper bits we don't use for the search. */ | |
511 | id &= MAX_ID_MASK; | |
512 | ||
513 | if (id >= (1 << n)) | |
514 | return NULL; | |
6ff2d39b | 515 | BUG_ON(n == 0); |
1da177e4 LT |
516 | |
517 | while (n > 0 && p) { | |
518 | n -= IDR_BITS; | |
6ff2d39b | 519 | BUG_ON(n != p->layer*IDR_BITS); |
f9c46d6e | 520 | p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]); |
1da177e4 LT |
521 | } |
522 | return((void *)p); | |
523 | } | |
524 | EXPORT_SYMBOL(idr_find); | |
525 | ||
96d7fa42 KH |
526 | /** |
527 | * idr_for_each - iterate through all stored pointers | |
528 | * @idp: idr handle | |
529 | * @fn: function to be called for each pointer | |
530 | * @data: data passed back to callback function | |
531 | * | |
532 | * Iterate over the pointers registered with the given idr. The | |
533 | * callback function will be called for each pointer currently | |
534 | * registered, passing the id, the pointer and the data pointer passed | |
535 | * to this function. It is not safe to modify the idr tree while in | |
536 | * the callback, so functions such as idr_get_new and idr_remove are | |
537 | * not allowed. | |
538 | * | |
539 | * We check the return of @fn each time. If it returns anything other | |
540 | * than 0, we break out and return that value. | |
541 | * | |
542 | * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). | |
543 | */ | |
544 | int idr_for_each(struct idr *idp, | |
545 | int (*fn)(int id, void *p, void *data), void *data) | |
546 | { | |
547 | int n, id, max, error = 0; | |
548 | struct idr_layer *p; | |
549 | struct idr_layer *pa[MAX_LEVEL]; | |
550 | struct idr_layer **paa = &pa[0]; | |
551 | ||
552 | n = idp->layers * IDR_BITS; | |
f9c46d6e | 553 | p = rcu_dereference(idp->top); |
96d7fa42 KH |
554 | max = 1 << n; |
555 | ||
556 | id = 0; | |
557 | while (id < max) { | |
558 | while (n > 0 && p) { | |
559 | n -= IDR_BITS; | |
560 | *paa++ = p; | |
f9c46d6e | 561 | p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]); |
96d7fa42 KH |
562 | } |
563 | ||
564 | if (p) { | |
565 | error = fn(id, (void *)p, data); | |
566 | if (error) | |
567 | break; | |
568 | } | |
569 | ||
570 | id += 1 << n; | |
571 | while (n < fls(id)) { | |
572 | n += IDR_BITS; | |
573 | p = *--paa; | |
574 | } | |
575 | } | |
576 | ||
577 | return error; | |
578 | } | |
579 | EXPORT_SYMBOL(idr_for_each); | |
580 | ||
5806f07c JM |
581 | /** |
582 | * idr_replace - replace pointer for given id | |
583 | * @idp: idr handle | |
584 | * @ptr: pointer you want associated with the id | |
585 | * @id: lookup key | |
586 | * | |
587 | * Replace the pointer registered with an id and return the old value. | |
588 | * A -ENOENT return indicates that @id was not found. | |
589 | * A -EINVAL return indicates that @id was not within valid constraints. | |
590 | * | |
cf481c20 | 591 | * The caller must serialize with writers. |
5806f07c JM |
592 | */ |
593 | void *idr_replace(struct idr *idp, void *ptr, int id) | |
594 | { | |
595 | int n; | |
596 | struct idr_layer *p, *old_p; | |
597 | ||
5806f07c | 598 | p = idp->top; |
6ff2d39b MS |
599 | if (!p) |
600 | return ERR_PTR(-EINVAL); | |
601 | ||
602 | n = (p->layer+1) * IDR_BITS; | |
5806f07c JM |
603 | |
604 | id &= MAX_ID_MASK; | |
605 | ||
606 | if (id >= (1 << n)) | |
607 | return ERR_PTR(-EINVAL); | |
608 | ||
609 | n -= IDR_BITS; | |
610 | while ((n > 0) && p) { | |
611 | p = p->ary[(id >> n) & IDR_MASK]; | |
612 | n -= IDR_BITS; | |
613 | } | |
614 | ||
615 | n = id & IDR_MASK; | |
616 | if (unlikely(p == NULL || !test_bit(n, &p->bitmap))) | |
617 | return ERR_PTR(-ENOENT); | |
618 | ||
619 | old_p = p->ary[n]; | |
cf481c20 | 620 | rcu_assign_pointer(p->ary[n], ptr); |
5806f07c JM |
621 | |
622 | return old_p; | |
623 | } | |
624 | EXPORT_SYMBOL(idr_replace); | |
625 | ||
51cc5068 | 626 | static void idr_cache_ctor(void *idr_layer) |
1da177e4 LT |
627 | { |
628 | memset(idr_layer, 0, sizeof(struct idr_layer)); | |
629 | } | |
630 | ||
199f0ca5 | 631 | void __init idr_init_cache(void) |
1da177e4 | 632 | { |
199f0ca5 AM |
633 | idr_layer_cache = kmem_cache_create("idr_layer_cache", |
634 | sizeof(struct idr_layer), 0, SLAB_PANIC, | |
635 | idr_cache_ctor); | |
1da177e4 LT |
636 | } |
637 | ||
638 | /** | |
639 | * idr_init - initialize idr handle | |
640 | * @idp: idr handle | |
641 | * | |
642 | * This function is use to set up the handle (@idp) that you will pass | |
643 | * to the rest of the functions. | |
644 | */ | |
645 | void idr_init(struct idr *idp) | |
646 | { | |
1da177e4 LT |
647 | memset(idp, 0, sizeof(struct idr)); |
648 | spin_lock_init(&idp->lock); | |
649 | } | |
650 | EXPORT_SYMBOL(idr_init); | |
72dba584 TH |
651 | |
652 | ||
653 | /* | |
654 | * IDA - IDR based ID allocator | |
655 | * | |
656 | * this is id allocator without id -> pointer translation. Memory | |
657 | * usage is much lower than full blown idr because each id only | |
658 | * occupies a bit. ida uses a custom leaf node which contains | |
659 | * IDA_BITMAP_BITS slots. | |
660 | * | |
661 | * 2007-04-25 written by Tejun Heo <htejun@gmail.com> | |
662 | */ | |
663 | ||
664 | static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) | |
665 | { | |
666 | unsigned long flags; | |
667 | ||
668 | if (!ida->free_bitmap) { | |
669 | spin_lock_irqsave(&ida->idr.lock, flags); | |
670 | if (!ida->free_bitmap) { | |
671 | ida->free_bitmap = bitmap; | |
672 | bitmap = NULL; | |
673 | } | |
674 | spin_unlock_irqrestore(&ida->idr.lock, flags); | |
675 | } | |
676 | ||
677 | kfree(bitmap); | |
678 | } | |
679 | ||
680 | /** | |
681 | * ida_pre_get - reserve resources for ida allocation | |
682 | * @ida: ida handle | |
683 | * @gfp_mask: memory allocation flag | |
684 | * | |
685 | * This function should be called prior to locking and calling the | |
686 | * following function. It preallocates enough memory to satisfy the | |
687 | * worst possible allocation. | |
688 | * | |
689 | * If the system is REALLY out of memory this function returns 0, | |
690 | * otherwise 1. | |
691 | */ | |
692 | int ida_pre_get(struct ida *ida, gfp_t gfp_mask) | |
693 | { | |
694 | /* allocate idr_layers */ | |
695 | if (!idr_pre_get(&ida->idr, gfp_mask)) | |
696 | return 0; | |
697 | ||
698 | /* allocate free_bitmap */ | |
699 | if (!ida->free_bitmap) { | |
700 | struct ida_bitmap *bitmap; | |
701 | ||
702 | bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); | |
703 | if (!bitmap) | |
704 | return 0; | |
705 | ||
706 | free_bitmap(ida, bitmap); | |
707 | } | |
708 | ||
709 | return 1; | |
710 | } | |
711 | EXPORT_SYMBOL(ida_pre_get); | |
712 | ||
713 | /** | |
714 | * ida_get_new_above - allocate new ID above or equal to a start id | |
715 | * @ida: ida handle | |
716 | * @staring_id: id to start search at | |
717 | * @p_id: pointer to the allocated handle | |
718 | * | |
719 | * Allocate new ID above or equal to @ida. It should be called with | |
720 | * any required locks. | |
721 | * | |
722 | * If memory is required, it will return -EAGAIN, you should unlock | |
723 | * and go back to the ida_pre_get() call. If the ida is full, it will | |
724 | * return -ENOSPC. | |
725 | * | |
726 | * @p_id returns a value in the range 0 ... 0x7fffffff. | |
727 | */ | |
728 | int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) | |
729 | { | |
730 | struct idr_layer *pa[MAX_LEVEL]; | |
731 | struct ida_bitmap *bitmap; | |
732 | unsigned long flags; | |
733 | int idr_id = starting_id / IDA_BITMAP_BITS; | |
734 | int offset = starting_id % IDA_BITMAP_BITS; | |
735 | int t, id; | |
736 | ||
737 | restart: | |
738 | /* get vacant slot */ | |
739 | t = idr_get_empty_slot(&ida->idr, idr_id, pa); | |
944ca05c ND |
740 | if (t < 0) |
741 | return _idr_rc_to_errno(t); | |
72dba584 TH |
742 | |
743 | if (t * IDA_BITMAP_BITS >= MAX_ID_BIT) | |
744 | return -ENOSPC; | |
745 | ||
746 | if (t != idr_id) | |
747 | offset = 0; | |
748 | idr_id = t; | |
749 | ||
750 | /* if bitmap isn't there, create a new one */ | |
751 | bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; | |
752 | if (!bitmap) { | |
753 | spin_lock_irqsave(&ida->idr.lock, flags); | |
754 | bitmap = ida->free_bitmap; | |
755 | ida->free_bitmap = NULL; | |
756 | spin_unlock_irqrestore(&ida->idr.lock, flags); | |
757 | ||
758 | if (!bitmap) | |
759 | return -EAGAIN; | |
760 | ||
761 | memset(bitmap, 0, sizeof(struct ida_bitmap)); | |
3219b3b7 ND |
762 | rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], |
763 | (void *)bitmap); | |
72dba584 TH |
764 | pa[0]->count++; |
765 | } | |
766 | ||
767 | /* lookup for empty slot */ | |
768 | t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); | |
769 | if (t == IDA_BITMAP_BITS) { | |
770 | /* no empty slot after offset, continue to the next chunk */ | |
771 | idr_id++; | |
772 | offset = 0; | |
773 | goto restart; | |
774 | } | |
775 | ||
776 | id = idr_id * IDA_BITMAP_BITS + t; | |
777 | if (id >= MAX_ID_BIT) | |
778 | return -ENOSPC; | |
779 | ||
780 | __set_bit(t, bitmap->bitmap); | |
781 | if (++bitmap->nr_busy == IDA_BITMAP_BITS) | |
782 | idr_mark_full(pa, idr_id); | |
783 | ||
784 | *p_id = id; | |
785 | ||
786 | /* Each leaf node can handle nearly a thousand slots and the | |
787 | * whole idea of ida is to have small memory foot print. | |
788 | * Throw away extra resources one by one after each successful | |
789 | * allocation. | |
790 | */ | |
791 | if (ida->idr.id_free_cnt || ida->free_bitmap) { | |
4ae53789 | 792 | struct idr_layer *p = get_from_free_list(&ida->idr); |
72dba584 TH |
793 | if (p) |
794 | kmem_cache_free(idr_layer_cache, p); | |
795 | } | |
796 | ||
797 | return 0; | |
798 | } | |
799 | EXPORT_SYMBOL(ida_get_new_above); | |
800 | ||
801 | /** | |
802 | * ida_get_new - allocate new ID | |
803 | * @ida: idr handle | |
804 | * @p_id: pointer to the allocated handle | |
805 | * | |
806 | * Allocate new ID. It should be called with any required locks. | |
807 | * | |
808 | * If memory is required, it will return -EAGAIN, you should unlock | |
809 | * and go back to the idr_pre_get() call. If the idr is full, it will | |
810 | * return -ENOSPC. | |
811 | * | |
812 | * @id returns a value in the range 0 ... 0x7fffffff. | |
813 | */ | |
814 | int ida_get_new(struct ida *ida, int *p_id) | |
815 | { | |
816 | return ida_get_new_above(ida, 0, p_id); | |
817 | } | |
818 | EXPORT_SYMBOL(ida_get_new); | |
819 | ||
820 | /** | |
821 | * ida_remove - remove the given ID | |
822 | * @ida: ida handle | |
823 | * @id: ID to free | |
824 | */ | |
825 | void ida_remove(struct ida *ida, int id) | |
826 | { | |
827 | struct idr_layer *p = ida->idr.top; | |
828 | int shift = (ida->idr.layers - 1) * IDR_BITS; | |
829 | int idr_id = id / IDA_BITMAP_BITS; | |
830 | int offset = id % IDA_BITMAP_BITS; | |
831 | int n; | |
832 | struct ida_bitmap *bitmap; | |
833 | ||
834 | /* clear full bits while looking up the leaf idr_layer */ | |
835 | while ((shift > 0) && p) { | |
836 | n = (idr_id >> shift) & IDR_MASK; | |
837 | __clear_bit(n, &p->bitmap); | |
838 | p = p->ary[n]; | |
839 | shift -= IDR_BITS; | |
840 | } | |
841 | ||
842 | if (p == NULL) | |
843 | goto err; | |
844 | ||
845 | n = idr_id & IDR_MASK; | |
846 | __clear_bit(n, &p->bitmap); | |
847 | ||
848 | bitmap = (void *)p->ary[n]; | |
849 | if (!test_bit(offset, bitmap->bitmap)) | |
850 | goto err; | |
851 | ||
852 | /* update bitmap and remove it if empty */ | |
853 | __clear_bit(offset, bitmap->bitmap); | |
854 | if (--bitmap->nr_busy == 0) { | |
855 | __set_bit(n, &p->bitmap); /* to please idr_remove() */ | |
856 | idr_remove(&ida->idr, idr_id); | |
857 | free_bitmap(ida, bitmap); | |
858 | } | |
859 | ||
860 | return; | |
861 | ||
862 | err: | |
863 | printk(KERN_WARNING | |
864 | "ida_remove called for id=%d which is not allocated.\n", id); | |
865 | } | |
866 | EXPORT_SYMBOL(ida_remove); | |
867 | ||
868 | /** | |
869 | * ida_destroy - release all cached layers within an ida tree | |
870 | * ida: ida handle | |
871 | */ | |
872 | void ida_destroy(struct ida *ida) | |
873 | { | |
874 | idr_destroy(&ida->idr); | |
875 | kfree(ida->free_bitmap); | |
876 | } | |
877 | EXPORT_SYMBOL(ida_destroy); | |
878 | ||
879 | /** | |
880 | * ida_init - initialize ida handle | |
881 | * @ida: ida handle | |
882 | * | |
883 | * This function is use to set up the handle (@ida) that you will pass | |
884 | * to the rest of the functions. | |
885 | */ | |
886 | void ida_init(struct ida *ida) | |
887 | { | |
888 | memset(ida, 0, sizeof(struct ida)); | |
889 | idr_init(&ida->idr); | |
890 | ||
891 | } | |
892 | EXPORT_SYMBOL(ida_init); |