]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - lib/maple_tree.c
maple_tree: use MAS_BUG_ON() in mas_set_height()
[mirror_ubuntu-kernels.git] / lib / maple_tree.c
CommitLineData
54a611b6
LH
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define ma_mnode_ptr(x) ((struct maple_node *)(x))
79#define ma_enode_ptr(x) ((struct maple_enode *)(x))
80static struct kmem_cache *maple_node_cache;
81
82#ifdef CONFIG_DEBUG_MAPLE_TREE
83static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88};
89#define mt_node_max(x) mt_max[mte_node_type(x)]
90#endif
91
92static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97};
98#define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105};
106#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113};
114#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131};
132
133/*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147};
148
44081c77
AB
149#ifdef CONFIG_KASAN_STACK
150/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151#define noinline_for_kasan noinline_for_stack
152#else
153#define noinline_for_kasan inline
154#endif
155
54a611b6
LH
156/* Functions */
157static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158{
541e06b7 159 return kmem_cache_alloc(maple_node_cache, gfp);
54a611b6
LH
160}
161
162static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163{
541e06b7 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
54a611b6
LH
165}
166
167static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168{
169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170}
171
172static void mt_free_rcu(struct rcu_head *head)
173{
174 struct maple_node *node = container_of(head, struct maple_node, rcu);
175
176 kmem_cache_free(maple_node_cache, node);
177}
178
179/*
180 * ma_free_rcu() - Use rcu callback to free a maple node
181 * @node: The node to free
182 *
183 * The maple tree uses the parent pointer to indicate this node is no longer in
184 * use and will be freed.
185 */
186static void ma_free_rcu(struct maple_node *node)
187{
c13af03d 188 WARN_ON(node->parent != ma_parent_ptr(node));
54a611b6
LH
189 call_rcu(&node->rcu, mt_free_rcu);
190}
191
54a611b6
LH
192static void mas_set_height(struct ma_state *mas)
193{
194 unsigned int new_flags = mas->tree->ma_flags;
195
196 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
5950ada9 197 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
54a611b6
LH
198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 mas->tree->ma_flags = new_flags;
200}
201
202static unsigned int mas_mt_height(struct ma_state *mas)
203{
204 return mt_height(mas->tree);
205}
206
207static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208{
209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 MAPLE_NODE_TYPE_MASK;
211}
212
213static inline bool ma_is_dense(const enum maple_type type)
214{
215 return type < maple_leaf_64;
216}
217
218static inline bool ma_is_leaf(const enum maple_type type)
219{
220 return type < maple_range_64;
221}
222
223static inline bool mte_is_leaf(const struct maple_enode *entry)
224{
225 return ma_is_leaf(mte_node_type(entry));
226}
227
228/*
229 * We also reserve values with the bottom two bits set to '10' which are
230 * below 4096
231 */
232static inline bool mt_is_reserved(const void *entry)
233{
234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 xa_is_internal(entry);
236}
237
238static inline void mas_set_err(struct ma_state *mas, long err)
239{
240 mas->node = MA_ERROR(err);
241}
242
f0a1f866 243static inline bool mas_is_ptr(const struct ma_state *mas)
54a611b6
LH
244{
245 return mas->node == MAS_ROOT;
246}
247
f0a1f866 248static inline bool mas_is_start(const struct ma_state *mas)
54a611b6
LH
249{
250 return mas->node == MAS_START;
251}
252
253bool mas_is_err(struct ma_state *mas)
254{
255 return xa_is_err(mas->node);
256}
257
258static inline bool mas_searchable(struct ma_state *mas)
259{
260 if (mas_is_none(mas))
261 return false;
262
263 if (mas_is_ptr(mas))
264 return false;
265
266 return true;
267}
268
269static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270{
271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272}
273
274/*
275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276 * @entry: The maple encoded node
277 *
278 * Return: a maple topiary pointer
279 */
280static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281{
282 return (struct maple_topiary *)
283 ((unsigned long)entry & ~MAPLE_NODE_MASK);
284}
285
286/*
287 * mas_mn() - Get the maple state node.
288 * @mas: The maple state
289 *
290 * Return: the maple node (not encoded - bare pointer).
291 */
292static inline struct maple_node *mas_mn(const struct ma_state *mas)
293{
294 return mte_to_node(mas->node);
295}
296
297/*
298 * mte_set_node_dead() - Set a maple encoded node as dead.
299 * @mn: The maple encoded node.
300 */
301static inline void mte_set_node_dead(struct maple_enode *mn)
302{
303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 smp_wmb(); /* Needed for RCU */
305}
306
307/* Bit 1 indicates the root is a node */
308#define MAPLE_ROOT_NODE 0x02
309/* maple_type stored bit 3-6 */
310#define MAPLE_ENODE_TYPE_SHIFT 0x03
311/* Bit 2 means a NULL somewhere below */
312#define MAPLE_ENODE_NULL 0x04
313
314static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 enum maple_type type)
316{
317 return (void *)((unsigned long)node |
318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319}
320
321static inline void *mte_mk_root(const struct maple_enode *node)
322{
323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324}
325
326static inline void *mte_safe_root(const struct maple_enode *node)
327{
328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329}
330
6e7ba8b5 331static inline void *mte_set_full(const struct maple_enode *node)
54a611b6 332{
6e7ba8b5 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
54a611b6
LH
334}
335
6e7ba8b5 336static inline void *mte_clear_full(const struct maple_enode *node)
54a611b6 337{
6e7ba8b5
LH
338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339}
340
341static inline bool mte_has_null(const struct maple_enode *node)
342{
343 return (unsigned long)node & MAPLE_ENODE_NULL;
54a611b6
LH
344}
345
346static inline bool ma_is_root(struct maple_node *node)
347{
348 return ((unsigned long)node->parent & MA_ROOT_PARENT);
349}
350
351static inline bool mte_is_root(const struct maple_enode *node)
352{
353 return ma_is_root(mte_to_node(node));
354}
355
356static inline bool mas_is_root_limits(const struct ma_state *mas)
357{
358 return !mas->min && mas->max == ULONG_MAX;
359}
360
361static inline bool mt_is_alloc(struct maple_tree *mt)
362{
363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364}
365
366/*
367 * The Parent Pointer
368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
370 * bit values need an extra bit to store the offset. This extra bit comes from
371 * a reuse of the last bit in the node type. This is possible by using bit 1 to
372 * indicate if bit 2 is part of the type or the slot.
373 *
374 * Note types:
375 * 0x??1 = Root
376 * 0x?00 = 16 bit nodes
377 * 0x010 = 32 bit nodes
378 * 0x110 = 64 bit nodes
379 *
380 * Slot size and alignment
381 * 0b??1 : Root
382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
385 */
386
387#define MAPLE_PARENT_ROOT 0x01
388
389#define MAPLE_PARENT_SLOT_SHIFT 0x03
390#define MAPLE_PARENT_SLOT_MASK 0xF8
391
392#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
393#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
394
395#define MAPLE_PARENT_RANGE64 0x06
396#define MAPLE_PARENT_RANGE32 0x04
397#define MAPLE_PARENT_NOT_RANGE16 0x02
398
399/*
400 * mte_parent_shift() - Get the parent shift for the slot storage.
401 * @parent: The parent pointer cast as an unsigned long
402 * Return: The shift into that pointer to the star to of the slot
403 */
404static inline unsigned long mte_parent_shift(unsigned long parent)
405{
406 /* Note bit 1 == 0 means 16B */
407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 return MAPLE_PARENT_SLOT_SHIFT;
409
410 return MAPLE_PARENT_16B_SLOT_SHIFT;
411}
412
413/*
414 * mte_parent_slot_mask() - Get the slot mask for the parent.
415 * @parent: The parent pointer cast as an unsigned long.
416 * Return: The slot mask for that parent.
417 */
418static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419{
420 /* Note bit 1 == 0 means 16B */
421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 return MAPLE_PARENT_SLOT_MASK;
423
424 return MAPLE_PARENT_16B_SLOT_MASK;
425}
426
427/*
afc754c6 428 * mas_parent_type() - Return the maple_type of the parent from the stored
54a611b6
LH
429 * parent type.
430 * @mas: The maple state
afc754c6 431 * @enode: The maple_enode to extract the parent's enum
54a611b6
LH
432 * Return: The node->parent maple_type
433 */
434static inline
afc754c6 435enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
54a611b6
LH
436{
437 unsigned long p_type;
438
afc754c6
LH
439 p_type = (unsigned long)mte_to_node(enode)->parent;
440 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
441 return 0;
54a611b6
LH
442
443 p_type &= MAPLE_NODE_MASK;
afc754c6 444 p_type &= ~mte_parent_slot_mask(p_type);
54a611b6
LH
445 switch (p_type) {
446 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
afc754c6 447 if (mt_is_alloc(mas->tree))
54a611b6
LH
448 return maple_arange_64;
449 return maple_range_64;
450 }
451
452 return 0;
453}
454
54a611b6 455/*
bf96715e 456 * mas_set_parent() - Set the parent node and encode the slot
54a611b6
LH
457 * @enode: The encoded maple node.
458 * @parent: The encoded maple node that is the parent of @enode.
459 * @slot: The slot that @enode resides in @parent.
460 *
461 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
462 * parent type.
463 */
464static inline
bf96715e
LH
465void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
466 const struct maple_enode *parent, unsigned char slot)
54a611b6 467{
831978e3 468 unsigned long val = (unsigned long)parent;
54a611b6
LH
469 unsigned long shift;
470 unsigned long type;
471 enum maple_type p_type = mte_node_type(parent);
472
bf96715e
LH
473 MAS_BUG_ON(mas, p_type == maple_dense);
474 MAS_BUG_ON(mas, p_type == maple_leaf_64);
54a611b6
LH
475
476 switch (p_type) {
477 case maple_range_64:
478 case maple_arange_64:
479 shift = MAPLE_PARENT_SLOT_SHIFT;
480 type = MAPLE_PARENT_RANGE64;
481 break;
482 default:
483 case maple_dense:
484 case maple_leaf_64:
485 shift = type = 0;
486 break;
487 }
488
489 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
490 val |= (slot << shift) | type;
491 mte_to_node(enode)->parent = ma_parent_ptr(val);
492}
493
494/*
495 * mte_parent_slot() - get the parent slot of @enode.
496 * @enode: The encoded maple node.
497 *
498 * Return: The slot in the parent node where @enode resides.
499 */
500static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
501{
831978e3 502 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
54a611b6 503
84fd3e1e 504 if (val & MA_ROOT_PARENT)
54a611b6
LH
505 return 0;
506
507 /*
508 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
509 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
510 */
511 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
512}
513
514/*
515 * mte_parent() - Get the parent of @node.
516 * @node: The encoded maple node.
517 *
518 * Return: The parent maple node.
519 */
520static inline struct maple_node *mte_parent(const struct maple_enode *enode)
521{
522 return (void *)((unsigned long)
523 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
524}
525
526/*
527 * ma_dead_node() - check if the @enode is dead.
528 * @enode: The encoded maple node
529 *
530 * Return: true if dead, false otherwise.
531 */
532static inline bool ma_dead_node(const struct maple_node *node)
533{
0a2b18d9 534 struct maple_node *parent;
54a611b6 535
0a2b18d9
LH
536 /* Do not reorder reads from the node prior to the parent check */
537 smp_rmb();
538 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
54a611b6
LH
539 return (parent == node);
540}
39d0bd86 541
54a611b6
LH
542/*
543 * mte_dead_node() - check if the @enode is dead.
544 * @enode: The encoded maple node
545 *
546 * Return: true if dead, false otherwise.
547 */
548static inline bool mte_dead_node(const struct maple_enode *enode)
549{
550 struct maple_node *parent, *node;
551
552 node = mte_to_node(enode);
0a2b18d9
LH
553 /* Do not reorder reads from the node prior to the parent check */
554 smp_rmb();
54a611b6
LH
555 parent = mte_parent(enode);
556 return (parent == node);
557}
558
559/*
560 * mas_allocated() - Get the number of nodes allocated in a maple state.
561 * @mas: The maple state
562 *
563 * The ma_state alloc member is overloaded to hold a pointer to the first
564 * allocated node or to the number of requested nodes to allocate. If bit 0 is
565 * set, then the alloc contains the number of requested nodes. If there is an
566 * allocated node, then the total allocated nodes is in that node.
567 *
568 * Return: The total number of nodes allocated
569 */
570static inline unsigned long mas_allocated(const struct ma_state *mas)
571{
572 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
573 return 0;
574
575 return mas->alloc->total;
576}
577
578/*
579 * mas_set_alloc_req() - Set the requested number of allocations.
580 * @mas: the maple state
581 * @count: the number of allocations.
582 *
583 * The requested number of allocations is either in the first allocated node,
584 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
585 * no allocated node. Set the request either in the node or do the necessary
586 * encoding to store in @mas->alloc directly.
587 */
588static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
589{
590 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
591 if (!count)
592 mas->alloc = NULL;
593 else
594 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
595 return;
596 }
597
598 mas->alloc->request_count = count;
599}
600
601/*
602 * mas_alloc_req() - get the requested number of allocations.
603 * @mas: The maple state
604 *
605 * The alloc count is either stored directly in @mas, or in
606 * @mas->alloc->request_count if there is at least one node allocated. Decode
607 * the request count if it's stored directly in @mas->alloc.
608 *
609 * Return: The allocation request count.
610 */
611static inline unsigned int mas_alloc_req(const struct ma_state *mas)
612{
613 if ((unsigned long)mas->alloc & 0x1)
614 return (unsigned long)(mas->alloc) >> 1;
615 else if (mas->alloc)
616 return mas->alloc->request_count;
617 return 0;
618}
619
620/*
621 * ma_pivots() - Get a pointer to the maple node pivots.
622 * @node - the maple node
623 * @type - the node type
624 *
39d0bd86
LH
625 * In the event of a dead node, this array may be %NULL
626 *
54a611b6
LH
627 * Return: A pointer to the maple node pivots
628 */
629static inline unsigned long *ma_pivots(struct maple_node *node,
630 enum maple_type type)
631{
632 switch (type) {
633 case maple_arange_64:
634 return node->ma64.pivot;
635 case maple_range_64:
636 case maple_leaf_64:
637 return node->mr64.pivot;
638 case maple_dense:
639 return NULL;
640 }
641 return NULL;
642}
643
644/*
645 * ma_gaps() - Get a pointer to the maple node gaps.
646 * @node - the maple node
647 * @type - the node type
648 *
649 * Return: A pointer to the maple node gaps
650 */
651static inline unsigned long *ma_gaps(struct maple_node *node,
652 enum maple_type type)
653{
654 switch (type) {
655 case maple_arange_64:
656 return node->ma64.gap;
657 case maple_range_64:
658 case maple_leaf_64:
659 case maple_dense:
660 return NULL;
661 }
662 return NULL;
663}
664
665/*
666 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
667 * @mn: The maple encoded node.
668 * @piv: The pivot.
669 *
670 * Return: the pivot at @piv of @mn.
671 */
672static inline unsigned long mte_pivot(const struct maple_enode *mn,
673 unsigned char piv)
674{
675 struct maple_node *node = mte_to_node(mn);
ab6ef70a 676 enum maple_type type = mte_node_type(mn);
54a611b6 677
ab6ef70a 678 if (piv >= mt_pivots[type]) {
54a611b6
LH
679 WARN_ON(1);
680 return 0;
681 }
ab6ef70a 682 switch (type) {
54a611b6
LH
683 case maple_arange_64:
684 return node->ma64.pivot[piv];
685 case maple_range_64:
686 case maple_leaf_64:
687 return node->mr64.pivot[piv];
688 case maple_dense:
689 return 0;
690 }
691 return 0;
692}
693
694/*
695 * mas_safe_pivot() - get the pivot at @piv or mas->max.
696 * @mas: The maple state
697 * @pivots: The pointer to the maple node pivots
698 * @piv: The pivot to fetch
699 * @type: The maple node type
700 *
701 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
702 * otherwise.
703 */
704static inline unsigned long
705mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
706 unsigned char piv, enum maple_type type)
707{
708 if (piv >= mt_pivots[type])
709 return mas->max;
710
711 return pivots[piv];
712}
713
714/*
715 * mas_safe_min() - Return the minimum for a given offset.
716 * @mas: The maple state
717 * @pivots: The pointer to the maple node pivots
718 * @offset: The offset into the pivot array
719 *
720 * Return: The minimum range value that is contained in @offset.
721 */
722static inline unsigned long
723mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
724{
725 if (likely(offset))
726 return pivots[offset - 1] + 1;
727
728 return mas->min;
729}
730
731/*
732 * mas_logical_pivot() - Get the logical pivot of a given offset.
733 * @mas: The maple state
734 * @pivots: The pointer to the maple node pivots
735 * @offset: The offset into the pivot array
736 * @type: The maple node type
737 *
738 * When there is no value at a pivot (beyond the end of the data), then the
739 * pivot is actually @mas->max.
740 *
741 * Return: the logical pivot of a given @offset.
742 */
743static inline unsigned long
744mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
745 unsigned char offset, enum maple_type type)
746{
747 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
748
749 if (likely(lpiv))
750 return lpiv;
751
752 if (likely(offset))
753 return mas->max;
754
755 return lpiv;
756}
757
758/*
759 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
760 * @mn: The encoded maple node
761 * @piv: The pivot offset
762 * @val: The value of the pivot
763 */
764static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
765 unsigned long val)
766{
767 struct maple_node *node = mte_to_node(mn);
768 enum maple_type type = mte_node_type(mn);
769
770 BUG_ON(piv >= mt_pivots[type]);
771 switch (type) {
772 default:
773 case maple_range_64:
774 case maple_leaf_64:
775 node->mr64.pivot[piv] = val;
776 break;
777 case maple_arange_64:
778 node->ma64.pivot[piv] = val;
779 break;
780 case maple_dense:
781 break;
782 }
783
784}
785
786/*
787 * ma_slots() - Get a pointer to the maple node slots.
788 * @mn: The maple node
789 * @mt: The maple node type
790 *
791 * Return: A pointer to the maple node slots
792 */
793static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
794{
795 switch (mt) {
796 default:
797 case maple_arange_64:
798 return mn->ma64.slot;
799 case maple_range_64:
800 case maple_leaf_64:
801 return mn->mr64.slot;
802 case maple_dense:
803 return mn->slot;
804 }
805}
806
807static inline bool mt_locked(const struct maple_tree *mt)
808{
809 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
810 lockdep_is_held(&mt->ma_lock);
811}
812
813static inline void *mt_slot(const struct maple_tree *mt,
814 void __rcu **slots, unsigned char offset)
815{
816 return rcu_dereference_check(slots[offset], mt_locked(mt));
817}
818
790e1fa8
LH
819static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
820 unsigned char offset)
821{
822 return rcu_dereference_protected(slots[offset], mt_locked(mt));
823}
54a611b6
LH
824/*
825 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
826 * @mas: The maple state
827 * @slots: The pointer to the slots
828 * @offset: The offset into the slots array to fetch
829 *
830 * Return: The entry stored in @slots at the @offset.
831 */
832static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
833 unsigned char offset)
834{
790e1fa8 835 return mt_slot_locked(mas->tree, slots, offset);
54a611b6
LH
836}
837
838/*
839 * mas_slot() - Get the slot value when not holding the maple tree lock.
840 * @mas: The maple state
841 * @slots: The pointer to the slots
842 * @offset: The offset into the slots array to fetch
843 *
844 * Return: The entry stored in @slots at the @offset
845 */
846static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
847 unsigned char offset)
848{
849 return mt_slot(mas->tree, slots, offset);
850}
851
852/*
853 * mas_root() - Get the maple tree root.
854 * @mas: The maple state.
855 *
856 * Return: The pointer to the root of the tree
857 */
858static inline void *mas_root(struct ma_state *mas)
859{
860 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
861}
862
863static inline void *mt_root_locked(struct maple_tree *mt)
864{
865 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
866}
867
868/*
869 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
870 * @mas: The maple state.
871 *
872 * Return: The pointer to the root of the tree
873 */
874static inline void *mas_root_locked(struct ma_state *mas)
875{
876 return mt_root_locked(mas->tree);
877}
878
879static inline struct maple_metadata *ma_meta(struct maple_node *mn,
880 enum maple_type mt)
881{
882 switch (mt) {
883 case maple_arange_64:
884 return &mn->ma64.meta;
885 default:
886 return &mn->mr64.meta;
887 }
888}
889
890/*
891 * ma_set_meta() - Set the metadata information of a node.
892 * @mn: The maple node
893 * @mt: The maple node type
894 * @offset: The offset of the highest sub-gap in this node.
895 * @end: The end of the data in this node.
896 */
897static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
898 unsigned char offset, unsigned char end)
899{
900 struct maple_metadata *meta = ma_meta(mn, mt);
901
902 meta->gap = offset;
903 meta->end = end;
904}
905
2e5b4921 906/*
790e1fa8
LH
907 * mt_clear_meta() - clear the metadata information of a node, if it exists
908 * @mt: The maple tree
2e5b4921 909 * @mn: The maple node
790e1fa8 910 * @type: The maple node type
2e5b4921
LH
911 * @offset: The offset of the highest sub-gap in this node.
912 * @end: The end of the data in this node.
913 */
790e1fa8
LH
914static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
915 enum maple_type type)
2e5b4921
LH
916{
917 struct maple_metadata *meta;
918 unsigned long *pivots;
919 void __rcu **slots;
920 void *next;
921
790e1fa8 922 switch (type) {
2e5b4921
LH
923 case maple_range_64:
924 pivots = mn->mr64.pivot;
925 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
926 slots = mn->mr64.slot;
790e1fa8
LH
927 next = mt_slot_locked(mt, slots,
928 MAPLE_RANGE64_SLOTS - 1);
929 if (unlikely((mte_to_node(next) &&
930 mte_node_type(next))))
931 return; /* no metadata, could be node */
2e5b4921
LH
932 }
933 fallthrough;
934 case maple_arange_64:
790e1fa8 935 meta = ma_meta(mn, type);
2e5b4921
LH
936 break;
937 default:
938 return;
939 }
940
941 meta->gap = 0;
942 meta->end = 0;
943}
944
54a611b6
LH
945/*
946 * ma_meta_end() - Get the data end of a node from the metadata
947 * @mn: The maple node
948 * @mt: The maple node type
949 */
950static inline unsigned char ma_meta_end(struct maple_node *mn,
951 enum maple_type mt)
952{
953 struct maple_metadata *meta = ma_meta(mn, mt);
954
955 return meta->end;
956}
957
958/*
959 * ma_meta_gap() - Get the largest gap location of a node from the metadata
960 * @mn: The maple node
961 * @mt: The maple node type
962 */
963static inline unsigned char ma_meta_gap(struct maple_node *mn,
964 enum maple_type mt)
965{
966 BUG_ON(mt != maple_arange_64);
967
968 return mn->ma64.meta.gap;
969}
970
971/*
972 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
973 * @mn: The maple node
974 * @mn: The maple node type
975 * @offset: The location of the largest gap.
976 */
977static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
978 unsigned char offset)
979{
980
981 struct maple_metadata *meta = ma_meta(mn, mt);
982
983 meta->gap = offset;
984}
985
986/*
987 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
988 * @mat - the ma_topiary, a linked list of dead nodes.
989 * @dead_enode - the node to be marked as dead and added to the tail of the list
990 *
991 * Add the @dead_enode to the linked list in @mat.
992 */
993static inline void mat_add(struct ma_topiary *mat,
994 struct maple_enode *dead_enode)
995{
996 mte_set_node_dead(dead_enode);
997 mte_to_mat(dead_enode)->next = NULL;
998 if (!mat->tail) {
999 mat->tail = mat->head = dead_enode;
1000 return;
1001 }
1002
1003 mte_to_mat(mat->tail)->next = dead_enode;
1004 mat->tail = dead_enode;
1005}
1006
1007static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
1008static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
1009
1010/*
1011 * mas_mat_free() - Free all nodes in a dead list.
1012 * @mas - the maple state
1013 * @mat - the ma_topiary linked list of dead nodes to free.
1014 *
1015 * Free walk a dead list.
1016 */
1017static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
1018{
1019 struct maple_enode *next;
1020
1021 while (mat->head) {
1022 next = mte_to_mat(mat->head)->next;
1023 mas_free(mas, mat->head);
1024 mat->head = next;
1025 }
1026}
1027
1028/*
1029 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1030 * @mas - the maple state
1031 * @mat - the ma_topiary linked list of dead nodes to free.
1032 *
1033 * Destroy walk a dead list.
1034 */
1035static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1036{
1037 struct maple_enode *next;
1038
1039 while (mat->head) {
1040 next = mte_to_mat(mat->head)->next;
1041 mte_destroy_walk(mat->head, mat->mtree);
1042 mat->head = next;
1043 }
1044}
1045/*
1046 * mas_descend() - Descend into the slot stored in the ma_state.
1047 * @mas - the maple state.
1048 *
1049 * Note: Not RCU safe, only use in write side or debug code.
1050 */
1051static inline void mas_descend(struct ma_state *mas)
1052{
1053 enum maple_type type;
1054 unsigned long *pivots;
1055 struct maple_node *node;
1056 void __rcu **slots;
1057
1058 node = mas_mn(mas);
1059 type = mte_node_type(mas->node);
1060 pivots = ma_pivots(node, type);
1061 slots = ma_slots(node, type);
1062
1063 if (mas->offset)
1064 mas->min = pivots[mas->offset - 1] + 1;
1065 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1066 mas->node = mas_slot(mas, slots, mas->offset);
1067}
1068
1069/*
1070 * mte_set_gap() - Set a maple node gap.
1071 * @mn: The encoded maple node
1072 * @gap: The offset of the gap to set
1073 * @val: The gap value
1074 */
1075static inline void mte_set_gap(const struct maple_enode *mn,
1076 unsigned char gap, unsigned long val)
1077{
1078 switch (mte_node_type(mn)) {
1079 default:
1080 break;
1081 case maple_arange_64:
1082 mte_to_node(mn)->ma64.gap[gap] = val;
1083 break;
1084 }
1085}
1086
1087/*
1088 * mas_ascend() - Walk up a level of the tree.
1089 * @mas: The maple state
1090 *
1091 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1092 * may cause several levels of walking up to find the correct min and max.
1093 * May find a dead node which will cause a premature return.
1094 * Return: 1 on dead node, 0 otherwise
1095 */
1096static int mas_ascend(struct ma_state *mas)
1097{
1098 struct maple_enode *p_enode; /* parent enode. */
1099 struct maple_enode *a_enode; /* ancestor enode. */
1100 struct maple_node *a_node; /* ancestor node. */
1101 struct maple_node *p_node; /* parent node. */
1102 unsigned char a_slot;
1103 enum maple_type a_type;
1104 unsigned long min, max;
1105 unsigned long *pivots;
54a611b6
LH
1106 bool set_max = false, set_min = false;
1107
1108 a_node = mas_mn(mas);
1109 if (ma_is_root(a_node)) {
1110 mas->offset = 0;
1111 return 0;
1112 }
1113
1114 p_node = mte_parent(mas->node);
1115 if (unlikely(a_node == p_node))
1116 return 1;
633769c9 1117
afc754c6 1118 a_type = mas_parent_type(mas, mas->node);
633769c9 1119 mas->offset = mte_parent_slot(mas->node);
54a611b6
LH
1120 a_enode = mt_mk_node(p_node, a_type);
1121
1122 /* Check to make sure all parent information is still accurate */
1123 if (p_node != mte_parent(mas->node))
1124 return 1;
1125
1126 mas->node = a_enode;
54a611b6
LH
1127
1128 if (mte_is_root(a_enode)) {
1129 mas->max = ULONG_MAX;
1130 mas->min = 0;
1131 return 0;
1132 }
1133
633769c9
LH
1134 if (!mas->min)
1135 set_min = true;
1136
1137 if (mas->max == ULONG_MAX)
1138 set_max = true;
1139
54a611b6
LH
1140 min = 0;
1141 max = ULONG_MAX;
1142 do {
1143 p_enode = a_enode;
afc754c6 1144 a_type = mas_parent_type(mas, p_enode);
54a611b6
LH
1145 a_node = mte_parent(p_enode);
1146 a_slot = mte_parent_slot(p_enode);
54a611b6 1147 a_enode = mt_mk_node(a_node, a_type);
39d0bd86
LH
1148 pivots = ma_pivots(a_node, a_type);
1149
1150 if (unlikely(ma_dead_node(a_node)))
1151 return 1;
54a611b6
LH
1152
1153 if (!set_min && a_slot) {
1154 set_min = true;
1155 min = pivots[a_slot - 1] + 1;
1156 }
1157
1158 if (!set_max && a_slot < mt_pivots[a_type]) {
1159 set_max = true;
1160 max = pivots[a_slot];
1161 }
1162
1163 if (unlikely(ma_dead_node(a_node)))
1164 return 1;
1165
1166 if (unlikely(ma_is_root(a_node)))
1167 break;
1168
1169 } while (!set_min || !set_max);
1170
1171 mas->max = max;
1172 mas->min = min;
1173 return 0;
1174}
1175
1176/*
1177 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1178 * @mas: The maple state
1179 *
1180 * Return: A pointer to a maple node.
1181 */
1182static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1183{
1184 struct maple_alloc *ret, *node = mas->alloc;
1185 unsigned long total = mas_allocated(mas);
541e06b7 1186 unsigned int req = mas_alloc_req(mas);
54a611b6
LH
1187
1188 /* nothing or a request pending. */
541e06b7 1189 if (WARN_ON(!total))
54a611b6
LH
1190 return NULL;
1191
1192 if (total == 1) {
1193 /* single allocation in this ma_state */
1194 mas->alloc = NULL;
1195 ret = node;
1196 goto single_node;
1197 }
1198
541e06b7 1199 if (node->node_count == 1) {
54a611b6
LH
1200 /* Single allocation in this node. */
1201 mas->alloc = node->slot[0];
54a611b6
LH
1202 mas->alloc->total = node->total - 1;
1203 ret = node;
1204 goto new_head;
1205 }
54a611b6 1206 node->total--;
541e06b7
LH
1207 ret = node->slot[--node->node_count];
1208 node->slot[node->node_count] = NULL;
54a611b6
LH
1209
1210single_node:
1211new_head:
541e06b7
LH
1212 if (req) {
1213 req++;
1214 mas_set_alloc_req(mas, req);
54a611b6 1215 }
541e06b7
LH
1216
1217 memset(ret, 0, sizeof(*ret));
54a611b6
LH
1218 return (struct maple_node *)ret;
1219}
1220
1221/*
1222 * mas_push_node() - Push a node back on the maple state allocation.
1223 * @mas: The maple state
1224 * @used: The used maple node
1225 *
1226 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1227 * requested node count as necessary.
1228 */
1229static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1230{
1231 struct maple_alloc *reuse = (struct maple_alloc *)used;
1232 struct maple_alloc *head = mas->alloc;
1233 unsigned long count;
1234 unsigned int requested = mas_alloc_req(mas);
1235
54a611b6
LH
1236 count = mas_allocated(mas);
1237
541e06b7
LH
1238 reuse->request_count = 0;
1239 reuse->node_count = 0;
1240 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1241 head->slot[head->node_count++] = reuse;
54a611b6
LH
1242 head->total++;
1243 goto done;
1244 }
1245
1246 reuse->total = 1;
1247 if ((head) && !((unsigned long)head & 0x1)) {
54a611b6 1248 reuse->slot[0] = head;
541e06b7 1249 reuse->node_count = 1;
54a611b6
LH
1250 reuse->total += head->total;
1251 }
1252
1253 mas->alloc = reuse;
1254done:
1255 if (requested > 1)
1256 mas_set_alloc_req(mas, requested - 1);
1257}
1258
1259/*
1260 * mas_alloc_nodes() - Allocate nodes into a maple state
1261 * @mas: The maple state
1262 * @gfp: The GFP Flags
1263 */
1264static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1265{
1266 struct maple_alloc *node;
54a611b6 1267 unsigned long allocated = mas_allocated(mas);
54a611b6
LH
1268 unsigned int requested = mas_alloc_req(mas);
1269 unsigned int count;
1270 void **slots = NULL;
1271 unsigned int max_req = 0;
1272
1273 if (!requested)
1274 return;
1275
1276 mas_set_alloc_req(mas, 0);
1277 if (mas->mas_flags & MA_STATE_PREALLOC) {
1278 if (allocated)
1279 return;
1280 WARN_ON(!allocated);
1281 }
1282
541e06b7 1283 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
54a611b6
LH
1284 node = (struct maple_alloc *)mt_alloc_one(gfp);
1285 if (!node)
1286 goto nomem_one;
1287
541e06b7 1288 if (allocated) {
54a611b6 1289 node->slot[0] = mas->alloc;
541e06b7
LH
1290 node->node_count = 1;
1291 } else {
1292 node->node_count = 0;
1293 }
54a611b6 1294
54a611b6 1295 mas->alloc = node;
541e06b7 1296 node->total = ++allocated;
54a611b6
LH
1297 requested--;
1298 }
1299
1300 node = mas->alloc;
541e06b7 1301 node->request_count = 0;
54a611b6 1302 while (requested) {
1f5f12ec
PZ
1303 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1304 slots = (void **)&node->slot[node->node_count];
54a611b6
LH
1305 max_req = min(requested, max_req);
1306 count = mt_alloc_bulk(gfp, max_req, slots);
1307 if (!count)
1308 goto nomem_bulk;
1309
1f5f12ec
PZ
1310 if (node->node_count == 0) {
1311 node->slot[0]->node_count = 0;
1312 node->slot[0]->request_count = 0;
1313 }
1314
54a611b6 1315 node->node_count += count;
541e06b7 1316 allocated += count;
c61b3a2b 1317 node = node->slot[0];
54a611b6
LH
1318 requested -= count;
1319 }
541e06b7 1320 mas->alloc->total = allocated;
54a611b6
LH
1321 return;
1322
1323nomem_bulk:
1324 /* Clean up potential freed allocations on bulk failure */
1325 memset(slots, 0, max_req * sizeof(unsigned long));
1326nomem_one:
1327 mas_set_alloc_req(mas, requested);
1328 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
541e06b7 1329 mas->alloc->total = allocated;
54a611b6 1330 mas_set_err(mas, -ENOMEM);
54a611b6
LH
1331}
1332
1333/*
1334 * mas_free() - Free an encoded maple node
1335 * @mas: The maple state
1336 * @used: The encoded maple node to free.
1337 *
1338 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1339 * otherwise.
1340 */
1341static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1342{
1343 struct maple_node *tmp = mte_to_node(used);
1344
1345 if (mt_in_rcu(mas->tree))
1346 ma_free_rcu(tmp);
1347 else
1348 mas_push_node(mas, tmp);
1349}
1350
1351/*
1352 * mas_node_count() - Check if enough nodes are allocated and request more if
1353 * there is not enough nodes.
1354 * @mas: The maple state
1355 * @count: The number of nodes needed
1356 * @gfp: the gfp flags
1357 */
1358static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1359{
1360 unsigned long allocated = mas_allocated(mas);
1361
1362 if (allocated < count) {
1363 mas_set_alloc_req(mas, count - allocated);
1364 mas_alloc_nodes(mas, gfp);
1365 }
1366}
1367
1368/*
1369 * mas_node_count() - Check if enough nodes are allocated and request more if
1370 * there is not enough nodes.
1371 * @mas: The maple state
1372 * @count: The number of nodes needed
1373 *
1374 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1375 */
1376static void mas_node_count(struct ma_state *mas, int count)
1377{
1378 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1379}
1380
1381/*
1382 * mas_start() - Sets up maple state for operations.
1383 * @mas: The maple state.
1384 *
46b34584 1385 * If mas->node == MAS_START, then set the min, max and depth to
54a611b6
LH
1386 * defaults.
1387 *
1388 * Return:
1389 * - If mas->node is an error or not MAS_START, return NULL.
1390 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1391 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1392 * - If it's a tree: NULL & mas->node == safe root node.
1393 */
1394static inline struct maple_enode *mas_start(struct ma_state *mas)
1395{
1396 if (likely(mas_is_start(mas))) {
1397 struct maple_enode *root;
1398
54a611b6
LH
1399 mas->min = 0;
1400 mas->max = ULONG_MAX;
1401 mas->depth = 0;
54a611b6 1402
a7b92d59 1403retry:
54a611b6
LH
1404 root = mas_root(mas);
1405 /* Tree with nodes */
1406 if (likely(xa_is_node(root))) {
9bbba563 1407 mas->depth = 1;
54a611b6 1408 mas->node = mte_safe_root(root);
46b34584 1409 mas->offset = 0;
a7b92d59
LH
1410 if (mte_dead_node(mas->node))
1411 goto retry;
1412
54a611b6
LH
1413 return NULL;
1414 }
1415
1416 /* empty tree */
1417 if (unlikely(!root)) {
46b34584 1418 mas->node = MAS_NONE;
54a611b6
LH
1419 mas->offset = MAPLE_NODE_SLOTS;
1420 return NULL;
1421 }
1422
1423 /* Single entry tree */
1424 mas->node = MAS_ROOT;
1425 mas->offset = MAPLE_NODE_SLOTS;
1426
1427 /* Single entry tree. */
1428 if (mas->index > 0)
1429 return NULL;
1430
1431 return root;
1432 }
1433
1434 return NULL;
1435}
1436
1437/*
1438 * ma_data_end() - Find the end of the data in a node.
1439 * @node: The maple node
1440 * @type: The maple node type
1441 * @pivots: The array of pivots in the node
1442 * @max: The maximum value in the node
1443 *
1444 * Uses metadata to find the end of the data when possible.
1445 * Return: The zero indexed last slot with data (may be null).
1446 */
1447static inline unsigned char ma_data_end(struct maple_node *node,
1448 enum maple_type type,
1449 unsigned long *pivots,
1450 unsigned long max)
1451{
1452 unsigned char offset;
1453
39d0bd86
LH
1454 if (!pivots)
1455 return 0;
1456
54a611b6
LH
1457 if (type == maple_arange_64)
1458 return ma_meta_end(node, type);
1459
1460 offset = mt_pivots[type] - 1;
1461 if (likely(!pivots[offset]))
1462 return ma_meta_end(node, type);
1463
1464 if (likely(pivots[offset] == max))
1465 return offset;
1466
1467 return mt_pivots[type];
1468}
1469
1470/*
1471 * mas_data_end() - Find the end of the data (slot).
1472 * @mas: the maple state
1473 *
1474 * This method is optimized to check the metadata of a node if the node type
1475 * supports data end metadata.
1476 *
1477 * Return: The zero indexed last slot with data (may be null).
1478 */
1479static inline unsigned char mas_data_end(struct ma_state *mas)
1480{
1481 enum maple_type type;
1482 struct maple_node *node;
1483 unsigned char offset;
1484 unsigned long *pivots;
1485
1486 type = mte_node_type(mas->node);
1487 node = mas_mn(mas);
1488 if (type == maple_arange_64)
1489 return ma_meta_end(node, type);
1490
1491 pivots = ma_pivots(node, type);
39d0bd86
LH
1492 if (unlikely(ma_dead_node(node)))
1493 return 0;
1494
54a611b6
LH
1495 offset = mt_pivots[type] - 1;
1496 if (likely(!pivots[offset]))
1497 return ma_meta_end(node, type);
1498
1499 if (likely(pivots[offset] == mas->max))
1500 return offset;
1501
1502 return mt_pivots[type];
1503}
1504
1505/*
1506 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1507 * @mas - the maple state
1508 *
1509 * Return: The maximum gap in the leaf.
1510 */
1511static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1512{
1513 enum maple_type mt;
1514 unsigned long pstart, gap, max_gap;
1515 struct maple_node *mn;
1516 unsigned long *pivots;
1517 void __rcu **slots;
1518 unsigned char i;
1519 unsigned char max_piv;
1520
1521 mt = mte_node_type(mas->node);
1522 mn = mas_mn(mas);
1523 slots = ma_slots(mn, mt);
1524 max_gap = 0;
1525 if (unlikely(ma_is_dense(mt))) {
1526 gap = 0;
1527 for (i = 0; i < mt_slots[mt]; i++) {
1528 if (slots[i]) {
1529 if (gap > max_gap)
1530 max_gap = gap;
1531 gap = 0;
1532 } else {
1533 gap++;
1534 }
1535 }
1536 if (gap > max_gap)
1537 max_gap = gap;
1538 return max_gap;
1539 }
1540
1541 /*
1542 * Check the first implied pivot optimizes the loop below and slot 1 may
1543 * be skipped if there is a gap in slot 0.
1544 */
1545 pivots = ma_pivots(mn, mt);
1546 if (likely(!slots[0])) {
1547 max_gap = pivots[0] - mas->min + 1;
1548 i = 2;
1549 } else {
1550 i = 1;
1551 }
1552
1553 /* reduce max_piv as the special case is checked before the loop */
1554 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1555 /*
1556 * Check end implied pivot which can only be a gap on the right most
1557 * node.
1558 */
1559 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1560 gap = ULONG_MAX - pivots[max_piv];
1561 if (gap > max_gap)
1562 max_gap = gap;
1563 }
1564
1565 for (; i <= max_piv; i++) {
1566 /* data == no gap. */
1567 if (likely(slots[i]))
1568 continue;
1569
1570 pstart = pivots[i - 1];
1571 gap = pivots[i] - pstart;
1572 if (gap > max_gap)
1573 max_gap = gap;
1574
1575 /* There cannot be two gaps in a row. */
1576 i++;
1577 }
1578 return max_gap;
1579}
1580
1581/*
1582 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1583 * @node: The maple node
1584 * @gaps: The pointer to the gaps
1585 * @mt: The maple node type
1586 * @*off: Pointer to store the offset location of the gap.
1587 *
1588 * Uses the metadata data end to scan backwards across set gaps.
1589 *
1590 * Return: The maximum gap value
1591 */
1592static inline unsigned long
1593ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1594 unsigned char *off)
1595{
1596 unsigned char offset, i;
1597 unsigned long max_gap = 0;
1598
1599 i = offset = ma_meta_end(node, mt);
1600 do {
1601 if (gaps[i] > max_gap) {
1602 max_gap = gaps[i];
1603 offset = i;
1604 }
1605 } while (i--);
1606
1607 *off = offset;
1608 return max_gap;
1609}
1610
1611/*
1612 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1613 * @mas: The maple state.
1614 *
1615 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1616 *
1617 * Return: The gap value.
1618 */
1619static inline unsigned long mas_max_gap(struct ma_state *mas)
1620{
1621 unsigned long *gaps;
1622 unsigned char offset;
1623 enum maple_type mt;
1624 struct maple_node *node;
1625
1626 mt = mte_node_type(mas->node);
1627 if (ma_is_leaf(mt))
1628 return mas_leaf_max_gap(mas);
1629
1630 node = mas_mn(mas);
1631 offset = ma_meta_gap(node, mt);
1632 if (offset == MAPLE_ARANGE64_META_MAX)
1633 return 0;
1634
1635 gaps = ma_gaps(node, mt);
1636 return gaps[offset];
1637}
1638
1639/*
1640 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1641 * @mas: The maple state
1642 * @offset: The gap offset in the parent to set
1643 * @new: The new gap value.
1644 *
1645 * Set the parent gap then continue to set the gap upwards, using the metadata
1646 * of the parent to see if it is necessary to check the node above.
1647 */
1648static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1649 unsigned long new)
1650{
1651 unsigned long meta_gap = 0;
1652 struct maple_node *pnode;
1653 struct maple_enode *penode;
1654 unsigned long *pgaps;
1655 unsigned char meta_offset;
1656 enum maple_type pmt;
1657
1658 pnode = mte_parent(mas->node);
afc754c6 1659 pmt = mas_parent_type(mas, mas->node);
54a611b6
LH
1660 penode = mt_mk_node(pnode, pmt);
1661 pgaps = ma_gaps(pnode, pmt);
1662
1663ascend:
1664 meta_offset = ma_meta_gap(pnode, pmt);
1665 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1666 meta_gap = 0;
1667 else
1668 meta_gap = pgaps[meta_offset];
1669
1670 pgaps[offset] = new;
1671
1672 if (meta_gap == new)
1673 return;
1674
1675 if (offset != meta_offset) {
1676 if (meta_gap > new)
1677 return;
1678
1679 ma_set_meta_gap(pnode, pmt, offset);
1680 } else if (new < meta_gap) {
1681 meta_offset = 15;
1682 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1683 ma_set_meta_gap(pnode, pmt, meta_offset);
1684 }
1685
1686 if (ma_is_root(pnode))
1687 return;
1688
1689 /* Go to the parent node. */
1690 pnode = mte_parent(penode);
afc754c6 1691 pmt = mas_parent_type(mas, penode);
54a611b6
LH
1692 pgaps = ma_gaps(pnode, pmt);
1693 offset = mte_parent_slot(penode);
1694 penode = mt_mk_node(pnode, pmt);
1695 goto ascend;
1696}
1697
1698/*
1699 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1700 * @mas - the maple state.
1701 */
1702static inline void mas_update_gap(struct ma_state *mas)
1703{
1704 unsigned char pslot;
1705 unsigned long p_gap;
1706 unsigned long max_gap;
1707
1708 if (!mt_is_alloc(mas->tree))
1709 return;
1710
1711 if (mte_is_root(mas->node))
1712 return;
1713
1714 max_gap = mas_max_gap(mas);
1715
1716 pslot = mte_parent_slot(mas->node);
1717 p_gap = ma_gaps(mte_parent(mas->node),
afc754c6 1718 mas_parent_type(mas, mas->node))[pslot];
54a611b6
LH
1719
1720 if (p_gap != max_gap)
1721 mas_parent_gap(mas, pslot, max_gap);
1722}
1723
1724/*
1725 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1726 * @parent with the slot encoded.
1727 * @mas - the maple state (for the tree)
1728 * @parent - the maple encoded node containing the children.
1729 */
1730static inline void mas_adopt_children(struct ma_state *mas,
1731 struct maple_enode *parent)
1732{
1733 enum maple_type type = mte_node_type(parent);
1734 struct maple_node *node = mas_mn(mas);
1735 void __rcu **slots = ma_slots(node, type);
1736 unsigned long *pivots = ma_pivots(node, type);
1737 struct maple_enode *child;
1738 unsigned char offset;
1739
1740 offset = ma_data_end(node, type, pivots, mas->max);
1741 do {
1742 child = mas_slot_locked(mas, slots, offset);
bf96715e 1743 mas_set_parent(mas, child, parent, offset);
54a611b6
LH
1744 } while (offset--);
1745}
1746
1747/*
1748 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1749 * parent encoding to locate the maple node in the tree.
1750 * @mas - the ma_state to use for operations.
1751 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1752 * leave the node (true) and handle the adoption and free elsewhere.
1753 */
1754static inline void mas_replace(struct ma_state *mas, bool advanced)
1755 __must_hold(mas->tree->lock)
1756{
1757 struct maple_node *mn = mas_mn(mas);
1758 struct maple_enode *old_enode;
1759 unsigned char offset = 0;
1760 void __rcu **slots = NULL;
1761
1762 if (ma_is_root(mn)) {
1763 old_enode = mas_root_locked(mas);
1764 } else {
1765 offset = mte_parent_slot(mas->node);
1766 slots = ma_slots(mte_parent(mas->node),
afc754c6 1767 mas_parent_type(mas, mas->node));
54a611b6
LH
1768 old_enode = mas_slot_locked(mas, slots, offset);
1769 }
1770
1771 if (!advanced && !mte_is_leaf(mas->node))
1772 mas_adopt_children(mas, mas->node);
1773
1774 if (mte_is_root(mas->node)) {
1775 mn->parent = ma_parent_ptr(
1776 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1777 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1778 mas_set_height(mas);
1779 } else {
1780 rcu_assign_pointer(slots[offset], mas->node);
1781 }
1782
c13af03d
LH
1783 if (!advanced) {
1784 mte_set_node_dead(old_enode);
54a611b6 1785 mas_free(mas, old_enode);
c13af03d 1786 }
54a611b6
LH
1787}
1788
1789/*
1790 * mas_new_child() - Find the new child of a node.
1791 * @mas: the maple state
1792 * @child: the maple state to store the child.
1793 */
1794static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1795 __must_hold(mas->tree->lock)
1796{
1797 enum maple_type mt;
1798 unsigned char offset;
1799 unsigned char end;
1800 unsigned long *pivots;
1801 struct maple_enode *entry;
1802 struct maple_node *node;
1803 void __rcu **slots;
1804
1805 mt = mte_node_type(mas->node);
1806 node = mas_mn(mas);
1807 slots = ma_slots(node, mt);
1808 pivots = ma_pivots(node, mt);
1809 end = ma_data_end(node, mt, pivots, mas->max);
1810 for (offset = mas->offset; offset <= end; offset++) {
1811 entry = mas_slot_locked(mas, slots, offset);
1812 if (mte_parent(entry) == node) {
1813 *child = *mas;
1814 mas->offset = offset + 1;
1815 child->offset = offset;
1816 mas_descend(child);
1817 child->offset = 0;
1818 return true;
1819 }
1820 }
1821 return false;
1822}
1823
1824/*
1825 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1826 * old data or set b_node->b_end.
1827 * @b_node: the maple_big_node
1828 * @shift: the shift count
1829 */
1830static inline void mab_shift_right(struct maple_big_node *b_node,
1831 unsigned char shift)
1832{
1833 unsigned long size = b_node->b_end * sizeof(unsigned long);
1834
1835 memmove(b_node->pivot + shift, b_node->pivot, size);
1836 memmove(b_node->slot + shift, b_node->slot, size);
1837 if (b_node->type == maple_arange_64)
1838 memmove(b_node->gap + shift, b_node->gap, size);
1839}
1840
1841/*
1842 * mab_middle_node() - Check if a middle node is needed (unlikely)
1843 * @b_node: the maple_big_node that contains the data.
1844 * @size: the amount of data in the b_node
1845 * @split: the potential split location
1846 * @slot_count: the size that can be stored in a single node being considered.
1847 *
1848 * Return: true if a middle node is required.
1849 */
1850static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1851 unsigned char slot_count)
1852{
1853 unsigned char size = b_node->b_end;
1854
1855 if (size >= 2 * slot_count)
1856 return true;
1857
1858 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1859 return true;
1860
1861 return false;
1862}
1863
1864/*
1865 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1866 * @b_node: the maple_big_node with the data
1867 * @split: the suggested split location
1868 * @slot_count: the number of slots in the node being considered.
1869 *
1870 * Return: the split location.
1871 */
1872static inline int mab_no_null_split(struct maple_big_node *b_node,
1873 unsigned char split, unsigned char slot_count)
1874{
1875 if (!b_node->slot[split]) {
1876 /*
1877 * If the split is less than the max slot && the right side will
1878 * still be sufficient, then increment the split on NULL.
1879 */
1880 if ((split < slot_count - 1) &&
1881 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1882 split++;
1883 else
1884 split--;
1885 }
1886 return split;
1887}
1888
1889/*
1890 * mab_calc_split() - Calculate the split location and if there needs to be two
1891 * splits.
1892 * @bn: The maple_big_node with the data
1893 * @mid_split: The second split, if required. 0 otherwise.
1894 *
1895 * Return: The first split location. The middle split is set in @mid_split.
1896 */
1897static inline int mab_calc_split(struct ma_state *mas,
1898 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1899{
1900 unsigned char b_end = bn->b_end;
1901 int split = b_end / 2; /* Assume equal split. */
1902 unsigned char slot_min, slot_count = mt_slots[bn->type];
1903
1904 /*
1905 * To support gap tracking, all NULL entries are kept together and a node cannot
1906 * end on a NULL entry, with the exception of the left-most leaf. The
1907 * limitation means that the split of a node must be checked for this condition
1908 * and be able to put more data in one direction or the other.
1909 */
1910 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1911 *mid_split = 0;
1912 split = b_end - mt_min_slots[bn->type];
1913
1914 if (!ma_is_leaf(bn->type))
1915 return split;
1916
1917 mas->mas_flags |= MA_STATE_REBALANCE;
1918 if (!bn->slot[split])
1919 split--;
1920 return split;
1921 }
1922
1923 /*
1924 * Although extremely rare, it is possible to enter what is known as the 3-way
1925 * split scenario. The 3-way split comes about by means of a store of a range
1926 * that overwrites the end and beginning of two full nodes. The result is a set
1927 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1928 * also be located in different parent nodes which are also full. This can
1929 * carry upwards all the way to the root in the worst case.
1930 */
1931 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1932 split = b_end / 3;
1933 *mid_split = split * 2;
1934 } else {
1935 slot_min = mt_min_slots[bn->type];
1936
1937 *mid_split = 0;
1938 /*
1939 * Avoid having a range less than the slot count unless it
1940 * causes one node to be deficient.
1941 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1942 */
5729e06c
LH
1943 while ((split < slot_count - 1) &&
1944 ((bn->pivot[split] - min) < slot_count - 1) &&
1945 (b_end - split > slot_min))
54a611b6
LH
1946 split++;
1947 }
1948
1949 /* Avoid ending a node on a NULL entry */
1950 split = mab_no_null_split(bn, split, slot_count);
54a611b6 1951
e11cb683
VY
1952 if (unlikely(*mid_split))
1953 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
54a611b6
LH
1954
1955 return split;
1956}
1957
1958/*
1959 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1960 * and set @b_node->b_end to the next free slot.
1961 * @mas: The maple state
1962 * @mas_start: The starting slot to copy
1963 * @mas_end: The end slot to copy (inclusively)
1964 * @b_node: The maple_big_node to place the data
1965 * @mab_start: The starting location in maple_big_node to store the data.
1966 */
1967static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1968 unsigned char mas_end, struct maple_big_node *b_node,
1969 unsigned char mab_start)
1970{
1971 enum maple_type mt;
1972 struct maple_node *node;
1973 void __rcu **slots;
1974 unsigned long *pivots, *gaps;
1975 int i = mas_start, j = mab_start;
1976 unsigned char piv_end;
1977
1978 node = mas_mn(mas);
1979 mt = mte_node_type(mas->node);
1980 pivots = ma_pivots(node, mt);
1981 if (!i) {
1982 b_node->pivot[j] = pivots[i++];
1983 if (unlikely(i > mas_end))
1984 goto complete;
1985 j++;
1986 }
1987
1988 piv_end = min(mas_end, mt_pivots[mt]);
1989 for (; i < piv_end; i++, j++) {
1990 b_node->pivot[j] = pivots[i];
1991 if (unlikely(!b_node->pivot[j]))
1992 break;
1993
1994 if (unlikely(mas->max == b_node->pivot[j]))
1995 goto complete;
1996 }
1997
1998 if (likely(i <= mas_end))
1999 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
2000
2001complete:
2002 b_node->b_end = ++j;
2003 j -= mab_start;
2004 slots = ma_slots(node, mt);
2005 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
2006 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
2007 gaps = ma_gaps(node, mt);
2008 memcpy(b_node->gap + mab_start, gaps + mas_start,
2009 sizeof(unsigned long) * j);
2010 }
2011}
2012
2013/*
2014 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2015 * @mas: The maple state
2016 * @node: The maple node
2017 * @pivots: pointer to the maple node pivots
2018 * @mt: The maple type
2019 * @end: The assumed end
2020 *
2021 * Note, end may be incremented within this function but not modified at the
2022 * source. This is fine since the metadata is the last thing to be stored in a
2023 * node during a write.
2024 */
2025static inline void mas_leaf_set_meta(struct ma_state *mas,
2026 struct maple_node *node, unsigned long *pivots,
2027 enum maple_type mt, unsigned char end)
2028{
2029 /* There is no room for metadata already */
2030 if (mt_pivots[mt] <= end)
2031 return;
2032
2033 if (pivots[end] && pivots[end] < mas->max)
2034 end++;
2035
2036 if (end < mt_slots[mt] - 1)
2037 ma_set_meta(node, mt, 0, end);
2038}
2039
2040/*
2041 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2042 * @b_node: the maple_big_node that has the data
2043 * @mab_start: the start location in @b_node.
2044 * @mab_end: The end location in @b_node (inclusively)
2045 * @mas: The maple state with the maple encoded node.
2046 */
2047static inline void mab_mas_cp(struct maple_big_node *b_node,
2048 unsigned char mab_start, unsigned char mab_end,
2049 struct ma_state *mas, bool new_max)
2050{
2051 int i, j = 0;
2052 enum maple_type mt = mte_node_type(mas->node);
2053 struct maple_node *node = mte_to_node(mas->node);
2054 void __rcu **slots = ma_slots(node, mt);
2055 unsigned long *pivots = ma_pivots(node, mt);
2056 unsigned long *gaps = NULL;
2057 unsigned char end;
2058
2059 if (mab_end - mab_start > mt_pivots[mt])
2060 mab_end--;
2061
2062 if (!pivots[mt_pivots[mt] - 1])
2063 slots[mt_pivots[mt]] = NULL;
2064
2065 i = mab_start;
2066 do {
2067 pivots[j++] = b_node->pivot[i++];
2068 } while (i <= mab_end && likely(b_node->pivot[i]));
2069
2070 memcpy(slots, b_node->slot + mab_start,
2071 sizeof(void *) * (i - mab_start));
2072
2073 if (new_max)
2074 mas->max = b_node->pivot[i - 1];
2075
2076 end = j - 1;
2077 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2078 unsigned long max_gap = 0;
2079 unsigned char offset = 15;
2080
2081 gaps = ma_gaps(node, mt);
2082 do {
2083 gaps[--j] = b_node->gap[--i];
2084 if (gaps[j] > max_gap) {
2085 offset = j;
2086 max_gap = gaps[j];
2087 }
2088 } while (j);
2089
2090 ma_set_meta(node, mt, offset, end);
2091 } else {
2092 mas_leaf_set_meta(mas, node, pivots, mt, end);
2093 }
2094}
2095
2096/*
2097 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2098 * @mas: the maple state with the maple encoded node of the sub-tree.
2099 *
2100 * Descend through a sub-tree and adopt children who do not have the correct
2101 * parents set. Follow the parents which have the correct parents as they are
2102 * the new entries which need to be followed to find other incorrectly set
2103 * parents.
2104 */
2105static inline void mas_descend_adopt(struct ma_state *mas)
2106{
2107 struct ma_state list[3], next[3];
2108 int i, n;
2109
2110 /*
2111 * At each level there may be up to 3 correct parent pointers which indicates
2112 * the new nodes which need to be walked to find any new nodes at a lower level.
2113 */
2114
2115 for (i = 0; i < 3; i++) {
2116 list[i] = *mas;
2117 list[i].offset = 0;
2118 next[i].offset = 0;
2119 }
2120 next[0] = *mas;
2121
2122 while (!mte_is_leaf(list[0].node)) {
2123 n = 0;
2124 for (i = 0; i < 3; i++) {
2125 if (mas_is_none(&list[i]))
2126 continue;
2127
2128 if (i && list[i-1].node == list[i].node)
2129 continue;
2130
2131 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2132 n++;
2133
2134 mas_adopt_children(&list[i], list[i].node);
2135 }
2136
2137 while (n < 3)
2138 next[n++].node = MAS_NONE;
2139
2140 /* descend by setting the list to the children */
2141 for (i = 0; i < 3; i++)
2142 list[i] = next[i];
2143 }
2144}
2145
2146/*
2147 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2148 * @mas: The maple state
2149 * @end: The maple node end
2150 * @mt: The maple node type
2151 */
2152static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2153 enum maple_type mt)
2154{
2155 if (!(mas->mas_flags & MA_STATE_BULK))
2156 return;
2157
2158 if (mte_is_root(mas->node))
2159 return;
2160
2161 if (end > mt_min_slots[mt]) {
2162 mas->mas_flags &= ~MA_STATE_REBALANCE;
2163 return;
2164 }
2165}
2166
2167/*
2168 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2169 * data from a maple encoded node.
2170 * @wr_mas: the maple write state
2171 * @b_node: the maple_big_node to fill with data
2172 * @offset_end: the offset to end copying
2173 *
2174 * Return: The actual end of the data stored in @b_node
2175 */
44081c77 2176static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
2177 struct maple_big_node *b_node, unsigned char offset_end)
2178{
2179 unsigned char slot;
2180 unsigned char b_end;
2181 /* Possible underflow of piv will wrap back to 0 before use. */
2182 unsigned long piv;
2183 struct ma_state *mas = wr_mas->mas;
2184
2185 b_node->type = wr_mas->type;
2186 b_end = 0;
2187 slot = mas->offset;
2188 if (slot) {
2189 /* Copy start data up to insert. */
2190 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2191 b_end = b_node->b_end;
2192 piv = b_node->pivot[b_end - 1];
2193 } else
2194 piv = mas->min - 1;
2195
2196 if (piv + 1 < mas->index) {
2197 /* Handle range starting after old range */
2198 b_node->slot[b_end] = wr_mas->content;
2199 if (!wr_mas->content)
2200 b_node->gap[b_end] = mas->index - 1 - piv;
2201 b_node->pivot[b_end++] = mas->index - 1;
2202 }
2203
2204 /* Store the new entry. */
2205 mas->offset = b_end;
2206 b_node->slot[b_end] = wr_mas->entry;
2207 b_node->pivot[b_end] = mas->last;
2208
2209 /* Appended. */
2210 if (mas->last >= mas->max)
2211 goto b_end;
2212
2213 /* Handle new range ending before old range ends */
2214 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2215 if (piv > mas->last) {
2216 if (piv == ULONG_MAX)
2217 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2218
2219 if (offset_end != slot)
2220 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2221 offset_end);
2222
2223 b_node->slot[++b_end] = wr_mas->content;
2224 if (!wr_mas->content)
2225 b_node->gap[b_end] = piv - mas->last + 1;
2226 b_node->pivot[b_end] = piv;
2227 }
2228
2229 slot = offset_end + 1;
2230 if (slot > wr_mas->node_end)
2231 goto b_end;
2232
2233 /* Copy end data to the end of the node. */
2234 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2235 b_node->b_end--;
2236 return;
2237
2238b_end:
2239 b_node->b_end = b_end;
2240}
2241
2242/*
2243 * mas_prev_sibling() - Find the previous node with the same parent.
2244 * @mas: the maple state
2245 *
2246 * Return: True if there is a previous sibling, false otherwise.
2247 */
2248static inline bool mas_prev_sibling(struct ma_state *mas)
2249{
2250 unsigned int p_slot = mte_parent_slot(mas->node);
2251
2252 if (mte_is_root(mas->node))
2253 return false;
2254
2255 if (!p_slot)
2256 return false;
2257
2258 mas_ascend(mas);
2259 mas->offset = p_slot - 1;
2260 mas_descend(mas);
2261 return true;
2262}
2263
2264/*
2265 * mas_next_sibling() - Find the next node with the same parent.
2266 * @mas: the maple state
2267 *
2268 * Return: true if there is a next sibling, false otherwise.
2269 */
2270static inline bool mas_next_sibling(struct ma_state *mas)
2271{
2272 MA_STATE(parent, mas->tree, mas->index, mas->last);
2273
2274 if (mte_is_root(mas->node))
2275 return false;
2276
2277 parent = *mas;
2278 mas_ascend(&parent);
2279 parent.offset = mte_parent_slot(mas->node) + 1;
2280 if (parent.offset > mas_data_end(&parent))
2281 return false;
2282
2283 *mas = parent;
2284 mas_descend(mas);
2285 return true;
2286}
2287
2288/*
2289 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2290 * @enode: The encoded maple node.
2291 *
2292 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2293 *
2294 * Return: @enode or MAS_NONE
2295 */
2296static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2297{
2298 if (enode)
2299 return enode;
2300
2301 return ma_enode_ptr(MAS_NONE);
2302}
2303
2304/*
2305 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2306 * @wr_mas: The maple write state
2307 *
2308 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2309 */
2310static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2311{
2312 struct ma_state *mas = wr_mas->mas;
97f7e094 2313 unsigned char count, offset;
54a611b6
LH
2314
2315 if (unlikely(ma_is_dense(wr_mas->type))) {
2316 wr_mas->r_max = wr_mas->r_min = mas->index;
2317 mas->offset = mas->index = mas->min;
2318 return;
2319 }
2320
2321 wr_mas->node = mas_mn(wr_mas->mas);
2322 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2323 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2324 wr_mas->pivots, mas->max);
2325 offset = mas->offset;
54a611b6 2326
97f7e094
PZ
2327 while (offset < count && mas->index > wr_mas->pivots[offset])
2328 offset++;
54a611b6 2329
97f7e094
PZ
2330 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2331 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
54a611b6
LH
2332 wr_mas->offset_end = mas->offset = offset;
2333}
2334
2335/*
2336 * mas_topiary_range() - Add a range of slots to the topiary.
2337 * @mas: The maple state
2338 * @destroy: The topiary to add the slots (usually destroy)
2339 * @start: The starting slot inclusively
2340 * @end: The end slot inclusively
2341 */
2342static inline void mas_topiary_range(struct ma_state *mas,
2343 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2344{
2345 void __rcu **slots;
2346 unsigned char offset;
2347
2348 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2349 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2350 for (offset = start; offset <= end; offset++) {
2351 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2352
2353 if (mte_dead_node(enode))
2354 continue;
2355
2356 mat_add(destroy, enode);
2357 }
2358}
2359
2360/*
2361 * mast_topiary() - Add the portions of the tree to the removal list; either to
2362 * be freed or discarded (destroy walk).
2363 * @mast: The maple_subtree_state.
2364 */
2365static inline void mast_topiary(struct maple_subtree_state *mast)
2366{
2367 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2368 unsigned char r_start, r_end;
2369 unsigned char l_start, l_end;
2370 void __rcu **l_slots, **r_slots;
2371
2372 wr_mas.type = mte_node_type(mast->orig_l->node);
2373 mast->orig_l->index = mast->orig_l->last;
2374 mas_wr_node_walk(&wr_mas);
2375 l_start = mast->orig_l->offset + 1;
2376 l_end = mas_data_end(mast->orig_l);
2377 r_start = 0;
2378 r_end = mast->orig_r->offset;
2379
2380 if (r_end)
2381 r_end--;
2382
2383 l_slots = ma_slots(mas_mn(mast->orig_l),
2384 mte_node_type(mast->orig_l->node));
2385
2386 r_slots = ma_slots(mas_mn(mast->orig_r),
2387 mte_node_type(mast->orig_r->node));
2388
2389 if ((l_start < l_end) &&
2390 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2391 l_start++;
2392 }
2393
2394 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2395 if (r_end)
2396 r_end--;
2397 }
2398
2399 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2400 return;
2401
2402 /* At the node where left and right sides meet, add the parts between */
2403 if (mast->orig_l->node == mast->orig_r->node) {
2404 return mas_topiary_range(mast->orig_l, mast->destroy,
2405 l_start, r_end);
2406 }
2407
2408 /* mast->orig_r is different and consumed. */
2409 if (mte_is_leaf(mast->orig_r->node))
2410 return;
2411
2412 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2413 l_end--;
2414
2415
2416 if (l_start <= l_end)
2417 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2418
2419 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2420 r_start++;
2421
2422 if (r_start <= r_end)
2423 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2424}
2425
2426/*
2427 * mast_rebalance_next() - Rebalance against the next node
2428 * @mast: The maple subtree state
2429 * @old_r: The encoded maple node to the right (next node).
2430 */
2431static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2432{
2433 unsigned char b_end = mast->bn->b_end;
2434
2435 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2436 mast->bn, b_end);
2437 mast->orig_r->last = mast->orig_r->max;
2438}
2439
2440/*
2441 * mast_rebalance_prev() - Rebalance against the previous node
2442 * @mast: The maple subtree state
2443 * @old_l: The encoded maple node to the left (previous node)
2444 */
2445static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2446{
2447 unsigned char end = mas_data_end(mast->orig_l) + 1;
2448 unsigned char b_end = mast->bn->b_end;
2449
2450 mab_shift_right(mast->bn, end);
2451 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2452 mast->l->min = mast->orig_l->min;
2453 mast->orig_l->index = mast->orig_l->min;
2454 mast->bn->b_end = end + b_end;
2455 mast->l->offset += end;
2456}
2457
2458/*
2459 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2460 * the node to the right. Checking the nodes to the right then the left at each
2461 * level upwards until root is reached. Free and destroy as needed.
2462 * Data is copied into the @mast->bn.
2463 * @mast: The maple_subtree_state.
2464 */
2465static inline
2466bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2467{
2468 struct ma_state r_tmp = *mast->orig_r;
2469 struct ma_state l_tmp = *mast->orig_l;
2470 struct maple_enode *ancestor = NULL;
2471 unsigned char start, end;
2472 unsigned char depth = 0;
2473
2474 r_tmp = *mast->orig_r;
2475 l_tmp = *mast->orig_l;
2476 do {
2477 mas_ascend(mast->orig_r);
2478 mas_ascend(mast->orig_l);
2479 depth++;
2480 if (!ancestor &&
2481 (mast->orig_r->node == mast->orig_l->node)) {
2482 ancestor = mast->orig_r->node;
2483 end = mast->orig_r->offset - 1;
2484 start = mast->orig_l->offset + 1;
2485 }
2486
2487 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2488 if (!ancestor) {
2489 ancestor = mast->orig_r->node;
2490 start = 0;
2491 }
2492
2493 mast->orig_r->offset++;
2494 do {
2495 mas_descend(mast->orig_r);
2496 mast->orig_r->offset = 0;
2497 depth--;
2498 } while (depth);
2499
2500 mast_rebalance_next(mast);
2501 do {
2502 unsigned char l_off = 0;
2503 struct maple_enode *child = r_tmp.node;
2504
2505 mas_ascend(&r_tmp);
2506 if (ancestor == r_tmp.node)
2507 l_off = start;
2508
2509 if (r_tmp.offset)
2510 r_tmp.offset--;
2511
2512 if (l_off < r_tmp.offset)
2513 mas_topiary_range(&r_tmp, mast->destroy,
2514 l_off, r_tmp.offset);
2515
2516 if (l_tmp.node != child)
2517 mat_add(mast->free, child);
2518
2519 } while (r_tmp.node != ancestor);
2520
2521 *mast->orig_l = l_tmp;
2522 return true;
2523
2524 } else if (mast->orig_l->offset != 0) {
2525 if (!ancestor) {
2526 ancestor = mast->orig_l->node;
2527 end = mas_data_end(mast->orig_l);
2528 }
2529
2530 mast->orig_l->offset--;
2531 do {
2532 mas_descend(mast->orig_l);
2533 mast->orig_l->offset =
2534 mas_data_end(mast->orig_l);
2535 depth--;
2536 } while (depth);
2537
2538 mast_rebalance_prev(mast);
2539 do {
2540 unsigned char r_off;
2541 struct maple_enode *child = l_tmp.node;
2542
2543 mas_ascend(&l_tmp);
2544 if (ancestor == l_tmp.node)
2545 r_off = end;
2546 else
2547 r_off = mas_data_end(&l_tmp);
2548
2549 if (l_tmp.offset < r_off)
2550 l_tmp.offset++;
2551
2552 if (l_tmp.offset < r_off)
2553 mas_topiary_range(&l_tmp, mast->destroy,
2554 l_tmp.offset, r_off);
2555
2556 if (r_tmp.node != child)
2557 mat_add(mast->free, child);
2558
2559 } while (l_tmp.node != ancestor);
2560
2561 *mast->orig_r = r_tmp;
2562 return true;
2563 }
2564 } while (!mte_is_root(mast->orig_r->node));
2565
2566 *mast->orig_r = r_tmp;
2567 *mast->orig_l = l_tmp;
2568 return false;
2569}
2570
2571/*
2572 * mast_ascend_free() - Add current original maple state nodes to the free list
2573 * and ascend.
2574 * @mast: the maple subtree state.
2575 *
2576 * Ascend the original left and right sides and add the previous nodes to the
2577 * free list. Set the slots to point to the correct location in the new nodes.
2578 */
2579static inline void
2580mast_ascend_free(struct maple_subtree_state *mast)
2581{
2582 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2583 struct maple_enode *left = mast->orig_l->node;
2584 struct maple_enode *right = mast->orig_r->node;
2585
2586 mas_ascend(mast->orig_l);
2587 mas_ascend(mast->orig_r);
2588 mat_add(mast->free, left);
2589
2590 if (left != right)
2591 mat_add(mast->free, right);
2592
2593 mast->orig_r->offset = 0;
2594 mast->orig_r->index = mast->r->max;
2595 /* last should be larger than or equal to index */
2596 if (mast->orig_r->last < mast->orig_r->index)
2597 mast->orig_r->last = mast->orig_r->index;
2598 /*
2599 * The node may not contain the value so set slot to ensure all
2600 * of the nodes contents are freed or destroyed.
2601 */
2602 wr_mas.type = mte_node_type(mast->orig_r->node);
2603 mas_wr_node_walk(&wr_mas);
2604 /* Set up the left side of things */
2605 mast->orig_l->offset = 0;
2606 mast->orig_l->index = mast->l->min;
2607 wr_mas.mas = mast->orig_l;
2608 wr_mas.type = mte_node_type(mast->orig_l->node);
2609 mas_wr_node_walk(&wr_mas);
2610
2611 mast->bn->type = wr_mas.type;
2612}
2613
2614/*
2615 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2616 * @mas: the maple state with the allocations.
2617 * @b_node: the maple_big_node with the type encoding.
2618 *
2619 * Use the node type from the maple_big_node to allocate a new node from the
2620 * ma_state. This function exists mainly for code readability.
2621 *
2622 * Return: A new maple encoded node
2623 */
2624static inline struct maple_enode
2625*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2626{
2627 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2628}
2629
2630/*
2631 * mas_mab_to_node() - Set up right and middle nodes
2632 *
2633 * @mas: the maple state that contains the allocations.
2634 * @b_node: the node which contains the data.
2635 * @left: The pointer which will have the left node
2636 * @right: The pointer which may have the right node
2637 * @middle: the pointer which may have the middle node (rare)
2638 * @mid_split: the split location for the middle node
2639 *
2640 * Return: the split of left.
2641 */
2642static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2643 struct maple_big_node *b_node, struct maple_enode **left,
2644 struct maple_enode **right, struct maple_enode **middle,
2645 unsigned char *mid_split, unsigned long min)
2646{
2647 unsigned char split = 0;
2648 unsigned char slot_count = mt_slots[b_node->type];
2649
2650 *left = mas_new_ma_node(mas, b_node);
2651 *right = NULL;
2652 *middle = NULL;
2653 *mid_split = 0;
2654
2655 if (b_node->b_end < slot_count) {
2656 split = b_node->b_end;
2657 } else {
2658 split = mab_calc_split(mas, b_node, mid_split, min);
2659 *right = mas_new_ma_node(mas, b_node);
2660 }
2661
2662 if (*mid_split)
2663 *middle = mas_new_ma_node(mas, b_node);
2664
2665 return split;
2666
2667}
2668
2669/*
2670 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2671 * pointer.
2672 * @b_node - the big node to add the entry
2673 * @mas - the maple state to get the pivot (mas->max)
2674 * @entry - the entry to add, if NULL nothing happens.
2675 */
2676static inline void mab_set_b_end(struct maple_big_node *b_node,
2677 struct ma_state *mas,
2678 void *entry)
2679{
2680 if (!entry)
2681 return;
2682
2683 b_node->slot[b_node->b_end] = entry;
2684 if (mt_is_alloc(mas->tree))
2685 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2686 b_node->pivot[b_node->b_end++] = mas->max;
2687}
2688
2689/*
2690 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2691 * of @mas->node to either @left or @right, depending on @slot and @split
2692 *
2693 * @mas - the maple state with the node that needs a parent
2694 * @left - possible parent 1
2695 * @right - possible parent 2
2696 * @slot - the slot the mas->node was placed
2697 * @split - the split location between @left and @right
2698 */
2699static inline void mas_set_split_parent(struct ma_state *mas,
2700 struct maple_enode *left,
2701 struct maple_enode *right,
2702 unsigned char *slot, unsigned char split)
2703{
2704 if (mas_is_none(mas))
2705 return;
2706
2707 if ((*slot) <= split)
bf96715e 2708 mas_set_parent(mas, mas->node, left, *slot);
54a611b6 2709 else if (right)
bf96715e 2710 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
54a611b6
LH
2711
2712 (*slot)++;
2713}
2714
2715/*
2716 * mte_mid_split_check() - Check if the next node passes the mid-split
2717 * @**l: Pointer to left encoded maple node.
2718 * @**m: Pointer to middle encoded maple node.
2719 * @**r: Pointer to right encoded maple node.
2720 * @slot: The offset
2721 * @*split: The split location.
2722 * @mid_split: The middle split.
2723 */
2724static inline void mte_mid_split_check(struct maple_enode **l,
2725 struct maple_enode **r,
2726 struct maple_enode *right,
2727 unsigned char slot,
2728 unsigned char *split,
2729 unsigned char mid_split)
2730{
2731 if (*r == right)
2732 return;
2733
2734 if (slot < mid_split)
2735 return;
2736
2737 *l = *r;
2738 *r = right;
2739 *split = mid_split;
2740}
2741
2742/*
2743 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2744 * is taken from @mast->l.
2745 * @mast - the maple subtree state
2746 * @left - the left node
2747 * @right - the right node
2748 * @split - the split location.
2749 */
2750static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2751 struct maple_enode *left,
2752 struct maple_enode *middle,
2753 struct maple_enode *right,
2754 unsigned char split,
2755 unsigned char mid_split)
2756{
2757 unsigned char slot;
2758 struct maple_enode *l = left;
2759 struct maple_enode *r = right;
2760
2761 if (mas_is_none(mast->l))
2762 return;
2763
2764 if (middle)
2765 r = middle;
2766
2767 slot = mast->l->offset;
2768
2769 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2770 mas_set_split_parent(mast->l, l, r, &slot, split);
2771
2772 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2773 mas_set_split_parent(mast->m, l, r, &slot, split);
2774
2775 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2776 mas_set_split_parent(mast->r, l, r, &slot, split);
2777}
2778
2779/*
2780 * mas_wmb_replace() - Write memory barrier and replace
2781 * @mas: The maple state
2782 * @free: the maple topiary list of nodes to free
2783 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2784 *
2785 * Updates gap as necessary.
2786 */
2787static inline void mas_wmb_replace(struct ma_state *mas,
2788 struct ma_topiary *free,
2789 struct ma_topiary *destroy)
2790{
2791 /* All nodes must see old data as dead prior to replacing that data */
2792 smp_wmb(); /* Needed for RCU */
2793
2794 /* Insert the new data in the tree */
2795 mas_replace(mas, true);
2796
2797 if (!mte_is_leaf(mas->node))
2798 mas_descend_adopt(mas);
2799
2800 mas_mat_free(mas, free);
2801
2802 if (destroy)
2803 mas_mat_destroy(mas, destroy);
2804
2805 if (mte_is_leaf(mas->node))
2806 return;
2807
2808 mas_update_gap(mas);
2809}
2810
2811/*
2812 * mast_new_root() - Set a new tree root during subtree creation
2813 * @mast: The maple subtree state
2814 * @mas: The maple state
2815 */
2816static inline void mast_new_root(struct maple_subtree_state *mast,
2817 struct ma_state *mas)
2818{
2819 mas_mn(mast->l)->parent =
2820 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2821 if (!mte_dead_node(mast->orig_l->node) &&
2822 !mte_is_root(mast->orig_l->node)) {
2823 do {
2824 mast_ascend_free(mast);
2825 mast_topiary(mast);
2826 } while (!mte_is_root(mast->orig_l->node));
2827 }
2828 if ((mast->orig_l->node != mas->node) &&
2829 (mast->l->depth > mas_mt_height(mas))) {
2830 mat_add(mast->free, mas->node);
2831 }
2832}
2833
2834/*
2835 * mast_cp_to_nodes() - Copy data out to nodes.
2836 * @mast: The maple subtree state
2837 * @left: The left encoded maple node
2838 * @middle: The middle encoded maple node
2839 * @right: The right encoded maple node
2840 * @split: The location to split between left and (middle ? middle : right)
2841 * @mid_split: The location to split between middle and right.
2842 */
2843static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2844 struct maple_enode *left, struct maple_enode *middle,
2845 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2846{
2847 bool new_lmax = true;
2848
2849 mast->l->node = mte_node_or_none(left);
2850 mast->m->node = mte_node_or_none(middle);
2851 mast->r->node = mte_node_or_none(right);
2852
2853 mast->l->min = mast->orig_l->min;
2854 if (split == mast->bn->b_end) {
2855 mast->l->max = mast->orig_r->max;
2856 new_lmax = false;
2857 }
2858
2859 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2860
2861 if (middle) {
2862 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2863 mast->m->min = mast->bn->pivot[split] + 1;
2864 split = mid_split;
2865 }
2866
2867 mast->r->max = mast->orig_r->max;
2868 if (right) {
2869 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2870 mast->r->min = mast->bn->pivot[split] + 1;
2871 }
2872}
2873
2874/*
2875 * mast_combine_cp_left - Copy in the original left side of the tree into the
2876 * combined data set in the maple subtree state big node.
2877 * @mast: The maple subtree state
2878 */
2879static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2880{
2881 unsigned char l_slot = mast->orig_l->offset;
2882
2883 if (!l_slot)
2884 return;
2885
2886 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2887}
2888
2889/*
2890 * mast_combine_cp_right: Copy in the original right side of the tree into the
2891 * combined data set in the maple subtree state big node.
2892 * @mast: The maple subtree state
2893 */
2894static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2895{
2896 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2897 return;
2898
2899 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2900 mt_slot_count(mast->orig_r->node), mast->bn,
2901 mast->bn->b_end);
2902 mast->orig_r->last = mast->orig_r->max;
2903}
2904
2905/*
2906 * mast_sufficient: Check if the maple subtree state has enough data in the big
2907 * node to create at least one sufficient node
2908 * @mast: the maple subtree state
2909 */
2910static inline bool mast_sufficient(struct maple_subtree_state *mast)
2911{
2912 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2913 return true;
2914
2915 return false;
2916}
2917
2918/*
2919 * mast_overflow: Check if there is too much data in the subtree state for a
2920 * single node.
2921 * @mast: The maple subtree state
2922 */
2923static inline bool mast_overflow(struct maple_subtree_state *mast)
2924{
2925 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2926 return true;
2927
2928 return false;
2929}
2930
2931static inline void *mtree_range_walk(struct ma_state *mas)
2932{
2933 unsigned long *pivots;
2934 unsigned char offset;
2935 struct maple_node *node;
2936 struct maple_enode *next, *last;
2937 enum maple_type type;
2938 void __rcu **slots;
2939 unsigned char end;
2940 unsigned long max, min;
2941 unsigned long prev_max, prev_min;
2942
1b9c9183
LB
2943 next = mas->node;
2944 min = mas->min;
54a611b6
LH
2945 max = mas->max;
2946 do {
2947 offset = 0;
2948 last = next;
2949 node = mte_to_node(next);
2950 type = mte_node_type(next);
2951 pivots = ma_pivots(node, type);
2952 end = ma_data_end(node, type, pivots, max);
2953 if (unlikely(ma_dead_node(node)))
2954 goto dead_node;
2955
2956 if (pivots[offset] >= mas->index) {
2957 prev_max = max;
2958 prev_min = min;
2959 max = pivots[offset];
2960 goto next;
2961 }
2962
2963 do {
2964 offset++;
2965 } while ((offset < end) && (pivots[offset] < mas->index));
2966
2967 prev_min = min;
2968 min = pivots[offset - 1] + 1;
2969 prev_max = max;
2970 if (likely(offset < end && pivots[offset]))
2971 max = pivots[offset];
2972
2973next:
2974 slots = ma_slots(node, type);
2975 next = mt_slot(mas->tree, slots, offset);
2976 if (unlikely(ma_dead_node(node)))
2977 goto dead_node;
2978 } while (!ma_is_leaf(type));
2979
2980 mas->offset = offset;
2981 mas->index = min;
2982 mas->last = max;
2983 mas->min = prev_min;
2984 mas->max = prev_max;
2985 mas->node = last;
831978e3 2986 return (void *)next;
54a611b6
LH
2987
2988dead_node:
2989 mas_reset(mas);
2990 return NULL;
2991}
2992
2993/*
2994 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2995 * @mas: The starting maple state
2996 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2997 * @count: The estimated count of iterations needed.
2998 *
2999 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
3000 * is hit. First @b_node is split into two entries which are inserted into the
3001 * next iteration of the loop. @b_node is returned populated with the final
3002 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
3003 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
3004 * to account of what has been copied into the new sub-tree. The update of
3005 * orig_l_mas->last is used in mas_consume to find the slots that will need to
3006 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
3007 * the new sub-tree in case the sub-tree becomes the full tree.
3008 *
3009 * Return: the number of elements in b_node during the last loop.
3010 */
3011static int mas_spanning_rebalance(struct ma_state *mas,
3012 struct maple_subtree_state *mast, unsigned char count)
3013{
3014 unsigned char split, mid_split;
3015 unsigned char slot = 0;
3016 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
3017
3018 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
3019 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3020 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
3021 MA_TOPIARY(free, mas->tree);
3022 MA_TOPIARY(destroy, mas->tree);
3023
3024 /*
3025 * The tree needs to be rebalanced and leaves need to be kept at the same level.
3026 * Rebalancing is done by use of the ``struct maple_topiary``.
3027 */
3028 mast->l = &l_mas;
3029 mast->m = &m_mas;
3030 mast->r = &r_mas;
3031 mast->free = &free;
3032 mast->destroy = &destroy;
3033 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
0abb964a
LH
3034
3035 /* Check if this is not root and has sufficient data. */
3036 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
54a611b6
LH
3037 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3038 mast_spanning_rebalance(mast);
3039
3040 mast->orig_l->depth = 0;
3041
3042 /*
3043 * Each level of the tree is examined and balanced, pushing data to the left or
3044 * right, or rebalancing against left or right nodes is employed to avoid
3045 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3046 * the tree is created, there may be a mix of new and old nodes. The old nodes
3047 * will have the incorrect parent pointers and currently be in two trees: the
3048 * original tree and the partially new tree. To remedy the parent pointers in
3049 * the old tree, the new data is swapped into the active tree and a walk down
3050 * the tree is performed and the parent pointers are updated.
3051 * See mas_descend_adopt() for more information..
3052 */
3053 while (count--) {
3054 mast->bn->b_end--;
3055 mast->bn->type = mte_node_type(mast->orig_l->node);
3056 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3057 &mid_split, mast->orig_l->min);
3058 mast_set_split_parents(mast, left, middle, right, split,
3059 mid_split);
3060 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3061
3062 /*
3063 * Copy data from next level in the tree to mast->bn from next
3064 * iteration
3065 */
3066 memset(mast->bn, 0, sizeof(struct maple_big_node));
3067 mast->bn->type = mte_node_type(left);
3068 mast->orig_l->depth++;
3069
3070 /* Root already stored in l->node. */
3071 if (mas_is_root_limits(mast->l))
3072 goto new_root;
3073
3074 mast_ascend_free(mast);
3075 mast_combine_cp_left(mast);
3076 l_mas.offset = mast->bn->b_end;
3077 mab_set_b_end(mast->bn, &l_mas, left);
3078 mab_set_b_end(mast->bn, &m_mas, middle);
3079 mab_set_b_end(mast->bn, &r_mas, right);
3080
3081 /* Copy anything necessary out of the right node. */
3082 mast_combine_cp_right(mast);
3083 mast_topiary(mast);
3084 mast->orig_l->last = mast->orig_l->max;
3085
3086 if (mast_sufficient(mast))
3087 continue;
3088
3089 if (mast_overflow(mast))
3090 continue;
3091
3092 /* May be a new root stored in mast->bn */
3093 if (mas_is_root_limits(mast->orig_l))
3094 break;
3095
3096 mast_spanning_rebalance(mast);
3097
3098 /* rebalancing from other nodes may require another loop. */
3099 if (!count)
3100 count++;
3101 }
3102
3103 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3104 mte_node_type(mast->orig_l->node));
3105 mast->orig_l->depth++;
3106 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
bf96715e 3107 mas_set_parent(mas, left, l_mas.node, slot);
54a611b6 3108 if (middle)
bf96715e 3109 mas_set_parent(mas, middle, l_mas.node, ++slot);
54a611b6
LH
3110
3111 if (right)
bf96715e 3112 mas_set_parent(mas, right, l_mas.node, ++slot);
54a611b6
LH
3113
3114 if (mas_is_root_limits(mast->l)) {
3115new_root:
3116 mast_new_root(mast, mas);
3117 } else {
3118 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3119 }
3120
3121 if (!mte_dead_node(mast->orig_l->node))
3122 mat_add(&free, mast->orig_l->node);
3123
3124 mas->depth = mast->orig_l->depth;
3125 *mast->orig_l = l_mas;
3126 mte_set_node_dead(mas->node);
3127
3128 /* Set up mas for insertion. */
3129 mast->orig_l->depth = mas->depth;
3130 mast->orig_l->alloc = mas->alloc;
3131 *mas = *mast->orig_l;
3132 mas_wmb_replace(mas, &free, &destroy);
3133 mtree_range_walk(mas);
3134 return mast->bn->b_end;
3135}
3136
3137/*
3138 * mas_rebalance() - Rebalance a given node.
3139 * @mas: The maple state
3140 * @b_node: The big maple node.
3141 *
3142 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3143 * Continue upwards until tree is sufficient.
3144 *
3145 * Return: the number of elements in b_node during the last loop.
3146 */
3147static inline int mas_rebalance(struct ma_state *mas,
3148 struct maple_big_node *b_node)
3149{
3150 char empty_count = mas_mt_height(mas);
3151 struct maple_subtree_state mast;
3152 unsigned char shift, b_end = ++b_node->b_end;
3153
3154 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3155 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3156
3157 trace_ma_op(__func__, mas);
3158
3159 /*
3160 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3161 * against the node to the right if it exists, otherwise the node to the
3162 * left of this node is rebalanced against this node. If rebalancing
3163 * causes just one node to be produced instead of two, then the parent
3164 * is also examined and rebalanced if it is insufficient. Every level
3165 * tries to combine the data in the same way. If one node contains the
3166 * entire range of the tree, then that node is used as a new root node.
3167 */
3168 mas_node_count(mas, 1 + empty_count * 3);
3169 if (mas_is_err(mas))
3170 return 0;
3171
3172 mast.orig_l = &l_mas;
3173 mast.orig_r = &r_mas;
3174 mast.bn = b_node;
3175 mast.bn->type = mte_node_type(mas->node);
3176
3177 l_mas = r_mas = *mas;
3178
3179 if (mas_next_sibling(&r_mas)) {
3180 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3181 r_mas.last = r_mas.index = r_mas.max;
3182 } else {
3183 mas_prev_sibling(&l_mas);
3184 shift = mas_data_end(&l_mas) + 1;
3185 mab_shift_right(b_node, shift);
3186 mas->offset += shift;
3187 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3188 b_node->b_end = shift + b_end;
3189 l_mas.index = l_mas.last = l_mas.min;
3190 }
3191
3192 return mas_spanning_rebalance(mas, &mast, empty_count);
3193}
3194
3195/*
3196 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3197 * state.
3198 * @mas: The maple state
3199 * @end: The end of the left-most node.
3200 *
3201 * During a mass-insert event (such as forking), it may be necessary to
3202 * rebalance the left-most node when it is not sufficient.
3203 */
3204static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3205{
3206 enum maple_type mt = mte_node_type(mas->node);
3207 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3208 struct maple_enode *eparent;
3209 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3210 void __rcu **l_slots, **slots;
3211 unsigned long *l_pivs, *pivs, gap;
3212 bool in_rcu = mt_in_rcu(mas->tree);
3213
3214 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3215
3216 l_mas = *mas;
3217 mas_prev_sibling(&l_mas);
3218
3219 /* set up node. */
3220 if (in_rcu) {
3221 /* Allocate for both left and right as well as parent. */
3222 mas_node_count(mas, 3);
3223 if (mas_is_err(mas))
3224 return;
3225
3226 newnode = mas_pop_node(mas);
3227 } else {
3228 newnode = &reuse;
3229 }
3230
3231 node = mas_mn(mas);
3232 newnode->parent = node->parent;
3233 slots = ma_slots(newnode, mt);
3234 pivs = ma_pivots(newnode, mt);
3235 left = mas_mn(&l_mas);
3236 l_slots = ma_slots(left, mt);
3237 l_pivs = ma_pivots(left, mt);
3238 if (!l_slots[split])
3239 split++;
3240 tmp = mas_data_end(&l_mas) - split;
3241
3242 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3243 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3244 pivs[tmp] = l_mas.max;
3245 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3246 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3247
3248 l_mas.max = l_pivs[split];
3249 mas->min = l_mas.max + 1;
3250 eparent = mt_mk_node(mte_parent(l_mas.node),
afc754c6 3251 mas_parent_type(&l_mas, l_mas.node));
54a611b6
LH
3252 tmp += end;
3253 if (!in_rcu) {
3254 unsigned char max_p = mt_pivots[mt];
3255 unsigned char max_s = mt_slots[mt];
3256
3257 if (tmp < max_p)
3258 memset(pivs + tmp, 0,
fb20e99a 3259 sizeof(unsigned long) * (max_p - tmp));
54a611b6
LH
3260
3261 if (tmp < mt_slots[mt])
3262 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3263
3264 memcpy(node, newnode, sizeof(struct maple_node));
3265 ma_set_meta(node, mt, 0, tmp - 1);
3266 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3267 l_pivs[split]);
3268
3269 /* Remove data from l_pivs. */
3270 tmp = split + 1;
3271 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3272 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3273 ma_set_meta(left, mt, 0, split);
3274
3275 goto done;
3276 }
3277
3278 /* RCU requires replacing both l_mas, mas, and parent. */
3279 mas->node = mt_mk_node(newnode, mt);
3280 ma_set_meta(newnode, mt, 0, tmp);
3281
3282 new_left = mas_pop_node(mas);
3283 new_left->parent = left->parent;
3284 mt = mte_node_type(l_mas.node);
3285 slots = ma_slots(new_left, mt);
3286 pivs = ma_pivots(new_left, mt);
3287 memcpy(slots, l_slots, sizeof(void *) * split);
3288 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3289 ma_set_meta(new_left, mt, 0, split);
3290 l_mas.node = mt_mk_node(new_left, mt);
3291
3292 /* replace parent. */
3293 offset = mte_parent_slot(mas->node);
afc754c6 3294 mt = mas_parent_type(&l_mas, l_mas.node);
54a611b6
LH
3295 parent = mas_pop_node(mas);
3296 slots = ma_slots(parent, mt);
3297 pivs = ma_pivots(parent, mt);
3298 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3299 rcu_assign_pointer(slots[offset], mas->node);
3300 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3301 pivs[offset - 1] = l_mas.max;
3302 eparent = mt_mk_node(parent, mt);
3303done:
3304 gap = mas_leaf_max_gap(mas);
3305 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3306 gap = mas_leaf_max_gap(&l_mas);
3307 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3308 mas_ascend(mas);
3309
3310 if (in_rcu)
3311 mas_replace(mas, false);
3312
3313 mas_update_gap(mas);
3314}
3315
3316/*
3317 * mas_split_final_node() - Split the final node in a subtree operation.
3318 * @mast: the maple subtree state
3319 * @mas: The maple state
3320 * @height: The height of the tree in case it's a new root.
3321 */
3322static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3323 struct ma_state *mas, int height)
3324{
3325 struct maple_enode *ancestor;
3326
3327 if (mte_is_root(mas->node)) {
3328 if (mt_is_alloc(mas->tree))
3329 mast->bn->type = maple_arange_64;
3330 else
3331 mast->bn->type = maple_range_64;
3332 mas->depth = height;
3333 }
3334 /*
3335 * Only a single node is used here, could be root.
3336 * The Big_node data should just fit in a single node.
3337 */
3338 ancestor = mas_new_ma_node(mas, mast->bn);
bf96715e
LH
3339 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3340 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
54a611b6
LH
3341 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3342
3343 mast->l->node = ancestor;
3344 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3345 mas->offset = mast->bn->b_end - 1;
3346 return true;
3347}
3348
3349/*
3350 * mast_fill_bnode() - Copy data into the big node in the subtree state
3351 * @mast: The maple subtree state
3352 * @mas: the maple state
3353 * @skip: The number of entries to skip for new nodes insertion.
3354 */
3355static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3356 struct ma_state *mas,
3357 unsigned char skip)
3358{
3359 bool cp = true;
3360 struct maple_enode *old = mas->node;
3361 unsigned char split;
3362
3363 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3364 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3365 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3366 mast->bn->b_end = 0;
3367
3368 if (mte_is_root(mas->node)) {
3369 cp = false;
3370 } else {
3371 mas_ascend(mas);
3372 mat_add(mast->free, old);
3373 mas->offset = mte_parent_slot(mas->node);
3374 }
3375
3376 if (cp && mast->l->offset)
3377 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3378
3379 split = mast->bn->b_end;
3380 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3381 mast->r->offset = mast->bn->b_end;
3382 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3383 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3384 cp = false;
3385
3386 if (cp)
3387 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3388 mast->bn, mast->bn->b_end);
3389
3390 mast->bn->b_end--;
3391 mast->bn->type = mte_node_type(mas->node);
3392}
3393
3394/*
3395 * mast_split_data() - Split the data in the subtree state big node into regular
3396 * nodes.
3397 * @mast: The maple subtree state
3398 * @mas: The maple state
3399 * @split: The location to split the big node
3400 */
3401static inline void mast_split_data(struct maple_subtree_state *mast,
3402 struct ma_state *mas, unsigned char split)
3403{
3404 unsigned char p_slot;
3405
3406 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3407 mte_set_pivot(mast->r->node, 0, mast->r->max);
3408 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3409 mast->l->offset = mte_parent_slot(mas->node);
3410 mast->l->max = mast->bn->pivot[split];
3411 mast->r->min = mast->l->max + 1;
3412 if (mte_is_leaf(mas->node))
3413 return;
3414
3415 p_slot = mast->orig_l->offset;
3416 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3417 &p_slot, split);
3418 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3419 &p_slot, split);
3420}
3421
3422/*
3423 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3424 * data to the right or left node if there is room.
3425 * @mas: The maple state
3426 * @height: The current height of the maple state
3427 * @mast: The maple subtree state
3428 * @left: Push left or not.
3429 *
3430 * Keeping the height of the tree low means faster lookups.
3431 *
3432 * Return: True if pushed, false otherwise.
3433 */
3434static inline bool mas_push_data(struct ma_state *mas, int height,
3435 struct maple_subtree_state *mast, bool left)
3436{
3437 unsigned char slot_total = mast->bn->b_end;
3438 unsigned char end, space, split;
3439
3440 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3441 tmp_mas = *mas;
3442 tmp_mas.depth = mast->l->depth;
3443
3444 if (left && !mas_prev_sibling(&tmp_mas))
3445 return false;
3446 else if (!left && !mas_next_sibling(&tmp_mas))
3447 return false;
3448
3449 end = mas_data_end(&tmp_mas);
3450 slot_total += end;
3451 space = 2 * mt_slot_count(mas->node) - 2;
3452 /* -2 instead of -1 to ensure there isn't a triple split */
3453 if (ma_is_leaf(mast->bn->type))
3454 space--;
3455
3456 if (mas->max == ULONG_MAX)
3457 space--;
3458
3459 if (slot_total >= space)
3460 return false;
3461
3462 /* Get the data; Fill mast->bn */
3463 mast->bn->b_end++;
3464 if (left) {
3465 mab_shift_right(mast->bn, end + 1);
3466 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3467 mast->bn->b_end = slot_total + 1;
3468 } else {
3469 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3470 }
3471
3472 /* Configure mast for splitting of mast->bn */
3473 split = mt_slots[mast->bn->type] - 2;
3474 if (left) {
3475 /* Switch mas to prev node */
3476 mat_add(mast->free, mas->node);
3477 *mas = tmp_mas;
3478 /* Start using mast->l for the left side. */
3479 tmp_mas.node = mast->l->node;
3480 *mast->l = tmp_mas;
3481 } else {
3482 mat_add(mast->free, tmp_mas.node);
3483 tmp_mas.node = mast->r->node;
3484 *mast->r = tmp_mas;
3485 split = slot_total - split;
3486 }
3487 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3488 /* Update parent slot for split calculation. */
3489 if (left)
3490 mast->orig_l->offset += end + 1;
3491
3492 mast_split_data(mast, mas, split);
3493 mast_fill_bnode(mast, mas, 2);
3494 mas_split_final_node(mast, mas, height + 1);
3495 return true;
3496}
3497
3498/*
3499 * mas_split() - Split data that is too big for one node into two.
3500 * @mas: The maple state
3501 * @b_node: The maple big node
3502 * Return: 1 on success, 0 on failure.
3503 */
3504static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3505{
54a611b6
LH
3506 struct maple_subtree_state mast;
3507 int height = 0;
3508 unsigned char mid_split, split = 0;
3509
3510 /*
3511 * Splitting is handled differently from any other B-tree; the Maple
3512 * Tree splits upwards. Splitting up means that the split operation
3513 * occurs when the walk of the tree hits the leaves and not on the way
3514 * down. The reason for splitting up is that it is impossible to know
3515 * how much space will be needed until the leaf is (or leaves are)
3516 * reached. Since overwriting data is allowed and a range could
3517 * overwrite more than one range or result in changing one entry into 3
3518 * entries, it is impossible to know if a split is required until the
3519 * data is examined.
3520 *
3521 * Splitting is a balancing act between keeping allocations to a minimum
3522 * and avoiding a 'jitter' event where a tree is expanded to make room
3523 * for an entry followed by a contraction when the entry is removed. To
3524 * accomplish the balance, there are empty slots remaining in both left
3525 * and right nodes after a split.
3526 */
3527 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3528 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3529 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3530 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3531 MA_TOPIARY(mat, mas->tree);
3532
3533 trace_ma_op(__func__, mas);
3534 mas->depth = mas_mt_height(mas);
3535 /* Allocation failures will happen early. */
3536 mas_node_count(mas, 1 + mas->depth * 2);
3537 if (mas_is_err(mas))
3538 return 0;
3539
3540 mast.l = &l_mas;
3541 mast.r = &r_mas;
3542 mast.orig_l = &prev_l_mas;
3543 mast.orig_r = &prev_r_mas;
3544 mast.free = &mat;
3545 mast.bn = b_node;
3546
3547 while (height++ <= mas->depth) {
3548 if (mt_slots[b_node->type] > b_node->b_end) {
3549 mas_split_final_node(&mast, mas, height);
3550 break;
3551 }
3552
3553 l_mas = r_mas = *mas;
3554 l_mas.node = mas_new_ma_node(mas, b_node);
3555 r_mas.node = mas_new_ma_node(mas, b_node);
3556 /*
3557 * Another way that 'jitter' is avoided is to terminate a split up early if the
3558 * left or right node has space to spare. This is referred to as "pushing left"
3559 * or "pushing right" and is similar to the B* tree, except the nodes left or
3560 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3561 * is a significant savings.
3562 */
3563 /* Try to push left. */
3564 if (mas_push_data(mas, height, &mast, true))
3565 break;
3566
3567 /* Try to push right. */
3568 if (mas_push_data(mas, height, &mast, false))
3569 break;
3570
3571 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3572 mast_split_data(&mast, mas, split);
3573 /*
3574 * Usually correct, mab_mas_cp in the above call overwrites
3575 * r->max.
3576 */
3577 mast.r->max = mas->max;
3578 mast_fill_bnode(&mast, mas, 1);
3579 prev_l_mas = *mast.l;
3580 prev_r_mas = *mast.r;
3581 }
3582
3583 /* Set the original node as dead */
3584 mat_add(mast.free, mas->node);
3585 mas->node = l_mas.node;
3586 mas_wmb_replace(mas, mast.free, NULL);
3587 mtree_range_walk(mas);
3588 return 1;
3589}
3590
3591/*
3592 * mas_reuse_node() - Reuse the node to store the data.
3593 * @wr_mas: The maple write state
3594 * @bn: The maple big node
3595 * @end: The end of the data.
3596 *
3597 * Will always return false in RCU mode.
3598 *
3599 * Return: True if node was reused, false otherwise.
3600 */
3601static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3602 struct maple_big_node *bn, unsigned char end)
3603{
3604 /* Need to be rcu safe. */
3605 if (mt_in_rcu(wr_mas->mas->tree))
3606 return false;
3607
3608 if (end > bn->b_end) {
3609 int clear = mt_slots[wr_mas->type] - bn->b_end;
3610
3611 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3612 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3613 }
3614 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3615 return true;
3616}
3617
3618/*
3619 * mas_commit_b_node() - Commit the big node into the tree.
3620 * @wr_mas: The maple write state
3621 * @b_node: The maple big node
3622 * @end: The end of the data.
3623 */
44081c77 3624static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
3625 struct maple_big_node *b_node, unsigned char end)
3626{
3627 struct maple_node *node;
3628 unsigned char b_end = b_node->b_end;
3629 enum maple_type b_type = b_node->type;
3630
3631 if ((b_end < mt_min_slots[b_type]) &&
3632 (!mte_is_root(wr_mas->mas->node)) &&
3633 (mas_mt_height(wr_mas->mas) > 1))
3634 return mas_rebalance(wr_mas->mas, b_node);
3635
3636 if (b_end >= mt_slots[b_type])
3637 return mas_split(wr_mas->mas, b_node);
3638
3639 if (mas_reuse_node(wr_mas, b_node, end))
3640 goto reuse_node;
3641
3642 mas_node_count(wr_mas->mas, 1);
3643 if (mas_is_err(wr_mas->mas))
3644 return 0;
3645
3646 node = mas_pop_node(wr_mas->mas);
3647 node->parent = mas_mn(wr_mas->mas)->parent;
3648 wr_mas->mas->node = mt_mk_node(node, b_type);
7dc5ba62 3649 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
54a611b6
LH
3650 mas_replace(wr_mas->mas, false);
3651reuse_node:
3652 mas_update_gap(wr_mas->mas);
3653 return 1;
3654}
3655
3656/*
3657 * mas_root_expand() - Expand a root to a node
3658 * @mas: The maple state
3659 * @entry: The entry to store into the tree
3660 */
3661static inline int mas_root_expand(struct ma_state *mas, void *entry)
3662{
3663 void *contents = mas_root_locked(mas);
3664 enum maple_type type = maple_leaf_64;
3665 struct maple_node *node;
3666 void __rcu **slots;
3667 unsigned long *pivots;
3668 int slot = 0;
3669
3670 mas_node_count(mas, 1);
3671 if (unlikely(mas_is_err(mas)))
3672 return 0;
3673
3674 node = mas_pop_node(mas);
3675 pivots = ma_pivots(node, type);
3676 slots = ma_slots(node, type);
3677 node->parent = ma_parent_ptr(
3678 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3679 mas->node = mt_mk_node(node, type);
3680
3681 if (mas->index) {
3682 if (contents) {
3683 rcu_assign_pointer(slots[slot], contents);
3684 if (likely(mas->index > 1))
3685 slot++;
3686 }
3687 pivots[slot++] = mas->index - 1;
3688 }
3689
3690 rcu_assign_pointer(slots[slot], entry);
3691 mas->offset = slot;
3692 pivots[slot] = mas->last;
3693 if (mas->last != ULONG_MAX)
3694 slot++;
3695 mas->depth = 1;
3696 mas_set_height(mas);
c45ea315 3697 ma_set_meta(node, maple_leaf_64, 0, slot);
54a611b6
LH
3698 /* swap the new root into the tree */
3699 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
54a611b6
LH
3700 return slot;
3701}
3702
3703static inline void mas_store_root(struct ma_state *mas, void *entry)
3704{
3705 if (likely((mas->last != 0) || (mas->index != 0)))
3706 mas_root_expand(mas, entry);
3707 else if (((unsigned long) (entry) & 3) == 2)
3708 mas_root_expand(mas, entry);
3709 else {
3710 rcu_assign_pointer(mas->tree->ma_root, entry);
3711 mas->node = MAS_START;
3712 }
3713}
3714
3715/*
3716 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3717 * spans the node.
3718 * @mas: The maple state
3719 * @piv: The pivot value being written
3720 * @type: The maple node type
3721 * @entry: The data to write
3722 *
3723 * Spanning writes are writes that start in one node and end in another OR if
3724 * the write of a %NULL will cause the node to end with a %NULL.
3725 *
3726 * Return: True if this is a spanning write, false otherwise.
3727 */
3728static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3729{
3730 unsigned long max;
3731 unsigned long last = wr_mas->mas->last;
3732 unsigned long piv = wr_mas->r_max;
3733 enum maple_type type = wr_mas->type;
3734 void *entry = wr_mas->entry;
3735
3736 /* Contained in this pivot */
3737 if (piv > last)
3738 return false;
3739
3740 max = wr_mas->mas->max;
3741 if (unlikely(ma_is_leaf(type))) {
3742 /* Fits in the node, but may span slots. */
3743 if (last < max)
3744 return false;
3745
3746 /* Writes to the end of the node but not null. */
3747 if ((last == max) && entry)
3748 return false;
3749
3750 /*
3751 * Writing ULONG_MAX is not a spanning write regardless of the
3752 * value being written as long as the range fits in the node.
3753 */
3754 if ((last == ULONG_MAX) && (last == max))
3755 return false;
3756 } else if (piv == last) {
3757 if (entry)
3758 return false;
3759
3760 /* Detect spanning store wr walk */
3761 if (last == ULONG_MAX)
3762 return false;
3763 }
3764
3765 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3766
3767 return true;
3768}
3769
3770static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3771{
54a611b6
LH
3772 wr_mas->type = mte_node_type(wr_mas->mas->node);
3773 mas_wr_node_walk(wr_mas);
3774 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3775}
3776
3777static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3778{
3779 wr_mas->mas->max = wr_mas->r_max;
3780 wr_mas->mas->min = wr_mas->r_min;
3781 wr_mas->mas->node = wr_mas->content;
3782 wr_mas->mas->offset = 0;
9bbba563 3783 wr_mas->mas->depth++;
54a611b6
LH
3784}
3785/*
3786 * mas_wr_walk() - Walk the tree for a write.
3787 * @wr_mas: The maple write state
3788 *
3789 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3790 *
3791 * Return: True if it's contained in a node, false on spanning write.
3792 */
3793static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3794{
3795 struct ma_state *mas = wr_mas->mas;
3796
3797 while (true) {
3798 mas_wr_walk_descend(wr_mas);
3799 if (unlikely(mas_is_span_wr(wr_mas)))
3800 return false;
3801
3802 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3803 mas->offset);
3804 if (ma_is_leaf(wr_mas->type))
3805 return true;
3806
3807 mas_wr_walk_traverse(wr_mas);
3808 }
3809
3810 return true;
3811}
3812
3813static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3814{
3815 struct ma_state *mas = wr_mas->mas;
3816
3817 while (true) {
3818 mas_wr_walk_descend(wr_mas);
3819 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3820 mas->offset);
3821 if (ma_is_leaf(wr_mas->type))
3822 return true;
3823 mas_wr_walk_traverse(wr_mas);
3824
3825 }
3826 return true;
3827}
3828/*
3829 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3830 * @l_wr_mas: The left maple write state
3831 * @r_wr_mas: The right maple write state
3832 */
3833static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3834 struct ma_wr_state *r_wr_mas)
3835{
3836 struct ma_state *r_mas = r_wr_mas->mas;
3837 struct ma_state *l_mas = l_wr_mas->mas;
3838 unsigned char l_slot;
3839
3840 l_slot = l_mas->offset;
3841 if (!l_wr_mas->content)
3842 l_mas->index = l_wr_mas->r_min;
3843
3844 if ((l_mas->index == l_wr_mas->r_min) &&
3845 (l_slot &&
3846 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3847 if (l_slot > 1)
3848 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3849 else
3850 l_mas->index = l_mas->min;
3851
3852 l_mas->offset = l_slot - 1;
3853 }
3854
3855 if (!r_wr_mas->content) {
3856 if (r_mas->last < r_wr_mas->r_max)
3857 r_mas->last = r_wr_mas->r_max;
3858 r_mas->offset++;
3859 } else if ((r_mas->last == r_wr_mas->r_max) &&
3860 (r_mas->last < r_mas->max) &&
3861 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3862 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3863 r_wr_mas->type, r_mas->offset + 1);
3864 r_mas->offset++;
3865 }
3866}
3867
3868static inline void *mas_state_walk(struct ma_state *mas)
3869{
3870 void *entry;
3871
3872 entry = mas_start(mas);
3873 if (mas_is_none(mas))
3874 return NULL;
3875
3876 if (mas_is_ptr(mas))
3877 return entry;
3878
3879 return mtree_range_walk(mas);
3880}
3881
3882/*
3883 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3884 * to date.
3885 *
3886 * @mas: The maple state.
3887 *
3888 * Note: Leaves mas in undesirable state.
3889 * Return: The entry for @mas->index or %NULL on dead node.
3890 */
3891static inline void *mtree_lookup_walk(struct ma_state *mas)
3892{
3893 unsigned long *pivots;
3894 unsigned char offset;
3895 struct maple_node *node;
3896 struct maple_enode *next;
3897 enum maple_type type;
3898 void __rcu **slots;
3899 unsigned char end;
3900 unsigned long max;
3901
3902 next = mas->node;
3903 max = ULONG_MAX;
3904 do {
3905 offset = 0;
3906 node = mte_to_node(next);
3907 type = mte_node_type(next);
3908 pivots = ma_pivots(node, type);
3909 end = ma_data_end(node, type, pivots, max);
3910 if (unlikely(ma_dead_node(node)))
3911 goto dead_node;
54a611b6 3912 do {
ec07967d
PZ
3913 if (pivots[offset] >= mas->index) {
3914 max = pivots[offset];
3915 break;
3916 }
3917 } while (++offset < end);
54a611b6 3918
54a611b6
LH
3919 slots = ma_slots(node, type);
3920 next = mt_slot(mas->tree, slots, offset);
3921 if (unlikely(ma_dead_node(node)))
3922 goto dead_node;
3923 } while (!ma_is_leaf(type));
3924
831978e3 3925 return (void *)next;
54a611b6
LH
3926
3927dead_node:
3928 mas_reset(mas);
3929 return NULL;
3930}
3931
3932/*
3933 * mas_new_root() - Create a new root node that only contains the entry passed
3934 * in.
3935 * @mas: The maple state
3936 * @entry: The entry to store.
3937 *
3938 * Only valid when the index == 0 and the last == ULONG_MAX
3939 *
3940 * Return 0 on error, 1 on success.
3941 */
3942static inline int mas_new_root(struct ma_state *mas, void *entry)
3943{
3944 struct maple_enode *root = mas_root_locked(mas);
3945 enum maple_type type = maple_leaf_64;
3946 struct maple_node *node;
3947 void __rcu **slots;
3948 unsigned long *pivots;
3949
3950 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3951 mas->depth = 0;
3952 mas_set_height(mas);
3953 rcu_assign_pointer(mas->tree->ma_root, entry);
3954 mas->node = MAS_START;
3955 goto done;
3956 }
3957
3958 mas_node_count(mas, 1);
3959 if (mas_is_err(mas))
3960 return 0;
3961
3962 node = mas_pop_node(mas);
3963 pivots = ma_pivots(node, type);
3964 slots = ma_slots(node, type);
3965 node->parent = ma_parent_ptr(
3966 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3967 mas->node = mt_mk_node(node, type);
3968 rcu_assign_pointer(slots[0], entry);
3969 pivots[0] = mas->last;
3970 mas->depth = 1;
3971 mas_set_height(mas);
3972 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3973
3974done:
3975 if (xa_is_node(root))
3976 mte_destroy_walk(root, mas->tree);
3977
3978 return 1;
3979}
3980/*
3981 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3982 * and new nodes where necessary, then place the sub-tree in the actual tree.
3983 * Note that mas is expected to point to the node which caused the store to
3984 * span.
3985 * @wr_mas: The maple write state
3986 *
3987 * Return: 0 on error, positive on success.
3988 */
3989static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3990{
3991 struct maple_subtree_state mast;
3992 struct maple_big_node b_node;
3993 struct ma_state *mas;
3994 unsigned char height;
3995
3996 /* Left and Right side of spanning store */
3997 MA_STATE(l_mas, NULL, 0, 0);
3998 MA_STATE(r_mas, NULL, 0, 0);
3999
4000 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
4001 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
4002
4003 /*
4004 * A store operation that spans multiple nodes is called a spanning
4005 * store and is handled early in the store call stack by the function
4006 * mas_is_span_wr(). When a spanning store is identified, the maple
4007 * state is duplicated. The first maple state walks the left tree path
4008 * to ``index``, the duplicate walks the right tree path to ``last``.
4009 * The data in the two nodes are combined into a single node, two nodes,
4010 * or possibly three nodes (see the 3-way split above). A ``NULL``
4011 * written to the last entry of a node is considered a spanning store as
4012 * a rebalance is required for the operation to complete and an overflow
4013 * of data may happen.
4014 */
4015 mas = wr_mas->mas;
4016 trace_ma_op(__func__, mas);
4017
4018 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4019 return mas_new_root(mas, wr_mas->entry);
4020 /*
4021 * Node rebalancing may occur due to this store, so there may be three new
4022 * entries per level plus a new root.
4023 */
4024 height = mas_mt_height(mas);
4025 mas_node_count(mas, 1 + height * 3);
4026 if (mas_is_err(mas))
4027 return 0;
4028
4029 /*
4030 * Set up right side. Need to get to the next offset after the spanning
4031 * store to ensure it's not NULL and to combine both the next node and
4032 * the node with the start together.
4033 */
4034 r_mas = *mas;
4035 /* Avoid overflow, walk to next slot in the tree. */
4036 if (r_mas.last + 1)
4037 r_mas.last++;
4038
4039 r_mas.index = r_mas.last;
4040 mas_wr_walk_index(&r_wr_mas);
4041 r_mas.last = r_mas.index = mas->last;
4042
4043 /* Set up left side. */
4044 l_mas = *mas;
4045 mas_wr_walk_index(&l_wr_mas);
4046
4047 if (!wr_mas->entry) {
4048 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4049 mas->offset = l_mas.offset;
4050 mas->index = l_mas.index;
4051 mas->last = l_mas.last = r_mas.last;
4052 }
4053
4054 /* expanding NULLs may make this cover the entire range */
4055 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4056 mas_set_range(mas, 0, ULONG_MAX);
4057 return mas_new_root(mas, wr_mas->entry);
4058 }
4059
4060 memset(&b_node, 0, sizeof(struct maple_big_node));
4061 /* Copy l_mas and store the value in b_node. */
4062 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4063 /* Copy r_mas into b_node. */
4064 if (r_mas.offset <= r_wr_mas.node_end)
4065 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4066 &b_node, b_node.b_end + 1);
4067 else
4068 b_node.b_end++;
4069
4070 /* Stop spanning searches by searching for just index. */
4071 l_mas.index = l_mas.last = mas->index;
4072
4073 mast.bn = &b_node;
4074 mast.orig_l = &l_mas;
4075 mast.orig_r = &r_mas;
4076 /* Combine l_mas and r_mas and split them up evenly again. */
4077 return mas_spanning_rebalance(mas, &mast, height + 1);
4078}
4079
4080/*
4081 * mas_wr_node_store() - Attempt to store the value in a node
4082 * @wr_mas: The maple write state
4083 *
4084 * Attempts to reuse the node, but may allocate.
4085 *
4086 * Return: True if stored, false otherwise
4087 */
4088static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4089{
4090 struct ma_state *mas = wr_mas->mas;
4091 void __rcu **dst_slots;
4092 unsigned long *dst_pivots;
4093 unsigned char dst_offset;
4094 unsigned char new_end = wr_mas->node_end;
4095 unsigned char offset;
4096 unsigned char node_slots = mt_slots[wr_mas->type];
4097 struct maple_node reuse, *newnode;
4098 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4099 bool in_rcu = mt_in_rcu(mas->tree);
4100
4101 offset = mas->offset;
4102 if (mas->last == wr_mas->r_max) {
4103 /* runs right to the end of the node */
4104 if (mas->last == mas->max)
4105 new_end = offset;
4106 /* don't copy this offset */
4107 wr_mas->offset_end++;
4108 } else if (mas->last < wr_mas->r_max) {
4109 /* new range ends in this range */
4110 if (unlikely(wr_mas->r_max == ULONG_MAX))
4111 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4112
4113 new_end++;
4114 } else {
4115 if (wr_mas->end_piv == mas->last)
4116 wr_mas->offset_end++;
4117
4118 new_end -= wr_mas->offset_end - offset - 1;
4119 }
4120
4121 /* new range starts within a range */
4122 if (wr_mas->r_min < mas->index)
4123 new_end++;
4124
4125 /* Not enough room */
4126 if (new_end >= node_slots)
4127 return false;
4128
4129 /* Not enough data. */
4130 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4131 !(mas->mas_flags & MA_STATE_BULK))
4132 return false;
4133
4134 /* set up node. */
4135 if (in_rcu) {
4136 mas_node_count(mas, 1);
4137 if (mas_is_err(mas))
4138 return false;
4139
4140 newnode = mas_pop_node(mas);
4141 } else {
4142 memset(&reuse, 0, sizeof(struct maple_node));
4143 newnode = &reuse;
4144 }
4145
4146 newnode->parent = mas_mn(mas)->parent;
4147 dst_pivots = ma_pivots(newnode, wr_mas->type);
4148 dst_slots = ma_slots(newnode, wr_mas->type);
4149 /* Copy from start to insert point */
4150 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4151 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4152 dst_offset = offset;
4153
4154 /* Handle insert of new range starting after old range */
4155 if (wr_mas->r_min < mas->index) {
4156 mas->offset++;
4157 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4158 dst_pivots[dst_offset++] = mas->index - 1;
4159 }
4160
4161 /* Store the new entry and range end. */
4162 if (dst_offset < max_piv)
4163 dst_pivots[dst_offset] = mas->last;
4164 mas->offset = dst_offset;
4165 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4166
4167 /*
4168 * this range wrote to the end of the node or it overwrote the rest of
4169 * the data
4170 */
4171 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4172 new_end = dst_offset;
4173 goto done;
4174 }
4175
4176 dst_offset++;
4177 /* Copy to the end of node if necessary. */
4178 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4179 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4180 sizeof(void *) * copy_size);
4181 if (dst_offset < max_piv) {
4182 if (copy_size > max_piv - dst_offset)
4183 copy_size = max_piv - dst_offset;
4184
4185 memcpy(dst_pivots + dst_offset,
4186 wr_mas->pivots + wr_mas->offset_end,
4187 sizeof(unsigned long) * copy_size);
4188 }
4189
4190 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4191 dst_pivots[new_end] = mas->max;
4192
4193done:
4194 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4195 if (in_rcu) {
c13af03d 4196 mte_set_node_dead(mas->node);
54a611b6
LH
4197 mas->node = mt_mk_node(newnode, wr_mas->type);
4198 mas_replace(mas, false);
4199 } else {
4200 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4201 }
4202 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4203 mas_update_gap(mas);
4204 return true;
4205}
4206
4207/*
4208 * mas_wr_slot_store: Attempt to store a value in a slot.
4209 * @wr_mas: the maple write state
4210 *
4211 * Return: True if stored, false otherwise
4212 */
4213static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4214{
4215 struct ma_state *mas = wr_mas->mas;
4216 unsigned long lmax; /* Logical max. */
4217 unsigned char offset = mas->offset;
4218
4219 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4220 (offset != wr_mas->node_end)))
4221 return false;
4222
4223 if (offset == wr_mas->node_end - 1)
4224 lmax = mas->max;
4225 else
4226 lmax = wr_mas->pivots[offset + 1];
4227
4228 /* going to overwrite too many slots. */
4229 if (lmax < mas->last)
4230 return false;
4231
4232 if (wr_mas->r_min == mas->index) {
4233 /* overwriting two or more ranges with one. */
4234 if (lmax == mas->last)
4235 return false;
4236
4237 /* Overwriting all of offset and a portion of offset + 1. */
4238 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4239 wr_mas->pivots[offset] = mas->last;
4240 goto done;
4241 }
4242
4243 /* Doesn't end on the next range end. */
4244 if (lmax != mas->last)
4245 return false;
4246
4247 /* Overwriting a portion of offset and all of offset + 1 */
4248 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4249 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4250 wr_mas->pivots[offset + 1] = mas->last;
4251
4252 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4253 wr_mas->pivots[offset] = mas->index - 1;
4254 mas->offset++; /* Keep mas accurate. */
4255
4256done:
4257 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4258 mas_update_gap(mas);
4259 return true;
4260}
4261
4262static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4263{
cd00dd25
PZ
4264 while ((wr_mas->offset_end < wr_mas->node_end) &&
4265 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4266 wr_mas->offset_end++;
54a611b6 4267
cd00dd25
PZ
4268 if (wr_mas->offset_end < wr_mas->node_end)
4269 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4270 else
54a611b6
LH
4271 wr_mas->end_piv = wr_mas->mas->max;
4272}
4273
4274static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4275{
4276 struct ma_state *mas = wr_mas->mas;
4277
4278 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4279 mas->last = wr_mas->end_piv;
4280
4281 /* Check next slot(s) if we are overwriting the end */
4282 if ((mas->last == wr_mas->end_piv) &&
4283 (wr_mas->node_end != wr_mas->offset_end) &&
4284 !wr_mas->slots[wr_mas->offset_end + 1]) {
4285 wr_mas->offset_end++;
4286 if (wr_mas->offset_end == wr_mas->node_end)
4287 mas->last = mas->max;
4288 else
4289 mas->last = wr_mas->pivots[wr_mas->offset_end];
4290 wr_mas->end_piv = mas->last;
4291 }
4292
4293 if (!wr_mas->content) {
4294 /* If this one is null, the next and prev are not */
4295 mas->index = wr_mas->r_min;
4296 } else {
4297 /* Check prev slot if we are overwriting the start */
4298 if (mas->index == wr_mas->r_min && mas->offset &&
4299 !wr_mas->slots[mas->offset - 1]) {
4300 mas->offset--;
4301 wr_mas->r_min = mas->index =
4302 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4303 wr_mas->r_max = wr_mas->pivots[mas->offset];
4304 }
4305 }
4306}
4307
4308static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4309{
4310 unsigned char end = wr_mas->node_end;
4311 unsigned char new_end = end + 1;
4312 struct ma_state *mas = wr_mas->mas;
4313 unsigned char node_pivots = mt_pivots[wr_mas->type];
4314
4315 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4316 if (new_end < node_pivots)
4317 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4318
4319 if (new_end < node_pivots)
4320 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4321
4322 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4323 mas->offset = new_end;
4324 wr_mas->pivots[end] = mas->index - 1;
4325
4326 return true;
4327 }
4328
4329 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4330 if (new_end < node_pivots)
4331 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4332
4333 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4334 if (new_end < node_pivots)
4335 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4336
4337 wr_mas->pivots[end] = mas->last;
4338 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4339 return true;
4340 }
4341
4342 return false;
4343}
4344
4345/*
4346 * mas_wr_bnode() - Slow path for a modification.
4347 * @wr_mas: The write maple state
4348 *
4349 * This is where split, rebalance end up.
4350 */
4351static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4352{
4353 struct maple_big_node b_node;
4354
4355 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4356 memset(&b_node, 0, sizeof(struct maple_big_node));
4357 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4358 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4359}
4360
4361static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4362{
4363 unsigned char node_slots;
4364 unsigned char node_size;
4365 struct ma_state *mas = wr_mas->mas;
4366
4367 /* Direct replacement */
4368 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4369 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4370 if (!!wr_mas->entry ^ !!wr_mas->content)
4371 mas_update_gap(mas);
4372 return;
4373 }
4374
4375 /* Attempt to append */
4376 node_slots = mt_slots[wr_mas->type];
4377 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4378 if (mas->max == ULONG_MAX)
4379 node_size++;
4380
4381 /* slot and node store will not fit, go to the slow path */
4382 if (unlikely(node_size >= node_slots))
4383 goto slow_path;
4384
4385 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4386 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4387 if (!wr_mas->content || !wr_mas->entry)
4388 mas_update_gap(mas);
4389 return;
4390 }
4391
4392 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4393 return;
4394 else if (mas_wr_node_store(wr_mas))
4395 return;
4396
4397 if (mas_is_err(mas))
4398 return;
4399
4400slow_path:
4401 mas_wr_bnode(wr_mas);
4402}
4403
4404/*
4405 * mas_wr_store_entry() - Internal call to store a value
4406 * @mas: The maple state
4407 * @entry: The entry to store.
4408 *
4409 * Return: The contents that was stored at the index.
4410 */
4411static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4412{
4413 struct ma_state *mas = wr_mas->mas;
4414
4415 wr_mas->content = mas_start(mas);
4416 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4417 mas_store_root(mas, wr_mas->entry);
4418 return wr_mas->content;
4419 }
4420
4421 if (unlikely(!mas_wr_walk(wr_mas))) {
4422 mas_wr_spanning_store(wr_mas);
4423 return wr_mas->content;
4424 }
4425
4426 /* At this point, we are at the leaf node that needs to be altered. */
54a611b6
LH
4427 mas_wr_end_piv(wr_mas);
4428
4429 if (!wr_mas->entry)
4430 mas_wr_extend_null(wr_mas);
4431
4432 /* New root for a single pointer */
4433 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4434 mas_new_root(mas, wr_mas->entry);
4435 return wr_mas->content;
4436 }
4437
4438 mas_wr_modify(wr_mas);
4439 return wr_mas->content;
4440}
4441
4442/**
4443 * mas_insert() - Internal call to insert a value
4444 * @mas: The maple state
4445 * @entry: The entry to store
4446 *
4447 * Return: %NULL or the contents that already exists at the requested index
4448 * otherwise. The maple state needs to be checked for error conditions.
4449 */
4450static inline void *mas_insert(struct ma_state *mas, void *entry)
4451{
4452 MA_WR_STATE(wr_mas, mas, entry);
4453
4454 /*
4455 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4456 * tree. If the insert fits exactly into an existing gap with a value
4457 * of NULL, then the slot only needs to be written with the new value.
4458 * If the range being inserted is adjacent to another range, then only a
4459 * single pivot needs to be inserted (as well as writing the entry). If
4460 * the new range is within a gap but does not touch any other ranges,
4461 * then two pivots need to be inserted: the start - 1, and the end. As
4462 * usual, the entry must be written. Most operations require a new node
4463 * to be allocated and replace an existing node to ensure RCU safety,
4464 * when in RCU mode. The exception to requiring a newly allocated node
4465 * is when inserting at the end of a node (appending). When done
4466 * carefully, appending can reuse the node in place.
4467 */
4468 wr_mas.content = mas_start(mas);
4469 if (wr_mas.content)
4470 goto exists;
4471
4472 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4473 mas_store_root(mas, entry);
4474 return NULL;
4475 }
4476
4477 /* spanning writes always overwrite something */
4478 if (!mas_wr_walk(&wr_mas))
4479 goto exists;
4480
4481 /* At this point, we are at the leaf node that needs to be altered. */
4482 wr_mas.offset_end = mas->offset;
4483 wr_mas.end_piv = wr_mas.r_max;
4484
4485 if (wr_mas.content || (mas->last > wr_mas.r_max))
4486 goto exists;
4487
4488 if (!entry)
4489 return NULL;
4490
4491 mas_wr_modify(&wr_mas);
4492 return wr_mas.content;
4493
4494exists:
4495 mas_set_err(mas, -EEXIST);
4496 return wr_mas.content;
4497
4498}
4499
4500/*
4501 * mas_prev_node() - Find the prev non-null entry at the same level in the
4502 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4503 * @mas: The maple state
4504 * @min: The lower limit to search
4505 *
4506 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4507 * Return: 1 if the node is dead, 0 otherwise.
4508 */
4509static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4510{
4511 enum maple_type mt;
4512 int offset, level;
4513 void __rcu **slots;
4514 struct maple_node *node;
4515 struct maple_enode *enode;
4516 unsigned long *pivots;
4517
4518 if (mas_is_none(mas))
4519 return 0;
4520
4521 level = 0;
4522 do {
4523 node = mas_mn(mas);
4524 if (ma_is_root(node))
4525 goto no_entry;
4526
4527 /* Walk up. */
4528 if (unlikely(mas_ascend(mas)))
4529 return 1;
4530 offset = mas->offset;
4531 level++;
4532 } while (!offset);
4533
4534 offset--;
4535 mt = mte_node_type(mas->node);
4536 node = mas_mn(mas);
4537 slots = ma_slots(node, mt);
4538 pivots = ma_pivots(node, mt);
39d0bd86
LH
4539 if (unlikely(ma_dead_node(node)))
4540 return 1;
4541
54a611b6
LH
4542 mas->max = pivots[offset];
4543 if (offset)
4544 mas->min = pivots[offset - 1] + 1;
4545 if (unlikely(ma_dead_node(node)))
4546 return 1;
4547
4548 if (mas->max < min)
4549 goto no_entry_min;
4550
4551 while (level > 1) {
4552 level--;
4553 enode = mas_slot(mas, slots, offset);
4554 if (unlikely(ma_dead_node(node)))
4555 return 1;
4556
4557 mas->node = enode;
4558 mt = mte_node_type(mas->node);
4559 node = mas_mn(mas);
4560 slots = ma_slots(node, mt);
4561 pivots = ma_pivots(node, mt);
4562 offset = ma_data_end(node, mt, pivots, mas->max);
39d0bd86
LH
4563 if (unlikely(ma_dead_node(node)))
4564 return 1;
4565
54a611b6
LH
4566 if (offset)
4567 mas->min = pivots[offset - 1] + 1;
4568
4569 if (offset < mt_pivots[mt])
4570 mas->max = pivots[offset];
4571
4572 if (mas->max < min)
4573 goto no_entry;
4574 }
4575
4576 mas->node = mas_slot(mas, slots, offset);
4577 if (unlikely(ma_dead_node(node)))
4578 return 1;
4579
4580 mas->offset = mas_data_end(mas);
4581 if (unlikely(mte_dead_node(mas->node)))
4582 return 1;
4583
4584 return 0;
4585
4586no_entry_min:
4587 mas->offset = offset;
4588 if (offset)
4589 mas->min = pivots[offset - 1] + 1;
4590no_entry:
4591 if (unlikely(ma_dead_node(node)))
4592 return 1;
4593
4594 mas->node = MAS_NONE;
4595 return 0;
4596}
4597
4598/*
4599 * mas_next_node() - Get the next node at the same level in the tree.
4600 * @mas: The maple state
4601 * @max: The maximum pivot value to check.
4602 *
4603 * The next value will be mas->node[mas->offset] or MAS_NONE.
4604 * Return: 1 on dead node, 0 otherwise.
4605 */
4606static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4607 unsigned long max)
4608{
4609 unsigned long min, pivot;
4610 unsigned long *pivots;
4611 struct maple_enode *enode;
4612 int level = 0;
4613 unsigned char offset;
39d0bd86 4614 unsigned char node_end;
54a611b6
LH
4615 enum maple_type mt;
4616 void __rcu **slots;
4617
4618 if (mas->max >= max)
4619 goto no_entry;
4620
4621 level = 0;
4622 do {
4623 if (ma_is_root(node))
4624 goto no_entry;
4625
4626 min = mas->max + 1;
4627 if (min > max)
4628 goto no_entry;
4629
4630 if (unlikely(mas_ascend(mas)))
4631 return 1;
4632
4633 offset = mas->offset;
4634 level++;
4635 node = mas_mn(mas);
4636 mt = mte_node_type(mas->node);
4637 pivots = ma_pivots(node, mt);
39d0bd86
LH
4638 node_end = ma_data_end(node, mt, pivots, mas->max);
4639 if (unlikely(ma_dead_node(node)))
4640 return 1;
4641
4642 } while (unlikely(offset == node_end));
54a611b6
LH
4643
4644 slots = ma_slots(node, mt);
4645 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4646 while (unlikely(level > 1)) {
4647 /* Descend, if necessary */
4648 enode = mas_slot(mas, slots, offset);
4649 if (unlikely(ma_dead_node(node)))
4650 return 1;
4651
4652 mas->node = enode;
4653 level--;
4654 node = mas_mn(mas);
4655 mt = mte_node_type(mas->node);
4656 slots = ma_slots(node, mt);
4657 pivots = ma_pivots(node, mt);
39d0bd86
LH
4658 if (unlikely(ma_dead_node(node)))
4659 return 1;
4660
54a611b6
LH
4661 offset = 0;
4662 pivot = pivots[0];
4663 }
4664
4665 enode = mas_slot(mas, slots, offset);
4666 if (unlikely(ma_dead_node(node)))
4667 return 1;
4668
4669 mas->node = enode;
4670 mas->min = min;
4671 mas->max = pivot;
4672 return 0;
4673
4674no_entry:
4675 if (unlikely(ma_dead_node(node)))
4676 return 1;
4677
4678 mas->node = MAS_NONE;
4679 return 0;
4680}
4681
4682/*
4683 * mas_next_nentry() - Get the next node entry
4684 * @mas: The maple state
4685 * @max: The maximum value to check
4686 * @*range_start: Pointer to store the start of the range.
4687 *
4688 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4689 * pivot of the entry.
4690 *
4691 * Return: The next entry, %NULL otherwise
4692 */
4693static inline void *mas_next_nentry(struct ma_state *mas,
4694 struct maple_node *node, unsigned long max, enum maple_type type)
4695{
4696 unsigned char count;
4697 unsigned long pivot;
4698 unsigned long *pivots;
4699 void __rcu **slots;
4700 void *entry;
4701
4702 if (mas->last == mas->max) {
4703 mas->index = mas->max;
4704 return NULL;
4705 }
4706
54a611b6 4707 slots = ma_slots(node, type);
39d0bd86 4708 pivots = ma_pivots(node, type);
65be6f05 4709 count = ma_data_end(node, type, pivots, mas->max);
39d0bd86
LH
4710 if (unlikely(ma_dead_node(node)))
4711 return NULL;
4712
4713 mas->index = mas_safe_min(mas, pivots, mas->offset);
4714 if (unlikely(ma_dead_node(node)))
54a611b6
LH
4715 return NULL;
4716
4717 if (mas->index > max)
4718 return NULL;
4719
54a611b6
LH
4720 if (mas->offset > count)
4721 return NULL;
4722
4723 while (mas->offset < count) {
4724 pivot = pivots[mas->offset];
4725 entry = mas_slot(mas, slots, mas->offset);
4726 if (ma_dead_node(node))
4727 return NULL;
4728
4729 if (entry)
4730 goto found;
4731
4732 if (pivot >= max)
4733 return NULL;
4734
4735 mas->index = pivot + 1;
4736 mas->offset++;
4737 }
4738
4739 if (mas->index > mas->max) {
4740 mas->index = mas->last;
4741 return NULL;
4742 }
4743
4744 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4745 entry = mas_slot(mas, slots, mas->offset);
4746 if (ma_dead_node(node))
4747 return NULL;
4748
4749 if (!pivot)
4750 return NULL;
4751
4752 if (!entry)
4753 return NULL;
4754
4755found:
4756 mas->last = pivot;
4757 return entry;
4758}
4759
4760static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4761{
54a611b6
LH
4762retry:
4763 mas_set(mas, index);
4764 mas_state_walk(mas);
4765 if (mas_is_start(mas))
4766 goto retry;
54a611b6
LH
4767}
4768
4769/*
4770 * mas_next_entry() - Internal function to get the next entry.
4771 * @mas: The maple state
4772 * @limit: The maximum range start.
4773 *
4774 * Set the @mas->node to the next entry and the range_start to
4775 * the beginning value for the entry. Does not check beyond @limit.
4776 * Sets @mas->index and @mas->last to the limit if it is hit.
4777 * Restarts on dead nodes.
4778 *
4779 * Return: the next entry or %NULL.
4780 */
4781static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4782{
4783 void *entry = NULL;
4784 struct maple_enode *prev_node;
4785 struct maple_node *node;
4786 unsigned char offset;
4787 unsigned long last;
4788 enum maple_type mt;
4789
50e81c82
LH
4790 if (mas->index > limit) {
4791 mas->index = mas->last = limit;
4792 mas_pause(mas);
4793 return NULL;
4794 }
54a611b6
LH
4795 last = mas->last;
4796retry:
4797 offset = mas->offset;
4798 prev_node = mas->node;
4799 node = mas_mn(mas);
4800 mt = mte_node_type(mas->node);
4801 mas->offset++;
4802 if (unlikely(mas->offset >= mt_slots[mt])) {
4803 mas->offset = mt_slots[mt] - 1;
4804 goto next_node;
4805 }
4806
4807 while (!mas_is_none(mas)) {
4808 entry = mas_next_nentry(mas, node, limit, mt);
4809 if (unlikely(ma_dead_node(node))) {
4810 mas_rewalk(mas, last);
4811 goto retry;
4812 }
4813
4814 if (likely(entry))
4815 return entry;
4816
4817 if (unlikely((mas->index > limit)))
4818 break;
4819
4820next_node:
4821 prev_node = mas->node;
4822 offset = mas->offset;
4823 if (unlikely(mas_next_node(mas, node, limit))) {
4824 mas_rewalk(mas, last);
4825 goto retry;
4826 }
4827 mas->offset = 0;
4828 node = mas_mn(mas);
4829 mt = mte_node_type(mas->node);
4830 }
4831
4832 mas->index = mas->last = limit;
4833 mas->offset = offset;
4834 mas->node = prev_node;
4835 return NULL;
4836}
4837
4838/*
4839 * mas_prev_nentry() - Get the previous node entry.
4840 * @mas: The maple state.
4841 * @limit: The lower limit to check for a value.
4842 *
4843 * Return: the entry, %NULL otherwise.
4844 */
4845static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4846 unsigned long index)
4847{
4848 unsigned long pivot, min;
4849 unsigned char offset;
4850 struct maple_node *mn;
4851 enum maple_type mt;
4852 unsigned long *pivots;
4853 void __rcu **slots;
4854 void *entry;
4855
4856retry:
4857 if (!mas->offset)
4858 return NULL;
4859
4860 mn = mas_mn(mas);
4861 mt = mte_node_type(mas->node);
4862 offset = mas->offset - 1;
4863 if (offset >= mt_slots[mt])
4864 offset = mt_slots[mt] - 1;
4865
4866 slots = ma_slots(mn, mt);
4867 pivots = ma_pivots(mn, mt);
39d0bd86
LH
4868 if (unlikely(ma_dead_node(mn))) {
4869 mas_rewalk(mas, index);
4870 goto retry;
4871 }
4872
54a611b6
LH
4873 if (offset == mt_pivots[mt])
4874 pivot = mas->max;
4875 else
4876 pivot = pivots[offset];
4877
4878 if (unlikely(ma_dead_node(mn))) {
4879 mas_rewalk(mas, index);
4880 goto retry;
4881 }
4882
4883 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4884 !pivot))
4885 pivot = pivots[--offset];
4886
4887 min = mas_safe_min(mas, pivots, offset);
4888 entry = mas_slot(mas, slots, offset);
4889 if (unlikely(ma_dead_node(mn))) {
4890 mas_rewalk(mas, index);
4891 goto retry;
4892 }
4893
4894 if (likely(entry)) {
4895 mas->offset = offset;
4896 mas->last = pivot;
4897 mas->index = min;
4898 }
4899 return entry;
4900}
4901
4902static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4903{
4904 void *entry;
4905
50e81c82
LH
4906 if (mas->index < min) {
4907 mas->index = mas->last = min;
17dc622c 4908 mas->node = MAS_NONE;
50e81c82
LH
4909 return NULL;
4910 }
54a611b6
LH
4911retry:
4912 while (likely(!mas_is_none(mas))) {
4913 entry = mas_prev_nentry(mas, min, mas->index);
4914 if (unlikely(mas->last < min))
4915 goto not_found;
4916
4917 if (likely(entry))
4918 return entry;
4919
4920 if (unlikely(mas_prev_node(mas, min))) {
4921 mas_rewalk(mas, mas->index);
4922 goto retry;
4923 }
4924
4925 mas->offset++;
4926 }
4927
4928 mas->offset--;
4929not_found:
4930 mas->index = mas->last = min;
4931 return NULL;
4932}
4933
4934/*
4935 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4936 * highest gap address of a given size in a given node and descend.
4937 * @mas: The maple state
4938 * @size: The needed size.
4939 *
4940 * Return: True if found in a leaf, false otherwise.
4941 *
4942 */
fad8e429
LH
4943static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4944 unsigned long *gap_min, unsigned long *gap_max)
54a611b6
LH
4945{
4946 enum maple_type type = mte_node_type(mas->node);
4947 struct maple_node *node = mas_mn(mas);
4948 unsigned long *pivots, *gaps;
4949 void __rcu **slots;
4950 unsigned long gap = 0;
7327e811 4951 unsigned long max, min;
54a611b6
LH
4952 unsigned char offset;
4953
4954 if (unlikely(mas_is_err(mas)))
4955 return true;
4956
4957 if (ma_is_dense(type)) {
4958 /* dense nodes. */
4959 mas->offset = (unsigned char)(mas->index - mas->min);
4960 return true;
4961 }
4962
4963 pivots = ma_pivots(node, type);
4964 slots = ma_slots(node, type);
4965 gaps = ma_gaps(node, type);
4966 offset = mas->offset;
4967 min = mas_safe_min(mas, pivots, offset);
4968 /* Skip out of bounds. */
4969 while (mas->last < min)
4970 min = mas_safe_min(mas, pivots, --offset);
4971
4972 max = mas_safe_pivot(mas, pivots, offset, type);
7327e811 4973 while (mas->index <= max) {
54a611b6
LH
4974 gap = 0;
4975 if (gaps)
4976 gap = gaps[offset];
4977 else if (!mas_slot(mas, slots, offset))
4978 gap = max - min + 1;
4979
4980 if (gap) {
4981 if ((size <= gap) && (size <= mas->last - min + 1))
4982 break;
4983
4984 if (!gaps) {
4985 /* Skip the next slot, it cannot be a gap. */
4986 if (offset < 2)
4987 goto ascend;
4988
4989 offset -= 2;
4990 max = pivots[offset];
4991 min = mas_safe_min(mas, pivots, offset);
4992 continue;
4993 }
4994 }
4995
4996 if (!offset)
4997 goto ascend;
4998
4999 offset--;
5000 max = min - 1;
5001 min = mas_safe_min(mas, pivots, offset);
5002 }
5003
7327e811
LH
5004 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
5005 goto no_space;
54a611b6
LH
5006
5007 if (unlikely(ma_is_leaf(type))) {
5008 mas->offset = offset;
fad8e429
LH
5009 *gap_min = min;
5010 *gap_max = min + gap - 1;
54a611b6
LH
5011 return true;
5012 }
5013
5014 /* descend, only happens under lock. */
5015 mas->node = mas_slot(mas, slots, offset);
5016 mas->min = min;
5017 mas->max = max;
5018 mas->offset = mas_data_end(mas);
5019 return false;
5020
5021ascend:
7327e811
LH
5022 if (!mte_is_root(mas->node))
5023 return false;
54a611b6 5024
7327e811
LH
5025no_space:
5026 mas_set_err(mas, -EBUSY);
54a611b6
LH
5027 return false;
5028}
5029
5030static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
5031{
5032 enum maple_type type = mte_node_type(mas->node);
5033 unsigned long pivot, min, gap = 0;
06e8fd99
LH
5034 unsigned char offset, data_end;
5035 unsigned long *gaps, *pivots;
5036 void __rcu **slots;
5037 struct maple_node *node;
54a611b6
LH
5038 bool found = false;
5039
5040 if (ma_is_dense(type)) {
5041 mas->offset = (unsigned char)(mas->index - mas->min);
5042 return true;
5043 }
5044
06e8fd99
LH
5045 node = mas_mn(mas);
5046 pivots = ma_pivots(node, type);
5047 slots = ma_slots(node, type);
5048 gaps = ma_gaps(node, type);
54a611b6 5049 offset = mas->offset;
54a611b6 5050 min = mas_safe_min(mas, pivots, offset);
06e8fd99
LH
5051 data_end = ma_data_end(node, type, pivots, mas->max);
5052 for (; offset <= data_end; offset++) {
5053 pivot = mas_logical_pivot(mas, pivots, offset, type);
54a611b6
LH
5054
5055 /* Not within lower bounds */
5056 if (mas->index > pivot)
5057 goto next_slot;
5058
5059 if (gaps)
5060 gap = gaps[offset];
5061 else if (!mas_slot(mas, slots, offset))
5062 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5063 else
5064 goto next_slot;
5065
5066 if (gap >= size) {
5067 if (ma_is_leaf(type)) {
5068 found = true;
5069 goto done;
5070 }
5071 if (mas->index <= pivot) {
5072 mas->node = mas_slot(mas, slots, offset);
5073 mas->min = min;
5074 mas->max = pivot;
5075 offset = 0;
54a611b6
LH
5076 break;
5077 }
5078 }
5079next_slot:
5080 min = pivot + 1;
5081 if (mas->last <= pivot) {
5082 mas_set_err(mas, -EBUSY);
5083 return true;
5084 }
5085 }
5086
5087 if (mte_is_root(mas->node))
5088 found = true;
5089done:
5090 mas->offset = offset;
5091 return found;
5092}
5093
5094/**
5095 * mas_walk() - Search for @mas->index in the tree.
5096 * @mas: The maple state.
5097 *
5098 * mas->index and mas->last will be set to the range if there is a value. If
5099 * mas->node is MAS_NONE, reset to MAS_START.
5100 *
5101 * Return: the entry at the location or %NULL.
5102 */
5103void *mas_walk(struct ma_state *mas)
5104{
5105 void *entry;
5106
5107retry:
5108 entry = mas_state_walk(mas);
5109 if (mas_is_start(mas))
5110 goto retry;
5111
5112 if (mas_is_ptr(mas)) {
5113 if (!mas->index) {
5114 mas->last = 0;
5115 } else {
5116 mas->index = 1;
5117 mas->last = ULONG_MAX;
5118 }
5119 return entry;
5120 }
5121
5122 if (mas_is_none(mas)) {
5123 mas->index = 0;
5124 mas->last = ULONG_MAX;
5125 }
5126
5127 return entry;
5128}
120b1162 5129EXPORT_SYMBOL_GPL(mas_walk);
54a611b6
LH
5130
5131static inline bool mas_rewind_node(struct ma_state *mas)
5132{
5133 unsigned char slot;
5134
5135 do {
5136 if (mte_is_root(mas->node)) {
5137 slot = mas->offset;
5138 if (!slot)
5139 return false;
5140 } else {
5141 mas_ascend(mas);
5142 slot = mas->offset;
5143 }
5144 } while (!slot);
5145
5146 mas->offset = --slot;
5147 return true;
5148}
5149
5150/*
5151 * mas_skip_node() - Internal function. Skip over a node.
5152 * @mas: The maple state.
5153 *
5154 * Return: true if there is another node, false otherwise.
5155 */
5156static inline bool mas_skip_node(struct ma_state *mas)
5157{
0fa99fdf
LH
5158 if (mas_is_err(mas))
5159 return false;
54a611b6 5160
54a611b6
LH
5161 do {
5162 if (mte_is_root(mas->node)) {
0fa99fdf 5163 if (mas->offset >= mas_data_end(mas)) {
54a611b6
LH
5164 mas_set_err(mas, -EBUSY);
5165 return false;
5166 }
5167 } else {
5168 mas_ascend(mas);
54a611b6 5169 }
0fa99fdf 5170 } while (mas->offset >= mas_data_end(mas));
54a611b6 5171
0fa99fdf 5172 mas->offset++;
54a611b6
LH
5173 return true;
5174}
5175
5176/*
5177 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5178 * @size
5179 * @mas: The maple state
5180 * @size: The size of the gap required
5181 *
5182 * Search between @mas->index and @mas->last for a gap of @size.
5183 */
5184static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5185{
5186 struct maple_enode *last = NULL;
5187
5188 /*
5189 * There are 4 options:
5190 * go to child (descend)
5191 * go back to parent (ascend)
5192 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5193 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5194 */
5195 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5196 if (last == mas->node)
5197 mas_skip_node(mas);
5198 else
5199 last = mas->node;
5200 }
5201}
5202
5203/*
5204 * mas_fill_gap() - Fill a located gap with @entry.
5205 * @mas: The maple state
5206 * @entry: The value to store
5207 * @slot: The offset into the node to store the @entry
5208 * @size: The size of the entry
5209 * @index: The start location
5210 */
5211static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5212 unsigned char slot, unsigned long size, unsigned long *index)
5213{
5214 MA_WR_STATE(wr_mas, mas, entry);
5215 unsigned char pslot = mte_parent_slot(mas->node);
5216 struct maple_enode *mn = mas->node;
5217 unsigned long *pivots;
5218 enum maple_type ptype;
5219 /*
5220 * mas->index is the start address for the search
5221 * which may no longer be needed.
5222 * mas->last is the end address for the search
5223 */
5224
5225 *index = mas->index;
5226 mas->last = mas->index + size - 1;
5227
5228 /*
5229 * It is possible that using mas->max and mas->min to correctly
5230 * calculate the index and last will cause an issue in the gap
5231 * calculation, so fix the ma_state here
5232 */
5233 mas_ascend(mas);
5234 ptype = mte_node_type(mas->node);
5235 pivots = ma_pivots(mas_mn(mas), ptype);
5236 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5237 mas->min = mas_safe_min(mas, pivots, pslot);
5238 mas->node = mn;
5239 mas->offset = slot;
5240 mas_wr_store_entry(&wr_mas);
5241}
5242
5243/*
5244 * mas_sparse_area() - Internal function. Return upper or lower limit when
5245 * searching for a gap in an empty tree.
5246 * @mas: The maple state
5247 * @min: the minimum range
5248 * @max: The maximum range
5249 * @size: The size of the gap
5250 * @fwd: Searching forward or back
5251 */
29ad6bb3 5252static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
54a611b6
LH
5253 unsigned long max, unsigned long size, bool fwd)
5254{
29ad6bb3
PZ
5255 if (!unlikely(mas_is_none(mas)) && min == 0) {
5256 min++;
5257 /*
5258 * At this time, min is increased, we need to recheck whether
5259 * the size is satisfied.
5260 */
5261 if (min > max || max - min + 1 < size)
5262 return -EBUSY;
5263 }
54a611b6
LH
5264 /* mas_is_ptr */
5265
54a611b6 5266 if (fwd) {
29ad6bb3
PZ
5267 mas->index = min;
5268 mas->last = min + size - 1;
5269 } else {
5270 mas->last = max;
5271 mas->index = max - size + 1;
54a611b6 5272 }
29ad6bb3 5273 return 0;
54a611b6
LH
5274}
5275
5276/*
5277 * mas_empty_area() - Get the lowest address within the range that is
5278 * sufficient for the size requested.
5279 * @mas: The maple state
5280 * @min: The lowest value of the range
5281 * @max: The highest value of the range
5282 * @size: The size needed
5283 */
5284int mas_empty_area(struct ma_state *mas, unsigned long min,
5285 unsigned long max, unsigned long size)
5286{
5287 unsigned char offset;
5288 unsigned long *pivots;
5289 enum maple_type mt;
5290
fad8e429
LH
5291 if (min >= max)
5292 return -EINVAL;
5293
54a611b6
LH
5294 if (mas_is_start(mas))
5295 mas_start(mas);
5296 else if (mas->offset >= 2)
5297 mas->offset -= 2;
5298 else if (!mas_skip_node(mas))
5299 return -EBUSY;
5300
5301 /* Empty set */
29ad6bb3
PZ
5302 if (mas_is_none(mas) || mas_is_ptr(mas))
5303 return mas_sparse_area(mas, min, max, size, true);
54a611b6
LH
5304
5305 /* The start of the window can only be within these values */
5306 mas->index = min;
5307 mas->last = max;
5308 mas_awalk(mas, size);
5309
5310 if (unlikely(mas_is_err(mas)))
5311 return xa_err(mas->node);
5312
5313 offset = mas->offset;
5314 if (unlikely(offset == MAPLE_NODE_SLOTS))
5315 return -EBUSY;
5316
5317 mt = mte_node_type(mas->node);
5318 pivots = ma_pivots(mas_mn(mas), mt);
0257d990
PZ
5319 min = mas_safe_min(mas, pivots, offset);
5320 if (mas->index < min)
5321 mas->index = min;
54a611b6
LH
5322 mas->last = mas->index + size - 1;
5323 return 0;
5324}
120b1162 5325EXPORT_SYMBOL_GPL(mas_empty_area);
54a611b6
LH
5326
5327/*
5328 * mas_empty_area_rev() - Get the highest address within the range that is
5329 * sufficient for the size requested.
5330 * @mas: The maple state
5331 * @min: The lowest value of the range
5332 * @max: The highest value of the range
5333 * @size: The size needed
5334 */
5335int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5336 unsigned long max, unsigned long size)
5337{
5338 struct maple_enode *last = mas->node;
5339
fad8e429
LH
5340 if (min >= max)
5341 return -EINVAL;
5342
54a611b6
LH
5343 if (mas_is_start(mas)) {
5344 mas_start(mas);
5345 mas->offset = mas_data_end(mas);
5346 } else if (mas->offset >= 2) {
5347 mas->offset -= 2;
5348 } else if (!mas_rewind_node(mas)) {
5349 return -EBUSY;
5350 }
5351
5352 /* Empty set. */
29ad6bb3
PZ
5353 if (mas_is_none(mas) || mas_is_ptr(mas))
5354 return mas_sparse_area(mas, min, max, size, false);
54a611b6
LH
5355
5356 /* The start of the window can only be within these values. */
5357 mas->index = min;
5358 mas->last = max;
5359
fad8e429 5360 while (!mas_rev_awalk(mas, size, &min, &max)) {
54a611b6
LH
5361 if (last == mas->node) {
5362 if (!mas_rewind_node(mas))
5363 return -EBUSY;
5364 } else {
5365 last = mas->node;
5366 }
5367 }
5368
5369 if (mas_is_err(mas))
5370 return xa_err(mas->node);
5371
5372 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5373 return -EBUSY;
5374
54a611b6 5375 /* Trim the upper limit to the max. */
fad8e429
LH
5376 if (max <= mas->last)
5377 mas->last = max;
54a611b6
LH
5378
5379 mas->index = mas->last - size + 1;
5380 return 0;
5381}
120b1162 5382EXPORT_SYMBOL_GPL(mas_empty_area_rev);
54a611b6
LH
5383
5384static inline int mas_alloc(struct ma_state *mas, void *entry,
5385 unsigned long size, unsigned long *index)
5386{
5387 unsigned long min;
5388
5389 mas_start(mas);
5390 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5391 mas_root_expand(mas, entry);
5392 if (mas_is_err(mas))
5393 return xa_err(mas->node);
5394
5395 if (!mas->index)
5396 return mte_pivot(mas->node, 0);
5397 return mte_pivot(mas->node, 1);
5398 }
5399
5400 /* Must be walking a tree. */
5401 mas_awalk(mas, size);
5402 if (mas_is_err(mas))
5403 return xa_err(mas->node);
5404
5405 if (mas->offset == MAPLE_NODE_SLOTS)
5406 goto no_gap;
5407
5408 /*
5409 * At this point, mas->node points to the right node and we have an
5410 * offset that has a sufficient gap.
5411 */
5412 min = mas->min;
5413 if (mas->offset)
5414 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5415
5416 if (mas->index < min)
5417 mas->index = min;
5418
5419 mas_fill_gap(mas, entry, mas->offset, size, index);
5420 return 0;
5421
5422no_gap:
5423 return -EBUSY;
5424}
5425
5426static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5427 unsigned long max, void *entry,
5428 unsigned long size, unsigned long *index)
5429{
5430 int ret = 0;
5431
5432 ret = mas_empty_area_rev(mas, min, max, size);
5433 if (ret)
5434 return ret;
5435
5436 if (mas_is_err(mas))
5437 return xa_err(mas->node);
5438
5439 if (mas->offset == MAPLE_NODE_SLOTS)
5440 goto no_gap;
5441
5442 mas_fill_gap(mas, entry, mas->offset, size, index);
5443 return 0;
5444
5445no_gap:
5446 return -EBUSY;
5447}
5448
5449/*
790e1fa8 5450 * mte_dead_leaves() - Mark all leaves of a node as dead.
54a611b6
LH
5451 * @mas: The maple state
5452 * @slots: Pointer to the slot array
2e5b4921 5453 * @type: The maple node type
54a611b6
LH
5454 *
5455 * Must hold the write lock.
5456 *
5457 * Return: The number of leaves marked as dead.
5458 */
5459static inline
790e1fa8
LH
5460unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5461 void __rcu **slots)
54a611b6
LH
5462{
5463 struct maple_node *node;
5464 enum maple_type type;
5465 void *entry;
5466 int offset;
5467
790e1fa8
LH
5468 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5469 entry = mt_slot(mt, slots, offset);
54a611b6
LH
5470 type = mte_node_type(entry);
5471 node = mte_to_node(entry);
5472 /* Use both node and type to catch LE & BE metadata */
5473 if (!node || !type)
5474 break;
5475
5476 mte_set_node_dead(entry);
54a611b6
LH
5477 node->type = type;
5478 rcu_assign_pointer(slots[offset], node);
5479 }
5480
5481 return offset;
5482}
5483
790e1fa8
LH
5484/**
5485 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5486 * @enode: The maple encoded node
5487 * @offset: The starting offset
5488 *
5489 * Note: This can only be used from the RCU callback context.
5490 */
5491static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
54a611b6
LH
5492{
5493 struct maple_node *node, *next;
5494 void __rcu **slots = NULL;
5495
790e1fa8 5496 next = mte_to_node(*enode);
54a611b6 5497 do {
790e1fa8
LH
5498 *enode = ma_enode_ptr(next);
5499 node = mte_to_node(*enode);
54a611b6 5500 slots = ma_slots(node, node->type);
790e1fa8
LH
5501 next = rcu_dereference_protected(slots[offset],
5502 lock_is_held(&rcu_callback_map));
54a611b6
LH
5503 offset = 0;
5504 } while (!ma_is_leaf(next->type));
5505
5506 return slots;
5507}
5508
790e1fa8
LH
5509/**
5510 * mt_free_walk() - Walk & free a tree in the RCU callback context
5511 * @head: The RCU head that's within the node.
5512 *
5513 * Note: This can only be used from the RCU callback context.
5514 */
54a611b6
LH
5515static void mt_free_walk(struct rcu_head *head)
5516{
5517 void __rcu **slots;
5518 struct maple_node *node, *start;
790e1fa8 5519 struct maple_enode *enode;
54a611b6
LH
5520 unsigned char offset;
5521 enum maple_type type;
54a611b6
LH
5522
5523 node = container_of(head, struct maple_node, rcu);
5524
5525 if (ma_is_leaf(node->type))
5526 goto free_leaf;
5527
54a611b6 5528 start = node;
790e1fa8
LH
5529 enode = mt_mk_node(node, node->type);
5530 slots = mte_dead_walk(&enode, 0);
5531 node = mte_to_node(enode);
54a611b6
LH
5532 do {
5533 mt_free_bulk(node->slot_len, slots);
5534 offset = node->parent_slot + 1;
790e1fa8
LH
5535 enode = node->piv_parent;
5536 if (mte_to_node(enode) == node)
5537 goto free_leaf;
5538
5539 type = mte_node_type(enode);
5540 slots = ma_slots(mte_to_node(enode), type);
5541 if ((offset < mt_slots[type]) &&
5542 rcu_dereference_protected(slots[offset],
5543 lock_is_held(&rcu_callback_map)))
5544 slots = mte_dead_walk(&enode, offset);
5545 node = mte_to_node(enode);
54a611b6
LH
5546 } while ((node != start) || (node->slot_len < offset));
5547
5548 slots = ma_slots(node, node->type);
5549 mt_free_bulk(node->slot_len, slots);
5550
54a611b6
LH
5551free_leaf:
5552 mt_free_rcu(&node->rcu);
5553}
5554
790e1fa8
LH
5555static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5556 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
54a611b6
LH
5557{
5558 struct maple_node *node;
790e1fa8 5559 struct maple_enode *next = *enode;
54a611b6 5560 void __rcu **slots = NULL;
790e1fa8
LH
5561 enum maple_type type;
5562 unsigned char next_offset = 0;
54a611b6
LH
5563
5564 do {
790e1fa8
LH
5565 *enode = next;
5566 node = mte_to_node(*enode);
5567 type = mte_node_type(*enode);
5568 slots = ma_slots(node, type);
5569 next = mt_slot_locked(mt, slots, next_offset);
54a611b6 5570 if ((mte_dead_node(next)))
790e1fa8 5571 next = mt_slot_locked(mt, slots, ++next_offset);
54a611b6 5572
790e1fa8
LH
5573 mte_set_node_dead(*enode);
5574 node->type = type;
54a611b6
LH
5575 node->piv_parent = prev;
5576 node->parent_slot = offset;
790e1fa8
LH
5577 offset = next_offset;
5578 next_offset = 0;
5579 prev = *enode;
54a611b6
LH
5580 } while (!mte_is_leaf(next));
5581
5582 return slots;
5583}
5584
790e1fa8 5585static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
54a611b6
LH
5586 bool free)
5587{
5588 void __rcu **slots;
5589 struct maple_node *node = mte_to_node(enode);
5590 struct maple_enode *start;
54a611b6 5591
2e5b4921
LH
5592 if (mte_is_leaf(enode)) {
5593 node->type = mte_node_type(enode);
54a611b6 5594 goto free_leaf;
2e5b4921 5595 }
54a611b6 5596
2e5b4921 5597 start = enode;
790e1fa8
LH
5598 slots = mte_destroy_descend(&enode, mt, start, 0);
5599 node = mte_to_node(enode); // Updated in the above call.
54a611b6
LH
5600 do {
5601 enum maple_type type;
5602 unsigned char offset;
5603 struct maple_enode *parent, *tmp;
5604
790e1fa8 5605 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5606 if (free)
5607 mt_free_bulk(node->slot_len, slots);
5608 offset = node->parent_slot + 1;
790e1fa8
LH
5609 enode = node->piv_parent;
5610 if (mte_to_node(enode) == node)
5611 goto free_leaf;
54a611b6 5612
790e1fa8
LH
5613 type = mte_node_type(enode);
5614 slots = ma_slots(mte_to_node(enode), type);
54a611b6
LH
5615 if (offset >= mt_slots[type])
5616 goto next;
5617
790e1fa8 5618 tmp = mt_slot_locked(mt, slots, offset);
54a611b6 5619 if (mte_node_type(tmp) && mte_to_node(tmp)) {
790e1fa8
LH
5620 parent = enode;
5621 enode = tmp;
5622 slots = mte_destroy_descend(&enode, mt, parent, offset);
54a611b6
LH
5623 }
5624next:
790e1fa8
LH
5625 node = mte_to_node(enode);
5626 } while (start != enode);
54a611b6 5627
790e1fa8
LH
5628 node = mte_to_node(enode);
5629 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5630 if (free)
5631 mt_free_bulk(node->slot_len, slots);
5632
54a611b6
LH
5633free_leaf:
5634 if (free)
5635 mt_free_rcu(&node->rcu);
2e5b4921 5636 else
790e1fa8 5637 mt_clear_meta(mt, node, node->type);
54a611b6
LH
5638}
5639
5640/*
5641 * mte_destroy_walk() - Free a tree or sub-tree.
f942b0f0
VY
5642 * @enode: the encoded maple node (maple_enode) to start
5643 * @mt: the tree to free - needed for node types.
54a611b6
LH
5644 *
5645 * Must hold the write lock.
5646 */
5647static inline void mte_destroy_walk(struct maple_enode *enode,
5648 struct maple_tree *mt)
5649{
5650 struct maple_node *node = mte_to_node(enode);
5651
5652 if (mt_in_rcu(mt)) {
790e1fa8 5653 mt_destroy_walk(enode, mt, false);
54a611b6
LH
5654 call_rcu(&node->rcu, mt_free_walk);
5655 } else {
790e1fa8 5656 mt_destroy_walk(enode, mt, true);
54a611b6
LH
5657 }
5658}
5659
5660static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5661{
1202700c
LH
5662 if (unlikely(mas_is_paused(wr_mas->mas)))
5663 mas_reset(wr_mas->mas);
5664
54a611b6
LH
5665 if (!mas_is_start(wr_mas->mas)) {
5666 if (mas_is_none(wr_mas->mas)) {
5667 mas_reset(wr_mas->mas);
5668 } else {
5669 wr_mas->r_max = wr_mas->mas->max;
5670 wr_mas->type = mte_node_type(wr_mas->mas->node);
5671 if (mas_is_span_wr(wr_mas))
5672 mas_reset(wr_mas->mas);
5673 }
5674 }
54a611b6
LH
5675}
5676
5677/* Interface */
5678
5679/**
5680 * mas_store() - Store an @entry.
5681 * @mas: The maple state.
5682 * @entry: The entry to store.
5683 *
5684 * The @mas->index and @mas->last is used to set the range for the @entry.
5685 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5686 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5687 *
5688 * Return: the first entry between mas->index and mas->last or %NULL.
5689 */
5690void *mas_store(struct ma_state *mas, void *entry)
5691{
5692 MA_WR_STATE(wr_mas, mas, entry);
5693
5694 trace_ma_write(__func__, mas, 0, entry);
5695#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 5696 if (MAS_WARN_ON(mas, mas->index > mas->last))
89f499f3 5697 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
e6d6792a 5698
54a611b6
LH
5699 if (mas->index > mas->last) {
5700 mas_set_err(mas, -EINVAL);
5701 return NULL;
5702 }
5703
5704#endif
5705
5706 /*
5707 * Storing is the same operation as insert with the added caveat that it
5708 * can overwrite entries. Although this seems simple enough, one may
5709 * want to examine what happens if a single store operation was to
5710 * overwrite multiple entries within a self-balancing B-Tree.
5711 */
5712 mas_wr_store_setup(&wr_mas);
5713 mas_wr_store_entry(&wr_mas);
5714 return wr_mas.content;
5715}
120b1162 5716EXPORT_SYMBOL_GPL(mas_store);
54a611b6
LH
5717
5718/**
5719 * mas_store_gfp() - Store a value into the tree.
5720 * @mas: The maple state
5721 * @entry: The entry to store
5722 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5723 *
5724 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5725 * be allocated.
5726 */
5727int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5728{
5729 MA_WR_STATE(wr_mas, mas, entry);
5730
5731 mas_wr_store_setup(&wr_mas);
5732 trace_ma_write(__func__, mas, 0, entry);
5733retry:
5734 mas_wr_store_entry(&wr_mas);
5735 if (unlikely(mas_nomem(mas, gfp)))
5736 goto retry;
5737
5738 if (unlikely(mas_is_err(mas)))
5739 return xa_err(mas->node);
5740
5741 return 0;
5742}
120b1162 5743EXPORT_SYMBOL_GPL(mas_store_gfp);
54a611b6
LH
5744
5745/**
5746 * mas_store_prealloc() - Store a value into the tree using memory
5747 * preallocated in the maple state.
5748 * @mas: The maple state
5749 * @entry: The entry to store.
5750 */
5751void mas_store_prealloc(struct ma_state *mas, void *entry)
5752{
5753 MA_WR_STATE(wr_mas, mas, entry);
5754
5755 mas_wr_store_setup(&wr_mas);
5756 trace_ma_write(__func__, mas, 0, entry);
5757 mas_wr_store_entry(&wr_mas);
5758 BUG_ON(mas_is_err(mas));
5759 mas_destroy(mas);
5760}
120b1162 5761EXPORT_SYMBOL_GPL(mas_store_prealloc);
54a611b6
LH
5762
5763/**
5764 * mas_preallocate() - Preallocate enough nodes for a store operation
5765 * @mas: The maple state
54a611b6
LH
5766 * @gfp: The GFP_FLAGS to use for allocations.
5767 *
5768 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5769 */
c5d5546e 5770int mas_preallocate(struct ma_state *mas, gfp_t gfp)
54a611b6
LH
5771{
5772 int ret;
5773
5774 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5775 mas->mas_flags |= MA_STATE_PREALLOC;
5776 if (likely(!mas_is_err(mas)))
5777 return 0;
5778
5779 mas_set_alloc_req(mas, 0);
5780 ret = xa_err(mas->node);
5781 mas_reset(mas);
5782 mas_destroy(mas);
5783 mas_reset(mas);
5784 return ret;
5785}
5c63a7c3 5786EXPORT_SYMBOL_GPL(mas_preallocate);
54a611b6
LH
5787
5788/*
5789 * mas_destroy() - destroy a maple state.
5790 * @mas: The maple state
5791 *
5792 * Upon completion, check the left-most node and rebalance against the node to
5793 * the right if necessary. Frees any allocated nodes associated with this maple
5794 * state.
5795 */
5796void mas_destroy(struct ma_state *mas)
5797{
5798 struct maple_alloc *node;
541e06b7 5799 unsigned long total;
54a611b6
LH
5800
5801 /*
5802 * When using mas_for_each() to insert an expected number of elements,
5803 * it is possible that the number inserted is less than the expected
5804 * number. To fix an invalid final node, a check is performed here to
5805 * rebalance the previous node with the final node.
5806 */
5807 if (mas->mas_flags & MA_STATE_REBALANCE) {
5808 unsigned char end;
5809
5810 if (mas_is_start(mas))
5811 mas_start(mas);
5812
5813 mtree_range_walk(mas);
5814 end = mas_data_end(mas) + 1;
5815 if (end < mt_min_slot_count(mas->node) - 1)
5816 mas_destroy_rebalance(mas, end);
5817
5818 mas->mas_flags &= ~MA_STATE_REBALANCE;
5819 }
5820 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5821
541e06b7
LH
5822 total = mas_allocated(mas);
5823 while (total) {
54a611b6
LH
5824 node = mas->alloc;
5825 mas->alloc = node->slot[0];
541e06b7
LH
5826 if (node->node_count > 1) {
5827 size_t count = node->node_count - 1;
5828
5829 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5830 total -= count;
5831 }
54a611b6 5832 kmem_cache_free(maple_node_cache, node);
541e06b7 5833 total--;
54a611b6 5834 }
541e06b7 5835
54a611b6
LH
5836 mas->alloc = NULL;
5837}
120b1162 5838EXPORT_SYMBOL_GPL(mas_destroy);
54a611b6
LH
5839
5840/*
5841 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5842 * @mas: The maple state
5843 * @nr_entries: The number of expected entries.
5844 *
5845 * This will attempt to pre-allocate enough nodes to store the expected number
5846 * of entries. The allocations will occur using the bulk allocator interface
5847 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5848 * to ensure any unused nodes are freed.
5849 *
5850 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5851 */
5852int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5853{
5854 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5855 struct maple_enode *enode = mas->node;
5856 int nr_nodes;
5857 int ret;
5858
5859 /*
5860 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5861 * forking a process and duplicating the VMAs from one tree to a new
5862 * tree. When such a situation arises, it is known that the new tree is
5863 * not going to be used until the entire tree is populated. For
5864 * performance reasons, it is best to use a bulk load with RCU disabled.
5865 * This allows for optimistic splitting that favours the left and reuse
5866 * of nodes during the operation.
5867 */
5868
5869 /* Optimize splitting for bulk insert in-order */
5870 mas->mas_flags |= MA_STATE_BULK;
5871
5872 /*
5873 * Avoid overflow, assume a gap between each entry and a trailing null.
5874 * If this is wrong, it just means allocation can happen during
5875 * insertion of entries.
5876 */
5877 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5878 if (!mt_is_alloc(mas->tree))
5879 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5880
5881 /* Leaves; reduce slots to keep space for expansion */
5882 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5883 /* Internal nodes */
5884 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5885 /* Add working room for split (2 nodes) + new parents */
5886 mas_node_count(mas, nr_nodes + 3);
5887
5888 /* Detect if allocations run out */
5889 mas->mas_flags |= MA_STATE_PREALLOC;
5890
5891 if (!mas_is_err(mas))
5892 return 0;
5893
5894 ret = xa_err(mas->node);
5895 mas->node = enode;
5896 mas_destroy(mas);
5897 return ret;
5898
5899}
120b1162 5900EXPORT_SYMBOL_GPL(mas_expected_entries);
54a611b6
LH
5901
5902/**
5903 * mas_next() - Get the next entry.
5904 * @mas: The maple state
5905 * @max: The maximum index to check.
5906 *
5907 * Returns the next entry after @mas->index.
5908 * Must hold rcu_read_lock or the write lock.
5909 * Can return the zero entry.
5910 *
5911 * Return: The next entry or %NULL
5912 */
5913void *mas_next(struct ma_state *mas, unsigned long max)
5914{
5915 if (mas_is_none(mas) || mas_is_paused(mas))
5916 mas->node = MAS_START;
5917
5918 if (mas_is_start(mas))
5919 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5920
5921 if (mas_is_ptr(mas)) {
5922 if (!mas->index) {
5923 mas->index = 1;
5924 mas->last = ULONG_MAX;
5925 }
5926 return NULL;
5927 }
5928
5929 if (mas->last == ULONG_MAX)
5930 return NULL;
5931
5932 /* Retries on dead nodes handled by mas_next_entry */
5933 return mas_next_entry(mas, max);
5934}
5935EXPORT_SYMBOL_GPL(mas_next);
5936
5937/**
5938 * mt_next() - get the next value in the maple tree
5939 * @mt: The maple tree
5940 * @index: The start index
5941 * @max: The maximum index to check
5942 *
5943 * Return: The entry at @index or higher, or %NULL if nothing is found.
5944 */
5945void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5946{
5947 void *entry = NULL;
5948 MA_STATE(mas, mt, index, index);
5949
5950 rcu_read_lock();
5951 entry = mas_next(&mas, max);
5952 rcu_read_unlock();
5953 return entry;
5954}
5955EXPORT_SYMBOL_GPL(mt_next);
5956
5957/**
5958 * mas_prev() - Get the previous entry
5959 * @mas: The maple state
5960 * @min: The minimum value to check.
5961 *
5962 * Must hold rcu_read_lock or the write lock.
5963 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5964 * searchable nodes.
5965 *
5966 * Return: the previous value or %NULL.
5967 */
5968void *mas_prev(struct ma_state *mas, unsigned long min)
5969{
5970 if (!mas->index) {
5971 /* Nothing comes before 0 */
5972 mas->last = 0;
17dc622c 5973 mas->node = MAS_NONE;
54a611b6
LH
5974 return NULL;
5975 }
5976
5977 if (unlikely(mas_is_ptr(mas)))
5978 return NULL;
5979
5980 if (mas_is_none(mas) || mas_is_paused(mas))
5981 mas->node = MAS_START;
5982
5983 if (mas_is_start(mas)) {
5984 mas_walk(mas);
5985 if (!mas->index)
5986 return NULL;
5987 }
5988
5989 if (mas_is_ptr(mas)) {
5990 if (!mas->index) {
5991 mas->last = 0;
5992 return NULL;
5993 }
5994
5995 mas->index = mas->last = 0;
5996 return mas_root_locked(mas);
5997 }
5998 return mas_prev_entry(mas, min);
5999}
6000EXPORT_SYMBOL_GPL(mas_prev);
6001
6002/**
6003 * mt_prev() - get the previous value in the maple tree
6004 * @mt: The maple tree
6005 * @index: The start index
6006 * @min: The minimum index to check
6007 *
6008 * Return: The entry at @index or lower, or %NULL if nothing is found.
6009 */
6010void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
6011{
6012 void *entry = NULL;
6013 MA_STATE(mas, mt, index, index);
6014
6015 rcu_read_lock();
6016 entry = mas_prev(&mas, min);
6017 rcu_read_unlock();
6018 return entry;
6019}
6020EXPORT_SYMBOL_GPL(mt_prev);
6021
6022/**
6023 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
6024 * @mas: The maple state to pause
6025 *
6026 * Some users need to pause a walk and drop the lock they're holding in
6027 * order to yield to a higher priority thread or carry out an operation
6028 * on an entry. Those users should call this function before they drop
6029 * the lock. It resets the @mas to be suitable for the next iteration
6030 * of the loop after the user has reacquired the lock. If most entries
6031 * found during a walk require you to call mas_pause(), the mt_for_each()
6032 * iterator may be more appropriate.
6033 *
6034 */
6035void mas_pause(struct ma_state *mas)
6036{
6037 mas->node = MAS_PAUSE;
6038}
6039EXPORT_SYMBOL_GPL(mas_pause);
6040
6041/**
6042 * mas_find() - On the first call, find the entry at or after mas->index up to
6043 * %max. Otherwise, find the entry after mas->index.
6044 * @mas: The maple state
6045 * @max: The maximum value to check.
6046 *
6047 * Must hold rcu_read_lock or the write lock.
6048 * If an entry exists, last and index are updated accordingly.
6049 * May set @mas->node to MAS_NONE.
6050 *
6051 * Return: The entry or %NULL.
6052 */
6053void *mas_find(struct ma_state *mas, unsigned long max)
6054{
6055 if (unlikely(mas_is_paused(mas))) {
6056 if (unlikely(mas->last == ULONG_MAX)) {
6057 mas->node = MAS_NONE;
6058 return NULL;
6059 }
6060 mas->node = MAS_START;
6061 mas->index = ++mas->last;
6062 }
6063
17dc622c
LH
6064 if (unlikely(mas_is_none(mas)))
6065 mas->node = MAS_START;
6066
54a611b6
LH
6067 if (unlikely(mas_is_start(mas))) {
6068 /* First run or continue */
6069 void *entry;
6070
6071 if (mas->index > max)
6072 return NULL;
6073
6074 entry = mas_walk(mas);
6075 if (entry)
6076 return entry;
6077 }
6078
6079 if (unlikely(!mas_searchable(mas)))
6080 return NULL;
6081
6082 /* Retries on dead nodes handled by mas_next_entry */
6083 return mas_next_entry(mas, max);
6084}
120b1162 6085EXPORT_SYMBOL_GPL(mas_find);
54a611b6
LH
6086
6087/**
6088 * mas_find_rev: On the first call, find the first non-null entry at or below
6089 * mas->index down to %min. Otherwise find the first non-null entry below
6090 * mas->index down to %min.
6091 * @mas: The maple state
6092 * @min: The minimum value to check.
6093 *
6094 * Must hold rcu_read_lock or the write lock.
6095 * If an entry exists, last and index are updated accordingly.
6096 * May set @mas->node to MAS_NONE.
6097 *
6098 * Return: The entry or %NULL.
6099 */
6100void *mas_find_rev(struct ma_state *mas, unsigned long min)
6101{
6102 if (unlikely(mas_is_paused(mas))) {
6103 if (unlikely(mas->last == ULONG_MAX)) {
6104 mas->node = MAS_NONE;
6105 return NULL;
6106 }
6107 mas->node = MAS_START;
6108 mas->last = --mas->index;
6109 }
6110
6111 if (unlikely(mas_is_start(mas))) {
6112 /* First run or continue */
6113 void *entry;
6114
6115 if (mas->index < min)
6116 return NULL;
6117
6118 entry = mas_walk(mas);
6119 if (entry)
6120 return entry;
6121 }
6122
6123 if (unlikely(!mas_searchable(mas)))
6124 return NULL;
6125
6126 if (mas->index < min)
6127 return NULL;
6128
d98c86b9 6129 /* Retries on dead nodes handled by mas_prev_entry */
54a611b6
LH
6130 return mas_prev_entry(mas, min);
6131}
120b1162 6132EXPORT_SYMBOL_GPL(mas_find_rev);
54a611b6
LH
6133
6134/**
6135 * mas_erase() - Find the range in which index resides and erase the entire
6136 * range.
6137 * @mas: The maple state
6138 *
6139 * Must hold the write lock.
6140 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6141 * erases that range.
6142 *
6143 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6144 */
6145void *mas_erase(struct ma_state *mas)
6146{
6147 void *entry;
6148 MA_WR_STATE(wr_mas, mas, NULL);
6149
6150 if (mas_is_none(mas) || mas_is_paused(mas))
6151 mas->node = MAS_START;
6152
6153 /* Retry unnecessary when holding the write lock. */
6154 entry = mas_state_walk(mas);
6155 if (!entry)
6156 return NULL;
6157
6158write_retry:
6159 /* Must reset to ensure spanning writes of last slot are detected */
6160 mas_reset(mas);
6161 mas_wr_store_setup(&wr_mas);
6162 mas_wr_store_entry(&wr_mas);
6163 if (mas_nomem(mas, GFP_KERNEL))
6164 goto write_retry;
6165
6166 return entry;
6167}
6168EXPORT_SYMBOL_GPL(mas_erase);
6169
6170/**
6171 * mas_nomem() - Check if there was an error allocating and do the allocation
6172 * if necessary If there are allocations, then free them.
6173 * @mas: The maple state
6174 * @gfp: The GFP_FLAGS to use for allocations
6175 * Return: true on allocation, false otherwise.
6176 */
6177bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6178 __must_hold(mas->tree->lock)
6179{
6180 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6181 mas_destroy(mas);
6182 return false;
6183 }
6184
6185 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6186 mtree_unlock(mas->tree);
6187 mas_alloc_nodes(mas, gfp);
6188 mtree_lock(mas->tree);
6189 } else {
6190 mas_alloc_nodes(mas, gfp);
6191 }
6192
6193 if (!mas_allocated(mas))
6194 return false;
6195
6196 mas->node = MAS_START;
6197 return true;
6198}
6199
6200void __init maple_tree_init(void)
6201{
6202 maple_node_cache = kmem_cache_create("maple_node",
6203 sizeof(struct maple_node), sizeof(struct maple_node),
6204 SLAB_PANIC, NULL);
6205}
6206
6207/**
6208 * mtree_load() - Load a value stored in a maple tree
6209 * @mt: The maple tree
6210 * @index: The index to load
6211 *
6212 * Return: the entry or %NULL
6213 */
6214void *mtree_load(struct maple_tree *mt, unsigned long index)
6215{
6216 MA_STATE(mas, mt, index, index);
6217 void *entry;
6218
6219 trace_ma_read(__func__, &mas);
6220 rcu_read_lock();
6221retry:
6222 entry = mas_start(&mas);
6223 if (unlikely(mas_is_none(&mas)))
6224 goto unlock;
6225
6226 if (unlikely(mas_is_ptr(&mas))) {
6227 if (index)
6228 entry = NULL;
6229
6230 goto unlock;
6231 }
6232
6233 entry = mtree_lookup_walk(&mas);
6234 if (!entry && unlikely(mas_is_start(&mas)))
6235 goto retry;
6236unlock:
6237 rcu_read_unlock();
6238 if (xa_is_zero(entry))
6239 return NULL;
6240
6241 return entry;
6242}
6243EXPORT_SYMBOL(mtree_load);
6244
6245/**
6246 * mtree_store_range() - Store an entry at a given range.
6247 * @mt: The maple tree
6248 * @index: The start of the range
6249 * @last: The end of the range
6250 * @entry: The entry to store
6251 * @gfp: The GFP_FLAGS to use for allocations
6252 *
6253 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6254 * be allocated.
6255 */
6256int mtree_store_range(struct maple_tree *mt, unsigned long index,
6257 unsigned long last, void *entry, gfp_t gfp)
6258{
6259 MA_STATE(mas, mt, index, last);
6260 MA_WR_STATE(wr_mas, &mas, entry);
6261
6262 trace_ma_write(__func__, &mas, 0, entry);
6263 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6264 return -EINVAL;
6265
6266 if (index > last)
6267 return -EINVAL;
6268
6269 mtree_lock(mt);
6270retry:
6271 mas_wr_store_entry(&wr_mas);
6272 if (mas_nomem(&mas, gfp))
6273 goto retry;
6274
6275 mtree_unlock(mt);
6276 if (mas_is_err(&mas))
6277 return xa_err(mas.node);
6278
6279 return 0;
6280}
6281EXPORT_SYMBOL(mtree_store_range);
6282
6283/**
6284 * mtree_store() - Store an entry at a given index.
6285 * @mt: The maple tree
6286 * @index: The index to store the value
6287 * @entry: The entry to store
6288 * @gfp: The GFP_FLAGS to use for allocations
6289 *
6290 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6291 * be allocated.
6292 */
6293int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6294 gfp_t gfp)
6295{
6296 return mtree_store_range(mt, index, index, entry, gfp);
6297}
6298EXPORT_SYMBOL(mtree_store);
6299
6300/**
6301 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6302 * @mt: The maple tree
6303 * @first: The start of the range
6304 * @last: The end of the range
6305 * @entry: The entry to store
6306 * @gfp: The GFP_FLAGS to use for allocations.
6307 *
6308 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6309 * request, -ENOMEM if memory could not be allocated.
6310 */
6311int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6312 unsigned long last, void *entry, gfp_t gfp)
6313{
6314 MA_STATE(ms, mt, first, last);
6315
6316 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6317 return -EINVAL;
6318
6319 if (first > last)
6320 return -EINVAL;
6321
6322 mtree_lock(mt);
6323retry:
6324 mas_insert(&ms, entry);
6325 if (mas_nomem(&ms, gfp))
6326 goto retry;
6327
6328 mtree_unlock(mt);
6329 if (mas_is_err(&ms))
6330 return xa_err(ms.node);
6331
6332 return 0;
6333}
6334EXPORT_SYMBOL(mtree_insert_range);
6335
6336/**
6337 * mtree_insert() - Insert an entry at a give index if there is no value.
6338 * @mt: The maple tree
6339 * @index : The index to store the value
6340 * @entry: The entry to store
6341 * @gfp: The FGP_FLAGS to use for allocations.
6342 *
6343 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6344 * request, -ENOMEM if memory could not be allocated.
6345 */
6346int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6347 gfp_t gfp)
6348{
6349 return mtree_insert_range(mt, index, index, entry, gfp);
6350}
6351EXPORT_SYMBOL(mtree_insert);
6352
6353int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6354 void *entry, unsigned long size, unsigned long min,
6355 unsigned long max, gfp_t gfp)
6356{
6357 int ret = 0;
6358
6359 MA_STATE(mas, mt, min, max - size);
6360 if (!mt_is_alloc(mt))
6361 return -EINVAL;
6362
6363 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6364 return -EINVAL;
6365
6366 if (min > max)
6367 return -EINVAL;
6368
6369 if (max < size)
6370 return -EINVAL;
6371
6372 if (!size)
6373 return -EINVAL;
6374
6375 mtree_lock(mt);
6376retry:
6377 mas.offset = 0;
6378 mas.index = min;
6379 mas.last = max - size;
6380 ret = mas_alloc(&mas, entry, size, startp);
6381 if (mas_nomem(&mas, gfp))
6382 goto retry;
6383
6384 mtree_unlock(mt);
6385 return ret;
6386}
6387EXPORT_SYMBOL(mtree_alloc_range);
6388
6389int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6390 void *entry, unsigned long size, unsigned long min,
6391 unsigned long max, gfp_t gfp)
6392{
6393 int ret = 0;
6394
6395 MA_STATE(mas, mt, min, max - size);
6396 if (!mt_is_alloc(mt))
6397 return -EINVAL;
6398
6399 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6400 return -EINVAL;
6401
6402 if (min >= max)
6403 return -EINVAL;
6404
6405 if (max < size - 1)
6406 return -EINVAL;
6407
6408 if (!size)
6409 return -EINVAL;
6410
6411 mtree_lock(mt);
6412retry:
6413 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6414 if (mas_nomem(&mas, gfp))
6415 goto retry;
6416
6417 mtree_unlock(mt);
6418 return ret;
6419}
6420EXPORT_SYMBOL(mtree_alloc_rrange);
6421
6422/**
6423 * mtree_erase() - Find an index and erase the entire range.
6424 * @mt: The maple tree
6425 * @index: The index to erase
6426 *
6427 * Erasing is the same as a walk to an entry then a store of a NULL to that
6428 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6429 *
6430 * Return: The entry stored at the @index or %NULL
6431 */
6432void *mtree_erase(struct maple_tree *mt, unsigned long index)
6433{
6434 void *entry = NULL;
6435
6436 MA_STATE(mas, mt, index, index);
6437 trace_ma_op(__func__, &mas);
6438
6439 mtree_lock(mt);
6440 entry = mas_erase(&mas);
6441 mtree_unlock(mt);
6442
6443 return entry;
6444}
6445EXPORT_SYMBOL(mtree_erase);
6446
6447/**
6448 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6449 * @mt: The maple tree
6450 *
6451 * Note: Does not handle locking.
6452 */
6453void __mt_destroy(struct maple_tree *mt)
6454{
6455 void *root = mt_root_locked(mt);
6456
6457 rcu_assign_pointer(mt->ma_root, NULL);
6458 if (xa_is_node(root))
6459 mte_destroy_walk(root, mt);
6460
6461 mt->ma_flags = 0;
6462}
6463EXPORT_SYMBOL_GPL(__mt_destroy);
6464
6465/**
6466 * mtree_destroy() - Destroy a maple tree
6467 * @mt: The maple tree
6468 *
6469 * Frees all resources used by the tree. Handles locking.
6470 */
6471void mtree_destroy(struct maple_tree *mt)
6472{
6473 mtree_lock(mt);
6474 __mt_destroy(mt);
6475 mtree_unlock(mt);
6476}
6477EXPORT_SYMBOL(mtree_destroy);
6478
6479/**
6480 * mt_find() - Search from the start up until an entry is found.
6481 * @mt: The maple tree
6482 * @index: Pointer which contains the start location of the search
6483 * @max: The maximum value to check
6484 *
6485 * Handles locking. @index will be incremented to one beyond the range.
6486 *
6487 * Return: The entry at or after the @index or %NULL
6488 */
6489void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6490{
6491 MA_STATE(mas, mt, *index, *index);
6492 void *entry;
6493#ifdef CONFIG_DEBUG_MAPLE_TREE
6494 unsigned long copy = *index;
6495#endif
6496
6497 trace_ma_read(__func__, &mas);
6498
6499 if ((*index) > max)
6500 return NULL;
6501
6502 rcu_read_lock();
6503retry:
6504 entry = mas_state_walk(&mas);
6505 if (mas_is_start(&mas))
6506 goto retry;
6507
6508 if (unlikely(xa_is_zero(entry)))
6509 entry = NULL;
6510
6511 if (entry)
6512 goto unlock;
6513
6514 while (mas_searchable(&mas) && (mas.index < max)) {
6515 entry = mas_next_entry(&mas, max);
6516 if (likely(entry && !xa_is_zero(entry)))
6517 break;
6518 }
6519
6520 if (unlikely(xa_is_zero(entry)))
6521 entry = NULL;
6522unlock:
6523 rcu_read_unlock();
6524 if (likely(entry)) {
6525 *index = mas.last + 1;
6526#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 6527 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
54a611b6
LH
6528 pr_err("index not increased! %lx <= %lx\n",
6529 *index, copy);
54a611b6
LH
6530#endif
6531 }
6532
6533 return entry;
6534}
6535EXPORT_SYMBOL(mt_find);
6536
6537/**
6538 * mt_find_after() - Search from the start up until an entry is found.
6539 * @mt: The maple tree
6540 * @index: Pointer which contains the start location of the search
6541 * @max: The maximum value to check
6542 *
6543 * Handles locking, detects wrapping on index == 0
6544 *
6545 * Return: The entry at or after the @index or %NULL
6546 */
6547void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6548 unsigned long max)
6549{
6550 if (!(*index))
6551 return NULL;
6552
6553 return mt_find(mt, index, max);
6554}
6555EXPORT_SYMBOL(mt_find_after);
6556
6557#ifdef CONFIG_DEBUG_MAPLE_TREE
6558atomic_t maple_tree_tests_run;
6559EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6560atomic_t maple_tree_tests_passed;
6561EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6562
6563#ifndef __KERNEL__
6564extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6565void mt_set_non_kernel(unsigned int val)
6566{
6567 kmem_cache_set_non_kernel(maple_node_cache, val);
6568}
6569
6570extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6571unsigned long mt_get_alloc_size(void)
6572{
6573 return kmem_cache_get_alloc(maple_node_cache);
6574}
6575
6576extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6577void mt_zero_nr_tallocated(void)
6578{
6579 kmem_cache_zero_nr_tallocated(maple_node_cache);
6580}
6581
6582extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6583unsigned int mt_nr_tallocated(void)
6584{
6585 return kmem_cache_nr_tallocated(maple_node_cache);
6586}
6587
6588extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6589unsigned int mt_nr_allocated(void)
6590{
6591 return kmem_cache_nr_allocated(maple_node_cache);
6592}
6593
6594/*
6595 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6596 * @mas: The maple state
6597 * @index: The index to restore in @mas.
6598 *
6599 * Used in test code.
6600 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6601 */
6602static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6603{
6604 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6605 return 0;
6606
6607 if (likely(!mte_dead_node(mas->node)))
6608 return 0;
6609
6610 mas_rewalk(mas, index);
6611 return 1;
6612}
54a611b6 6613
120b1162
LH
6614void mt_cache_shrink(void)
6615{
6616}
6617#else
6618/*
6619 * mt_cache_shrink() - For testing, don't use this.
6620 *
6621 * Certain testcases can trigger an OOM when combined with other memory
6622 * debugging configuration options. This function is used to reduce the
6623 * possibility of an out of memory even due to kmem_cache objects remaining
6624 * around for longer than usual.
6625 */
6626void mt_cache_shrink(void)
6627{
6628 kmem_cache_shrink(maple_node_cache);
6629
6630}
6631EXPORT_SYMBOL_GPL(mt_cache_shrink);
6632
6633#endif /* not defined __KERNEL__ */
54a611b6
LH
6634/*
6635 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6636 * @mas: The maple state
6637 * @offset: The offset into the slot array to fetch.
6638 *
6639 * Return: The entry stored at @offset.
6640 */
6641static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6642 unsigned char offset)
6643{
6644 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6645 offset);
6646}
6647
6648
6649/*
6650 * mas_first_entry() - Go the first leaf and find the first entry.
6651 * @mas: the maple state.
6652 * @limit: the maximum index to check.
6653 * @*r_start: Pointer to set to the range start.
6654 *
6655 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6656 *
6657 * Return: The first entry or MAS_NONE.
6658 */
6659static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6660 unsigned long limit, enum maple_type mt)
6661
6662{
6663 unsigned long max;
6664 unsigned long *pivots;
6665 void __rcu **slots;
6666 void *entry = NULL;
6667
6668 mas->index = mas->min;
6669 if (mas->index > limit)
6670 goto none;
6671
6672 max = mas->max;
6673 mas->offset = 0;
6674 while (likely(!ma_is_leaf(mt))) {
e6d6792a 6675 MAS_WARN_ON(mas, mte_dead_node(mas->node));
54a611b6 6676 slots = ma_slots(mn, mt);
54a611b6 6677 entry = mas_slot(mas, slots, 0);
39d0bd86 6678 pivots = ma_pivots(mn, mt);
54a611b6
LH
6679 if (unlikely(ma_dead_node(mn)))
6680 return NULL;
39d0bd86 6681 max = pivots[0];
54a611b6
LH
6682 mas->node = entry;
6683 mn = mas_mn(mas);
6684 mt = mte_node_type(mas->node);
6685 }
e6d6792a 6686 MAS_WARN_ON(mas, mte_dead_node(mas->node));
54a611b6
LH
6687
6688 mas->max = max;
6689 slots = ma_slots(mn, mt);
6690 entry = mas_slot(mas, slots, 0);
6691 if (unlikely(ma_dead_node(mn)))
6692 return NULL;
6693
6694 /* Slot 0 or 1 must be set */
6695 if (mas->index > limit)
6696 goto none;
6697
6698 if (likely(entry))
6699 return entry;
6700
54a611b6
LH
6701 mas->offset = 1;
6702 entry = mas_slot(mas, slots, 1);
39d0bd86 6703 pivots = ma_pivots(mn, mt);
54a611b6
LH
6704 if (unlikely(ma_dead_node(mn)))
6705 return NULL;
6706
39d0bd86 6707 mas->index = pivots[0] + 1;
54a611b6
LH
6708 if (mas->index > limit)
6709 goto none;
6710
6711 if (likely(entry))
6712 return entry;
6713
6714none:
6715 if (likely(!ma_dead_node(mn)))
6716 mas->node = MAS_NONE;
6717 return NULL;
6718}
6719
6720/* Depth first search, post-order */
6721static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6722{
6723
6724 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6725 unsigned long p_min, p_max;
6726
6727 mas_next_node(mas, mas_mn(mas), max);
6728 if (!mas_is_none(mas))
6729 return;
6730
6731 if (mte_is_root(mn))
6732 return;
6733
6734 mas->node = mn;
6735 mas_ascend(mas);
c3eb787e 6736 do {
54a611b6
LH
6737 p = mas->node;
6738 p_min = mas->min;
6739 p_max = mas->max;
6740 mas_prev_node(mas, 0);
c3eb787e 6741 } while (!mas_is_none(mas));
54a611b6
LH
6742
6743 mas->node = p;
6744 mas->max = p_max;
6745 mas->min = p_min;
6746}
6747
6748/* Tree validations */
6749static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
6750 unsigned long min, unsigned long max, unsigned int depth,
6751 enum mt_dump_format format);
54a611b6 6752static void mt_dump_range(unsigned long min, unsigned long max,
89f499f3 6753 unsigned int depth, enum mt_dump_format format)
54a611b6
LH
6754{
6755 static const char spaces[] = " ";
6756
89f499f3
LH
6757 switch(format) {
6758 case mt_dump_hex:
6759 if (min == max)
6760 pr_info("%.*s%lx: ", depth * 2, spaces, min);
6761 else
6762 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6763 break;
6764 default:
6765 case mt_dump_dec:
6766 if (min == max)
6767 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6768 else
6769 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6770 }
54a611b6
LH
6771}
6772
6773static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
89f499f3 6774 unsigned int depth, enum mt_dump_format format)
54a611b6 6775{
89f499f3 6776 mt_dump_range(min, max, depth, format);
54a611b6
LH
6777
6778 if (xa_is_value(entry))
6779 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6780 xa_to_value(entry), entry);
6781 else if (xa_is_zero(entry))
6782 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6783 else if (mt_is_reserved(entry))
6784 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6785 else
6786 pr_cont("%p\n", entry);
6787}
6788
6789static void mt_dump_range64(const struct maple_tree *mt, void *entry,
89f499f3
LH
6790 unsigned long min, unsigned long max, unsigned int depth,
6791 enum mt_dump_format format)
54a611b6
LH
6792{
6793 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6794 bool leaf = mte_is_leaf(entry);
6795 unsigned long first = min;
6796 int i;
6797
6798 pr_cont(" contents: ");
89f499f3
LH
6799 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6800 switch(format) {
6801 case mt_dump_hex:
6802 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6803 break;
6804 default:
6805 case mt_dump_dec:
6806 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6807 }
6808 }
54a611b6
LH
6809 pr_cont("%p\n", node->slot[i]);
6810 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6811 unsigned long last = max;
6812
6813 if (i < (MAPLE_RANGE64_SLOTS - 1))
6814 last = node->pivot[i];
bd592703 6815 else if (!node->slot[i] && max != mt_node_max(entry))
54a611b6
LH
6816 break;
6817 if (last == 0 && i > 0)
6818 break;
6819 if (leaf)
6820 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6821 first, last, depth + 1, format);
54a611b6
LH
6822 else if (node->slot[i])
6823 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 6824 first, last, depth + 1, format);
54a611b6
LH
6825
6826 if (last == max)
6827 break;
6828 if (last > max) {
89f499f3
LH
6829 switch(format) {
6830 case mt_dump_hex:
6831 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
54a611b6 6832 node, last, max, i);
89f499f3
LH
6833 break;
6834 default:
6835 case mt_dump_dec:
6836 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6837 node, last, max, i);
6838 }
54a611b6
LH
6839 }
6840 first = last + 1;
6841 }
6842}
6843
6844static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
89f499f3
LH
6845 unsigned long min, unsigned long max, unsigned int depth,
6846 enum mt_dump_format format)
54a611b6
LH
6847{
6848 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6849 bool leaf = mte_is_leaf(entry);
6850 unsigned long first = min;
6851 int i;
6852
6853 pr_cont(" contents: ");
6854 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6855 pr_cont("%lu ", node->gap[i]);
6856 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6857 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6858 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6859 pr_cont("%p\n", node->slot[i]);
6860 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6861 unsigned long last = max;
6862
6863 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6864 last = node->pivot[i];
6865 else if (!node->slot[i])
6866 break;
6867 if (last == 0 && i > 0)
6868 break;
6869 if (leaf)
6870 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6871 first, last, depth + 1, format);
54a611b6
LH
6872 else if (node->slot[i])
6873 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 6874 first, last, depth + 1, format);
54a611b6
LH
6875
6876 if (last == max)
6877 break;
6878 if (last > max) {
6879 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6880 node, last, max, i);
6881 break;
6882 }
6883 first = last + 1;
6884 }
6885}
6886
6887static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
6888 unsigned long min, unsigned long max, unsigned int depth,
6889 enum mt_dump_format format)
54a611b6
LH
6890{
6891 struct maple_node *node = mte_to_node(entry);
6892 unsigned int type = mte_node_type(entry);
6893 unsigned int i;
6894
89f499f3 6895 mt_dump_range(min, max, depth, format);
54a611b6
LH
6896
6897 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6898 node ? node->parent : NULL);
6899 switch (type) {
6900 case maple_dense:
6901 pr_cont("\n");
6902 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6903 if (min + i > max)
6904 pr_cont("OUT OF RANGE: ");
6905 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6906 min + i, min + i, depth, format);
54a611b6
LH
6907 }
6908 break;
6909 case maple_leaf_64:
6910 case maple_range_64:
89f499f3 6911 mt_dump_range64(mt, entry, min, max, depth, format);
54a611b6
LH
6912 break;
6913 case maple_arange_64:
89f499f3 6914 mt_dump_arange64(mt, entry, min, max, depth, format);
54a611b6
LH
6915 break;
6916
6917 default:
6918 pr_cont(" UNKNOWN TYPE\n");
6919 }
6920}
6921
89f499f3 6922void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
54a611b6
LH
6923{
6924 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6925
6926 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6927 mt, mt->ma_flags, mt_height(mt), entry);
6928 if (!xa_is_node(entry))
89f499f3 6929 mt_dump_entry(entry, 0, 0, 0, format);
54a611b6 6930 else if (entry)
89f499f3 6931 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
54a611b6 6932}
120b1162 6933EXPORT_SYMBOL_GPL(mt_dump);
54a611b6
LH
6934
6935/*
6936 * Calculate the maximum gap in a node and check if that's what is reported in
6937 * the parent (unless root).
6938 */
6939static void mas_validate_gaps(struct ma_state *mas)
6940{
6941 struct maple_enode *mte = mas->node;
6942 struct maple_node *p_mn;
6943 unsigned long gap = 0, max_gap = 0;
6944 unsigned long p_end, p_start = mas->min;
6945 unsigned char p_slot;
6946 unsigned long *gaps = NULL;
6947 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6948 int i;
6949
6950 if (ma_is_dense(mte_node_type(mte))) {
6951 for (i = 0; i < mt_slot_count(mte); i++) {
6952 if (mas_get_slot(mas, i)) {
6953 if (gap > max_gap)
6954 max_gap = gap;
6955 gap = 0;
6956 continue;
6957 }
6958 gap++;
6959 }
6960 goto counted;
6961 }
6962
6963 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6964 for (i = 0; i < mt_slot_count(mte); i++) {
6965 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6966
6967 if (!gaps) {
6968 if (mas_get_slot(mas, i)) {
6969 gap = 0;
6970 goto not_empty;
6971 }
6972
6973 gap += p_end - p_start + 1;
6974 } else {
6975 void *entry = mas_get_slot(mas, i);
6976
6977 gap = gaps[i];
6978 if (!entry) {
6979 if (gap != p_end - p_start + 1) {
6980 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6981 mas_mn(mas), i,
6982 mas_get_slot(mas, i), gap,
6983 p_end, p_start);
89f499f3 6984 mt_dump(mas->tree, mt_dump_hex);
54a611b6
LH
6985
6986 MT_BUG_ON(mas->tree,
6987 gap != p_end - p_start + 1);
6988 }
6989 } else {
6990 if (gap > p_end - p_start + 1) {
6991 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6992 mas_mn(mas), i, gap, p_end, p_start,
6993 p_end - p_start + 1);
6994 MT_BUG_ON(mas->tree,
6995 gap > p_end - p_start + 1);
6996 }
6997 }
6998 }
6999
7000 if (gap > max_gap)
7001 max_gap = gap;
7002not_empty:
7003 p_start = p_end + 1;
7004 if (p_end >= mas->max)
7005 break;
7006 }
7007
7008counted:
7009 if (mte_is_root(mte))
7010 return;
7011
7012 p_slot = mte_parent_slot(mas->node);
7013 p_mn = mte_parent(mte);
7014 MT_BUG_ON(mas->tree, max_gap > mas->max);
afc754c6 7015 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
54a611b6 7016 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
89f499f3 7017 mt_dump(mas->tree, mt_dump_hex);
54a611b6
LH
7018 }
7019
7020 MT_BUG_ON(mas->tree,
afc754c6 7021 ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap);
54a611b6
LH
7022}
7023
7024static void mas_validate_parent_slot(struct ma_state *mas)
7025{
7026 struct maple_node *parent;
7027 struct maple_enode *node;
afc754c6
LH
7028 enum maple_type p_type;
7029 unsigned char p_slot;
54a611b6
LH
7030 void __rcu **slots;
7031 int i;
7032
7033 if (mte_is_root(mas->node))
7034 return;
7035
afc754c6
LH
7036 p_slot = mte_parent_slot(mas->node);
7037 p_type = mas_parent_type(mas, mas->node);
54a611b6
LH
7038 parent = mte_parent(mas->node);
7039 slots = ma_slots(parent, p_type);
7040 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7041
7042 /* Check prev/next parent slot for duplicate node entry */
7043
7044 for (i = 0; i < mt_slots[p_type]; i++) {
7045 node = mas_slot(mas, slots, i);
7046 if (i == p_slot) {
7047 if (node != mas->node)
7048 pr_err("parent %p[%u] does not have %p\n",
7049 parent, i, mas_mn(mas));
7050 MT_BUG_ON(mas->tree, node != mas->node);
7051 } else if (node == mas->node) {
7052 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7053 mas_mn(mas), parent, i, p_slot);
7054 MT_BUG_ON(mas->tree, node == mas->node);
7055 }
7056 }
7057}
7058
7059static void mas_validate_child_slot(struct ma_state *mas)
7060{
7061 enum maple_type type = mte_node_type(mas->node);
7062 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7063 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7064 struct maple_enode *child;
7065 unsigned char i;
7066
7067 if (mte_is_leaf(mas->node))
7068 return;
7069
7070 for (i = 0; i < mt_slots[type]; i++) {
7071 child = mas_slot(mas, slots, i);
7072 if (!pivots[i] || pivots[i] == mas->max)
7073 break;
7074
7075 if (!child)
7076 break;
7077
7078 if (mte_parent_slot(child) != i) {
7079 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7080 mas_mn(mas), i, mte_to_node(child),
7081 mte_parent_slot(child));
7082 MT_BUG_ON(mas->tree, 1);
7083 }
7084
7085 if (mte_parent(child) != mte_to_node(mas->node)) {
7086 pr_err("child %p has parent %p not %p\n",
7087 mte_to_node(child), mte_parent(child),
7088 mte_to_node(mas->node));
7089 MT_BUG_ON(mas->tree, 1);
7090 }
7091 }
7092}
7093
7094/*
7095 * Validate all pivots are within mas->min and mas->max.
7096 */
7097static void mas_validate_limits(struct ma_state *mas)
7098{
7099 int i;
7100 unsigned long prev_piv = 0;
7101 enum maple_type type = mte_node_type(mas->node);
7102 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7103 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7104
7105 /* all limits are fine here. */
7106 if (mte_is_root(mas->node))
7107 return;
7108
7109 for (i = 0; i < mt_slots[type]; i++) {
7110 unsigned long piv;
7111
7112 piv = mas_safe_pivot(mas, pivots, i, type);
7113
7114 if (!piv && (i != 0))
7115 break;
7116
7117 if (!mte_is_leaf(mas->node)) {
7118 void *entry = mas_slot(mas, slots, i);
7119
7120 if (!entry)
7121 pr_err("%p[%u] cannot be null\n",
7122 mas_mn(mas), i);
7123
7124 MT_BUG_ON(mas->tree, !entry);
7125 }
7126
7127 if (prev_piv > piv) {
7128 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7129 mas_mn(mas), i, piv, prev_piv);
e6d6792a 7130 MAS_WARN_ON(mas, piv < prev_piv);
54a611b6
LH
7131 }
7132
7133 if (piv < mas->min) {
7134 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7135 piv, mas->min);
e6d6792a 7136 MAS_WARN_ON(mas, piv < mas->min);
54a611b6
LH
7137 }
7138 if (piv > mas->max) {
7139 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7140 piv, mas->max);
e6d6792a 7141 MAS_WARN_ON(mas, piv > mas->max);
54a611b6
LH
7142 }
7143 prev_piv = piv;
7144 if (piv == mas->max)
7145 break;
7146 }
7147 for (i += 1; i < mt_slots[type]; i++) {
7148 void *entry = mas_slot(mas, slots, i);
7149
7150 if (entry && (i != mt_slots[type] - 1)) {
7151 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7152 i, entry);
7153 MT_BUG_ON(mas->tree, entry != NULL);
7154 }
7155
7156 if (i < mt_pivots[type]) {
7157 unsigned long piv = pivots[i];
7158
7159 if (!piv)
7160 continue;
7161
7162 pr_err("%p[%u] should not have piv %lu\n",
7163 mas_mn(mas), i, piv);
e6d6792a 7164 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
54a611b6
LH
7165 }
7166 }
7167}
7168
7169static void mt_validate_nulls(struct maple_tree *mt)
7170{
7171 void *entry, *last = (void *)1;
7172 unsigned char offset = 0;
7173 void __rcu **slots;
7174 MA_STATE(mas, mt, 0, 0);
7175
7176 mas_start(&mas);
7177 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7178 return;
7179
7180 while (!mte_is_leaf(mas.node))
7181 mas_descend(&mas);
7182
7183 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7184 do {
7185 entry = mas_slot(&mas, slots, offset);
7186 if (!last && !entry) {
7187 pr_err("Sequential nulls end at %p[%u]\n",
7188 mas_mn(&mas), offset);
7189 }
7190 MT_BUG_ON(mt, !last && !entry);
7191 last = entry;
7192 if (offset == mas_data_end(&mas)) {
7193 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7194 if (mas_is_none(&mas))
7195 return;
7196 offset = 0;
7197 slots = ma_slots(mte_to_node(mas.node),
7198 mte_node_type(mas.node));
7199 } else {
7200 offset++;
7201 }
7202
7203 } while (!mas_is_none(&mas));
7204}
7205
7206/*
7207 * validate a maple tree by checking:
7208 * 1. The limits (pivots are within mas->min to mas->max)
7209 * 2. The gap is correctly set in the parents
7210 */
7211void mt_validate(struct maple_tree *mt)
7212{
7213 unsigned char end;
7214
7215 MA_STATE(mas, mt, 0, 0);
7216 rcu_read_lock();
7217 mas_start(&mas);
7218 if (!mas_searchable(&mas))
7219 goto done;
7220
7221 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7222 while (!mas_is_none(&mas)) {
e6d6792a 7223 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
54a611b6
LH
7224 if (!mte_is_root(mas.node)) {
7225 end = mas_data_end(&mas);
e6d6792a
LH
7226 if (MAS_WARN_ON(&mas,
7227 (end < mt_min_slot_count(mas.node)) &&
7228 (mas.max != ULONG_MAX))) {
54a611b6 7229 pr_err("Invalid size %u of %p\n", end,
e6d6792a 7230 mas_mn(&mas));
54a611b6 7231 }
54a611b6
LH
7232 }
7233 mas_validate_parent_slot(&mas);
7234 mas_validate_child_slot(&mas);
7235 mas_validate_limits(&mas);
7236 if (mt_is_alloc(mt))
7237 mas_validate_gaps(&mas);
7238 mas_dfs_postorder(&mas, ULONG_MAX);
7239 }
7240 mt_validate_nulls(mt);
7241done:
7242 rcu_read_unlock();
7243
7244}
120b1162 7245EXPORT_SYMBOL_GPL(mt_validate);
54a611b6 7246
f0a1f866
LH
7247void mas_dump(const struct ma_state *mas)
7248{
7249 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7250 if (mas_is_none(mas))
7251 pr_err("(MAS_NONE) ");
7252 else if (mas_is_ptr(mas))
7253 pr_err("(MAS_ROOT) ");
7254 else if (mas_is_start(mas))
7255 pr_err("(MAS_START) ");
7256 else if (mas_is_paused(mas))
7257 pr_err("(MAS_PAUSED) ");
7258
7259 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7260 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7261 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7262 if (mas->index > mas->last)
7263 pr_err("Check index & last\n");
7264}
7265EXPORT_SYMBOL_GPL(mas_dump);
7266
7267void mas_wr_dump(const struct ma_wr_state *wr_mas)
7268{
7269 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7270 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7271 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7272 wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7273 wr_mas->end_piv);
7274}
7275EXPORT_SYMBOL_GPL(mas_wr_dump);
7276
54a611b6 7277#endif /* CONFIG_DEBUG_MAPLE_TREE */