]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - lib/idr.c
mm/mempolicy.c: fix sp_node_init() argument ordering
[mirror_ubuntu-zesty-kernel.git] / lib / idr.c
CommitLineData
1da177e4
LT
1/*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
3219b3b7
ND
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
e15ae2dd 11 * Small id to pointer translation service.
1da177e4 12 *
e15ae2dd 13 * It uses a radix tree like structure as a sparse array indexed
1da177e4 14 * by the id to obtain the pointer. The bitmap makes allocating
e15ae2dd 15 * a new id quick.
1da177e4
LT
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
e15ae2dd 22 * You can release ids at any time. When all ids are released, most of
125c4c70 23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
e15ae2dd 24 * don't need to go to the memory "store" during an id allocate, just
1da177e4
LT
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29#ifndef TEST // to test in user space...
30#include <linux/slab.h>
31#include <linux/init.h>
8bc3bcc9 32#include <linux/export.h>
1da177e4 33#endif
5806f07c 34#include <linux/err.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/idr.h>
88eca020 37#include <linux/spinlock.h>
d5c7409f
TH
38#include <linux/percpu.h>
39#include <linux/hardirq.h>
1da177e4 40
e8c8d1bc
TH
41#define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42#define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
43
44/* Leave the possibility of an incomplete final layer */
45#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46
47/* Number of id_layer structs to leave in free list */
48#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49
e18b890b 50static struct kmem_cache *idr_layer_cache;
d5c7409f
TH
51static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52static DEFINE_PER_CPU(int, idr_preload_cnt);
88eca020 53static DEFINE_SPINLOCK(simple_ida_lock);
1da177e4 54
326cf0f0
TH
55/* the maximum ID which can be allocated given idr->layers */
56static int idr_max(int layers)
57{
58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59
60 return (1 << bits) - 1;
61}
62
54616283
TH
63/*
64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
66 * so on.
67 */
68static int idr_layer_prefix_mask(int layer)
69{
70 return ~idr_max(layer + 1);
71}
72
4ae53789 73static struct idr_layer *get_from_free_list(struct idr *idp)
1da177e4
LT
74{
75 struct idr_layer *p;
c259cc28 76 unsigned long flags;
1da177e4 77
c259cc28 78 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
79 if ((p = idp->id_free)) {
80 idp->id_free = p->ary[0];
81 idp->id_free_cnt--;
82 p->ary[0] = NULL;
83 }
c259cc28 84 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
85 return(p);
86}
87
d5c7409f
TH
88/**
89 * idr_layer_alloc - allocate a new idr_layer
90 * @gfp_mask: allocation mask
91 * @layer_idr: optional idr to allocate from
92 *
93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
95 * an idr_layer from @idr->id_free.
96 *
97 * @layer_idr is to maintain backward compatibility with the old alloc
98 * interface - idr_pre_get() and idr_get_new*() - and will be removed
99 * together with per-pool preload buffer.
100 */
101static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
102{
103 struct idr_layer *new;
104
105 /* this is the old path, bypass to get_from_free_list() */
106 if (layer_idr)
107 return get_from_free_list(layer_idr);
108
109 /* try to allocate directly from kmem_cache */
110 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
111 if (new)
112 return new;
113
114 /*
115 * Try to fetch one from the per-cpu preload buffer if in process
116 * context. See idr_preload() for details.
117 */
118 if (in_interrupt())
119 return NULL;
120
121 preempt_disable();
122 new = __this_cpu_read(idr_preload_head);
123 if (new) {
124 __this_cpu_write(idr_preload_head, new->ary[0]);
125 __this_cpu_dec(idr_preload_cnt);
126 new->ary[0] = NULL;
127 }
128 preempt_enable();
129 return new;
130}
131
cf481c20
ND
132static void idr_layer_rcu_free(struct rcu_head *head)
133{
134 struct idr_layer *layer;
135
136 layer = container_of(head, struct idr_layer, rcu_head);
137 kmem_cache_free(idr_layer_cache, layer);
138}
139
0ffc2a9c 140static inline void free_layer(struct idr *idr, struct idr_layer *p)
cf481c20 141{
0ffc2a9c
TH
142 if (idr->hint && idr->hint == p)
143 RCU_INIT_POINTER(idr->hint, NULL);
cf481c20
ND
144 call_rcu(&p->rcu_head, idr_layer_rcu_free);
145}
146
1eec0056 147/* only called when idp->lock is held */
4ae53789 148static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
1eec0056
SR
149{
150 p->ary[0] = idp->id_free;
151 idp->id_free = p;
152 idp->id_free_cnt++;
153}
154
4ae53789 155static void move_to_free_list(struct idr *idp, struct idr_layer *p)
1da177e4 156{
c259cc28
RD
157 unsigned long flags;
158
1da177e4
LT
159 /*
160 * Depends on the return element being zeroed.
161 */
c259cc28 162 spin_lock_irqsave(&idp->lock, flags);
4ae53789 163 __move_to_free_list(idp, p);
c259cc28 164 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
165}
166
e33ac8bd
TH
167static void idr_mark_full(struct idr_layer **pa, int id)
168{
169 struct idr_layer *p = pa[0];
170 int l = 0;
171
1d9b2e1e 172 __set_bit(id & IDR_MASK, p->bitmap);
e33ac8bd
TH
173 /*
174 * If this layer is full mark the bit in the layer above to
175 * show that this part of the radix tree is full. This may
176 * complete the layer above and require walking up the radix
177 * tree.
178 */
1d9b2e1e 179 while (bitmap_full(p->bitmap, IDR_SIZE)) {
e33ac8bd
TH
180 if (!(p = pa[++l]))
181 break;
182 id = id >> IDR_BITS;
1d9b2e1e 183 __set_bit((id & IDR_MASK), p->bitmap);
e33ac8bd
TH
184 }
185}
186
1da177e4 187/**
56083ab1 188 * idr_pre_get - reserve resources for idr allocation
1da177e4
LT
189 * @idp: idr handle
190 * @gfp_mask: memory allocation flags
191 *
066a9be6
NA
192 * This function should be called prior to calling the idr_get_new* functions.
193 * It preallocates enough memory to satisfy the worst possible allocation. The
194 * caller should pass in GFP_KERNEL if possible. This of course requires that
195 * no spinning locks be held.
1da177e4 196 *
56083ab1
RD
197 * If the system is REALLY out of memory this function returns %0,
198 * otherwise %1.
1da177e4 199 */
fd4f2df2 200int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
1da177e4 201{
125c4c70 202 while (idp->id_free_cnt < MAX_IDR_FREE) {
1da177e4 203 struct idr_layer *new;
5b019e99 204 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
e15ae2dd 205 if (new == NULL)
1da177e4 206 return (0);
4ae53789 207 move_to_free_list(idp, new);
1da177e4
LT
208 }
209 return 1;
210}
211EXPORT_SYMBOL(idr_pre_get);
212
12d1b439
TH
213/**
214 * sub_alloc - try to allocate an id without growing the tree depth
215 * @idp: idr handle
216 * @starting_id: id to start search at
217 * @id: pointer to the allocated handle
218 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
d5c7409f
TH
219 * @gfp_mask: allocation mask for idr_layer_alloc()
220 * @layer_idr: optional idr passed to idr_layer_alloc()
12d1b439
TH
221 *
222 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
223 * growing its depth. Returns
224 *
225 * the allocated id >= 0 if successful,
226 * -EAGAIN if the tree needs to grow for allocation to succeed,
227 * -ENOSPC if the id space is exhausted,
228 * -ENOMEM if more idr_layers need to be allocated.
229 */
d5c7409f
TH
230static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
231 gfp_t gfp_mask, struct idr *layer_idr)
1da177e4
LT
232{
233 int n, m, sh;
234 struct idr_layer *p, *new;
7aae6dd8 235 int l, id, oid;
1da177e4
LT
236
237 id = *starting_id;
7aae6dd8 238 restart:
1da177e4
LT
239 p = idp->top;
240 l = idp->layers;
241 pa[l--] = NULL;
242 while (1) {
243 /*
244 * We run around this while until we reach the leaf node...
245 */
246 n = (id >> (IDR_BITS*l)) & IDR_MASK;
1d9b2e1e 247 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
1da177e4
LT
248 if (m == IDR_SIZE) {
249 /* no space available go back to previous layer. */
250 l++;
7aae6dd8 251 oid = id;
e15ae2dd 252 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
7aae6dd8
TH
253
254 /* if already at the top layer, we need to grow */
d2e7276b 255 if (id >= 1 << (idp->layers * IDR_BITS)) {
1da177e4 256 *starting_id = id;
12d1b439 257 return -EAGAIN;
1da177e4 258 }
d2e7276b
TH
259 p = pa[l];
260 BUG_ON(!p);
7aae6dd8
TH
261
262 /* If we need to go up one layer, continue the
263 * loop; otherwise, restart from the top.
264 */
265 sh = IDR_BITS * (l + 1);
266 if (oid >> sh == id >> sh)
267 continue;
268 else
269 goto restart;
1da177e4
LT
270 }
271 if (m != n) {
272 sh = IDR_BITS*l;
273 id = ((id >> sh) ^ n ^ m) << sh;
274 }
125c4c70 275 if ((id >= MAX_IDR_BIT) || (id < 0))
12d1b439 276 return -ENOSPC;
1da177e4
LT
277 if (l == 0)
278 break;
279 /*
280 * Create the layer below if it is missing.
281 */
282 if (!p->ary[m]) {
d5c7409f 283 new = idr_layer_alloc(gfp_mask, layer_idr);
4ae53789 284 if (!new)
12d1b439 285 return -ENOMEM;
6ff2d39b 286 new->layer = l-1;
54616283 287 new->prefix = id & idr_layer_prefix_mask(new->layer);
3219b3b7 288 rcu_assign_pointer(p->ary[m], new);
1da177e4
LT
289 p->count++;
290 }
291 pa[l--] = p;
292 p = p->ary[m];
293 }
e33ac8bd
TH
294
295 pa[l] = p;
296 return id;
1da177e4
LT
297}
298
e33ac8bd 299static int idr_get_empty_slot(struct idr *idp, int starting_id,
d5c7409f
TH
300 struct idr_layer **pa, gfp_t gfp_mask,
301 struct idr *layer_idr)
1da177e4
LT
302{
303 struct idr_layer *p, *new;
304 int layers, v, id;
c259cc28 305 unsigned long flags;
e15ae2dd 306
1da177e4
LT
307 id = starting_id;
308build_up:
309 p = idp->top;
310 layers = idp->layers;
311 if (unlikely(!p)) {
d5c7409f 312 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
12d1b439 313 return -ENOMEM;
6ff2d39b 314 p->layer = 0;
1da177e4
LT
315 layers = 1;
316 }
317 /*
318 * Add a new layer to the top of the tree if the requested
319 * id is larger than the currently allocated space.
320 */
326cf0f0 321 while (id > idr_max(layers)) {
1da177e4 322 layers++;
711a49a0
MS
323 if (!p->count) {
324 /* special case: if the tree is currently empty,
325 * then we grow the tree by moving the top node
326 * upwards.
327 */
328 p->layer++;
54616283 329 WARN_ON_ONCE(p->prefix);
1da177e4 330 continue;
711a49a0 331 }
d5c7409f 332 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
1da177e4
LT
333 /*
334 * The allocation failed. If we built part of
335 * the structure tear it down.
336 */
c259cc28 337 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
338 for (new = p; p && p != idp->top; new = p) {
339 p = p->ary[0];
340 new->ary[0] = NULL;
1d9b2e1e
TH
341 new->count = 0;
342 bitmap_clear(new->bitmap, 0, IDR_SIZE);
4ae53789 343 __move_to_free_list(idp, new);
1da177e4 344 }
c259cc28 345 spin_unlock_irqrestore(&idp->lock, flags);
12d1b439 346 return -ENOMEM;
1da177e4
LT
347 }
348 new->ary[0] = p;
349 new->count = 1;
6ff2d39b 350 new->layer = layers-1;
54616283 351 new->prefix = id & idr_layer_prefix_mask(new->layer);
1d9b2e1e
TH
352 if (bitmap_full(p->bitmap, IDR_SIZE))
353 __set_bit(0, new->bitmap);
1da177e4
LT
354 p = new;
355 }
3219b3b7 356 rcu_assign_pointer(idp->top, p);
1da177e4 357 idp->layers = layers;
d5c7409f 358 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
12d1b439 359 if (v == -EAGAIN)
1da177e4
LT
360 goto build_up;
361 return(v);
362}
363
3594eb28
TH
364/*
365 * @id and @pa are from a successful allocation from idr_get_empty_slot().
366 * Install the user pointer @ptr and mark the slot full.
367 */
0ffc2a9c
TH
368static void idr_fill_slot(struct idr *idr, void *ptr, int id,
369 struct idr_layer **pa)
e33ac8bd 370{
0ffc2a9c
TH
371 /* update hint used for lookup, cleared from free_layer() */
372 rcu_assign_pointer(idr->hint, pa[0]);
373
3594eb28
TH
374 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
375 pa[0]->count++;
376 idr_mark_full(pa, id);
e33ac8bd
TH
377}
378
1da177e4 379/**
7c657f2f 380 * idr_get_new_above - allocate new idr entry above or equal to a start id
1da177e4 381 * @idp: idr handle
94e2bd68 382 * @ptr: pointer you want associated with the id
ea24ea85 383 * @starting_id: id to start search at
1da177e4
LT
384 * @id: pointer to the allocated handle
385 *
386 * This is the allocate id function. It should be called with any
387 * required locks.
388 *
066a9be6 389 * If allocation from IDR's private freelist fails, idr_get_new_above() will
56083ab1 390 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
066a9be6
NA
391 * IDR's preallocation and then retry the idr_get_new_above() call.
392 *
56083ab1 393 * If the idr is full idr_get_new_above() will return %-ENOSPC.
1da177e4 394 *
56083ab1 395 * @id returns a value in the range @starting_id ... %0x7fffffff
1da177e4
LT
396 */
397int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
398{
326cf0f0 399 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
1da177e4 400 int rv;
e15ae2dd 401
d5c7409f 402 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
944ca05c 403 if (rv < 0)
12d1b439 404 return rv == -ENOMEM ? -EAGAIN : rv;
3594eb28 405
0ffc2a9c 406 idr_fill_slot(idp, ptr, rv, pa);
1da177e4
LT
407 *id = rv;
408 return 0;
409}
410EXPORT_SYMBOL(idr_get_new_above);
411
d5c7409f
TH
412/**
413 * idr_preload - preload for idr_alloc()
414 * @gfp_mask: allocation mask to use for preloading
415 *
416 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
417 * process context and each idr_preload() invocation should be matched with
418 * idr_preload_end(). Note that preemption is disabled while preloaded.
419 *
420 * The first idr_alloc() in the preloaded section can be treated as if it
421 * were invoked with @gfp_mask used for preloading. This allows using more
422 * permissive allocation masks for idrs protected by spinlocks.
423 *
424 * For example, if idr_alloc() below fails, the failure can be treated as
425 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
426 *
427 * idr_preload(GFP_KERNEL);
428 * spin_lock(lock);
429 *
430 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
431 *
432 * spin_unlock(lock);
433 * idr_preload_end();
434 * if (id < 0)
435 * error;
436 */
437void idr_preload(gfp_t gfp_mask)
438{
439 /*
440 * Consuming preload buffer from non-process context breaks preload
441 * allocation guarantee. Disallow usage from those contexts.
442 */
443 WARN_ON_ONCE(in_interrupt());
444 might_sleep_if(gfp_mask & __GFP_WAIT);
445
446 preempt_disable();
447
448 /*
449 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
450 * return value from idr_alloc() needs to be checked for failure
451 * anyway. Silently give up if allocation fails. The caller can
452 * treat failures from idr_alloc() as if idr_alloc() were called
453 * with @gfp_mask which should be enough.
454 */
455 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
456 struct idr_layer *new;
457
458 preempt_enable();
459 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
460 preempt_disable();
461 if (!new)
462 break;
463
464 /* link the new one to per-cpu preload list */
465 new->ary[0] = __this_cpu_read(idr_preload_head);
466 __this_cpu_write(idr_preload_head, new);
467 __this_cpu_inc(idr_preload_cnt);
468 }
469}
470EXPORT_SYMBOL(idr_preload);
471
472/**
473 * idr_alloc - allocate new idr entry
474 * @idr: the (initialized) idr
475 * @ptr: pointer to be associated with the new id
476 * @start: the minimum id (inclusive)
477 * @end: the maximum id (exclusive, <= 0 for max)
478 * @gfp_mask: memory allocation flags
479 *
480 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
481 * available in the specified range, returns -ENOSPC. On memory allocation
482 * failure, returns -ENOMEM.
483 *
484 * Note that @end is treated as max when <= 0. This is to always allow
485 * using @start + N as @end as long as N is inside integer range.
486 *
487 * The user is responsible for exclusively synchronizing all operations
488 * which may modify @idr. However, read-only accesses such as idr_find()
489 * or iteration can be performed under RCU read lock provided the user
490 * destroys @ptr in RCU-safe way after removal from idr.
491 */
492int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
493{
494 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
326cf0f0 495 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
d5c7409f
TH
496 int id;
497
498 might_sleep_if(gfp_mask & __GFP_WAIT);
499
500 /* sanity checks */
501 if (WARN_ON_ONCE(start < 0))
502 return -EINVAL;
503 if (unlikely(max < start))
504 return -ENOSPC;
505
506 /* allocate id */
507 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
508 if (unlikely(id < 0))
509 return id;
510 if (unlikely(id > max))
511 return -ENOSPC;
512
0ffc2a9c 513 idr_fill_slot(idr, ptr, id, pa);
d5c7409f
TH
514 return id;
515}
516EXPORT_SYMBOL_GPL(idr_alloc);
517
1da177e4
LT
518static void idr_remove_warning(int id)
519{
f098ad65
ND
520 printk(KERN_WARNING
521 "idr_remove called for id=%d which is not allocated.\n", id);
1da177e4
LT
522 dump_stack();
523}
524
525static void sub_remove(struct idr *idp, int shift, int id)
526{
527 struct idr_layer *p = idp->top;
326cf0f0 528 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
1da177e4 529 struct idr_layer ***paa = &pa[0];
cf481c20 530 struct idr_layer *to_free;
1da177e4
LT
531 int n;
532
533 *paa = NULL;
534 *++paa = &idp->top;
535
536 while ((shift > 0) && p) {
537 n = (id >> shift) & IDR_MASK;
1d9b2e1e 538 __clear_bit(n, p->bitmap);
1da177e4
LT
539 *++paa = &p->ary[n];
540 p = p->ary[n];
541 shift -= IDR_BITS;
542 }
543 n = id & IDR_MASK;
1d9b2e1e
TH
544 if (likely(p != NULL && test_bit(n, p->bitmap))) {
545 __clear_bit(n, p->bitmap);
cf481c20
ND
546 rcu_assign_pointer(p->ary[n], NULL);
547 to_free = NULL;
1da177e4 548 while(*paa && ! --((**paa)->count)){
cf481c20 549 if (to_free)
0ffc2a9c 550 free_layer(idp, to_free);
cf481c20 551 to_free = **paa;
1da177e4
LT
552 **paa-- = NULL;
553 }
e15ae2dd 554 if (!*paa)
1da177e4 555 idp->layers = 0;
cf481c20 556 if (to_free)
0ffc2a9c 557 free_layer(idp, to_free);
e15ae2dd 558 } else
1da177e4 559 idr_remove_warning(id);
1da177e4
LT
560}
561
562/**
56083ab1 563 * idr_remove - remove the given id and free its slot
72fd4a35
RD
564 * @idp: idr handle
565 * @id: unique key
1da177e4
LT
566 */
567void idr_remove(struct idr *idp, int id)
568{
569 struct idr_layer *p;
cf481c20 570 struct idr_layer *to_free;
1da177e4 571
7175c61c 572 /* see comment in idr_find_slowpath() */
e8c8d1bc
TH
573 if (WARN_ON_ONCE(id < 0))
574 return;
1da177e4
LT
575
576 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
e15ae2dd 577 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
cf481c20
ND
578 idp->top->ary[0]) {
579 /*
580 * Single child at leftmost slot: we can shrink the tree.
581 * This level is not needed anymore since when layers are
582 * inserted, they are inserted at the top of the existing
583 * tree.
584 */
585 to_free = idp->top;
1da177e4 586 p = idp->top->ary[0];
cf481c20 587 rcu_assign_pointer(idp->top, p);
1da177e4 588 --idp->layers;
1d9b2e1e
TH
589 to_free->count = 0;
590 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
0ffc2a9c 591 free_layer(idp, to_free);
1da177e4 592 }
125c4c70 593 while (idp->id_free_cnt >= MAX_IDR_FREE) {
4ae53789 594 p = get_from_free_list(idp);
cf481c20
ND
595 /*
596 * Note: we don't call the rcu callback here, since the only
597 * layers that fall into the freelist are those that have been
598 * preallocated.
599 */
1da177e4 600 kmem_cache_free(idr_layer_cache, p);
1da177e4 601 }
af8e2a4c 602 return;
1da177e4
LT
603}
604EXPORT_SYMBOL(idr_remove);
605
fe6e24ec 606void __idr_remove_all(struct idr *idp)
23936cc0 607{
6ace06dc 608 int n, id, max;
2dcb22b3 609 int bt_mask;
23936cc0 610 struct idr_layer *p;
326cf0f0 611 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
23936cc0
KH
612 struct idr_layer **paa = &pa[0];
613
614 n = idp->layers * IDR_BITS;
615 p = idp->top;
1b23336a 616 rcu_assign_pointer(idp->top, NULL);
326cf0f0 617 max = idr_max(idp->layers);
23936cc0
KH
618
619 id = 0;
326cf0f0 620 while (id >= 0 && id <= max) {
23936cc0
KH
621 while (n > IDR_BITS && p) {
622 n -= IDR_BITS;
623 *paa++ = p;
624 p = p->ary[(id >> n) & IDR_MASK];
625 }
626
2dcb22b3 627 bt_mask = id;
23936cc0 628 id += 1 << n;
2dcb22b3
ID
629 /* Get the highest bit that the above add changed from 0->1. */
630 while (n < fls(id ^ bt_mask)) {
cf481c20 631 if (p)
0ffc2a9c 632 free_layer(idp, p);
23936cc0
KH
633 n += IDR_BITS;
634 p = *--paa;
635 }
636 }
23936cc0
KH
637 idp->layers = 0;
638}
fe6e24ec 639EXPORT_SYMBOL(__idr_remove_all);
23936cc0 640
8d3b3591
AM
641/**
642 * idr_destroy - release all cached layers within an idr tree
ea24ea85 643 * @idp: idr handle
9bb26bc1
TH
644 *
645 * Free all id mappings and all idp_layers. After this function, @idp is
646 * completely unused and can be freed / recycled. The caller is
647 * responsible for ensuring that no one else accesses @idp during or after
648 * idr_destroy().
649 *
650 * A typical clean-up sequence for objects stored in an idr tree will use
651 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
652 * free up the id mappings and cached idr_layers.
8d3b3591
AM
653 */
654void idr_destroy(struct idr *idp)
655{
fe6e24ec 656 __idr_remove_all(idp);
9bb26bc1 657
8d3b3591 658 while (idp->id_free_cnt) {
4ae53789 659 struct idr_layer *p = get_from_free_list(idp);
8d3b3591
AM
660 kmem_cache_free(idr_layer_cache, p);
661 }
662}
663EXPORT_SYMBOL(idr_destroy);
664
0ffc2a9c 665void *idr_find_slowpath(struct idr *idp, int id)
1da177e4
LT
666{
667 int n;
668 struct idr_layer *p;
669
7175c61c
TH
670 /*
671 * If @id is negative, idr_find() used to ignore the sign bit and
672 * performed lookup with the rest of bits, which is weird and can
673 * lead to very obscure bugs. We're now returning NULL for all
674 * negative IDs but just in case somebody was depending on the sign
675 * bit being ignored, let's trigger WARN_ON_ONCE() so that they can
676 * be detected and fixed. WARN_ON_ONCE() can later be removed.
677 */
e8c8d1bc
TH
678 if (WARN_ON_ONCE(id < 0))
679 return NULL;
680
96be753a 681 p = rcu_dereference_raw(idp->top);
6ff2d39b
MS
682 if (!p)
683 return NULL;
684 n = (p->layer+1) * IDR_BITS;
1da177e4 685
326cf0f0 686 if (id > idr_max(p->layer + 1))
1da177e4 687 return NULL;
6ff2d39b 688 BUG_ON(n == 0);
1da177e4
LT
689
690 while (n > 0 && p) {
691 n -= IDR_BITS;
6ff2d39b 692 BUG_ON(n != p->layer*IDR_BITS);
96be753a 693 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
1da177e4
LT
694 }
695 return((void *)p);
696}
0ffc2a9c 697EXPORT_SYMBOL(idr_find_slowpath);
1da177e4 698
96d7fa42
KH
699/**
700 * idr_for_each - iterate through all stored pointers
701 * @idp: idr handle
702 * @fn: function to be called for each pointer
703 * @data: data passed back to callback function
704 *
705 * Iterate over the pointers registered with the given idr. The
706 * callback function will be called for each pointer currently
707 * registered, passing the id, the pointer and the data pointer passed
708 * to this function. It is not safe to modify the idr tree while in
709 * the callback, so functions such as idr_get_new and idr_remove are
710 * not allowed.
711 *
712 * We check the return of @fn each time. If it returns anything other
56083ab1 713 * than %0, we break out and return that value.
96d7fa42
KH
714 *
715 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
716 */
717int idr_for_each(struct idr *idp,
718 int (*fn)(int id, void *p, void *data), void *data)
719{
720 int n, id, max, error = 0;
721 struct idr_layer *p;
326cf0f0 722 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
96d7fa42
KH
723 struct idr_layer **paa = &pa[0];
724
725 n = idp->layers * IDR_BITS;
96be753a 726 p = rcu_dereference_raw(idp->top);
326cf0f0 727 max = idr_max(idp->layers);
96d7fa42
KH
728
729 id = 0;
326cf0f0 730 while (id >= 0 && id <= max) {
96d7fa42
KH
731 while (n > 0 && p) {
732 n -= IDR_BITS;
733 *paa++ = p;
96be753a 734 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
96d7fa42
KH
735 }
736
737 if (p) {
738 error = fn(id, (void *)p, data);
739 if (error)
740 break;
741 }
742
743 id += 1 << n;
744 while (n < fls(id)) {
745 n += IDR_BITS;
746 p = *--paa;
747 }
748 }
749
750 return error;
751}
752EXPORT_SYMBOL(idr_for_each);
753
38460b48
KH
754/**
755 * idr_get_next - lookup next object of id to given id.
756 * @idp: idr handle
ea24ea85 757 * @nextidp: pointer to lookup key
38460b48
KH
758 *
759 * Returns pointer to registered object with id, which is next number to
1458ce16
NA
760 * given id. After being looked up, *@nextidp will be updated for the next
761 * iteration.
9f7de827
HD
762 *
763 * This function can be called under rcu_read_lock(), given that the leaf
764 * pointers lifetimes are correctly managed.
38460b48 765 */
38460b48
KH
766void *idr_get_next(struct idr *idp, int *nextidp)
767{
326cf0f0 768 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
38460b48
KH
769 struct idr_layer **paa = &pa[0];
770 int id = *nextidp;
771 int n, max;
772
773 /* find first ent */
94bfa3b6 774 p = rcu_dereference_raw(idp->top);
38460b48
KH
775 if (!p)
776 return NULL;
9f7de827 777 n = (p->layer + 1) * IDR_BITS;
326cf0f0 778 max = idr_max(p->layer + 1);
38460b48 779
326cf0f0 780 while (id >= 0 && id <= max) {
38460b48
KH
781 while (n > 0 && p) {
782 n -= IDR_BITS;
783 *paa++ = p;
94bfa3b6 784 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
38460b48
KH
785 }
786
787 if (p) {
788 *nextidp = id;
789 return p;
790 }
791
6cdae741
TH
792 /*
793 * Proceed to the next layer at the current level. Unlike
794 * idr_for_each(), @id isn't guaranteed to be aligned to
795 * layer boundary at this point and adding 1 << n may
796 * incorrectly skip IDs. Make sure we jump to the
797 * beginning of the next layer using round_up().
798 */
799 id = round_up(id + 1, 1 << n);
38460b48
KH
800 while (n < fls(id)) {
801 n += IDR_BITS;
802 p = *--paa;
803 }
804 }
805 return NULL;
806}
4d1ee80f 807EXPORT_SYMBOL(idr_get_next);
38460b48
KH
808
809
5806f07c
JM
810/**
811 * idr_replace - replace pointer for given id
812 * @idp: idr handle
813 * @ptr: pointer you want associated with the id
814 * @id: lookup key
815 *
816 * Replace the pointer registered with an id and return the old value.
56083ab1
RD
817 * A %-ENOENT return indicates that @id was not found.
818 * A %-EINVAL return indicates that @id was not within valid constraints.
5806f07c 819 *
cf481c20 820 * The caller must serialize with writers.
5806f07c
JM
821 */
822void *idr_replace(struct idr *idp, void *ptr, int id)
823{
824 int n;
825 struct idr_layer *p, *old_p;
826
7175c61c 827 /* see comment in idr_find_slowpath() */
e8c8d1bc
TH
828 if (WARN_ON_ONCE(id < 0))
829 return ERR_PTR(-EINVAL);
830
5806f07c 831 p = idp->top;
6ff2d39b
MS
832 if (!p)
833 return ERR_PTR(-EINVAL);
834
835 n = (p->layer+1) * IDR_BITS;
5806f07c 836
5806f07c
JM
837 if (id >= (1 << n))
838 return ERR_PTR(-EINVAL);
839
840 n -= IDR_BITS;
841 while ((n > 0) && p) {
842 p = p->ary[(id >> n) & IDR_MASK];
843 n -= IDR_BITS;
844 }
845
846 n = id & IDR_MASK;
1d9b2e1e 847 if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
5806f07c
JM
848 return ERR_PTR(-ENOENT);
849
850 old_p = p->ary[n];
cf481c20 851 rcu_assign_pointer(p->ary[n], ptr);
5806f07c
JM
852
853 return old_p;
854}
855EXPORT_SYMBOL(idr_replace);
856
199f0ca5 857void __init idr_init_cache(void)
1da177e4 858{
199f0ca5 859 idr_layer_cache = kmem_cache_create("idr_layer_cache",
5b019e99 860 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
1da177e4
LT
861}
862
863/**
864 * idr_init - initialize idr handle
865 * @idp: idr handle
866 *
867 * This function is use to set up the handle (@idp) that you will pass
868 * to the rest of the functions.
869 */
870void idr_init(struct idr *idp)
871{
1da177e4
LT
872 memset(idp, 0, sizeof(struct idr));
873 spin_lock_init(&idp->lock);
874}
875EXPORT_SYMBOL(idr_init);
72dba584
TH
876
877
56083ab1
RD
878/**
879 * DOC: IDA description
72dba584
TH
880 * IDA - IDR based ID allocator
881 *
56083ab1 882 * This is id allocator without id -> pointer translation. Memory
72dba584
TH
883 * usage is much lower than full blown idr because each id only
884 * occupies a bit. ida uses a custom leaf node which contains
885 * IDA_BITMAP_BITS slots.
886 *
887 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
888 */
889
890static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
891{
892 unsigned long flags;
893
894 if (!ida->free_bitmap) {
895 spin_lock_irqsave(&ida->idr.lock, flags);
896 if (!ida->free_bitmap) {
897 ida->free_bitmap = bitmap;
898 bitmap = NULL;
899 }
900 spin_unlock_irqrestore(&ida->idr.lock, flags);
901 }
902
903 kfree(bitmap);
904}
905
906/**
907 * ida_pre_get - reserve resources for ida allocation
908 * @ida: ida handle
909 * @gfp_mask: memory allocation flag
910 *
911 * This function should be called prior to locking and calling the
912 * following function. It preallocates enough memory to satisfy the
913 * worst possible allocation.
914 *
56083ab1
RD
915 * If the system is REALLY out of memory this function returns %0,
916 * otherwise %1.
72dba584
TH
917 */
918int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
919{
920 /* allocate idr_layers */
921 if (!idr_pre_get(&ida->idr, gfp_mask))
922 return 0;
923
924 /* allocate free_bitmap */
925 if (!ida->free_bitmap) {
926 struct ida_bitmap *bitmap;
927
928 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
929 if (!bitmap)
930 return 0;
931
932 free_bitmap(ida, bitmap);
933 }
934
935 return 1;
936}
937EXPORT_SYMBOL(ida_pre_get);
938
939/**
940 * ida_get_new_above - allocate new ID above or equal to a start id
941 * @ida: ida handle
ea24ea85 942 * @starting_id: id to start search at
72dba584
TH
943 * @p_id: pointer to the allocated handle
944 *
e3816c54
WSH
945 * Allocate new ID above or equal to @starting_id. It should be called
946 * with any required locks.
72dba584 947 *
56083ab1 948 * If memory is required, it will return %-EAGAIN, you should unlock
72dba584 949 * and go back to the ida_pre_get() call. If the ida is full, it will
56083ab1 950 * return %-ENOSPC.
72dba584 951 *
56083ab1 952 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
72dba584
TH
953 */
954int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
955{
326cf0f0 956 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
72dba584
TH
957 struct ida_bitmap *bitmap;
958 unsigned long flags;
959 int idr_id = starting_id / IDA_BITMAP_BITS;
960 int offset = starting_id % IDA_BITMAP_BITS;
961 int t, id;
962
963 restart:
964 /* get vacant slot */
d5c7409f 965 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
944ca05c 966 if (t < 0)
12d1b439 967 return t == -ENOMEM ? -EAGAIN : t;
72dba584 968
125c4c70 969 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
72dba584
TH
970 return -ENOSPC;
971
972 if (t != idr_id)
973 offset = 0;
974 idr_id = t;
975
976 /* if bitmap isn't there, create a new one */
977 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
978 if (!bitmap) {
979 spin_lock_irqsave(&ida->idr.lock, flags);
980 bitmap = ida->free_bitmap;
981 ida->free_bitmap = NULL;
982 spin_unlock_irqrestore(&ida->idr.lock, flags);
983
984 if (!bitmap)
985 return -EAGAIN;
986
987 memset(bitmap, 0, sizeof(struct ida_bitmap));
3219b3b7
ND
988 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
989 (void *)bitmap);
72dba584
TH
990 pa[0]->count++;
991 }
992
993 /* lookup for empty slot */
994 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
995 if (t == IDA_BITMAP_BITS) {
996 /* no empty slot after offset, continue to the next chunk */
997 idr_id++;
998 offset = 0;
999 goto restart;
1000 }
1001
1002 id = idr_id * IDA_BITMAP_BITS + t;
125c4c70 1003 if (id >= MAX_IDR_BIT)
72dba584
TH
1004 return -ENOSPC;
1005
1006 __set_bit(t, bitmap->bitmap);
1007 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
1008 idr_mark_full(pa, idr_id);
1009
1010 *p_id = id;
1011
1012 /* Each leaf node can handle nearly a thousand slots and the
1013 * whole idea of ida is to have small memory foot print.
1014 * Throw away extra resources one by one after each successful
1015 * allocation.
1016 */
1017 if (ida->idr.id_free_cnt || ida->free_bitmap) {
4ae53789 1018 struct idr_layer *p = get_from_free_list(&ida->idr);
72dba584
TH
1019 if (p)
1020 kmem_cache_free(idr_layer_cache, p);
1021 }
1022
1023 return 0;
1024}
1025EXPORT_SYMBOL(ida_get_new_above);
1026
72dba584
TH
1027/**
1028 * ida_remove - remove the given ID
1029 * @ida: ida handle
1030 * @id: ID to free
1031 */
1032void ida_remove(struct ida *ida, int id)
1033{
1034 struct idr_layer *p = ida->idr.top;
1035 int shift = (ida->idr.layers - 1) * IDR_BITS;
1036 int idr_id = id / IDA_BITMAP_BITS;
1037 int offset = id % IDA_BITMAP_BITS;
1038 int n;
1039 struct ida_bitmap *bitmap;
1040
1041 /* clear full bits while looking up the leaf idr_layer */
1042 while ((shift > 0) && p) {
1043 n = (idr_id >> shift) & IDR_MASK;
1d9b2e1e 1044 __clear_bit(n, p->bitmap);
72dba584
TH
1045 p = p->ary[n];
1046 shift -= IDR_BITS;
1047 }
1048
1049 if (p == NULL)
1050 goto err;
1051
1052 n = idr_id & IDR_MASK;
1d9b2e1e 1053 __clear_bit(n, p->bitmap);
72dba584
TH
1054
1055 bitmap = (void *)p->ary[n];
1056 if (!test_bit(offset, bitmap->bitmap))
1057 goto err;
1058
1059 /* update bitmap and remove it if empty */
1060 __clear_bit(offset, bitmap->bitmap);
1061 if (--bitmap->nr_busy == 0) {
1d9b2e1e 1062 __set_bit(n, p->bitmap); /* to please idr_remove() */
72dba584
TH
1063 idr_remove(&ida->idr, idr_id);
1064 free_bitmap(ida, bitmap);
1065 }
1066
1067 return;
1068
1069 err:
1070 printk(KERN_WARNING
1071 "ida_remove called for id=%d which is not allocated.\n", id);
1072}
1073EXPORT_SYMBOL(ida_remove);
1074
1075/**
1076 * ida_destroy - release all cached layers within an ida tree
ea24ea85 1077 * @ida: ida handle
72dba584
TH
1078 */
1079void ida_destroy(struct ida *ida)
1080{
1081 idr_destroy(&ida->idr);
1082 kfree(ida->free_bitmap);
1083}
1084EXPORT_SYMBOL(ida_destroy);
1085
88eca020
RR
1086/**
1087 * ida_simple_get - get a new id.
1088 * @ida: the (initialized) ida.
1089 * @start: the minimum id (inclusive, < 0x8000000)
1090 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1091 * @gfp_mask: memory allocation flags
1092 *
1093 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1094 * On memory allocation failure, returns -ENOMEM.
1095 *
1096 * Use ida_simple_remove() to get rid of an id.
1097 */
1098int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1099 gfp_t gfp_mask)
1100{
1101 int ret, id;
1102 unsigned int max;
46cbc1d3 1103 unsigned long flags;
88eca020
RR
1104
1105 BUG_ON((int)start < 0);
1106 BUG_ON((int)end < 0);
1107
1108 if (end == 0)
1109 max = 0x80000000;
1110 else {
1111 BUG_ON(end < start);
1112 max = end - 1;
1113 }
1114
1115again:
1116 if (!ida_pre_get(ida, gfp_mask))
1117 return -ENOMEM;
1118
46cbc1d3 1119 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020
RR
1120 ret = ida_get_new_above(ida, start, &id);
1121 if (!ret) {
1122 if (id > max) {
1123 ida_remove(ida, id);
1124 ret = -ENOSPC;
1125 } else {
1126 ret = id;
1127 }
1128 }
46cbc1d3 1129 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1130
1131 if (unlikely(ret == -EAGAIN))
1132 goto again;
1133
1134 return ret;
1135}
1136EXPORT_SYMBOL(ida_simple_get);
1137
1138/**
1139 * ida_simple_remove - remove an allocated id.
1140 * @ida: the (initialized) ida.
1141 * @id: the id returned by ida_simple_get.
1142 */
1143void ida_simple_remove(struct ida *ida, unsigned int id)
1144{
46cbc1d3
TH
1145 unsigned long flags;
1146
88eca020 1147 BUG_ON((int)id < 0);
46cbc1d3 1148 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020 1149 ida_remove(ida, id);
46cbc1d3 1150 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1151}
1152EXPORT_SYMBOL(ida_simple_remove);
1153
72dba584
TH
1154/**
1155 * ida_init - initialize ida handle
1156 * @ida: ida handle
1157 *
1158 * This function is use to set up the handle (@ida) that you will pass
1159 * to the rest of the functions.
1160 */
1161void ida_init(struct ida *ida)
1162{
1163 memset(ida, 0, sizeof(struct ida));
1164 idr_init(&ida->idr);
1165
1166}
1167EXPORT_SYMBOL(ida_init);