]> git.proxmox.com Git - mirror_ovs.git/blame - lib/packets.c
odp-execute: Rename 'may_steal' to 'should_steal'.
[mirror_ovs.git] / lib / packets.c
CommitLineData
b9e8b45a 1/*
6335d074 2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
b9e8b45a
BP
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <config.h>
18#include "packets.h"
b2befd5b
BP
19#include <sys/types.h>
20#include <netinet/in.h>
d31f1109 21#include <arpa/inet.h>
6ca00f6f 22#include <sys/socket.h>
bc7a5acd 23#include <netinet/ip6.h>
00894212 24#include <netinet/icmp6.h>
76343538 25#include <stdlib.h>
e463f310 26#include <netdb.h>
d31f1109 27#include "byte-order.h"
c97664b3 28#include "csum.h"
c6bcb685 29#include "crc32c.h"
12113c39 30#include "flow.h"
ee89ea7b 31#include "openvswitch/hmap.h"
3e8a2ad1 32#include "openvswitch/dynamic-string.h"
8c45d00f 33#include "ovs-thread.h"
b5e7e61a 34#include "odp-util.h"
cf62fa4c 35#include "dp-packet.h"
7c457c33 36#include "unaligned.h"
b9e8b45a 37
d31f1109 38const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
06994f87 39const struct in6_addr in6addr_all_hosts = IN6ADDR_ALL_HOSTS_INIT;
b24ab67c 40const struct in6_addr in6addr_all_routers = IN6ADDR_ALL_ROUTERS_INIT;
d31f1109 41
ffe4c74f
JB
42struct in6_addr
43flow_tnl_dst(const struct flow_tnl *tnl)
44{
12d0ee08 45 return tnl->ip_dst ? in6_addr_mapped_ipv4(tnl->ip_dst) : tnl->ipv6_dst;
ffe4c74f
JB
46}
47
48struct in6_addr
49flow_tnl_src(const struct flow_tnl *tnl)
50{
12d0ee08 51 return tnl->ip_src ? in6_addr_mapped_ipv4(tnl->ip_src) : tnl->ipv6_src;
ffe4c74f
JB
52}
53
62705b81
BP
54/* Returns true if 's' consists entirely of hex digits, false otherwise. */
55static bool
56is_all_hex(const char *s)
57{
58 return s[strspn(s, "0123456789abcdefABCDEF")] == '\0';
59}
60
093ca5b3
BP
61/* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
62 * success stores the dpid into '*dpidp' and returns true, on failure stores 0
63 * into '*dpidp' and returns false.
64 *
65 * Rejects an all-zeros dpid as invalid. */
76343538
BP
66bool
67dpid_from_string(const char *s, uint64_t *dpidp)
68{
62705b81
BP
69 size_t len = strlen(s);
70 *dpidp = ((len == 16 && is_all_hex(s))
71 || (len <= 18 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
72 && is_all_hex(s + 2))
093ca5b3 73 ? strtoull(s, NULL, 16)
76343538
BP
74 : 0);
75 return *dpidp != 0;
76}
77
7d48a4cc
BP
78/* Returns true if 'ea' is a reserved address, that a bridge must never
79 * forward, false otherwise.
05be4e2c
EJ
80 *
81 * If you change this function's behavior, please update corresponding
82 * documentation in vswitch.xml at the same time. */
83bool
74ff3298 84eth_addr_is_reserved(const struct eth_addr ea)
05be4e2c 85{
7d48a4cc
BP
86 struct eth_addr_node {
87 struct hmap_node hmap_node;
8c45d00f 88 const uint64_t ea64;
05be4e2c
EJ
89 };
90
7d48a4cc
BP
91 static struct eth_addr_node nodes[] = {
92 /* STP, IEEE pause frames, and other reserved protocols. */
f0ac9da9
BP
93 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000000ULL },
94 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000001ULL },
95 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000002ULL },
96 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000003ULL },
97 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000004ULL },
98 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000005ULL },
99 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000006ULL },
100 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000007ULL },
101 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000008ULL },
102 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000009ULL },
103 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000aULL },
104 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000bULL },
105 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000cULL },
106 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000dULL },
107 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000eULL },
108 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000fULL },
7d48a4cc
BP
109
110 /* Extreme protocols. */
111 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
112 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
113 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
114
115 /* Cisco protocols. */
116 { HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
117 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
118 * DTP, VTP. */
119 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
120 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
121 * FlexLink. */
122
123 /* Cisco CFM. */
124 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
125 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
126 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
127 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
128 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
129 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
130 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
131 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
132 };
05be4e2c 133
8c45d00f 134 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
7d48a4cc 135 struct eth_addr_node *node;
8c45d00f 136 static struct hmap addrs;
7d48a4cc 137 uint64_t ea64;
05be4e2c 138
8c45d00f
BP
139 if (ovsthread_once_start(&once)) {
140 hmap_init(&addrs);
7d48a4cc 141 for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
965607c8 142 hmap_insert(&addrs, &node->hmap_node, hash_uint64(node->ea64));
7d48a4cc 143 }
8c45d00f 144 ovsthread_once_done(&once);
7d48a4cc 145 }
05be4e2c 146
7d48a4cc 147 ea64 = eth_addr_to_uint64(ea);
965607c8 148 HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_uint64(ea64), &addrs) {
7d48a4cc 149 if (node->ea64 == ea64) {
05be4e2c
EJ
150 return true;
151 }
152 }
153 return false;
154}
155
ed4c95c0
BP
156/* Attempts to parse 's' as an Ethernet address. If successful, stores the
157 * address in 'ea' and returns true, otherwise zeros 'ea' and returns
10c3fcdf 158 * false. This function checks trailing characters. */
76343538 159bool
74ff3298 160eth_addr_from_string(const char *s, struct eth_addr *ea)
76343538 161{
10c3fcdf 162 int n = 0;
163 if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*ea), &n)
164 && !s[n]) {
76343538
BP
165 return true;
166 } else {
74ff3298 167 *ea = eth_addr_zero;
76343538
BP
168 return false;
169 }
170}
171
38f7147c 172/* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
b9e8b45a 173 * This function is used by Open vSwitch to compose packets in cases where
38f7147c
EJ
174 * context is important but content doesn't (or shouldn't) matter.
175 *
176 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
177 * desired. */
b9e8b45a 178void
74ff3298 179compose_rarp(struct dp_packet *b, const struct eth_addr eth_src)
b9e8b45a 180{
38f7147c 181 struct eth_header *eth;
7cb57d10 182 struct arp_eth_header *arp;
b9e8b45a 183
cf62fa4c
PS
184 dp_packet_clear(b);
185 dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN
7cb57d10 186 + ARP_ETH_HEADER_LEN);
cf62fa4c
PS
187 dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
188 eth = dp_packet_put_uninit(b, sizeof *eth);
74ff3298
JR
189 eth->eth_dst = eth_addr_broadcast;
190 eth->eth_src = eth_src;
38f7147c
EJ
191 eth->eth_type = htons(ETH_TYPE_RARP);
192
cf62fa4c 193 arp = dp_packet_put_uninit(b, sizeof *arp);
7cb57d10
EJ
194 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
195 arp->ar_pro = htons(ARP_PRO_IP);
196 arp->ar_hln = sizeof arp->ar_sha;
197 arp->ar_pln = sizeof arp->ar_spa;
198 arp->ar_op = htons(ARP_OP_RARP);
74ff3298 199 arp->ar_sha = eth_src;
7c457c33 200 put_16aligned_be32(&arp->ar_spa, htonl(0));
74ff3298 201 arp->ar_tha = eth_src;
7c457c33 202 put_16aligned_be32(&arp->ar_tpa, htonl(0));
cf3b7538 203
82eb5b0a 204 dp_packet_reset_offsets(b);
cf62fa4c 205 dp_packet_set_l3(b, arp);
2482b0b0 206 b->packet_type = htonl(PT_ETH);
b9e8b45a 207}
d31f1109 208
d9065a90 209/* Insert VLAN header according to given TCI. Packet passed must be Ethernet
2f4ca41b 210 * packet. Ignores the CFI bit of 'tci' using 0 instead.
7c66b273 211 *
cf3b7538 212 * Also adjusts the layer offsets accordingly. */
7c66b273 213void
cf62fa4c 214eth_push_vlan(struct dp_packet *packet, ovs_be16 tpid, ovs_be16 tci)
7c66b273 215{
7c66b273
BP
216 struct vlan_eth_header *veh;
217
d9065a90 218 /* Insert new 802.1Q header. */
cf62fa4c 219 veh = dp_packet_resize_l2(packet, VLAN_HEADER_LEN);
437d0d22
JR
220 memmove(veh, (char *)veh + VLAN_HEADER_LEN, 2 * ETH_ADDR_LEN);
221 veh->veth_type = tpid;
222 veh->veth_tci = tci & htons(~VLAN_CFI);
7c66b273
BP
223}
224
f4ebc25e
BP
225/* Removes outermost VLAN header (if any is present) from 'packet'.
226 *
d6943394
TH
227 * 'packet->l2_5' should initially point to 'packet''s outer-most VLAN header
228 * or may be NULL if there are no VLAN headers. */
f4ebc25e 229void
cf62fa4c 230eth_pop_vlan(struct dp_packet *packet)
f4ebc25e 231{
2482b0b0 232 struct vlan_eth_header *veh = dp_packet_eth(packet);
437d0d22 233
cf62fa4c 234 if (veh && dp_packet_size(packet) >= sizeof *veh
d6943394 235 && eth_type_vlan(veh->veth_type)) {
f4ebc25e 236
437d0d22 237 memmove((char *)veh + VLAN_HEADER_LEN, veh, 2 * ETH_ADDR_LEN);
cf62fa4c 238 dp_packet_resize_l2(packet, -VLAN_HEADER_LEN);
f4ebc25e
BP
239 }
240}
241
88fc5281
JS
242/* Push Ethernet header onto 'packet' assuming it is layer 3 */
243void
244push_eth(struct dp_packet *packet, const struct eth_addr *dst,
245 const struct eth_addr *src)
246{
247 struct eth_header *eh;
248
249 ovs_assert(packet->packet_type != htonl(PT_ETH));
250 eh = dp_packet_resize_l2(packet, ETH_HEADER_LEN);
251 eh->eth_dst = *dst;
252 eh->eth_src = *src;
253 eh->eth_type = pt_ns_type_be(packet->packet_type);
254 packet->packet_type = htonl(PT_ETH);
255}
256
257/* Removes Ethernet header, including VLAN header, from 'packet'.
258 *
259 * Previous to calling this function, 'ofpbuf_l3(packet)' must not be NULL */
260void
261pop_eth(struct dp_packet *packet)
262{
263 char *l2_5 = dp_packet_l2_5(packet);
264 char *l3 = dp_packet_l3(packet);
265 ovs_be16 ethertype;
266 int increment;
267
268 ovs_assert(packet->packet_type == htonl(PT_ETH));
269 ovs_assert(l3 != NULL);
270
271 if (l2_5) {
272 increment = packet->l2_5_ofs;
273 ethertype = *(ALIGNED_CAST(ovs_be16 *, (l2_5 - 2)));
274 } else {
275 increment = packet->l3_ofs;
276 ethertype = *(ALIGNED_CAST(ovs_be16 *, (l3 - 2)));
277 }
278
279 dp_packet_resize_l2(packet, -increment);
280 packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE, ntohs(ethertype));
281}
282
b02475c5 283/* Set ethertype of the packet. */
56b02633 284static void
cf62fa4c 285set_ethertype(struct dp_packet *packet, ovs_be16 eth_type)
b02475c5 286{
2482b0b0 287 struct eth_header *eh = dp_packet_eth(packet);
cf3b7538
JR
288
289 if (!eh) {
290 return;
291 }
b02475c5 292
d6943394 293 if (eth_type_vlan(eh->eth_type)) {
b02475c5 294 ovs_be16 *p;
cf62fa4c 295 char *l2_5 = dp_packet_l2_5(packet);
437d0d22 296
db5a1019 297 p = ALIGNED_CAST(ovs_be16 *,
cf62fa4c 298 (l2_5 ? l2_5 : (char *)dp_packet_l3(packet)) - 2);
b02475c5
SH
299 *p = eth_type;
300 } else {
301 eh->eth_type = eth_type;
302 }
303}
304
cf62fa4c 305static bool is_mpls(struct dp_packet *packet)
b02475c5 306{
437d0d22 307 return packet->l2_5_ofs != UINT16_MAX;
b02475c5
SH
308}
309
310/* Set time to live (TTL) of an MPLS label stack entry (LSE). */
b676167a 311void
b02475c5
SH
312set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
313{
314 *lse &= ~htonl(MPLS_TTL_MASK);
315 *lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
316}
317
318/* Set traffic class (TC) of an MPLS label stack entry (LSE). */
319void
320set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
321{
322 *lse &= ~htonl(MPLS_TC_MASK);
323 *lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
324}
325
326/* Set label of an MPLS label stack entry (LSE). */
327void
328set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
329{
330 *lse &= ~htonl(MPLS_LABEL_MASK);
331 *lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
332}
333
334/* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
335void
336set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
337{
338 *lse &= ~htonl(MPLS_BOS_MASK);
339 *lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
340}
341
342/* Compose an MPLS label stack entry (LSE) from its components:
343 * label, traffic class (TC), time to live (TTL) and
344 * bottom of stack (BoS) bit. */
345ovs_be32
346set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
347{
348 ovs_be32 lse = htonl(0);
349 set_mpls_lse_ttl(&lse, ttl);
350 set_mpls_lse_tc(&lse, tc);
351 set_mpls_lse_bos(&lse, bos);
352 set_mpls_lse_label(&lse, label);
353 return lse;
354}
355
b02475c5
SH
356/* Set MPLS label stack entry to outermost MPLS header.*/
357void
cf62fa4c 358set_mpls_lse(struct dp_packet *packet, ovs_be32 mpls_lse)
b02475c5 359{
b02475c5
SH
360 /* Packet type should be MPLS to set label stack entry. */
361 if (is_mpls(packet)) {
cf62fa4c 362 struct mpls_hdr *mh = dp_packet_l2_5(packet);
437d0d22 363
b02475c5 364 /* Update mpls label stack entry. */
5fa008d4 365 put_16aligned_be32(&mh->mpls_lse, mpls_lse);
b02475c5
SH
366 }
367}
368
898dcef1 369/* Push MPLS label stack entry 'lse' onto 'packet' as the outermost MPLS
b02475c5
SH
370 * header. If 'packet' does not already have any MPLS labels, then its
371 * Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
372void
cf62fa4c 373push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse)
b02475c5 374{
437d0d22
JR
375 char * header;
376 size_t len;
b02475c5
SH
377
378 if (!eth_type_mpls(ethtype)) {
379 return;
380 }
381
382 if (!is_mpls(packet)) {
437d0d22
JR
383 /* Set MPLS label stack offset. */
384 packet->l2_5_ofs = packet->l3_ofs;
b02475c5
SH
385 }
386
437d0d22
JR
387 set_ethertype(packet, ethtype);
388
b02475c5 389 /* Push new MPLS shim header onto packet. */
437d0d22 390 len = packet->l2_5_ofs;
cf62fa4c 391 header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
437d0d22
JR
392 memmove(header, header + MPLS_HLEN, len);
393 memcpy(header + len, &lse, sizeof lse);
b02475c5
SH
394}
395
396/* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
397 * If the label that was removed was the only MPLS label, changes 'packet''s
398 * Ethertype to 'ethtype' (which ordinarily should not be an MPLS
399 * Ethertype). */
400void
cf62fa4c 401pop_mpls(struct dp_packet *packet, ovs_be16 ethtype)
b02475c5 402{
b02475c5 403 if (is_mpls(packet)) {
cf62fa4c 404 struct mpls_hdr *mh = dp_packet_l2_5(packet);
437d0d22
JR
405 size_t len = packet->l2_5_ofs;
406
799a91bb 407 set_ethertype(packet, ethtype);
5fa008d4 408 if (get_16aligned_be32(&mh->mpls_lse) & htonl(MPLS_BOS_MASK)) {
cf62fa4c 409 dp_packet_set_l2_5(packet, NULL);
b02475c5
SH
410 }
411 /* Shift the l2 header forward. */
cf62fa4c
PS
412 memmove((char*)dp_packet_data(packet) + MPLS_HLEN, dp_packet_data(packet), len);
413 dp_packet_resize_l2_5(packet, -MPLS_HLEN);
b02475c5
SH
414 }
415}
416
1fc11c59 417void
f59cb331 418push_nsh(struct dp_packet *packet, const struct nsh_hdr *nsh_hdr_src)
1fc11c59
JS
419{
420 struct nsh_hdr *nsh;
f59cb331 421 size_t length = nsh_hdr_len(nsh_hdr_src);
1fc11c59
JS
422 uint8_t next_proto;
423
424 switch (ntohl(packet->packet_type)) {
425 case PT_ETH:
426 next_proto = NSH_P_ETHERNET;
427 break;
428 case PT_IPV4:
429 next_proto = NSH_P_IPV4;
430 break;
431 case PT_IPV6:
432 next_proto = NSH_P_IPV6;
433 break;
434 case PT_NSH:
435 next_proto = NSH_P_NSH;
436 break;
437 default:
438 OVS_NOT_REACHED();
439 }
440
441 nsh = (struct nsh_hdr *) dp_packet_push_uninit(packet, length);
f59cb331 442 memcpy(nsh, nsh_hdr_src, length);
1fc11c59 443 nsh->next_proto = next_proto;
1fc11c59
JS
444 packet->packet_type = htonl(PT_NSH);
445 dp_packet_reset_offsets(packet);
446 packet->l3_ofs = 0;
447}
448
449bool
f59cb331 450pop_nsh(struct dp_packet *packet)
1fc11c59
JS
451{
452 struct nsh_hdr *nsh = (struct nsh_hdr *) dp_packet_l3(packet);
453 size_t length;
454 uint32_t next_pt;
455
456 if (packet->packet_type == htonl(PT_NSH) && nsh) {
457 switch (nsh->next_proto) {
458 case NSH_P_ETHERNET:
459 next_pt = PT_ETH;
460 break;
461 case NSH_P_IPV4:
462 next_pt = PT_IPV4;
463 break;
464 case NSH_P_IPV6:
465 next_pt = PT_IPV6;
466 break;
467 case NSH_P_NSH:
468 next_pt = PT_NSH;
469 break;
470 default:
471 /* Unknown inner packet type. Drop packet. */
472 return false;
473 }
474
475 length = nsh_hdr_len(nsh);
476 dp_packet_reset_packet(packet, length);
477 packet->packet_type = htonl(next_pt);
478 /* Packet must be recirculated for further processing. */
479 }
480 return true;
481}
482
e22f1753
BP
483/* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
484 * caller must free '*packetp'. On success, returns NULL. On failure, returns
bb622f82
BP
485 * an error message and stores NULL in '*packetp'.
486 *
487 * Aligns the L3 header of '*packetp' on a 32-bit boundary. */
e22f1753 488const char *
cf62fa4c 489eth_from_hex(const char *hex, struct dp_packet **packetp)
e22f1753 490{
cf62fa4c 491 struct dp_packet *packet;
e22f1753 492
bb622f82 493 /* Use 2 bytes of headroom to 32-bit align the L3 header. */
cf62fa4c 494 packet = *packetp = dp_packet_new_with_headroom(strlen(hex) / 2, 2);
e22f1753 495
cf62fa4c
PS
496 if (dp_packet_put_hex(packet, hex, NULL)[0] != '\0') {
497 dp_packet_delete(packet);
e22f1753
BP
498 *packetp = NULL;
499 return "Trailing garbage in packet data";
500 }
501
cf62fa4c
PS
502 if (dp_packet_size(packet) < ETH_HEADER_LEN) {
503 dp_packet_delete(packet);
e22f1753
BP
504 *packetp = NULL;
505 return "Packet data too short for Ethernet";
506 }
507
508 return NULL;
509}
510
3b4d8ad3 511void
74ff3298
JR
512eth_format_masked(const struct eth_addr eth,
513 const struct eth_addr *mask, struct ds *s)
3b4d8ad3
JS
514{
515 ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
74ff3298
JR
516 if (mask && !eth_mask_is_exact(*mask)) {
517 ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(*mask));
3b4d8ad3
JS
518 }
519}
520
aad29cd1 521/* Given the IP netmask 'netmask', returns the number of bits of the IP address
c08201d6
BP
522 * that it specifies, that is, the number of 1-bits in 'netmask'.
523 *
524 * If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
525 * still be in the valid range but isn't otherwise meaningful. */
aad29cd1
BP
526int
527ip_count_cidr_bits(ovs_be32 netmask)
528{
d578065e 529 return 32 - ctz32(ntohl(netmask));
aad29cd1
BP
530}
531
532void
533ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
534{
ed36537e 535 ds_put_format(s, IP_FMT, IP_ARGS(ip));
b8266395 536 if (mask != OVS_BE32_MAX) {
aad29cd1
BP
537 if (ip_is_cidr(mask)) {
538 ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
539 } else {
ed36537e 540 ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
aad29cd1
BP
541 }
542 }
543}
544
2b02db1b
BP
545/* Parses string 's', which must be an IP address. Stores the IP address into
546 * '*ip'. Returns true if successful, otherwise false. */
547bool
548ip_parse(const char *s, ovs_be32 *ip)
549{
550 return inet_pton(AF_INET, s, ip) == 1;
551}
552
e2bfcad6 553/* Parses string 's', which must be an IP address with a port number
554 * with ":" as a separator (e.g.: 192.168.1.2:80).
fab4e043 555 * Stores the IP address into '*ip' and port number to '*port'.
556 *
557 * Returns NULL if successful, otherwise an error message that the caller must
558 * free(). */
e2bfcad6 559char * OVS_WARN_UNUSED_RESULT
560ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port)
561{
562 int n = 0;
fab4e043 563 if (ovs_scan(s, IP_PORT_SCAN_FMT"%n", IP_PORT_SCAN_ARGS(ip, port), &n)
564 && !s[n]) {
565 return NULL;
e2bfcad6 566 }
567
fab4e043 568 return xasprintf("%s: invalid IP address or port number", s);
e2bfcad6 569}
570
61440451 571/* Parses string 's', which must be an IP address with an optional netmask or
7dc88496
NS
572 * CIDR prefix length. Stores the IP address into '*ip', netmask into '*mask',
573 * (255.255.255.255, if 's' lacks a netmask), and number of scanned characters
574 * into '*n'.
61440451
BP
575 *
576 * Returns NULL if successful, otherwise an error message that the caller must
577 * free(). */
578char * OVS_WARN_UNUSED_RESULT
7dc88496
NS
579ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip,
580 ovs_be32 *mask)
61440451
BP
581{
582 int prefix;
583
7dc88496
NS
584 if (ovs_scan_len(s, n, IP_SCAN_FMT"/"IP_SCAN_FMT,
585 IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask))) {
61440451 586 /* OK. */
7dc88496
NS
587 } else if (ovs_scan_len(s, n, IP_SCAN_FMT"/%d",
588 IP_SCAN_ARGS(ip), &prefix)) {
4c9a736e
JP
589 if (prefix < 0 || prefix > 32) {
590 return xasprintf("%s: IPv4 network prefix bits not between 0 and "
591 "32, inclusive", s);
61440451
BP
592 }
593 *mask = be32_prefix_mask(prefix);
7dc88496 594 } else if (ovs_scan_len(s, n, IP_SCAN_FMT, IP_SCAN_ARGS(ip))) {
61440451
BP
595 *mask = OVS_BE32_MAX;
596 } else {
597 return xasprintf("%s: invalid IP address", s);
598 }
599 return NULL;
600}
aad29cd1 601
7dc88496
NS
602/* This function is similar to ip_parse_masked_len(), but doesn't return the
603 * number of scanned characters and expects 's' to end after the ip/(optional)
604 * mask.
605 *
606 * Returns NULL if successful, otherwise an error message that the caller must
607 * free(). */
2b02db1b 608char * OVS_WARN_UNUSED_RESULT
7dc88496
NS
609ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask)
610{
611 int n = 0;
612
613 char *error = ip_parse_masked_len(s, &n, ip, mask);
614 if (!error && s[n]) {
615 return xasprintf("%s: invalid IP address", s);
616 }
617 return error;
618}
619
620/* Similar to ip_parse_masked_len(), but the mask, if present, must be a CIDR
621 * mask and is returned as a prefix len in '*plen'. */
622char * OVS_WARN_UNUSED_RESULT
623ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip, unsigned int *plen)
2b02db1b
BP
624{
625 ovs_be32 mask;
626 char *error;
627
7dc88496 628 error = ip_parse_masked_len(s, n, ip, &mask);
2b02db1b
BP
629 if (error) {
630 return error;
631 }
632
633 if (!ip_is_cidr(mask)) {
634 return xasprintf("%s: CIDR network required", s);
635 }
636 *plen = ip_count_cidr_bits(mask);
637 return NULL;
638}
639
7dc88496
NS
640/* Similar to ip_parse_cidr_len(), but doesn't return the number of scanned
641 * characters and expects 's' to be NULL terminated at the end of the
642 * ip/(optional) cidr. */
643char * OVS_WARN_UNUSED_RESULT
644ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen)
645{
646 int n = 0;
647
648 char *error = ip_parse_cidr_len(s, &n, ip, plen);
649 if (!error && s[n]) {
650 return xasprintf("%s: invalid IP address", s);
651 }
652 return error;
653}
654
2b02db1b
BP
655/* Parses string 's', which must be an IPv6 address. Stores the IPv6 address
656 * into '*ip'. Returns true if successful, otherwise false. */
657bool
658ipv6_parse(const char *s, struct in6_addr *ip)
659{
660 return inet_pton(AF_INET6, s, ip) == 1;
661}
662
663/* Parses string 's', which must be an IPv6 address with an optional netmask or
664 * CIDR prefix length. Stores the IPv6 address into '*ip' and the netmask into
7dc88496
NS
665 * '*mask' (if 's' does not contain a netmask, all-one-bits is assumed), and
666 * number of scanned characters into '*n'.
2b02db1b
BP
667 *
668 * Returns NULL if successful, otherwise an error message that the caller must
669 * free(). */
670char * OVS_WARN_UNUSED_RESULT
7dc88496
NS
671ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ip,
672 struct in6_addr *mask)
2b02db1b
BP
673{
674 char ipv6_s[IPV6_SCAN_LEN + 1];
675 int prefix;
2b02db1b 676
7dc88496
NS
677 if (ovs_scan_len(s, n, " "IPV6_SCAN_FMT, ipv6_s)
678 && ipv6_parse(ipv6_s, ip)) {
679 if (ovs_scan_len(s, n, "/%d", &prefix)) {
4c9a736e 680 if (prefix < 0 || prefix > 128) {
2b02db1b 681 return xasprintf("%s: IPv6 network prefix bits not between 0 "
4c9a736e 682 "and 128, inclusive", s);
2b02db1b
BP
683 }
684 *mask = ipv6_create_mask(prefix);
7dc88496
NS
685 } else if (ovs_scan_len(s, n, "/"IPV6_SCAN_FMT, ipv6_s)) {
686 if (!ipv6_parse(ipv6_s, mask)) {
687 return xasprintf("%s: Invalid IPv6 mask", s);
688 }
2b02db1b
BP
689 /* OK. */
690 } else {
7dc88496
NS
691 /* OK. No mask. */
692 *mask = in6addr_exact;
2b02db1b
BP
693 }
694 return NULL;
695 }
696 return xasprintf("%s: invalid IPv6 address", s);
697}
698
7dc88496
NS
699/* This function is similar to ipv6_parse_masked_len(), but doesn't return the
700 * number of scanned characters and expects 's' to end following the
701 * ipv6/(optional) mask. */
702char * OVS_WARN_UNUSED_RESULT
703ipv6_parse_masked(const char *s, struct in6_addr *ip, struct in6_addr *mask)
704{
705 int n = 0;
706
707 char *error = ipv6_parse_masked_len(s, &n, ip, mask);
708 if (!error && s[n]) {
709 return xasprintf("%s: invalid IPv6 address", s);
710 }
711 return error;
712}
713
714/* Similar to ipv6_parse_masked_len(), but the mask, if present, must be a CIDR
2b02db1b
BP
715 * mask and is returned as a prefix length in '*plen'. */
716char * OVS_WARN_UNUSED_RESULT
7dc88496
NS
717ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip,
718 unsigned int *plen)
2b02db1b
BP
719{
720 struct in6_addr mask;
721 char *error;
722
7dc88496 723 error = ipv6_parse_masked_len(s, n, ip, &mask);
2b02db1b
BP
724 if (error) {
725 return error;
726 }
727
728 if (!ipv6_is_cidr(&mask)) {
729 return xasprintf("%s: IPv6 CIDR network required", s);
730 }
731 *plen = ipv6_count_cidr_bits(&mask);
732 return NULL;
733}
734
7dc88496
NS
735/* Similar to ipv6_parse_cidr_len(), but doesn't return the number of scanned
736 * characters and expects 's' to end after the ipv6/(optional) cidr. */
737char * OVS_WARN_UNUSED_RESULT
738ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen)
739{
740 int n = 0;
741
742 char *error = ipv6_parse_cidr_len(s, &n, ip, plen);
743 if (!error && s[n]) {
744 return xasprintf("%s: invalid IPv6 address", s);
745 }
746 return error;
747}
748
2b02db1b
BP
749/* Stores the string representation of the IPv6 address 'addr' into the
750 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
751 * bytes long. */
d31f1109 752void
ac6d120f 753ipv6_format_addr(const struct in6_addr *addr, struct ds *s)
d31f1109 754{
aad29cd1
BP
755 char *dst;
756
ac6d120f 757 ds_reserve(s, s->length + INET6_ADDRSTRLEN);
aad29cd1 758
ac6d120f
JP
759 dst = s->string + s->length;
760 inet_ntop(AF_INET6, addr, dst, INET6_ADDRSTRLEN);
761 s->length += strlen(dst);
aad29cd1 762}
d31f1109 763
9ac0aada
JR
764/* Same as print_ipv6_addr, but optionally encloses the address in square
765 * brackets. */
766void
767ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *s,
768 bool bracket)
769{
770 if (bracket) {
771 ds_put_char(s, '[');
772 }
773 ipv6_format_addr(addr, s);
774 if (bracket) {
775 ds_put_char(s, ']');
776 }
777}
778
964a4d5f 779void
ac6d120f 780ipv6_format_mapped(const struct in6_addr *addr, struct ds *s)
964a4d5f
TLSC
781{
782 if (IN6_IS_ADDR_V4MAPPED(addr)) {
783 ds_put_format(s, IP_FMT, addr->s6_addr[12], addr->s6_addr[13],
784 addr->s6_addr[14], addr->s6_addr[15]);
785 } else {
ac6d120f 786 ipv6_format_addr(addr, s);
964a4d5f
TLSC
787 }
788}
789
aad29cd1 790void
ac6d120f
JP
791ipv6_format_masked(const struct in6_addr *addr, const struct in6_addr *mask,
792 struct ds *s)
aad29cd1 793{
ac6d120f 794 ipv6_format_addr(addr, s);
aad29cd1
BP
795 if (mask && !ipv6_mask_is_exact(mask)) {
796 if (ipv6_is_cidr(mask)) {
797 int cidr_bits = ipv6_count_cidr_bits(mask);
798 ds_put_format(s, "/%d", cidr_bits);
799 } else {
800 ds_put_char(s, '/');
ac6d120f 801 ipv6_format_addr(mask, s);
aad29cd1
BP
802 }
803 }
d31f1109
JP
804}
805
bed610e8
TLSC
806/* Stores the string representation of the IPv6 address 'addr' into the
807 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
808 * bytes long. If addr is IPv4-mapped, store an IPv4 dotted-decimal string. */
809const char *
810ipv6_string_mapped(char *addr_str, const struct in6_addr *addr)
811{
812 ovs_be32 ip;
813 ip = in6_addr_get_mapped_ipv4(addr);
814 if (ip) {
815 return inet_ntop(AF_INET, &ip, addr_str, INET6_ADDRSTRLEN);
816 } else {
817 return inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
818 }
819}
820
d31f1109 821#ifdef s6_addr32
b0ad27f3
JP
822#define s6_addrX s6_addr32
823#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 4; VAR++)
d31f1109 824#else
b0ad27f3
JP
825#define s6_addrX s6_addr
826#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 16; VAR++)
d31f1109
JP
827#endif
828
b0ad27f3
JP
829struct in6_addr
830ipv6_addr_bitand(const struct in6_addr *a, const struct in6_addr *b)
831{
832 struct in6_addr dst;
833 IPV6_FOR_EACH (i) {
834 dst.s6_addrX[i] = a->s6_addrX[i] & b->s6_addrX[i];
835 }
836 return dst;
837}
838
839struct in6_addr
840ipv6_addr_bitxor(const struct in6_addr *a, const struct in6_addr *b)
841{
842 struct in6_addr dst;
843 IPV6_FOR_EACH (i) {
844 dst.s6_addrX[i] = a->s6_addrX[i] ^ b->s6_addrX[i];
845 }
846 return dst;
847}
848
849bool
850ipv6_is_zero(const struct in6_addr *a)
851{
852 IPV6_FOR_EACH (i) {
853 if (a->s6_addrX[i]) {
854 return false;
855 }
856 }
857 return true;
d31f1109
JP
858}
859
860/* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
861 * low-order 0-bits. */
862struct in6_addr
863ipv6_create_mask(int mask)
864{
865 struct in6_addr netmask;
866 uint8_t *netmaskp = &netmask.s6_addr[0];
867
868 memset(&netmask, 0, sizeof netmask);
869 while (mask > 8) {
870 *netmaskp = 0xff;
871 netmaskp++;
872 mask -= 8;
873 }
874
875 if (mask) {
876 *netmaskp = 0xff << (8 - mask);
877 }
878
879 return netmask;
880}
881
aad29cd1
BP
882/* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
883 * address that it specifies, that is, the number of 1-bits in 'netmask'.
ff0b06ee
BP
884 * 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
885 *
886 * If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
887 * will still be in the valid range but isn't otherwise meaningful. */
d31f1109
JP
888int
889ipv6_count_cidr_bits(const struct in6_addr *netmask)
890{
891 int i;
892 int count = 0;
893 const uint8_t *netmaskp = &netmask->s6_addr[0];
894
d31f1109
JP
895 for (i=0; i<16; i++) {
896 if (netmaskp[i] == 0xff) {
897 count += 8;
898 } else {
899 uint8_t nm;
900
901 for(nm = netmaskp[i]; nm; nm <<= 1) {
902 count++;
903 }
904 break;
905 }
906
907 }
908
909 return count;
910}
911
d31f1109
JP
912/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
913 * high-order 1-bits and 128-N low-order 0-bits. */
914bool
915ipv6_is_cidr(const struct in6_addr *netmask)
916{
917 const uint8_t *netmaskp = &netmask->s6_addr[0];
918 int i;
919
920 for (i=0; i<16; i++) {
921 if (netmaskp[i] != 0xff) {
922 uint8_t x = ~netmaskp[i];
923 if (x & (x + 1)) {
924 return false;
925 }
926 while (++i < 16) {
927 if (netmaskp[i]) {
928 return false;
929 }
930 }
931 }
932 }
933
934 return true;
935}
c25c91fd 936
5de1bb5c
BP
937/* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
938 * 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
939 * in 'b' and returned. This payload may be populated with appropriate
cf3b7538
JR
940 * information by the caller. Sets 'b''s 'frame' pointer and 'l3' offset to
941 * the Ethernet header and payload respectively. Aligns b->l3 on a 32-bit
bb622f82 942 * boundary.
eda1f38d
BP
943 *
944 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
945 * desired. */
40f78b38 946void *
74ff3298
JR
947eth_compose(struct dp_packet *b, const struct eth_addr eth_dst,
948 const struct eth_addr eth_src, uint16_t eth_type,
5de1bb5c 949 size_t size)
c25c91fd 950{
40f78b38 951 void *data;
c25c91fd 952 struct eth_header *eth;
c25c91fd 953
cf62fa4c 954 dp_packet_clear(b);
c25c91fd 955
bb622f82
BP
956 /* The magic 2 here ensures that the L3 header (when it is added later)
957 * will be 32-bit aligned. */
cf62fa4c
PS
958 dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
959 dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
960 eth = dp_packet_put_uninit(b, ETH_HEADER_LEN);
c4bee4cb 961 data = dp_packet_put_zeros(b, size);
c25c91fd 962
74ff3298
JR
963 eth->eth_dst = eth_dst;
964 eth->eth_src = eth_src;
40f78b38
EJ
965 eth->eth_type = htons(eth_type);
966
2482b0b0 967 b->packet_type = htonl(PT_ETH);
82eb5b0a 968 dp_packet_reset_offsets(b);
cf62fa4c 969 dp_packet_set_l3(b, data);
75a4ead1 970
40f78b38 971 return data;
07a6cf77
EJ
972}
973
fc052306 974void
cf62fa4c 975packet_set_ipv4_addr(struct dp_packet *packet,
7c457c33 976 ovs_16aligned_be32 *addr, ovs_be32 new_addr)
c97664b3 977{
cf62fa4c 978 struct ip_header *nh = dp_packet_l3(packet);
7c457c33 979 ovs_be32 old_addr = get_16aligned_be32(addr);
cf62fa4c 980 size_t l4_size = dp_packet_l4_size(packet);
c97664b3 981
5a51b2cd 982 if (nh->ip_proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
cf62fa4c 983 struct tcp_header *th = dp_packet_l4(packet);
c97664b3 984
7c457c33 985 th->tcp_csum = recalc_csum32(th->tcp_csum, old_addr, new_addr);
5a51b2cd 986 } else if (nh->ip_proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN ) {
cf62fa4c 987 struct udp_header *uh = dp_packet_l4(packet);
c97664b3
EJ
988
989 if (uh->udp_csum) {
7c457c33 990 uh->udp_csum = recalc_csum32(uh->udp_csum, old_addr, new_addr);
c97664b3
EJ
991 if (!uh->udp_csum) {
992 uh->udp_csum = htons(0xffff);
993 }
994 }
995 }
7c457c33
BP
996 nh->ip_csum = recalc_csum32(nh->ip_csum, old_addr, new_addr);
997 put_16aligned_be32(addr, new_addr);
c97664b3
EJ
998}
999
bc7a5acd
AA
1000/* Returns true, if packet contains at least one routing header where
1001 * segements_left > 0.
1002 *
437d0d22 1003 * This function assumes that L3 and L4 offsets are set in the packet. */
bc7a5acd 1004static bool
31a9a584 1005packet_rh_present(struct dp_packet *packet, uint8_t *nexthdr)
bc7a5acd 1006{
4528f34f 1007 const struct ovs_16aligned_ip6_hdr *nh;
bc7a5acd
AA
1008 size_t len;
1009 size_t remaining;
cf62fa4c 1010 uint8_t *data = dp_packet_l3(packet);
bc7a5acd 1011
437d0d22 1012 remaining = packet->l4_ofs - packet->l3_ofs;
bc7a5acd
AA
1013 if (remaining < sizeof *nh) {
1014 return false;
1015 }
4528f34f 1016 nh = ALIGNED_CAST(struct ovs_16aligned_ip6_hdr *, data);
bc7a5acd
AA
1017 data += sizeof *nh;
1018 remaining -= sizeof *nh;
31a9a584 1019 *nexthdr = nh->ip6_nxt;
bc7a5acd
AA
1020
1021 while (1) {
31a9a584
SH
1022 if ((*nexthdr != IPPROTO_HOPOPTS)
1023 && (*nexthdr != IPPROTO_ROUTING)
1024 && (*nexthdr != IPPROTO_DSTOPTS)
1025 && (*nexthdr != IPPROTO_AH)
1026 && (*nexthdr != IPPROTO_FRAGMENT)) {
bc7a5acd
AA
1027 /* It's either a terminal header (e.g., TCP, UDP) or one we
1028 * don't understand. In either case, we're done with the
1029 * packet, so use it to fill in 'nw_proto'. */
1030 break;
1031 }
1032
1033 /* We only verify that at least 8 bytes of the next header are
1034 * available, but many of these headers are longer. Ensure that
1035 * accesses within the extension header are within those first 8
1036 * bytes. All extension headers are required to be at least 8
1037 * bytes. */
1038 if (remaining < 8) {
1039 return false;
1040 }
1041
31a9a584 1042 if (*nexthdr == IPPROTO_AH) {
bc7a5acd
AA
1043 /* A standard AH definition isn't available, but the fields
1044 * we care about are in the same location as the generic
1045 * option header--only the header length is calculated
1046 * differently. */
1047 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
1048
31a9a584 1049 *nexthdr = ext_hdr->ip6e_nxt;
bc7a5acd 1050 len = (ext_hdr->ip6e_len + 2) * 4;
31a9a584 1051 } else if (*nexthdr == IPPROTO_FRAGMENT) {
4528f34f
BP
1052 const struct ovs_16aligned_ip6_frag *frag_hdr
1053 = ALIGNED_CAST(struct ovs_16aligned_ip6_frag *, data);
bc7a5acd 1054
31a9a584 1055 *nexthdr = frag_hdr->ip6f_nxt;
bc7a5acd 1056 len = sizeof *frag_hdr;
31a9a584 1057 } else if (*nexthdr == IPPROTO_ROUTING) {
bc7a5acd
AA
1058 const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
1059
1060 if (rh->ip6r_segleft > 0) {
1061 return true;
1062 }
1063
31a9a584 1064 *nexthdr = rh->ip6r_nxt;
bc7a5acd
AA
1065 len = (rh->ip6r_len + 1) * 8;
1066 } else {
1067 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
1068
31a9a584 1069 *nexthdr = ext_hdr->ip6e_nxt;
bc7a5acd
AA
1070 len = (ext_hdr->ip6e_len + 1) * 8;
1071 }
1072
1073 if (remaining < len) {
1074 return false;
1075 }
1076 remaining -= len;
1077 data += len;
1078 }
1079
1080 return false;
1081}
1082
1083static void
cf62fa4c 1084packet_update_csum128(struct dp_packet *packet, uint8_t proto,
932c96b7
JR
1085 ovs_16aligned_be32 addr[4],
1086 const struct in6_addr *new_addr)
bc7a5acd 1087{
cf62fa4c 1088 size_t l4_size = dp_packet_l4_size(packet);
5a51b2cd
JR
1089
1090 if (proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
cf62fa4c 1091 struct tcp_header *th = dp_packet_l4(packet);
bc7a5acd
AA
1092
1093 th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
5a51b2cd 1094 } else if (proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN) {
cf62fa4c 1095 struct udp_header *uh = dp_packet_l4(packet);
bc7a5acd
AA
1096
1097 if (uh->udp_csum) {
1098 uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
1099 if (!uh->udp_csum) {
1100 uh->udp_csum = htons(0xffff);
1101 }
1102 }
5abf65d0
JG
1103 } else if (proto == IPPROTO_ICMPV6 &&
1104 l4_size >= sizeof(struct icmp6_header)) {
cf62fa4c 1105 struct icmp6_header *icmp = dp_packet_l4(packet);
00894212
JG
1106
1107 icmp->icmp6_cksum = recalc_csum128(icmp->icmp6_cksum, addr, new_addr);
bc7a5acd
AA
1108 }
1109}
1110
0e29d884 1111void
cf62fa4c 1112packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto,
932c96b7
JR
1113 ovs_16aligned_be32 addr[4],
1114 const struct in6_addr *new_addr,
bc7a5acd
AA
1115 bool recalculate_csum)
1116{
1117 if (recalculate_csum) {
4528f34f 1118 packet_update_csum128(packet, proto, addr, new_addr);
bc7a5acd 1119 }
4068403a 1120 memcpy(addr, new_addr, sizeof(ovs_be32[4]));
bc7a5acd
AA
1121}
1122
1123static void
4528f34f 1124packet_set_ipv6_flow_label(ovs_16aligned_be32 *flow_label, ovs_be32 flow_key)
bc7a5acd 1125{
4528f34f
BP
1126 ovs_be32 old_label = get_16aligned_be32(flow_label);
1127 ovs_be32 new_label = (old_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
1128 put_16aligned_be32(flow_label, new_label);
bc7a5acd
AA
1129}
1130
1131static void
4528f34f 1132packet_set_ipv6_tc(ovs_16aligned_be32 *flow_label, uint8_t tc)
bc7a5acd 1133{
4528f34f
BP
1134 ovs_be32 old_label = get_16aligned_be32(flow_label);
1135 ovs_be32 new_label = (old_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
1136 put_16aligned_be32(flow_label, new_label);
bc7a5acd
AA
1137}
1138
c97664b3
EJ
1139/* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
1140 * 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
1141 * 'packet' must contain a valid IPv4 packet with correctly populated l[347]
1142 * markers. */
1143void
cf62fa4c 1144packet_set_ipv4(struct dp_packet *packet, ovs_be32 src, ovs_be32 dst,
c97664b3
EJ
1145 uint8_t tos, uint8_t ttl)
1146{
cf62fa4c 1147 struct ip_header *nh = dp_packet_l3(packet);
c97664b3 1148
7c457c33 1149 if (get_16aligned_be32(&nh->ip_src) != src) {
c97664b3
EJ
1150 packet_set_ipv4_addr(packet, &nh->ip_src, src);
1151 }
1152
7c457c33 1153 if (get_16aligned_be32(&nh->ip_dst) != dst) {
c97664b3
EJ
1154 packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
1155 }
1156
1157 if (nh->ip_tos != tos) {
1158 uint8_t *field = &nh->ip_tos;
1159
1160 nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
1161 htons((uint16_t) tos));
1162 *field = tos;
1163 }
1164
1165 if (nh->ip_ttl != ttl) {
1166 uint8_t *field = &nh->ip_ttl;
1167
1168 nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
1169 htons(ttl << 8));
1170 *field = ttl;
1171 }
1172}
1173
bc7a5acd
AA
1174/* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
1175 * 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
1176 * appropriate. 'packet' must contain a valid IPv6 packet with correctly
437d0d22 1177 * populated l[34] offsets. */
bc7a5acd 1178void
932c96b7
JR
1179packet_set_ipv6(struct dp_packet *packet, const struct in6_addr *src,
1180 const struct in6_addr *dst, uint8_t key_tc, ovs_be32 key_fl,
bc7a5acd
AA
1181 uint8_t key_hl)
1182{
cf62fa4c 1183 struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(packet);
31a9a584
SH
1184 uint8_t proto = 0;
1185 bool rh_present;
1186
1187 rh_present = packet_rh_present(packet, &proto);
bc7a5acd
AA
1188
1189 if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
4528f34f 1190 packet_set_ipv6_addr(packet, proto, nh->ip6_src.be32, src, true);
bc7a5acd
AA
1191 }
1192
1193 if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
4528f34f 1194 packet_set_ipv6_addr(packet, proto, nh->ip6_dst.be32, dst,
31a9a584 1195 !rh_present);
bc7a5acd
AA
1196 }
1197
1198 packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
bc7a5acd 1199 packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
bc7a5acd
AA
1200 nh->ip6_hlim = key_hl;
1201}
1202
c97664b3
EJ
1203static void
1204packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
1205{
1206 if (*port != new_port) {
1207 *csum = recalc_csum16(*csum, *port, new_port);
1208 *port = new_port;
1209 }
1210}
1211
1212/* Sets the TCP source and destination port ('src' and 'dst' respectively) of
1213 * the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
437d0d22 1214 * with its l4 offset properly populated. */
c97664b3 1215void
cf62fa4c 1216packet_set_tcp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
c97664b3 1217{
cf62fa4c 1218 struct tcp_header *th = dp_packet_l4(packet);
c97664b3
EJ
1219
1220 packet_set_port(&th->tcp_src, src, &th->tcp_csum);
1221 packet_set_port(&th->tcp_dst, dst, &th->tcp_csum);
1222}
1223
1224/* Sets the UDP source and destination port ('src' and 'dst' respectively) of
1225 * the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
437d0d22 1226 * with its l4 offset properly populated. */
c97664b3 1227void
cf62fa4c 1228packet_set_udp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
c97664b3 1229{
cf62fa4c 1230 struct udp_header *uh = dp_packet_l4(packet);
c97664b3
EJ
1231
1232 if (uh->udp_csum) {
1233 packet_set_port(&uh->udp_src, src, &uh->udp_csum);
1234 packet_set_port(&uh->udp_dst, dst, &uh->udp_csum);
1235
1236 if (!uh->udp_csum) {
1237 uh->udp_csum = htons(0xffff);
1238 }
1239 } else {
1240 uh->udp_src = src;
1241 uh->udp_dst = dst;
1242 }
1243}
12113c39 1244
c6bcb685
JS
1245/* Sets the SCTP source and destination port ('src' and 'dst' respectively) of
1246 * the SCTP header contained in 'packet'. 'packet' must be a valid SCTP packet
437d0d22 1247 * with its l4 offset properly populated. */
c6bcb685 1248void
cf62fa4c 1249packet_set_sctp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
c6bcb685 1250{
cf62fa4c 1251 struct sctp_header *sh = dp_packet_l4(packet);
c6bcb685 1252 ovs_be32 old_csum, old_correct_csum, new_csum;
cf62fa4c 1253 uint16_t tp_len = dp_packet_l4_size(packet);
c6bcb685 1254
5fa008d4
BP
1255 old_csum = get_16aligned_be32(&sh->sctp_csum);
1256 put_16aligned_be32(&sh->sctp_csum, 0);
437d0d22 1257 old_correct_csum = crc32c((void *)sh, tp_len);
c6bcb685
JS
1258
1259 sh->sctp_src = src;
1260 sh->sctp_dst = dst;
1261
437d0d22 1262 new_csum = crc32c((void *)sh, tp_len);
5fa008d4 1263 put_16aligned_be32(&sh->sctp_csum, old_csum ^ old_correct_csum ^ new_csum);
c6bcb685
JS
1264}
1265
b8786b18
JP
1266/* Sets the ICMP type and code of the ICMP header contained in 'packet'.
1267 * 'packet' must be a valid ICMP packet with its l4 offset properly
1268 * populated. */
1269void
1270packet_set_icmp(struct dp_packet *packet, uint8_t type, uint8_t code)
1271{
1272 struct icmp_header *ih = dp_packet_l4(packet);
1273 ovs_be16 orig_tc = htons(ih->icmp_type << 8 | ih->icmp_code);
1274 ovs_be16 new_tc = htons(type << 8 | code);
1275
1276 if (orig_tc != new_tc) {
1277 ih->icmp_type = type;
1278 ih->icmp_code = code;
1279
1280 ih->icmp_csum = recalc_csum16(ih->icmp_csum, orig_tc, new_tc);
1281 }
1282}
1283
e60e935b 1284void
932c96b7 1285packet_set_nd(struct dp_packet *packet, const struct in6_addr *target,
c4bee4cb
PS
1286 const struct eth_addr sll, const struct eth_addr tll)
1287{
e60e935b 1288 struct ovs_nd_msg *ns;
86d46f3c 1289 struct ovs_nd_lla_opt *opt;
cf62fa4c 1290 int bytes_remain = dp_packet_l4_size(packet);
e60e935b
SRCSA
1291
1292 if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
1293 return;
1294 }
1295
cf62fa4c 1296 ns = dp_packet_l4(packet);
86d46f3c 1297 opt = &ns->options[0];
e60e935b
SRCSA
1298 bytes_remain -= sizeof(*ns);
1299
1300 if (memcmp(&ns->target, target, sizeof(ovs_be32[4]))) {
932c96b7
JR
1301 packet_set_ipv6_addr(packet, IPPROTO_ICMPV6, ns->target.be32, target,
1302 true);
e60e935b
SRCSA
1303 }
1304
86d46f3c
ZKL
1305 while (bytes_remain >= ND_LLA_OPT_LEN && opt->len != 0) {
1306 if (opt->type == ND_OPT_SOURCE_LINKADDR && opt->len == 1) {
1307 if (!eth_addr_equals(opt->mac, sll)) {
e60e935b
SRCSA
1308 ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
1309
86d46f3c
ZKL
1310 *csum = recalc_csum48(*csum, opt->mac, sll);
1311 opt->mac = sll;
e60e935b
SRCSA
1312 }
1313
1314 /* A packet can only contain one SLL or TLL option */
1315 break;
86d46f3c
ZKL
1316 } else if (opt->type == ND_OPT_TARGET_LINKADDR && opt->len == 1) {
1317 if (!eth_addr_equals(opt->mac, tll)) {
e60e935b
SRCSA
1318 ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
1319
86d46f3c
ZKL
1320 *csum = recalc_csum48(*csum, opt->mac, tll);
1321 opt->mac = tll;
e60e935b
SRCSA
1322 }
1323
1324 /* A packet can only contain one SLL or TLL option */
1325 break;
1326 }
1327
86d46f3c
ZKL
1328 opt += opt->len;
1329 bytes_remain -= opt->len * ND_LLA_OPT_LEN;
e60e935b
SRCSA
1330 }
1331}
1332
61bf6666
JR
1333const char *
1334packet_tcp_flag_to_string(uint32_t flag)
1335{
1336 switch (flag) {
1337 case TCP_FIN:
1338 return "fin";
1339 case TCP_SYN:
1340 return "syn";
1341 case TCP_RST:
1342 return "rst";
1343 case TCP_PSH:
1344 return "psh";
1345 case TCP_ACK:
1346 return "ack";
1347 case TCP_URG:
1348 return "urg";
1349 case TCP_ECE:
1350 return "ece";
1351 case TCP_CWR:
1352 return "cwr";
1353 case TCP_NS:
1354 return "ns";
1355 case 0x200:
1356 return "[200]";
1357 case 0x400:
1358 return "[400]";
1359 case 0x800:
1360 return "[800]";
1361 default:
1362 return NULL;
1363 }
1364}
1365
7393104d 1366/* Appends a string representation of the TCP flags value 'tcp_flags'
f41b5b3b 1367 * (e.g. from struct flow.tcp_flags or obtained via TCP_FLAGS) to 's', in the
7393104d
BP
1368 * format used by tcpdump. */
1369void
a66733a8 1370packet_format_tcp_flags(struct ds *s, uint16_t tcp_flags)
7393104d
BP
1371{
1372 if (!tcp_flags) {
1373 ds_put_cstr(s, "none");
1374 return;
1375 }
1376
1377 if (tcp_flags & TCP_SYN) {
1378 ds_put_char(s, 'S');
1379 }
1380 if (tcp_flags & TCP_FIN) {
1381 ds_put_char(s, 'F');
1382 }
1383 if (tcp_flags & TCP_PSH) {
1384 ds_put_char(s, 'P');
1385 }
1386 if (tcp_flags & TCP_RST) {
1387 ds_put_char(s, 'R');
1388 }
1389 if (tcp_flags & TCP_URG) {
1390 ds_put_char(s, 'U');
1391 }
1392 if (tcp_flags & TCP_ACK) {
1393 ds_put_char(s, '.');
1394 }
a66733a8
JR
1395 if (tcp_flags & TCP_ECE) {
1396 ds_put_cstr(s, "E");
7393104d 1397 }
a66733a8
JR
1398 if (tcp_flags & TCP_CWR) {
1399 ds_put_cstr(s, "C");
1400 }
1401 if (tcp_flags & TCP_NS) {
1402 ds_put_cstr(s, "N");
1403 }
1404 if (tcp_flags & 0x200) {
1405 ds_put_cstr(s, "[200]");
1406 }
1407 if (tcp_flags & 0x400) {
1408 ds_put_cstr(s, "[400]");
1409 }
1410 if (tcp_flags & 0x800) {
1411 ds_put_cstr(s, "[800]");
7393104d
BP
1412 }
1413}
a36de779
PS
1414
1415#define ARP_PACKET_SIZE (2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + \
1416 ARP_ETH_HEADER_LEN)
1417
eb0b295e
BP
1418/* Clears 'b' and replaces its contents by an ARP frame with the specified
1419 * 'arp_op', 'arp_sha', 'arp_tha', 'arp_spa', and 'arp_tpa'. The outer
1420 * Ethernet frame is initialized with Ethernet source 'arp_sha' and destination
1421 * 'arp_tha', except that destination ff:ff:ff:ff:ff:ff is used instead if
6335d074 1422 * 'broadcast' is true. Points the L3 header to the ARP header. */
a36de779 1423void
eb0b295e 1424compose_arp(struct dp_packet *b, uint16_t arp_op,
74ff3298
JR
1425 const struct eth_addr arp_sha, const struct eth_addr arp_tha,
1426 bool broadcast, ovs_be32 arp_spa, ovs_be32 arp_tpa)
a36de779 1427{
6335d074
BP
1428 compose_arp__(b);
1429
2482b0b0 1430 struct eth_header *eth = dp_packet_eth(b);
6335d074
BP
1431 eth->eth_dst = broadcast ? eth_addr_broadcast : arp_tha;
1432 eth->eth_src = arp_sha;
1433
1434 struct arp_eth_header *arp = dp_packet_l3(b);
1435 arp->ar_op = htons(arp_op);
1436 arp->ar_sha = arp_sha;
1437 arp->ar_tha = arp_tha;
1438 put_16aligned_be32(&arp->ar_spa, arp_spa);
1439 put_16aligned_be32(&arp->ar_tpa, arp_tpa);
1440}
a36de779 1441
6335d074
BP
1442/* Clears 'b' and replaces its contents by an ARP frame. Sets the fields in
1443 * the Ethernet and ARP headers that are fixed for ARP frames to those fixed
1444 * values, and zeroes the other fields. Points the L3 header to the ARP
1445 * header. */
1446void
1447compose_arp__(struct dp_packet *b)
1448{
cf62fa4c
PS
1449 dp_packet_clear(b);
1450 dp_packet_prealloc_tailroom(b, ARP_PACKET_SIZE);
1451 dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
a36de779 1452
6335d074 1453 struct eth_header *eth = dp_packet_put_zeros(b, sizeof *eth);
a36de779
PS
1454 eth->eth_type = htons(ETH_TYPE_ARP);
1455
6335d074 1456 struct arp_eth_header *arp = dp_packet_put_zeros(b, sizeof *arp);
a36de779
PS
1457 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
1458 arp->ar_pro = htons(ARP_PRO_IP);
1459 arp->ar_hln = sizeof arp->ar_sha;
1460 arp->ar_pln = sizeof arp->ar_spa;
a36de779 1461
82eb5b0a 1462 dp_packet_reset_offsets(b);
cf62fa4c 1463 dp_packet_set_l3(b, arp);
2482b0b0
JS
1464
1465 b->packet_type = htonl(PT_ETH);
a36de779 1466}
0292a0c9 1467
16187903 1468/* This function expects packet with ethernet header with correct
c4bee4cb
PS
1469 * l3 pointer set. */
1470static void *
16187903
JP
1471compose_ipv6(struct dp_packet *packet, uint8_t proto,
1472 const struct in6_addr *src, const struct in6_addr *dst,
1473 uint8_t key_tc, ovs_be32 key_fl, uint8_t key_hl, int size)
c4bee4cb
PS
1474{
1475 struct ip6_hdr *nh;
1476 void *data;
1477
1478 nh = dp_packet_l3(packet);
1479 nh->ip6_vfc = 0x60;
1480 nh->ip6_nxt = proto;
1481 nh->ip6_plen = htons(size);
1482 data = dp_packet_put_zeros(packet, size);
1483 dp_packet_set_l4(packet, data);
932c96b7 1484 packet_set_ipv6(packet, src, dst, key_tc, key_fl, key_hl);
c4bee4cb
PS
1485 return data;
1486}
1487
16187903 1488/* Compose an IPv6 Neighbor Discovery Neighbor Solicitation message. */
c2b878e0 1489void
16187903
JP
1490compose_nd_ns(struct dp_packet *b, const struct eth_addr eth_src,
1491 const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst)
c2b878e0
TLSC
1492{
1493 struct in6_addr sn_addr;
1494 struct eth_addr eth_dst;
1495 struct ovs_nd_msg *ns;
86d46f3c 1496 struct ovs_nd_lla_opt *lla_opt;
c4bee4cb 1497 uint32_t icmp_csum;
c2b878e0
TLSC
1498
1499 in6_addr_solicited_node(&sn_addr, ipv6_dst);
1500 ipv6_multicast_to_ethernet(&eth_dst, &sn_addr);
1501
c4bee4cb 1502 eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
16187903 1503 ns = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, &sn_addr,
86d46f3c 1504 0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
c2b878e0
TLSC
1505
1506 ns->icmph.icmp6_type = ND_NEIGHBOR_SOLICIT;
1507 ns->icmph.icmp6_code = 0;
29d5e9a7 1508 put_16aligned_be32(&ns->rso_flags, htonl(0));
c2b878e0 1509
86d46f3c
ZKL
1510 lla_opt = &ns->options[0];
1511 lla_opt->type = ND_OPT_SOURCE_LINKADDR;
1512 lla_opt->len = 1;
c4bee4cb 1513
932c96b7 1514 packet_set_nd(b, ipv6_dst, eth_src, eth_addr_zero);
16187903 1515
c4bee4cb
PS
1516 ns->icmph.icmp6_cksum = 0;
1517 icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
86d46f3c
ZKL
1518 ns->icmph.icmp6_cksum = csum_finish(
1519 csum_continue(icmp_csum, ns, ND_MSG_LEN + ND_LLA_OPT_LEN));
c2b878e0
TLSC
1520}
1521
16187903 1522/* Compose an IPv6 Neighbor Discovery Neighbor Advertisement message. */
e75451fe 1523void
16187903
JP
1524compose_nd_na(struct dp_packet *b,
1525 const struct eth_addr eth_src, const struct eth_addr eth_dst,
1526 const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
1527 ovs_be32 rso_flags)
e75451fe
ZKL
1528{
1529 struct ovs_nd_msg *na;
86d46f3c 1530 struct ovs_nd_lla_opt *lla_opt;
e75451fe
ZKL
1531 uint32_t icmp_csum;
1532
1533 eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
16187903 1534 na = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst,
86d46f3c 1535 0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
e75451fe
ZKL
1536
1537 na->icmph.icmp6_type = ND_NEIGHBOR_ADVERT;
1538 na->icmph.icmp6_code = 0;
29d5e9a7 1539 put_16aligned_be32(&na->rso_flags, rso_flags);
e75451fe 1540
86d46f3c
ZKL
1541 lla_opt = &na->options[0];
1542 lla_opt->type = ND_OPT_TARGET_LINKADDR;
1543 lla_opt->len = 1;
e75451fe 1544
932c96b7 1545 packet_set_nd(b, ipv6_src, eth_addr_zero, eth_src);
16187903 1546
e75451fe
ZKL
1547 na->icmph.icmp6_cksum = 0;
1548 icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
86d46f3c
ZKL
1549 na->icmph.icmp6_cksum = csum_finish(csum_continue(
1550 icmp_csum, na, ND_MSG_LEN + ND_LLA_OPT_LEN));
e75451fe
ZKL
1551}
1552
b24ab67c
ZKL
1553/* Compose an IPv6 Neighbor Discovery Router Advertisement message with
1554 * Source Link-layer Address Option and MTU Option.
1555 * Caller can call packet_put_ra_prefix_opt to append Prefix Information
1556 * Options to composed messags in 'b'. */
1557void
1558compose_nd_ra(struct dp_packet *b,
1559 const struct eth_addr eth_src, const struct eth_addr eth_dst,
1560 const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
1561 uint8_t cur_hop_limit, uint8_t mo_flags,
1562 ovs_be16 router_lt, ovs_be32 reachable_time,
4446661a 1563 ovs_be32 retrans_timer, uint32_t mtu)
b24ab67c
ZKL
1564{
1565 /* Don't compose Router Advertisement packet with MTU Option if mtu
1566 * value is 0. */
1567 bool with_mtu = mtu != 0;
1568 size_t mtu_opt_len = with_mtu ? ND_MTU_OPT_LEN : 0;
1569
1570 eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
1571
1572 struct ovs_ra_msg *ra = compose_ipv6(
1573 b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst, 0, 0, 255,
86d46f3c 1574 RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len);
b24ab67c
ZKL
1575 ra->icmph.icmp6_type = ND_ROUTER_ADVERT;
1576 ra->icmph.icmp6_code = 0;
1577 ra->cur_hop_limit = cur_hop_limit;
1578 ra->mo_flags = mo_flags;
1579 ra->router_lifetime = router_lt;
1580 ra->reachable_time = reachable_time;
1581 ra->retrans_timer = retrans_timer;
1582
86d46f3c
ZKL
1583 struct ovs_nd_lla_opt *lla_opt = ra->options;
1584 lla_opt->type = ND_OPT_SOURCE_LINKADDR;
1585 lla_opt->len = 1;
1586 lla_opt->mac = eth_src;
b24ab67c
ZKL
1587
1588 if (with_mtu) {
86d46f3c 1589 /* ovs_nd_mtu_opt has the same size with ovs_nd_lla_opt. */
b24ab67c
ZKL
1590 struct ovs_nd_mtu_opt *mtu_opt
1591 = (struct ovs_nd_mtu_opt *)(lla_opt + 1);
1592 mtu_opt->type = ND_OPT_MTU;
1593 mtu_opt->len = 1;
1594 mtu_opt->reserved = 0;
4446661a 1595 put_16aligned_be32(&mtu_opt->mtu, htonl(mtu));
b24ab67c
ZKL
1596 }
1597
1598 ra->icmph.icmp6_cksum = 0;
1599 uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1600 ra->icmph.icmp6_cksum = csum_finish(csum_continue(
86d46f3c 1601 icmp_csum, ra, RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len));
b24ab67c
ZKL
1602}
1603
1604/* Append an IPv6 Neighbor Discovery Prefix Information option to a
1605 * Router Advertisement message. */
1606void
1607packet_put_ra_prefix_opt(struct dp_packet *b,
1608 uint8_t plen, uint8_t la_flags,
1609 ovs_be32 valid_lifetime, ovs_be32 preferred_lifetime,
1610 const ovs_be128 prefix)
1611{
1612 size_t prev_l4_size = dp_packet_l4_size(b);
1613 struct ip6_hdr *nh = dp_packet_l3(b);
1614 nh->ip6_plen = htons(prev_l4_size + ND_PREFIX_OPT_LEN);
1615
1616 struct ovs_ra_msg *ra = dp_packet_l4(b);
481ada4d
NS
1617 struct ovs_nd_prefix_opt *prefix_opt =
1618 dp_packet_put_uninit(b, sizeof *prefix_opt);
b24ab67c
ZKL
1619 prefix_opt->type = ND_OPT_PREFIX_INFORMATION;
1620 prefix_opt->len = 4;
1621 prefix_opt->prefix_len = plen;
1622 prefix_opt->la_flags = la_flags;
1623 put_16aligned_be32(&prefix_opt->valid_lifetime, valid_lifetime);
1624 put_16aligned_be32(&prefix_opt->preferred_lifetime, preferred_lifetime);
1625 put_16aligned_be32(&prefix_opt->reserved, 0);
1626 memcpy(prefix_opt->prefix.be32, prefix.be32, sizeof(ovs_be32[4]));
1627
1628 ra->icmph.icmp6_cksum = 0;
1629 uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1630 ra->icmph.icmp6_cksum = csum_finish(csum_continue(
1631 icmp_csum, ra, prev_l4_size + ND_PREFIX_OPT_LEN));
1632}
1633
0292a0c9
JG
1634uint32_t
1635packet_csum_pseudoheader(const struct ip_header *ip)
1636{
1637 uint32_t partial = 0;
1638
1639 partial = csum_add32(partial, get_16aligned_be32(&ip->ip_src));
1640 partial = csum_add32(partial, get_16aligned_be32(&ip->ip_dst));
1641 partial = csum_add16(partial, htons(ip->ip_proto));
1642 partial = csum_add16(partial, htons(ntohs(ip->ip_tot_len) -
1643 IP_IHL(ip->ip_ihl_ver) * 4));
1644
1645 return partial;
1646}
07659514 1647
370e373b
TLSC
1648#ifndef __CHECKER__
1649uint32_t
1650packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *ip6)
1651{
1652 uint32_t partial = 0;
1653
cfa354cb
BP
1654 partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
1655 partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
c4bee4cb 1656 partial = csum_add16(partial, htons(ip6->ip6_nxt));
370e373b 1657 partial = csum_add16(partial, ip6->ip6_plen);
370e373b
TLSC
1658
1659 return partial;
1660}
46445c63
EC
1661
1662/* Calculate the IPv6 upper layer checksum according to RFC2460. We pass the
1663 ip6_nxt and ip6_plen values, so it will also work if extension headers
1664 are present. */
1665uint16_t
1666packet_csum_upperlayer6(const struct ovs_16aligned_ip6_hdr *ip6,
1667 const void *data, uint8_t l4_protocol,
1668 uint16_t l4_size)
1669{
1670 uint32_t partial = 0;
1671
1672 partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
1673 partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
1674 partial = csum_add16(partial, htons(l4_protocol));
1675 partial = csum_add16(partial, htons(l4_size));
1676
1677 partial = csum_continue(partial, data, l4_size);
1678
1679 return csum_finish(partial);
1680}
370e373b 1681#endif
1bc3f0ed
PS
1682
1683void
1684IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6)
1685{
1686 if (is_ipv6) {
1687 ovs_16aligned_be32 *ip6 = dp_packet_l3(pkt);
1688
1689 put_16aligned_be32(ip6, get_16aligned_be32(ip6) |
1690 htonl(IP_ECN_CE << 20));
1691 } else {
1692 struct ip_header *nh = dp_packet_l3(pkt);
1693 uint8_t tos = nh->ip_tos;
1694
1695 tos |= IP_ECN_CE;
1696 if (nh->ip_tos != tos) {
1697 nh->ip_csum = recalc_csum16(nh->ip_csum, htons(nh->ip_tos),
1698 htons((uint16_t) tos));
1699 nh->ip_tos = tos;
1700 }
1701 }
1702}