]> git.proxmox.com Git - ovs.git/blame - lib/netlink.c
netlink: Add support for Netlink table dumping.
[ovs.git] / lib / netlink.c
CommitLineData
064af421 1/*
69123704 2 * Copyright (c) 2008, 2009, 2010 Nicira Networks.
064af421 3 *
a14bc59f
BP
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
064af421 7 *
a14bc59f
BP
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
064af421
BP
15 */
16
17#include <config.h>
18#include "netlink.h"
19#include <assert.h>
20#include <errno.h>
21#include <inttypes.h>
22#include <stdio.h>
23#include <stdlib.h>
24#include <string.h>
25#include <time.h>
26#include <unistd.h>
27#include "coverage.h"
28#include "dynamic-string.h"
29#include "netlink-protocol.h"
30#include "ofpbuf.h"
31#include "poll-loop.h"
32#include "timeval.h"
33#include "util.h"
34
35#include "vlog.h"
36#define THIS_MODULE VLM_netlink
37
38/* Linux header file confusion causes this to be undefined. */
39#ifndef SOL_NETLINK
40#define SOL_NETLINK 270
41#endif
42
43/* A single (bad) Netlink message can in theory dump out many, many log
44 * messages, so the burst size is set quite high here to avoid missing useful
45 * information. Also, at high logging levels we log *all* Netlink messages. */
46static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 600);
47
48static void log_nlmsg(const char *function, int error,
49 const void *message, size_t size);
50\f
51/* Netlink sockets. */
52
53struct nl_sock
54{
55 int fd;
56 uint32_t pid;
57};
58
59/* Next nlmsghdr sequence number.
60 *
61 * This implementation uses sequence numbers that are unique process-wide, to
62 * avoid a hypothetical race: send request, close socket, open new socket that
63 * reuses the old socket's PID value, send request on new socket, receive reply
64 * from kernel to old socket but with same PID and sequence number. (This race
65 * could be avoided other ways, e.g. by preventing PIDs from being quickly
66 * reused). */
67static uint32_t next_seq;
68
69static int alloc_pid(uint32_t *);
70static void free_pid(uint32_t);
71
72/* Creates a new netlink socket for the given netlink 'protocol'
73 * (NETLINK_ROUTE, NETLINK_GENERIC, ...). Returns 0 and sets '*sockp' to the
74 * new socket if successful, otherwise returns a positive errno value.
75 *
76 * If 'multicast_group' is nonzero, the new socket subscribes to the specified
77 * netlink multicast group. (A netlink socket may listen to an arbitrary
78 * number of multicast groups, but so far we only need one at a time.)
79 *
80 * Nonzero 'so_sndbuf' or 'so_rcvbuf' override the kernel default send or
81 * receive buffer size, respectively.
82 */
83int
84nl_sock_create(int protocol, int multicast_group,
85 size_t so_sndbuf, size_t so_rcvbuf, struct nl_sock **sockp)
86{
87 struct nl_sock *sock;
88 struct sockaddr_nl local, remote;
89 int retval = 0;
90
91 if (next_seq == 0) {
92 /* Pick initial sequence number. */
c73814a3 93 next_seq = getpid() ^ time_wall();
064af421
BP
94 }
95
96 *sockp = NULL;
97 sock = malloc(sizeof *sock);
98 if (sock == NULL) {
99 return ENOMEM;
100 }
101
102 sock->fd = socket(AF_NETLINK, SOCK_RAW, protocol);
103 if (sock->fd < 0) {
104 VLOG_ERR("fcntl: %s", strerror(errno));
105 goto error;
106 }
107
108 retval = alloc_pid(&sock->pid);
109 if (retval) {
110 goto error;
111 }
112
113 if (so_sndbuf != 0
114 && setsockopt(sock->fd, SOL_SOCKET, SO_SNDBUF,
115 &so_sndbuf, sizeof so_sndbuf) < 0) {
116 VLOG_ERR("setsockopt(SO_SNDBUF,%zu): %s", so_sndbuf, strerror(errno));
117 goto error_free_pid;
118 }
119
120 if (so_rcvbuf != 0
121 && setsockopt(sock->fd, SOL_SOCKET, SO_RCVBUF,
122 &so_rcvbuf, sizeof so_rcvbuf) < 0) {
123 VLOG_ERR("setsockopt(SO_RCVBUF,%zu): %s", so_rcvbuf, strerror(errno));
124 goto error_free_pid;
125 }
126
127 /* Bind local address as our selected pid. */
128 memset(&local, 0, sizeof local);
129 local.nl_family = AF_NETLINK;
130 local.nl_pid = sock->pid;
131 if (multicast_group > 0 && multicast_group <= 32) {
132 /* This method of joining multicast groups is supported by old kernels,
133 * but it only allows 32 multicast groups per protocol. */
134 local.nl_groups |= 1ul << (multicast_group - 1);
135 }
136 if (bind(sock->fd, (struct sockaddr *) &local, sizeof local) < 0) {
137 VLOG_ERR("bind(%"PRIu32"): %s", sock->pid, strerror(errno));
138 goto error_free_pid;
139 }
140
141 /* Bind remote address as the kernel (pid 0). */
142 memset(&remote, 0, sizeof remote);
143 remote.nl_family = AF_NETLINK;
144 remote.nl_pid = 0;
145 if (connect(sock->fd, (struct sockaddr *) &remote, sizeof remote) < 0) {
146 VLOG_ERR("connect(0): %s", strerror(errno));
147 goto error_free_pid;
148 }
149
150 /* Older kernel headers failed to define this macro. We want our programs
151 * to support the newer kernel features even if compiled with older
152 * headers, so define it ourselves in such a case. */
153#ifndef NETLINK_ADD_MEMBERSHIP
154#define NETLINK_ADD_MEMBERSHIP 1
155#endif
156
157 /* This method of joining multicast groups is only supported by newish
158 * kernels, but it allows for an arbitrary number of multicast groups. */
159 if (multicast_group > 32
160 && setsockopt(sock->fd, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP,
161 &multicast_group, sizeof multicast_group) < 0) {
162 VLOG_ERR("setsockopt(NETLINK_ADD_MEMBERSHIP,%d): %s",
163 multicast_group, strerror(errno));
164 goto error_free_pid;
165 }
166
167 *sockp = sock;
168 return 0;
169
170error_free_pid:
171 free_pid(sock->pid);
172error:
173 if (retval == 0) {
174 retval = errno;
175 if (retval == 0) {
176 retval = EINVAL;
177 }
178 }
179 if (sock->fd >= 0) {
180 close(sock->fd);
181 }
182 free(sock);
183 return retval;
184}
185
186/* Destroys netlink socket 'sock'. */
187void
188nl_sock_destroy(struct nl_sock *sock)
189{
190 if (sock) {
191 close(sock->fd);
192 free_pid(sock->pid);
193 free(sock);
194 }
195}
196
197/* Tries to send 'msg', which must contain a Netlink message, to the kernel on
69123704
BP
198 * 'sock'. nlmsg_len in 'msg' will be finalized to match msg->size, and
199 * nlmsg_pid will be set to 'sock''s pid, before the message is sent.
064af421
BP
200 *
201 * Returns 0 if successful, otherwise a positive errno value. If
202 * 'wait' is true, then the send will wait until buffer space is ready;
203 * otherwise, returns EAGAIN if the 'sock' send buffer is full. */
204int
205nl_sock_send(struct nl_sock *sock, const struct ofpbuf *msg, bool wait)
206{
69123704 207 struct nlmsghdr *nlmsg = nl_msg_nlmsghdr(msg);
064af421
BP
208 int error;
209
69123704
BP
210 nlmsg->nlmsg_len = msg->size;
211 nlmsg->nlmsg_pid = sock->pid;
064af421
BP
212 do {
213 int retval;
214 retval = send(sock->fd, msg->data, msg->size, wait ? 0 : MSG_DONTWAIT);
215 error = retval < 0 ? errno : 0;
216 } while (error == EINTR);
217 log_nlmsg(__func__, error, msg->data, msg->size);
218 if (!error) {
219 COVERAGE_INC(netlink_sent);
220 }
221 return error;
222}
223
224/* Tries to send the 'n_iov' chunks of data in 'iov' to the kernel on 'sock' as
225 * a single Netlink message. (The message must be fully formed and not require
69123704 226 * finalization of its nlmsg_len or nlmsg_pid fields.)
064af421
BP
227 *
228 * Returns 0 if successful, otherwise a positive errno value. If 'wait' is
229 * true, then the send will wait until buffer space is ready; otherwise,
230 * returns EAGAIN if the 'sock' send buffer is full. */
231int
232nl_sock_sendv(struct nl_sock *sock, const struct iovec iov[], size_t n_iov,
233 bool wait)
234{
235 struct msghdr msg;
236 int error;
237
238 COVERAGE_INC(netlink_send);
239 memset(&msg, 0, sizeof msg);
240 msg.msg_iov = (struct iovec *) iov;
241 msg.msg_iovlen = n_iov;
242 do {
243 int retval;
244 retval = sendmsg(sock->fd, &msg, wait ? 0 : MSG_DONTWAIT);
245 error = retval < 0 ? errno : 0;
246 } while (error == EINTR);
247 if (error != EAGAIN) {
248 log_nlmsg(__func__, error, iov[0].iov_base, iov[0].iov_len);
249 if (!error) {
250 COVERAGE_INC(netlink_sent);
251 }
252 }
253 return error;
254}
255
256/* Tries to receive a netlink message from the kernel on 'sock'. If
257 * successful, stores the received message into '*bufp' and returns 0. The
258 * caller is responsible for destroying the message with ofpbuf_delete(). On
259 * failure, returns a positive errno value and stores a null pointer into
260 * '*bufp'.
261 *
262 * If 'wait' is true, nl_sock_recv waits for a message to be ready; otherwise,
263 * returns EAGAIN if the 'sock' receive buffer is empty. */
264int
265nl_sock_recv(struct nl_sock *sock, struct ofpbuf **bufp, bool wait)
266{
267 uint8_t tmp;
268 ssize_t bufsize = 2048;
269 ssize_t nbytes, nbytes2;
270 struct ofpbuf *buf;
271 struct nlmsghdr *nlmsghdr;
272 struct iovec iov;
273 struct msghdr msg = {
274 .msg_name = NULL,
275 .msg_namelen = 0,
276 .msg_iov = &iov,
277 .msg_iovlen = 1,
278 .msg_control = NULL,
279 .msg_controllen = 0,
280 .msg_flags = 0
281 };
282
283 buf = ofpbuf_new(bufsize);
284 *bufp = NULL;
285
286try_again:
287 /* Attempt to read the message. We don't know the size of the data
288 * yet, so we take a guess at 2048. If we're wrong, we keep trying
289 * and doubling the buffer size each time.
290 */
291 nlmsghdr = ofpbuf_put_uninit(buf, bufsize);
292 iov.iov_base = nlmsghdr;
293 iov.iov_len = bufsize;
294 do {
295 nbytes = recvmsg(sock->fd, &msg, (wait ? 0 : MSG_DONTWAIT) | MSG_PEEK);
296 } while (nbytes < 0 && errno == EINTR);
297 if (nbytes < 0) {
298 ofpbuf_delete(buf);
299 return errno;
300 }
301 if (msg.msg_flags & MSG_TRUNC) {
302 COVERAGE_INC(netlink_recv_retry);
303 bufsize *= 2;
304 ofpbuf_reinit(buf, bufsize);
305 goto try_again;
306 }
307 buf->size = nbytes;
308
309 /* We successfully read the message, so recv again to clear the queue */
310 iov.iov_base = &tmp;
311 iov.iov_len = 1;
312 do {
313 nbytes2 = recvmsg(sock->fd, &msg, MSG_DONTWAIT);
314 } while (nbytes2 < 0 && errno == EINTR);
315 if (nbytes2 < 0) {
316 if (errno == ENOBUFS) {
317 /* The kernel is notifying us that a message it tried to send to us
318 * was dropped. We have to pass this along to the caller in case
319 * it wants to retry a request. So kill the buffer, which we can
320 * re-read next time. */
321 COVERAGE_INC(netlink_overflow);
322 ofpbuf_delete(buf);
323 return ENOBUFS;
324 } else {
325 VLOG_ERR_RL(&rl, "failed to remove nlmsg from socket: %s\n",
326 strerror(errno));
327 }
328 }
329 if (nbytes < sizeof *nlmsghdr
330 || nlmsghdr->nlmsg_len < sizeof *nlmsghdr
331 || nlmsghdr->nlmsg_len > nbytes) {
332 VLOG_ERR_RL(&rl, "received invalid nlmsg (%zd bytes < %d)",
333 bufsize, NLMSG_HDRLEN);
334 ofpbuf_delete(buf);
335 return EPROTO;
336 }
337 *bufp = buf;
338 log_nlmsg(__func__, 0, buf->data, buf->size);
339 COVERAGE_INC(netlink_received);
340 return 0;
341}
342
343/* Sends 'request' to the kernel via 'sock' and waits for a response. If
8e2093fc
BP
344 * successful, returns 0. On failure, returns a positive errno value.
345 *
346 * If 'replyp' is nonnull, then on success '*replyp' is set to the kernel's
347 * reply, which the caller is responsible for freeing with ofpbuf_delete(), and
348 * on failure '*replyp' is set to NULL. If 'replyp' is null, then the kernel's
349 * reply, if any, is discarded.
064af421 350 *
69123704
BP
351 * nlmsg_len in 'msg' will be finalized to match msg->size, and nlmsg_pid will
352 * be set to 'sock''s pid, before the message is sent. NLM_F_ACK will be set
353 * in nlmsg_flags.
354 *
064af421
BP
355 * The caller is responsible for destroying 'request'.
356 *
357 * Bare Netlink is an unreliable transport protocol. This function layers
358 * reliable delivery and reply semantics on top of bare Netlink.
359 *
360 * In Netlink, sending a request to the kernel is reliable enough, because the
361 * kernel will tell us if the message cannot be queued (and we will in that
362 * case put it on the transmit queue and wait until it can be delivered).
363 *
364 * Receiving the reply is the real problem: if the socket buffer is full when
365 * the kernel tries to send the reply, the reply will be dropped. However, the
366 * kernel sets a flag that a reply has been dropped. The next call to recv
367 * then returns ENOBUFS. We can then re-send the request.
368 *
369 * Caveats:
370 *
371 * 1. Netlink depends on sequence numbers to match up requests and
372 * replies. The sender of a request supplies a sequence number, and
373 * the reply echos back that sequence number.
374 *
375 * This is fine, but (1) some kernel netlink implementations are
376 * broken, in that they fail to echo sequence numbers and (2) this
377 * function will drop packets with non-matching sequence numbers, so
378 * that only a single request can be usefully transacted at a time.
379 *
380 * 2. Resending the request causes it to be re-executed, so the request
381 * needs to be idempotent.
382 */
383int
384nl_sock_transact(struct nl_sock *sock,
385 const struct ofpbuf *request, struct ofpbuf **replyp)
386{
387 uint32_t seq = nl_msg_nlmsghdr(request)->nlmsg_seq;
388 struct nlmsghdr *nlmsghdr;
389 struct ofpbuf *reply;
390 int retval;
391
8e2093fc
BP
392 if (replyp) {
393 *replyp = NULL;
394 }
064af421
BP
395
396 /* Ensure that we get a reply even if this message doesn't ordinarily call
397 * for one. */
398 nl_msg_nlmsghdr(request)->nlmsg_flags |= NLM_F_ACK;
399
400send:
401 retval = nl_sock_send(sock, request, true);
402 if (retval) {
403 return retval;
404 }
405
406recv:
407 retval = nl_sock_recv(sock, &reply, true);
408 if (retval) {
409 if (retval == ENOBUFS) {
410 COVERAGE_INC(netlink_overflow);
411 VLOG_DBG_RL(&rl, "receive buffer overflow, resending request");
412 goto send;
413 } else {
414 return retval;
415 }
416 }
417 nlmsghdr = nl_msg_nlmsghdr(reply);
418 if (seq != nlmsghdr->nlmsg_seq) {
419 VLOG_DBG_RL(&rl, "ignoring seq %"PRIu32" != expected %"PRIu32,
420 nl_msg_nlmsghdr(reply)->nlmsg_seq, seq);
421 ofpbuf_delete(reply);
422 goto recv;
423 }
a35fbea5
BP
424
425 /* If the reply is an error, discard the reply and return the error code.
426 *
427 * Except: if the reply is just an acknowledgement (error code of 0), and
428 * the caller is interested in the reply (replyp != NULL), pass the reply
429 * up to the caller. Otherwise the caller will get a return value of 0
430 * and null '*replyp', which makes unwary callers likely to segfault. */
431 if (nl_msg_nlmsgerr(reply, &retval) && (retval || !replyp)) {
064af421
BP
432 ofpbuf_delete(reply);
433 if (retval) {
434 VLOG_DBG_RL(&rl, "received NAK error=%d (%s)",
435 retval, strerror(retval));
436 }
437 return retval != EAGAIN ? retval : EPROTO;
438 }
439
8e2093fc
BP
440 if (replyp) {
441 *replyp = reply;
442 } else {
443 ofpbuf_delete(reply);
444 }
064af421
BP
445 return 0;
446}
447
974d6a6d
BP
448/* Starts a Netlink "dump" operation, by sending 'request' to the kernel via
449 * 'sock', and initializes 'dump' to reflect the state of the operation.
450 *
451 * nlmsg_len in 'msg' will be finalized to match msg->size, and nlmsg_pid will
452 * be set to 'sock''s pid, before the message is sent. NLM_F_DUMP and
453 * NLM_F_ACK will be set in nlmsg_flags.
454 *
455 * The properties of Netlink make dump operations reliable as long as all of
456 * the following are true:
457 *
458 * - At most a single dump is in progress at a time on a given nl_sock.
459 *
460 * - The nl_sock is not subscribed to any multicast groups.
461 *
462 * - The nl_sock is not used to send any other messages before the dump
463 * operation is complete.
464 *
465 * This function provides no status indication. An error status for the entire
466 * dump operation is provided when it is completed by calling nl_dump_done().
467 *
468 * The caller is responsible for destroying 'request'. The caller must not
469 * close 'sock' before it completes the dump operation (by calling
470 * nl_dump_done()).
471 */
472void
473nl_dump_start(struct nl_dump *dump,
474 struct nl_sock *sock, const struct ofpbuf *request)
475{
476 struct nlmsghdr *nlmsghdr = nl_msg_nlmsghdr(request);
477 nlmsghdr->nlmsg_flags |= NLM_F_DUMP | NLM_F_ACK;
478 dump->seq = nlmsghdr->nlmsg_seq;
479 dump->sock = sock;
480 dump->status = nl_sock_send(sock, request, true);
481 dump->buffer = NULL;
482}
483
484/* Helper function for nl_dump_next(). */
485static int
486nl_dump_recv(struct nl_dump *dump, struct ofpbuf **bufferp)
487{
488 struct nlmsghdr *nlmsghdr;
489 struct ofpbuf *buffer;
490 int retval;
491
492 retval = nl_sock_recv(dump->sock, bufferp, true);
493 if (retval) {
494 return retval == EINTR ? EAGAIN : retval;
495 }
496 buffer = *bufferp;
497
498 nlmsghdr = nl_msg_nlmsghdr(buffer);
499 if (dump->seq != nlmsghdr->nlmsg_seq) {
500 VLOG_DBG_RL(&rl, "ignoring seq %"PRIu32" != expected %"PRIu32,
501 nlmsghdr->nlmsg_seq, dump->seq);
502 return EAGAIN;
503 }
504
505 if (nl_msg_nlmsgerr(buffer, &retval)) {
506 VLOG_INFO_RL(&rl, "netlink dump request error (%s)",
507 strerror(retval));
508 return retval && retval != EAGAIN ? retval : EPROTO;
509 }
510
511 return 0;
512}
513
514/* Attempts to retrieve another reply from 'dump', which must have been
515 * initialized with nl_dump_start().
516 *
517 * If successful, returns true and points 'reply->data' and 'reply->size' to
518 * the message that was retrieved. The caller must not modify 'reply' (because
519 * it points into the middle of a larger buffer).
520 *
521 * On failure, returns false and sets 'reply->data' to NULL and 'reply->size'
522 * to 0. Failure might indicate an actual error or merely the end of replies.
523 * An error status for the entire dump operation is provided when it is
524 * completed by calling nl_dump_done().
525 */
526bool
527nl_dump_next(struct nl_dump *dump, struct ofpbuf *reply)
528{
529 struct nlmsghdr *nlmsghdr;
530
531 reply->data = NULL;
532 reply->size = 0;
533 if (dump->status) {
534 return false;
535 }
536
537 if (dump->buffer && !dump->buffer->size) {
538 ofpbuf_delete(dump->buffer);
539 dump->buffer = NULL;
540 }
541 while (!dump->buffer) {
542 int retval = nl_dump_recv(dump, &dump->buffer);
543 if (retval) {
544 ofpbuf_delete(dump->buffer);
545 dump->buffer = NULL;
546 if (retval != EAGAIN) {
547 dump->status = retval;
548 return false;
549 }
550 }
551 }
552
553 nlmsghdr = nl_msg_next(dump->buffer, reply);
554 if (!nlmsghdr) {
555 VLOG_WARN_RL(&rl, "netlink dump reply contains message fragment");
556 dump->status = EPROTO;
557 return false;
558 } else if (nlmsghdr->nlmsg_type == NLMSG_DONE) {
559 dump->status = EOF;
560 return false;
561 }
562
563 return true;
564}
565
566/* Completes Netlink dump operation 'dump', which must have been initialized
567 * with nl_dump_start(). Returns 0 if the dump operation was error-free,
568 * otherwise a positive errno value describing the problem. */
569int
570nl_dump_done(struct nl_dump *dump)
571{
572 /* Drain any remaining messages that the client didn't read. Otherwise the
573 * kernel will continue to queue them up and waste buffer space. */
574 while (!dump->status) {
575 struct ofpbuf reply;
576 if (!nl_dump_next(dump, &reply)) {
577 assert(dump->status);
578 }
579 }
580
581 ofpbuf_delete(dump->buffer);
582 return dump->status == EOF ? 0 : dump->status;
583}
584
064af421
BP
585/* Causes poll_block() to wake up when any of the specified 'events' (which is
586 * a OR'd combination of POLLIN, POLLOUT, etc.) occur on 'sock'. */
587void
588nl_sock_wait(const struct nl_sock *sock, short int events)
589{
590 poll_fd_wait(sock->fd, events);
591}
592\f
593/* Netlink messages. */
594
595/* Returns the nlmsghdr at the head of 'msg'.
596 *
597 * 'msg' must be at least as large as a nlmsghdr. */
598struct nlmsghdr *
599nl_msg_nlmsghdr(const struct ofpbuf *msg)
600{
601 return ofpbuf_at_assert(msg, 0, NLMSG_HDRLEN);
602}
603
604/* Returns the genlmsghdr just past 'msg''s nlmsghdr.
605 *
606 * Returns a null pointer if 'msg' is not large enough to contain an nlmsghdr
607 * and a genlmsghdr. */
608struct genlmsghdr *
609nl_msg_genlmsghdr(const struct ofpbuf *msg)
610{
611 return ofpbuf_at(msg, NLMSG_HDRLEN, GENL_HDRLEN);
612}
613
614/* If 'buffer' is a NLMSG_ERROR message, stores 0 in '*errorp' if it is an ACK
615 * message, otherwise a positive errno value, and returns true. If 'buffer' is
616 * not an NLMSG_ERROR message, returns false.
617 *
618 * 'msg' must be at least as large as a nlmsghdr. */
619bool
620nl_msg_nlmsgerr(const struct ofpbuf *msg, int *errorp)
621{
622 if (nl_msg_nlmsghdr(msg)->nlmsg_type == NLMSG_ERROR) {
623 struct nlmsgerr *err = ofpbuf_at(msg, NLMSG_HDRLEN, sizeof *err);
624 int code = EPROTO;
625 if (!err) {
626 VLOG_ERR_RL(&rl, "received invalid nlmsgerr (%zd bytes < %zd)",
627 msg->size, NLMSG_HDRLEN + sizeof *err);
628 } else if (err->error <= 0 && err->error > INT_MIN) {
629 code = -err->error;
630 }
631 if (errorp) {
632 *errorp = code;
633 }
634 return true;
635 } else {
636 return false;
637 }
638}
639
640/* Ensures that 'b' has room for at least 'size' bytes plus netlink padding at
641 * its tail end, reallocating and copying its data if necessary. */
642void
643nl_msg_reserve(struct ofpbuf *msg, size_t size)
644{
645 ofpbuf_prealloc_tailroom(msg, NLMSG_ALIGN(size));
646}
647
648/* Puts a nlmsghdr at the beginning of 'msg', which must be initially empty.
69123704 649 * Uses the given 'type' and 'flags'. 'expected_payload' should be
064af421
BP
650 * an estimate of the number of payload bytes to be supplied; if the size of
651 * the payload is unknown a value of 0 is acceptable.
652 *
653 * 'type' is ordinarily an enumerated value specific to the Netlink protocol
654 * (e.g. RTM_NEWLINK, for NETLINK_ROUTE protocol). For Generic Netlink, 'type'
655 * is the family number obtained via nl_lookup_genl_family().
656 *
657 * 'flags' is a bit-mask that indicates what kind of request is being made. It
658 * is often NLM_F_REQUEST indicating that a request is being made, commonly
659 * or'd with NLM_F_ACK to request an acknowledgement.
660 *
69123704
BP
661 * Sets the new nlmsghdr's nlmsg_pid field to 0 for now. nl_sock_send() will
662 * fill it in just before sending the message.
663 *
664 * nl_msg_put_genlmsghdr() is more convenient for composing a Generic Netlink
064af421
BP
665 * message. */
666void
69123704 667nl_msg_put_nlmsghdr(struct ofpbuf *msg,
064af421
BP
668 size_t expected_payload, uint32_t type, uint32_t flags)
669{
670 struct nlmsghdr *nlmsghdr;
671
672 assert(msg->size == 0);
673
674 nl_msg_reserve(msg, NLMSG_HDRLEN + expected_payload);
675 nlmsghdr = nl_msg_put_uninit(msg, NLMSG_HDRLEN);
676 nlmsghdr->nlmsg_len = 0;
677 nlmsghdr->nlmsg_type = type;
678 nlmsghdr->nlmsg_flags = flags;
679 nlmsghdr->nlmsg_seq = ++next_seq;
69123704 680 nlmsghdr->nlmsg_pid = 0;
064af421
BP
681}
682
683/* Puts a nlmsghdr and genlmsghdr at the beginning of 'msg', which must be
69123704
BP
684 * initially empty. 'expected_payload' should be an estimate of the number of
685 * payload bytes to be supplied; if the size of the payload is unknown a value
686 * of 0 is acceptable.
064af421
BP
687 *
688 * 'family' is the family number obtained via nl_lookup_genl_family().
689 *
690 * 'flags' is a bit-mask that indicates what kind of request is being made. It
691 * is often NLM_F_REQUEST indicating that a request is being made, commonly
692 * or'd with NLM_F_ACK to request an acknowledgement.
693 *
694 * 'cmd' is an enumerated value specific to the Generic Netlink family
695 * (e.g. CTRL_CMD_NEWFAMILY for the GENL_ID_CTRL family).
696 *
697 * 'version' is a version number specific to the family and command (often 1).
698 *
69123704
BP
699 * Sets the new nlmsghdr's nlmsg_pid field to 0 for now. nl_sock_send() will
700 * fill it in just before sending the message.
701 *
702 * nl_msg_put_nlmsghdr() should be used to compose Netlink messages that are
703 * not Generic Netlink messages. */
064af421 704void
69123704
BP
705nl_msg_put_genlmsghdr(struct ofpbuf *msg, size_t expected_payload,
706 int family, uint32_t flags, uint8_t cmd, uint8_t version)
064af421
BP
707{
708 struct genlmsghdr *genlmsghdr;
709
69123704 710 nl_msg_put_nlmsghdr(msg, GENL_HDRLEN + expected_payload, family, flags);
064af421
BP
711 assert(msg->size == NLMSG_HDRLEN);
712 genlmsghdr = nl_msg_put_uninit(msg, GENL_HDRLEN);
713 genlmsghdr->cmd = cmd;
714 genlmsghdr->version = version;
715 genlmsghdr->reserved = 0;
716}
717
718/* Appends the 'size' bytes of data in 'p', plus Netlink padding if needed, to
719 * the tail end of 'msg'. Data in 'msg' is reallocated and copied if
720 * necessary. */
721void
722nl_msg_put(struct ofpbuf *msg, const void *data, size_t size)
723{
724 memcpy(nl_msg_put_uninit(msg, size), data, size);
725}
726
727/* Appends 'size' bytes of data, plus Netlink padding if needed, to the tail
728 * end of 'msg', reallocating and copying its data if necessary. Returns a
729 * pointer to the first byte of the new data, which is left uninitialized. */
730void *
731nl_msg_put_uninit(struct ofpbuf *msg, size_t size)
732{
733 size_t pad = NLMSG_ALIGN(size) - size;
734 char *p = ofpbuf_put_uninit(msg, size + pad);
735 if (pad) {
736 memset(p + size, 0, pad);
737 }
738 return p;
739}
740
741/* Appends a Netlink attribute of the given 'type' and room for 'size' bytes of
742 * data as its payload, plus Netlink padding if needed, to the tail end of
743 * 'msg', reallocating and copying its data if necessary. Returns a pointer to
744 * the first byte of data in the attribute, which is left uninitialized. */
745void *
746nl_msg_put_unspec_uninit(struct ofpbuf *msg, uint16_t type, size_t size)
747{
748 size_t total_size = NLA_HDRLEN + size;
749 struct nlattr* nla = nl_msg_put_uninit(msg, total_size);
750 assert(NLA_ALIGN(total_size) <= UINT16_MAX);
751 nla->nla_len = total_size;
752 nla->nla_type = type;
753 return nla + 1;
754}
755
756/* Appends a Netlink attribute of the given 'type' and the 'size' bytes of
757 * 'data' as its payload, to the tail end of 'msg', reallocating and copying
758 * its data if necessary. Returns a pointer to the first byte of data in the
759 * attribute, which is left uninitialized. */
760void
761nl_msg_put_unspec(struct ofpbuf *msg, uint16_t type,
762 const void *data, size_t size)
763{
764 memcpy(nl_msg_put_unspec_uninit(msg, type, size), data, size);
765}
766
767/* Appends a Netlink attribute of the given 'type' and no payload to 'msg'.
768 * (Some Netlink protocols use the presence or absence of an attribute as a
769 * Boolean flag.) */
770void
771nl_msg_put_flag(struct ofpbuf *msg, uint16_t type)
772{
773 nl_msg_put_unspec(msg, type, NULL, 0);
774}
775
776/* Appends a Netlink attribute of the given 'type' and the given 8-bit 'value'
777 * to 'msg'. */
778void
779nl_msg_put_u8(struct ofpbuf *msg, uint16_t type, uint8_t value)
780{
781 nl_msg_put_unspec(msg, type, &value, sizeof value);
782}
783
784/* Appends a Netlink attribute of the given 'type' and the given 16-bit 'value'
785 * to 'msg'. */
786void
787nl_msg_put_u16(struct ofpbuf *msg, uint16_t type, uint16_t value)
788{
789 nl_msg_put_unspec(msg, type, &value, sizeof value);
790}
791
792/* Appends a Netlink attribute of the given 'type' and the given 32-bit 'value'
793 * to 'msg'. */
794void
795nl_msg_put_u32(struct ofpbuf *msg, uint16_t type, uint32_t value)
796{
797 nl_msg_put_unspec(msg, type, &value, sizeof value);
798}
799
800/* Appends a Netlink attribute of the given 'type' and the given 64-bit 'value'
801 * to 'msg'. */
802void
803nl_msg_put_u64(struct ofpbuf *msg, uint16_t type, uint64_t value)
804{
805 nl_msg_put_unspec(msg, type, &value, sizeof value);
806}
807
808/* Appends a Netlink attribute of the given 'type' and the given
809 * null-terminated string 'value' to 'msg'. */
810void
811nl_msg_put_string(struct ofpbuf *msg, uint16_t type, const char *value)
812{
813 nl_msg_put_unspec(msg, type, value, strlen(value) + 1);
814}
815
816/* Appends a Netlink attribute of the given 'type' and the given buffered
817 * netlink message in 'nested_msg' to 'msg'. The nlmsg_len field in
818 * 'nested_msg' is finalized to match 'nested_msg->size'. */
819void
820nl_msg_put_nested(struct ofpbuf *msg,
821 uint16_t type, struct ofpbuf *nested_msg)
822{
823 nl_msg_nlmsghdr(nested_msg)->nlmsg_len = nested_msg->size;
824 nl_msg_put_unspec(msg, type, nested_msg->data, nested_msg->size);
825}
826
974d6a6d
BP
827/* If 'buffer' begins with a valid "struct nlmsghdr", pulls the header and its
828 * payload off 'buffer', stores header and payload in 'msg->data' and
829 * 'msg->size', and returns a pointer to the header.
830 *
831 * If 'buffer' does not begin with a "struct nlmsghdr" or begins with one that
832 * is invalid, returns NULL without modifying 'buffer'. */
833struct nlmsghdr *
834nl_msg_next(struct ofpbuf *buffer, struct ofpbuf *msg)
835{
836 if (buffer->size >= sizeof(struct nlmsghdr)) {
837 struct nlmsghdr *nlmsghdr = nl_msg_nlmsghdr(buffer);
838 size_t len = nlmsghdr->nlmsg_len;
839 if (len >= sizeof *nlmsghdr && len <= buffer->size) {
840 msg->data = nlmsghdr;
841 msg->size = len;
842 ofpbuf_pull(buffer, len);
843 return nlmsghdr;
844 }
845 }
846
847 msg->data = NULL;
848 msg->size = 0;
849 return NULL;
850}
851\f
852/* Attributes. */
853
064af421
BP
854/* Returns the first byte in the payload of attribute 'nla'. */
855const void *
856nl_attr_get(const struct nlattr *nla)
857{
858 assert(nla->nla_len >= NLA_HDRLEN);
859 return nla + 1;
860}
861
862/* Returns the number of bytes in the payload of attribute 'nla'. */
863size_t
864nl_attr_get_size(const struct nlattr *nla)
865{
866 assert(nla->nla_len >= NLA_HDRLEN);
867 return nla->nla_len - NLA_HDRLEN;
868}
869
870/* Asserts that 'nla''s payload is at least 'size' bytes long, and returns the
871 * first byte of the payload. */
872const void *
873nl_attr_get_unspec(const struct nlattr *nla, size_t size)
874{
875 assert(nla->nla_len >= NLA_HDRLEN + size);
876 return nla + 1;
877}
878
879/* Returns true if 'nla' is nonnull. (Some Netlink protocols use the presence
880 * or absence of an attribute as a Boolean flag.) */
881bool
882nl_attr_get_flag(const struct nlattr *nla)
883{
884 return nla != NULL;
885}
886
887#define NL_ATTR_GET_AS(NLA, TYPE) \
888 (*(TYPE*) nl_attr_get_unspec(nla, sizeof(TYPE)))
889
890/* Returns the 8-bit value in 'nla''s payload.
891 *
892 * Asserts that 'nla''s payload is at least 1 byte long. */
893uint8_t
894nl_attr_get_u8(const struct nlattr *nla)
895{
896 return NL_ATTR_GET_AS(nla, uint8_t);
897}
898
899/* Returns the 16-bit value in 'nla''s payload.
900 *
901 * Asserts that 'nla''s payload is at least 2 bytes long. */
902uint16_t
903nl_attr_get_u16(const struct nlattr *nla)
904{
905 return NL_ATTR_GET_AS(nla, uint16_t);
906}
907
908/* Returns the 32-bit value in 'nla''s payload.
909 *
910 * Asserts that 'nla''s payload is at least 4 bytes long. */
911uint32_t
912nl_attr_get_u32(const struct nlattr *nla)
913{
914 return NL_ATTR_GET_AS(nla, uint32_t);
915}
916
917/* Returns the 64-bit value in 'nla''s payload.
918 *
919 * Asserts that 'nla''s payload is at least 8 bytes long. */
920uint64_t
921nl_attr_get_u64(const struct nlattr *nla)
922{
923 return NL_ATTR_GET_AS(nla, uint64_t);
924}
925
926/* Returns the null-terminated string value in 'nla''s payload.
927 *
928 * Asserts that 'nla''s payload contains a null-terminated string. */
929const char *
930nl_attr_get_string(const struct nlattr *nla)
931{
932 assert(nla->nla_len > NLA_HDRLEN);
933 assert(memchr(nl_attr_get(nla), '\0', nla->nla_len - NLA_HDRLEN) != NULL);
934 return nl_attr_get(nla);
935}
936
25eeae6a
BP
937/* Initializes 'nested' to the payload of 'nla'. Doesn't initialize every
938 * field in 'nested', but enough to poke around with it in a read-only way. */
939void
940nl_attr_get_nested(const struct nlattr *nla, struct ofpbuf *nested)
941{
942 nested->data = (void *) nl_attr_get(nla);
943 nested->size = nl_attr_get_size(nla);
944}
945
064af421
BP
946/* Default minimum and maximum payload sizes for each type of attribute. */
947static const size_t attr_len_range[][2] = {
948 [0 ... N_NL_ATTR_TYPES - 1] = { 0, SIZE_MAX },
949 [NL_A_U8] = { 1, 1 },
950 [NL_A_U16] = { 2, 2 },
951 [NL_A_U32] = { 4, 4 },
952 [NL_A_U64] = { 8, 8 },
953 [NL_A_STRING] = { 1, SIZE_MAX },
954 [NL_A_FLAG] = { 0, SIZE_MAX },
b4d73e97 955 [NL_A_NESTED] = { 0, SIZE_MAX },
064af421
BP
956};
957
958/* Parses the 'msg' starting at the given 'nla_offset' as a sequence of Netlink
959 * attributes. 'policy[i]', for 0 <= i < n_attrs, specifies how the attribute
960 * with nla_type == i is parsed; a pointer to attribute i is stored in
961 * attrs[i]. Returns true if successful, false on failure.
962 *
963 * If the Netlink attributes in 'msg' follow a Netlink header and a Generic
964 * Netlink header, then 'nla_offset' should be NLMSG_HDRLEN + GENL_HDRLEN. */
965bool
966nl_policy_parse(const struct ofpbuf *msg, size_t nla_offset,
967 const struct nl_policy policy[],
968 struct nlattr *attrs[], size_t n_attrs)
969{
970 void *p, *tail;
971 size_t n_required;
972 size_t i;
973
974 n_required = 0;
975 for (i = 0; i < n_attrs; i++) {
976 attrs[i] = NULL;
977
978 assert(policy[i].type < N_NL_ATTR_TYPES);
979 if (policy[i].type != NL_A_NO_ATTR
980 && policy[i].type != NL_A_FLAG
981 && !policy[i].optional) {
982 n_required++;
983 }
984 }
985
986 p = ofpbuf_at(msg, nla_offset, 0);
987 if (p == NULL) {
988 VLOG_DBG_RL(&rl, "missing headers in nl_policy_parse");
989 return false;
990 }
991 tail = ofpbuf_tail(msg);
992
993 while (p < tail) {
994 size_t offset = (char*)p - (char*)msg->data;
995 struct nlattr *nla = p;
996 size_t len, aligned_len;
997 uint16_t type;
998
999 /* Make sure its claimed length is plausible. */
1000 if (nla->nla_len < NLA_HDRLEN) {
1001 VLOG_DBG_RL(&rl, "%zu: attr shorter than NLA_HDRLEN (%"PRIu16")",
1002 offset, nla->nla_len);
1003 return false;
1004 }
1005 len = nla->nla_len - NLA_HDRLEN;
1006 aligned_len = NLA_ALIGN(len);
1007 if (aligned_len > (char*)tail - (char*)p) {
1008 VLOG_DBG_RL(&rl, "%zu: attr %"PRIu16" aligned data len (%zu) "
1009 "> bytes left (%tu)",
1010 offset, nla->nla_type, aligned_len,
1011 (char*)tail - (char*)p);
1012 return false;
1013 }
1014
1015 type = nla->nla_type;
1016 if (type < n_attrs && policy[type].type != NL_A_NO_ATTR) {
1017 const struct nl_policy *p = &policy[type];
1018 size_t min_len, max_len;
1019
1020 /* Validate length and content. */
1021 min_len = p->min_len ? p->min_len : attr_len_range[p->type][0];
1022 max_len = p->max_len ? p->max_len : attr_len_range[p->type][1];
1023 if (len < min_len || len > max_len) {
1024 VLOG_DBG_RL(&rl, "%zu: attr %"PRIu16" length %zu not in "
1025 "allowed range %zu...%zu",
1026 offset, type, len, min_len, max_len);
1027 return false;
1028 }
1029 if (p->type == NL_A_STRING) {
1030 if (((char *) nla)[nla->nla_len - 1]) {
1031 VLOG_DBG_RL(&rl, "%zu: attr %"PRIu16" lacks null at end",
1032 offset, type);
1033 return false;
1034 }
1035 if (memchr(nla + 1, '\0', len - 1) != NULL) {
1036 VLOG_DBG_RL(&rl, "%zu: attr %"PRIu16" has bad length",
1037 offset, type);
1038 return false;
1039 }
1040 }
1041 if (!p->optional && attrs[type] == NULL) {
1042 assert(n_required > 0);
1043 --n_required;
1044 }
1045 attrs[type] = nla;
1046 } else {
1047 /* Skip attribute type that we don't care about. */
1048 }
1049 p = (char*)p + NLA_ALIGN(nla->nla_len);
1050 }
1051 if (n_required) {
1052 VLOG_DBG_RL(&rl, "%zu required attrs missing", n_required);
1053 return false;
1054 }
1055 return true;
1056}
25eeae6a
BP
1057
1058/* Parses the Netlink attributes within 'nla'. 'policy[i]', for 0 <= i <
1059 * n_attrs, specifies how the attribute with nla_type == i is parsed; a pointer
1060 * to attribute i is stored in attrs[i]. Returns true if successful, false on
1061 * failure. */
1062bool
1063nl_parse_nested(const struct nlattr *nla, const struct nl_policy policy[],
1064 struct nlattr *attrs[], size_t n_attrs)
1065{
1066 struct ofpbuf buf;
1067
1068 nl_attr_get_nested(nla, &buf);
1069 return nl_policy_parse(&buf, 0, policy, attrs, n_attrs);
1070}
064af421
BP
1071\f
1072/* Miscellaneous. */
1073
1074static const struct nl_policy family_policy[CTRL_ATTR_MAX + 1] = {
1075 [CTRL_ATTR_FAMILY_ID] = {.type = NL_A_U16},
1076};
1077
1078static int do_lookup_genl_family(const char *name)
1079{
1080 struct nl_sock *sock;
1081 struct ofpbuf request, *reply;
1082 struct nlattr *attrs[ARRAY_SIZE(family_policy)];
1083 int retval;
1084
1085 retval = nl_sock_create(NETLINK_GENERIC, 0, 0, 0, &sock);
1086 if (retval) {
1087 return -retval;
1088 }
1089
1090 ofpbuf_init(&request, 0);
69123704 1091 nl_msg_put_genlmsghdr(&request, 0, GENL_ID_CTRL, NLM_F_REQUEST,
064af421
BP
1092 CTRL_CMD_GETFAMILY, 1);
1093 nl_msg_put_string(&request, CTRL_ATTR_FAMILY_NAME, name);
1094 retval = nl_sock_transact(sock, &request, &reply);
1095 ofpbuf_uninit(&request);
1096 if (retval) {
1097 nl_sock_destroy(sock);
1098 return -retval;
1099 }
1100
1101 if (!nl_policy_parse(reply, NLMSG_HDRLEN + GENL_HDRLEN,
1102 family_policy, attrs, ARRAY_SIZE(family_policy))) {
1103 nl_sock_destroy(sock);
1104 ofpbuf_delete(reply);
1105 return -EPROTO;
1106 }
1107
1108 retval = nl_attr_get_u16(attrs[CTRL_ATTR_FAMILY_ID]);
1109 if (retval == 0) {
1110 retval = -EPROTO;
1111 }
1112 nl_sock_destroy(sock);
1113 ofpbuf_delete(reply);
1114 return retval;
1115}
1116
1117/* If '*number' is 0, translates the given Generic Netlink family 'name' to a
1118 * number and stores it in '*number'. If successful, returns 0 and the caller
1119 * may use '*number' as the family number. On failure, returns a positive
1120 * errno value and '*number' caches the errno value. */
1121int
1122nl_lookup_genl_family(const char *name, int *number)
1123{
1124 if (*number == 0) {
1125 *number = do_lookup_genl_family(name);
1126 assert(*number != 0);
1127 }
1128 return *number > 0 ? 0 : -*number;
1129}
1130\f
1131/* Netlink PID.
1132 *
1133 * Every Netlink socket must be bound to a unique 32-bit PID. By convention,
1134 * programs that have a single Netlink socket use their Unix process ID as PID,
1135 * and programs with multiple Netlink sockets add a unique per-socket
1136 * identifier in the bits above the Unix process ID.
1137 *
1138 * The kernel has Netlink PID 0.
1139 */
1140
1141/* Parameters for how many bits in the PID should come from the Unix process ID
1142 * and how many unique per-socket. */
1143#define SOCKET_BITS 10
1144#define MAX_SOCKETS (1u << SOCKET_BITS)
1145
1146#define PROCESS_BITS (32 - SOCKET_BITS)
1147#define MAX_PROCESSES (1u << PROCESS_BITS)
1148#define PROCESS_MASK ((uint32_t) (MAX_PROCESSES - 1))
1149
1150/* Bit vector of unused socket identifiers. */
1151static uint32_t avail_sockets[ROUND_UP(MAX_SOCKETS, 32)];
1152
1153/* Allocates and returns a new Netlink PID. */
1154static int
1155alloc_pid(uint32_t *pid)
1156{
1157 int i;
1158
1159 for (i = 0; i < MAX_SOCKETS; i++) {
1160 if ((avail_sockets[i / 32] & (1u << (i % 32))) == 0) {
1161 avail_sockets[i / 32] |= 1u << (i % 32);
1162 *pid = (getpid() & PROCESS_MASK) | (i << PROCESS_BITS);
1163 return 0;
1164 }
1165 }
1166 VLOG_ERR("netlink pid space exhausted");
1167 return ENOBUFS;
1168}
1169
1170/* Makes the specified 'pid' available for reuse. */
1171static void
1172free_pid(uint32_t pid)
1173{
1174 int sock = pid >> PROCESS_BITS;
1175 assert(avail_sockets[sock / 32] & (1u << (sock % 32)));
1176 avail_sockets[sock / 32] &= ~(1u << (sock % 32));
1177}
1178\f
1179static void
1180nlmsghdr_to_string(const struct nlmsghdr *h, struct ds *ds)
1181{
1182 struct nlmsg_flag {
1183 unsigned int bits;
1184 const char *name;
1185 };
1186 static const struct nlmsg_flag flags[] = {
1187 { NLM_F_REQUEST, "REQUEST" },
1188 { NLM_F_MULTI, "MULTI" },
1189 { NLM_F_ACK, "ACK" },
1190 { NLM_F_ECHO, "ECHO" },
1191 { NLM_F_DUMP, "DUMP" },
1192 { NLM_F_ROOT, "ROOT" },
1193 { NLM_F_MATCH, "MATCH" },
1194 { NLM_F_ATOMIC, "ATOMIC" },
1195 };
1196 const struct nlmsg_flag *flag;
1197 uint16_t flags_left;
1198
1199 ds_put_format(ds, "nl(len:%"PRIu32", type=%"PRIu16,
1200 h->nlmsg_len, h->nlmsg_type);
1201 if (h->nlmsg_type == NLMSG_NOOP) {
1202 ds_put_cstr(ds, "(no-op)");
1203 } else if (h->nlmsg_type == NLMSG_ERROR) {
1204 ds_put_cstr(ds, "(error)");
1205 } else if (h->nlmsg_type == NLMSG_DONE) {
1206 ds_put_cstr(ds, "(done)");
1207 } else if (h->nlmsg_type == NLMSG_OVERRUN) {
1208 ds_put_cstr(ds, "(overrun)");
1209 } else if (h->nlmsg_type < NLMSG_MIN_TYPE) {
1210 ds_put_cstr(ds, "(reserved)");
1211 } else {
1212 ds_put_cstr(ds, "(family-defined)");
1213 }
1214 ds_put_format(ds, ", flags=%"PRIx16, h->nlmsg_flags);
1215 flags_left = h->nlmsg_flags;
1216 for (flag = flags; flag < &flags[ARRAY_SIZE(flags)]; flag++) {
1217 if ((flags_left & flag->bits) == flag->bits) {
1218 ds_put_format(ds, "[%s]", flag->name);
1219 flags_left &= ~flag->bits;
1220 }
1221 }
1222 if (flags_left) {
1223 ds_put_format(ds, "[OTHER:%"PRIx16"]", flags_left);
1224 }
1225 ds_put_format(ds, ", seq=%"PRIx32", pid=%"PRIu32"(%d:%d))",
1226 h->nlmsg_seq, h->nlmsg_pid,
1227 (int) (h->nlmsg_pid & PROCESS_MASK),
1228 (int) (h->nlmsg_pid >> PROCESS_BITS));
1229}
1230
1231static char *
1232nlmsg_to_string(const struct ofpbuf *buffer)
1233{
1234 struct ds ds = DS_EMPTY_INITIALIZER;
1235 const struct nlmsghdr *h = ofpbuf_at(buffer, 0, NLMSG_HDRLEN);
1236 if (h) {
1237 nlmsghdr_to_string(h, &ds);
1238 if (h->nlmsg_type == NLMSG_ERROR) {
1239 const struct nlmsgerr *e;
1240 e = ofpbuf_at(buffer, NLMSG_HDRLEN,
1241 NLMSG_ALIGN(sizeof(struct nlmsgerr)));
1242 if (e) {
1243 ds_put_format(&ds, " error(%d", e->error);
1244 if (e->error < 0) {
1245 ds_put_format(&ds, "(%s)", strerror(-e->error));
1246 }
1247 ds_put_cstr(&ds, ", in-reply-to(");
1248 nlmsghdr_to_string(&e->msg, &ds);
1249 ds_put_cstr(&ds, "))");
1250 } else {
1251 ds_put_cstr(&ds, " error(truncated)");
1252 }
1253 } else if (h->nlmsg_type == NLMSG_DONE) {
1254 int *error = ofpbuf_at(buffer, NLMSG_HDRLEN, sizeof *error);
1255 if (error) {
1256 ds_put_format(&ds, " done(%d", *error);
1257 if (*error < 0) {
1258 ds_put_format(&ds, "(%s)", strerror(-*error));
1259 }
1260 ds_put_cstr(&ds, ")");
1261 } else {
1262 ds_put_cstr(&ds, " done(truncated)");
1263 }
1264 }
1265 } else {
1266 ds_put_cstr(&ds, "nl(truncated)");
1267 }
1268 return ds.string;
1269}
1270
1271static void
1272log_nlmsg(const char *function, int error,
1273 const void *message, size_t size)
1274{
1275 struct ofpbuf buffer;
1276 char *nlmsg;
1277
1278 if (!VLOG_IS_DBG_ENABLED()) {
1279 return;
1280 }
1281
1282 buffer.data = (void *) message;
1283 buffer.size = size;
1284 nlmsg = nlmsg_to_string(&buffer);
1285 VLOG_DBG_RL(&rl, "%s (%s): %s", function, strerror(error), nlmsg);
1286 free(nlmsg);
1287}
1288