]> git.proxmox.com Git - mirror_ovs.git/blame - lib/packets.c
appveyor: Renew SSL link.
[mirror_ovs.git] / lib / packets.c
CommitLineData
b9e8b45a 1/*
eb0b295e 2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
b9e8b45a
BP
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <config.h>
18#include "packets.h"
d31f1109 19#include <arpa/inet.h>
6ca00f6f 20#include <sys/socket.h>
b9e8b45a 21#include <netinet/in.h>
bc7a5acd 22#include <netinet/ip6.h>
00894212 23#include <netinet/icmp6.h>
76343538 24#include <stdlib.h>
d31f1109 25#include "byte-order.h"
c97664b3 26#include "csum.h"
c6bcb685 27#include "crc32c.h"
12113c39 28#include "flow.h"
7d48a4cc 29#include "hmap.h"
d31f1109 30#include "dynamic-string.h"
8c45d00f 31#include "ovs-thread.h"
b5e7e61a 32#include "odp-util.h"
cf62fa4c 33#include "dp-packet.h"
7c457c33 34#include "unaligned.h"
b9e8b45a 35
d31f1109 36const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
06994f87 37const struct in6_addr in6addr_all_hosts = IN6ADDR_ALL_HOSTS_INIT;
d31f1109 38
093ca5b3
BP
39/* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
40 * success stores the dpid into '*dpidp' and returns true, on failure stores 0
41 * into '*dpidp' and returns false.
42 *
43 * Rejects an all-zeros dpid as invalid. */
76343538
BP
44bool
45dpid_from_string(const char *s, uint64_t *dpidp)
46{
b123cc3c 47 *dpidp = (strlen(s) == 16 && strspn(s, "0123456789abcdefABCDEF") == 16
093ca5b3 48 ? strtoull(s, NULL, 16)
76343538
BP
49 : 0);
50 return *dpidp != 0;
51}
52
7d48a4cc
BP
53/* Returns true if 'ea' is a reserved address, that a bridge must never
54 * forward, false otherwise.
05be4e2c
EJ
55 *
56 * If you change this function's behavior, please update corresponding
57 * documentation in vswitch.xml at the same time. */
58bool
59eth_addr_is_reserved(const uint8_t ea[ETH_ADDR_LEN])
60{
7d48a4cc
BP
61 struct eth_addr_node {
62 struct hmap_node hmap_node;
8c45d00f 63 const uint64_t ea64;
05be4e2c
EJ
64 };
65
7d48a4cc
BP
66 static struct eth_addr_node nodes[] = {
67 /* STP, IEEE pause frames, and other reserved protocols. */
f0ac9da9
BP
68 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000000ULL },
69 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000001ULL },
70 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000002ULL },
71 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000003ULL },
72 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000004ULL },
73 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000005ULL },
74 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000006ULL },
75 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000007ULL },
76 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000008ULL },
77 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000009ULL },
78 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000aULL },
79 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000bULL },
80 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000cULL },
81 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000dULL },
82 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000eULL },
83 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000fULL },
7d48a4cc
BP
84
85 /* Extreme protocols. */
86 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
87 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
88 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
89
90 /* Cisco protocols. */
91 { HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
92 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
93 * DTP, VTP. */
94 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
95 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
96 * FlexLink. */
97
98 /* Cisco CFM. */
99 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
100 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
101 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
102 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
103 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
104 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
105 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
106 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
107 };
05be4e2c 108
8c45d00f 109 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
7d48a4cc 110 struct eth_addr_node *node;
8c45d00f 111 static struct hmap addrs;
7d48a4cc 112 uint64_t ea64;
05be4e2c 113
8c45d00f
BP
114 if (ovsthread_once_start(&once)) {
115 hmap_init(&addrs);
7d48a4cc 116 for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
965607c8 117 hmap_insert(&addrs, &node->hmap_node, hash_uint64(node->ea64));
7d48a4cc 118 }
8c45d00f 119 ovsthread_once_done(&once);
7d48a4cc 120 }
05be4e2c 121
7d48a4cc 122 ea64 = eth_addr_to_uint64(ea);
965607c8 123 HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_uint64(ea64), &addrs) {
7d48a4cc 124 if (node->ea64 == ea64) {
05be4e2c
EJ
125 return true;
126 }
127 }
128 return false;
129}
130
76343538
BP
131bool
132eth_addr_from_string(const char *s, uint8_t ea[ETH_ADDR_LEN])
133{
c2c28dfd 134 if (ovs_scan(s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(ea))) {
76343538
BP
135 return true;
136 } else {
137 memset(ea, 0, ETH_ADDR_LEN);
138 return false;
139 }
140}
141
38f7147c 142/* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
b9e8b45a 143 * This function is used by Open vSwitch to compose packets in cases where
38f7147c
EJ
144 * context is important but content doesn't (or shouldn't) matter.
145 *
146 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
147 * desired. */
b9e8b45a 148void
cf62fa4c 149compose_rarp(struct dp_packet *b, const uint8_t eth_src[ETH_ADDR_LEN])
b9e8b45a 150{
38f7147c 151 struct eth_header *eth;
7cb57d10 152 struct arp_eth_header *arp;
b9e8b45a 153
cf62fa4c
PS
154 dp_packet_clear(b);
155 dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN
7cb57d10 156 + ARP_ETH_HEADER_LEN);
cf62fa4c
PS
157 dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
158 eth = dp_packet_put_uninit(b, sizeof *eth);
38f7147c
EJ
159 memcpy(eth->eth_dst, eth_addr_broadcast, ETH_ADDR_LEN);
160 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
161 eth->eth_type = htons(ETH_TYPE_RARP);
162
cf62fa4c 163 arp = dp_packet_put_uninit(b, sizeof *arp);
7cb57d10
EJ
164 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
165 arp->ar_pro = htons(ARP_PRO_IP);
166 arp->ar_hln = sizeof arp->ar_sha;
167 arp->ar_pln = sizeof arp->ar_spa;
168 arp->ar_op = htons(ARP_OP_RARP);
169 memcpy(arp->ar_sha, eth_src, ETH_ADDR_LEN);
7c457c33 170 put_16aligned_be32(&arp->ar_spa, htonl(0));
7cb57d10 171 memcpy(arp->ar_tha, eth_src, ETH_ADDR_LEN);
7c457c33 172 put_16aligned_be32(&arp->ar_tpa, htonl(0));
cf3b7538 173
82eb5b0a 174 dp_packet_reset_offsets(b);
cf62fa4c 175 dp_packet_set_l3(b, arp);
b9e8b45a 176}
d31f1109 177
d9065a90 178/* Insert VLAN header according to given TCI. Packet passed must be Ethernet
2f4ca41b 179 * packet. Ignores the CFI bit of 'tci' using 0 instead.
7c66b273 180 *
cf3b7538 181 * Also adjusts the layer offsets accordingly. */
7c66b273 182void
cf62fa4c 183eth_push_vlan(struct dp_packet *packet, ovs_be16 tpid, ovs_be16 tci)
7c66b273 184{
7c66b273
BP
185 struct vlan_eth_header *veh;
186
d9065a90 187 /* Insert new 802.1Q header. */
cf62fa4c 188 veh = dp_packet_resize_l2(packet, VLAN_HEADER_LEN);
437d0d22
JR
189 memmove(veh, (char *)veh + VLAN_HEADER_LEN, 2 * ETH_ADDR_LEN);
190 veh->veth_type = tpid;
191 veh->veth_tci = tci & htons(~VLAN_CFI);
7c66b273
BP
192}
193
f4ebc25e
BP
194/* Removes outermost VLAN header (if any is present) from 'packet'.
195 *
d6943394
TH
196 * 'packet->l2_5' should initially point to 'packet''s outer-most VLAN header
197 * or may be NULL if there are no VLAN headers. */
f4ebc25e 198void
cf62fa4c 199eth_pop_vlan(struct dp_packet *packet)
f4ebc25e 200{
cf62fa4c 201 struct vlan_eth_header *veh = dp_packet_l2(packet);
437d0d22 202
cf62fa4c 203 if (veh && dp_packet_size(packet) >= sizeof *veh
d6943394 204 && eth_type_vlan(veh->veth_type)) {
f4ebc25e 205
437d0d22 206 memmove((char *)veh + VLAN_HEADER_LEN, veh, 2 * ETH_ADDR_LEN);
cf62fa4c 207 dp_packet_resize_l2(packet, -VLAN_HEADER_LEN);
f4ebc25e
BP
208 }
209}
210
b02475c5 211/* Set ethertype of the packet. */
56b02633 212static void
cf62fa4c 213set_ethertype(struct dp_packet *packet, ovs_be16 eth_type)
b02475c5 214{
cf62fa4c 215 struct eth_header *eh = dp_packet_l2(packet);
cf3b7538
JR
216
217 if (!eh) {
218 return;
219 }
b02475c5 220
d6943394 221 if (eth_type_vlan(eh->eth_type)) {
b02475c5 222 ovs_be16 *p;
cf62fa4c 223 char *l2_5 = dp_packet_l2_5(packet);
437d0d22 224
db5a1019 225 p = ALIGNED_CAST(ovs_be16 *,
cf62fa4c 226 (l2_5 ? l2_5 : (char *)dp_packet_l3(packet)) - 2);
b02475c5
SH
227 *p = eth_type;
228 } else {
229 eh->eth_type = eth_type;
230 }
231}
232
cf62fa4c 233static bool is_mpls(struct dp_packet *packet)
b02475c5 234{
437d0d22 235 return packet->l2_5_ofs != UINT16_MAX;
b02475c5
SH
236}
237
238/* Set time to live (TTL) of an MPLS label stack entry (LSE). */
b676167a 239void
b02475c5
SH
240set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
241{
242 *lse &= ~htonl(MPLS_TTL_MASK);
243 *lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
244}
245
246/* Set traffic class (TC) of an MPLS label stack entry (LSE). */
247void
248set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
249{
250 *lse &= ~htonl(MPLS_TC_MASK);
251 *lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
252}
253
254/* Set label of an MPLS label stack entry (LSE). */
255void
256set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
257{
258 *lse &= ~htonl(MPLS_LABEL_MASK);
259 *lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
260}
261
262/* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
263void
264set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
265{
266 *lse &= ~htonl(MPLS_BOS_MASK);
267 *lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
268}
269
270/* Compose an MPLS label stack entry (LSE) from its components:
271 * label, traffic class (TC), time to live (TTL) and
272 * bottom of stack (BoS) bit. */
273ovs_be32
274set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
275{
276 ovs_be32 lse = htonl(0);
277 set_mpls_lse_ttl(&lse, ttl);
278 set_mpls_lse_tc(&lse, tc);
279 set_mpls_lse_bos(&lse, bos);
280 set_mpls_lse_label(&lse, label);
281 return lse;
282}
283
b02475c5
SH
284/* Set MPLS label stack entry to outermost MPLS header.*/
285void
cf62fa4c 286set_mpls_lse(struct dp_packet *packet, ovs_be32 mpls_lse)
b02475c5 287{
b02475c5
SH
288 /* Packet type should be MPLS to set label stack entry. */
289 if (is_mpls(packet)) {
cf62fa4c 290 struct mpls_hdr *mh = dp_packet_l2_5(packet);
437d0d22 291
b02475c5 292 /* Update mpls label stack entry. */
5fa008d4 293 put_16aligned_be32(&mh->mpls_lse, mpls_lse);
b02475c5
SH
294 }
295}
296
898dcef1 297/* Push MPLS label stack entry 'lse' onto 'packet' as the outermost MPLS
b02475c5
SH
298 * header. If 'packet' does not already have any MPLS labels, then its
299 * Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
300void
cf62fa4c 301push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse)
b02475c5 302{
437d0d22
JR
303 char * header;
304 size_t len;
b02475c5
SH
305
306 if (!eth_type_mpls(ethtype)) {
307 return;
308 }
309
310 if (!is_mpls(packet)) {
437d0d22
JR
311 /* Set MPLS label stack offset. */
312 packet->l2_5_ofs = packet->l3_ofs;
b02475c5
SH
313 }
314
437d0d22
JR
315 set_ethertype(packet, ethtype);
316
b02475c5 317 /* Push new MPLS shim header onto packet. */
437d0d22 318 len = packet->l2_5_ofs;
cf62fa4c 319 header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
437d0d22
JR
320 memmove(header, header + MPLS_HLEN, len);
321 memcpy(header + len, &lse, sizeof lse);
b02475c5
SH
322}
323
324/* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
325 * If the label that was removed was the only MPLS label, changes 'packet''s
326 * Ethertype to 'ethtype' (which ordinarily should not be an MPLS
327 * Ethertype). */
328void
cf62fa4c 329pop_mpls(struct dp_packet *packet, ovs_be16 ethtype)
b02475c5 330{
b02475c5 331 if (is_mpls(packet)) {
cf62fa4c 332 struct mpls_hdr *mh = dp_packet_l2_5(packet);
437d0d22
JR
333 size_t len = packet->l2_5_ofs;
334
799a91bb 335 set_ethertype(packet, ethtype);
5fa008d4 336 if (get_16aligned_be32(&mh->mpls_lse) & htonl(MPLS_BOS_MASK)) {
cf62fa4c 337 dp_packet_set_l2_5(packet, NULL);
b02475c5
SH
338 }
339 /* Shift the l2 header forward. */
cf62fa4c
PS
340 memmove((char*)dp_packet_data(packet) + MPLS_HLEN, dp_packet_data(packet), len);
341 dp_packet_resize_l2_5(packet, -MPLS_HLEN);
b02475c5
SH
342 }
343}
344
e22f1753
BP
345/* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
346 * caller must free '*packetp'. On success, returns NULL. On failure, returns
bb622f82
BP
347 * an error message and stores NULL in '*packetp'.
348 *
349 * Aligns the L3 header of '*packetp' on a 32-bit boundary. */
e22f1753 350const char *
cf62fa4c 351eth_from_hex(const char *hex, struct dp_packet **packetp)
e22f1753 352{
cf62fa4c 353 struct dp_packet *packet;
e22f1753 354
bb622f82 355 /* Use 2 bytes of headroom to 32-bit align the L3 header. */
cf62fa4c 356 packet = *packetp = dp_packet_new_with_headroom(strlen(hex) / 2, 2);
e22f1753 357
cf62fa4c
PS
358 if (dp_packet_put_hex(packet, hex, NULL)[0] != '\0') {
359 dp_packet_delete(packet);
e22f1753
BP
360 *packetp = NULL;
361 return "Trailing garbage in packet data";
362 }
363
cf62fa4c
PS
364 if (dp_packet_size(packet) < ETH_HEADER_LEN) {
365 dp_packet_delete(packet);
e22f1753
BP
366 *packetp = NULL;
367 return "Packet data too short for Ethernet";
368 }
369
370 return NULL;
371}
372
3b4d8ad3
JS
373void
374eth_format_masked(const uint8_t eth[ETH_ADDR_LEN],
375 const uint8_t mask[ETH_ADDR_LEN], struct ds *s)
376{
377 ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
73c0ce34 378 if (mask && !eth_mask_is_exact(mask)) {
3b4d8ad3
JS
379 ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(mask));
380 }
381}
382
383void
384eth_addr_bitand(const uint8_t src[ETH_ADDR_LEN],
385 const uint8_t mask[ETH_ADDR_LEN],
386 uint8_t dst[ETH_ADDR_LEN])
387{
388 int i;
389
390 for (i = 0; i < ETH_ADDR_LEN; i++) {
391 dst[i] = src[i] & mask[i];
392 }
393}
394
aad29cd1 395/* Given the IP netmask 'netmask', returns the number of bits of the IP address
c08201d6
BP
396 * that it specifies, that is, the number of 1-bits in 'netmask'.
397 *
398 * If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
399 * still be in the valid range but isn't otherwise meaningful. */
aad29cd1
BP
400int
401ip_count_cidr_bits(ovs_be32 netmask)
402{
d578065e 403 return 32 - ctz32(ntohl(netmask));
aad29cd1
BP
404}
405
406void
407ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
408{
ed36537e 409 ds_put_format(s, IP_FMT, IP_ARGS(ip));
b8266395 410 if (mask != OVS_BE32_MAX) {
aad29cd1
BP
411 if (ip_is_cidr(mask)) {
412 ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
413 } else {
ed36537e 414 ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
aad29cd1
BP
415 }
416 }
417}
418
419
d31f1109
JP
420/* Stores the string representation of the IPv6 address 'addr' into the
421 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
422 * bytes long. */
423void
424format_ipv6_addr(char *addr_str, const struct in6_addr *addr)
425{
426 inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
427}
428
429void
430print_ipv6_addr(struct ds *string, const struct in6_addr *addr)
431{
aad29cd1
BP
432 char *dst;
433
434 ds_reserve(string, string->length + INET6_ADDRSTRLEN);
435
436 dst = string->string + string->length;
437 format_ipv6_addr(dst, addr);
438 string->length += strlen(dst);
439}
d31f1109 440
964a4d5f
TLSC
441void
442print_ipv6_mapped(struct ds *s, const struct in6_addr *addr)
443{
444 if (IN6_IS_ADDR_V4MAPPED(addr)) {
445 ds_put_format(s, IP_FMT, addr->s6_addr[12], addr->s6_addr[13],
446 addr->s6_addr[14], addr->s6_addr[15]);
447 } else {
448 print_ipv6_addr(s, addr);
449 }
450}
451
aad29cd1
BP
452void
453print_ipv6_masked(struct ds *s, const struct in6_addr *addr,
454 const struct in6_addr *mask)
455{
456 print_ipv6_addr(s, addr);
457 if (mask && !ipv6_mask_is_exact(mask)) {
458 if (ipv6_is_cidr(mask)) {
459 int cidr_bits = ipv6_count_cidr_bits(mask);
460 ds_put_format(s, "/%d", cidr_bits);
461 } else {
462 ds_put_char(s, '/');
463 print_ipv6_addr(s, mask);
464 }
465 }
d31f1109
JP
466}
467
468struct in6_addr ipv6_addr_bitand(const struct in6_addr *a,
469 const struct in6_addr *b)
470{
471 int i;
472 struct in6_addr dst;
473
474#ifdef s6_addr32
475 for (i=0; i<4; i++) {
476 dst.s6_addr32[i] = a->s6_addr32[i] & b->s6_addr32[i];
477 }
478#else
479 for (i=0; i<16; i++) {
480 dst.s6_addr[i] = a->s6_addr[i] & b->s6_addr[i];
481 }
482#endif
483
484 return dst;
485}
486
487/* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
488 * low-order 0-bits. */
489struct in6_addr
490ipv6_create_mask(int mask)
491{
492 struct in6_addr netmask;
493 uint8_t *netmaskp = &netmask.s6_addr[0];
494
495 memset(&netmask, 0, sizeof netmask);
496 while (mask > 8) {
497 *netmaskp = 0xff;
498 netmaskp++;
499 mask -= 8;
500 }
501
502 if (mask) {
503 *netmaskp = 0xff << (8 - mask);
504 }
505
506 return netmask;
507}
508
aad29cd1
BP
509/* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
510 * address that it specifies, that is, the number of 1-bits in 'netmask'.
ff0b06ee
BP
511 * 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
512 *
513 * If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
514 * will still be in the valid range but isn't otherwise meaningful. */
d31f1109
JP
515int
516ipv6_count_cidr_bits(const struct in6_addr *netmask)
517{
518 int i;
519 int count = 0;
520 const uint8_t *netmaskp = &netmask->s6_addr[0];
521
d31f1109
JP
522 for (i=0; i<16; i++) {
523 if (netmaskp[i] == 0xff) {
524 count += 8;
525 } else {
526 uint8_t nm;
527
528 for(nm = netmaskp[i]; nm; nm <<= 1) {
529 count++;
530 }
531 break;
532 }
533
534 }
535
536 return count;
537}
538
d31f1109
JP
539/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
540 * high-order 1-bits and 128-N low-order 0-bits. */
541bool
542ipv6_is_cidr(const struct in6_addr *netmask)
543{
544 const uint8_t *netmaskp = &netmask->s6_addr[0];
545 int i;
546
547 for (i=0; i<16; i++) {
548 if (netmaskp[i] != 0xff) {
549 uint8_t x = ~netmaskp[i];
550 if (x & (x + 1)) {
551 return false;
552 }
553 while (++i < 16) {
554 if (netmaskp[i]) {
555 return false;
556 }
557 }
558 }
559 }
560
561 return true;
562}
c25c91fd 563
5de1bb5c
BP
564/* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
565 * 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
566 * in 'b' and returned. This payload may be populated with appropriate
cf3b7538
JR
567 * information by the caller. Sets 'b''s 'frame' pointer and 'l3' offset to
568 * the Ethernet header and payload respectively. Aligns b->l3 on a 32-bit
bb622f82 569 * boundary.
eda1f38d
BP
570 *
571 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
572 * desired. */
40f78b38 573void *
cf62fa4c 574eth_compose(struct dp_packet *b, const uint8_t eth_dst[ETH_ADDR_LEN],
5de1bb5c
BP
575 const uint8_t eth_src[ETH_ADDR_LEN], uint16_t eth_type,
576 size_t size)
c25c91fd 577{
40f78b38 578 void *data;
c25c91fd 579 struct eth_header *eth;
c25c91fd 580
cf62fa4c 581 dp_packet_clear(b);
c25c91fd 582
bb622f82
BP
583 /* The magic 2 here ensures that the L3 header (when it is added later)
584 * will be 32-bit aligned. */
cf62fa4c
PS
585 dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
586 dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
587 eth = dp_packet_put_uninit(b, ETH_HEADER_LEN);
588 data = dp_packet_put_uninit(b, size);
c25c91fd 589
40f78b38 590 memcpy(eth->eth_dst, eth_dst, ETH_ADDR_LEN);
c25c91fd 591 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
40f78b38
EJ
592 eth->eth_type = htons(eth_type);
593
82eb5b0a 594 dp_packet_reset_offsets(b);
cf62fa4c 595 dp_packet_set_l3(b, data);
75a4ead1 596
40f78b38 597 return data;
07a6cf77
EJ
598}
599
c97664b3 600static void
cf62fa4c 601packet_set_ipv4_addr(struct dp_packet *packet,
7c457c33 602 ovs_16aligned_be32 *addr, ovs_be32 new_addr)
c97664b3 603{
cf62fa4c 604 struct ip_header *nh = dp_packet_l3(packet);
7c457c33 605 ovs_be32 old_addr = get_16aligned_be32(addr);
cf62fa4c 606 size_t l4_size = dp_packet_l4_size(packet);
c97664b3 607
5a51b2cd 608 if (nh->ip_proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
cf62fa4c 609 struct tcp_header *th = dp_packet_l4(packet);
c97664b3 610
7c457c33 611 th->tcp_csum = recalc_csum32(th->tcp_csum, old_addr, new_addr);
5a51b2cd 612 } else if (nh->ip_proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN ) {
cf62fa4c 613 struct udp_header *uh = dp_packet_l4(packet);
c97664b3
EJ
614
615 if (uh->udp_csum) {
7c457c33 616 uh->udp_csum = recalc_csum32(uh->udp_csum, old_addr, new_addr);
c97664b3
EJ
617 if (!uh->udp_csum) {
618 uh->udp_csum = htons(0xffff);
619 }
620 }
621 }
7c457c33
BP
622 nh->ip_csum = recalc_csum32(nh->ip_csum, old_addr, new_addr);
623 put_16aligned_be32(addr, new_addr);
c97664b3
EJ
624}
625
bc7a5acd
AA
626/* Returns true, if packet contains at least one routing header where
627 * segements_left > 0.
628 *
437d0d22 629 * This function assumes that L3 and L4 offsets are set in the packet. */
bc7a5acd 630static bool
cf62fa4c 631packet_rh_present(struct dp_packet *packet)
bc7a5acd 632{
4528f34f 633 const struct ovs_16aligned_ip6_hdr *nh;
bc7a5acd
AA
634 int nexthdr;
635 size_t len;
636 size_t remaining;
cf62fa4c 637 uint8_t *data = dp_packet_l3(packet);
bc7a5acd 638
437d0d22 639 remaining = packet->l4_ofs - packet->l3_ofs;
bc7a5acd
AA
640
641 if (remaining < sizeof *nh) {
642 return false;
643 }
4528f34f 644 nh = ALIGNED_CAST(struct ovs_16aligned_ip6_hdr *, data);
bc7a5acd
AA
645 data += sizeof *nh;
646 remaining -= sizeof *nh;
647 nexthdr = nh->ip6_nxt;
648
649 while (1) {
650 if ((nexthdr != IPPROTO_HOPOPTS)
651 && (nexthdr != IPPROTO_ROUTING)
652 && (nexthdr != IPPROTO_DSTOPTS)
653 && (nexthdr != IPPROTO_AH)
654 && (nexthdr != IPPROTO_FRAGMENT)) {
655 /* It's either a terminal header (e.g., TCP, UDP) or one we
656 * don't understand. In either case, we're done with the
657 * packet, so use it to fill in 'nw_proto'. */
658 break;
659 }
660
661 /* We only verify that at least 8 bytes of the next header are
662 * available, but many of these headers are longer. Ensure that
663 * accesses within the extension header are within those first 8
664 * bytes. All extension headers are required to be at least 8
665 * bytes. */
666 if (remaining < 8) {
667 return false;
668 }
669
670 if (nexthdr == IPPROTO_AH) {
671 /* A standard AH definition isn't available, but the fields
672 * we care about are in the same location as the generic
673 * option header--only the header length is calculated
674 * differently. */
675 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
676
677 nexthdr = ext_hdr->ip6e_nxt;
678 len = (ext_hdr->ip6e_len + 2) * 4;
679 } else if (nexthdr == IPPROTO_FRAGMENT) {
4528f34f
BP
680 const struct ovs_16aligned_ip6_frag *frag_hdr
681 = ALIGNED_CAST(struct ovs_16aligned_ip6_frag *, data);
bc7a5acd
AA
682
683 nexthdr = frag_hdr->ip6f_nxt;
684 len = sizeof *frag_hdr;
685 } else if (nexthdr == IPPROTO_ROUTING) {
686 const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
687
688 if (rh->ip6r_segleft > 0) {
689 return true;
690 }
691
692 nexthdr = rh->ip6r_nxt;
693 len = (rh->ip6r_len + 1) * 8;
694 } else {
695 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
696
697 nexthdr = ext_hdr->ip6e_nxt;
698 len = (ext_hdr->ip6e_len + 1) * 8;
699 }
700
701 if (remaining < len) {
702 return false;
703 }
704 remaining -= len;
705 data += len;
706 }
707
708 return false;
709}
710
711static void
cf62fa4c 712packet_update_csum128(struct dp_packet *packet, uint8_t proto,
4528f34f 713 ovs_16aligned_be32 addr[4], const ovs_be32 new_addr[4])
bc7a5acd 714{
cf62fa4c 715 size_t l4_size = dp_packet_l4_size(packet);
5a51b2cd
JR
716
717 if (proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
cf62fa4c 718 struct tcp_header *th = dp_packet_l4(packet);
bc7a5acd
AA
719
720 th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
5a51b2cd 721 } else if (proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN) {
cf62fa4c 722 struct udp_header *uh = dp_packet_l4(packet);
bc7a5acd
AA
723
724 if (uh->udp_csum) {
725 uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
726 if (!uh->udp_csum) {
727 uh->udp_csum = htons(0xffff);
728 }
729 }
5abf65d0
JG
730 } else if (proto == IPPROTO_ICMPV6 &&
731 l4_size >= sizeof(struct icmp6_header)) {
cf62fa4c 732 struct icmp6_header *icmp = dp_packet_l4(packet);
00894212
JG
733
734 icmp->icmp6_cksum = recalc_csum128(icmp->icmp6_cksum, addr, new_addr);
bc7a5acd
AA
735 }
736}
737
738static void
cf62fa4c 739packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto,
4068403a 740 ovs_16aligned_be32 addr[4], const ovs_be32 new_addr[4],
bc7a5acd
AA
741 bool recalculate_csum)
742{
743 if (recalculate_csum) {
4528f34f 744 packet_update_csum128(packet, proto, addr, new_addr);
bc7a5acd 745 }
4068403a 746 memcpy(addr, new_addr, sizeof(ovs_be32[4]));
bc7a5acd
AA
747}
748
749static void
4528f34f 750packet_set_ipv6_flow_label(ovs_16aligned_be32 *flow_label, ovs_be32 flow_key)
bc7a5acd 751{
4528f34f
BP
752 ovs_be32 old_label = get_16aligned_be32(flow_label);
753 ovs_be32 new_label = (old_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
754 put_16aligned_be32(flow_label, new_label);
bc7a5acd
AA
755}
756
757static void
4528f34f 758packet_set_ipv6_tc(ovs_16aligned_be32 *flow_label, uint8_t tc)
bc7a5acd 759{
4528f34f
BP
760 ovs_be32 old_label = get_16aligned_be32(flow_label);
761 ovs_be32 new_label = (old_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
762 put_16aligned_be32(flow_label, new_label);
bc7a5acd
AA
763}
764
c97664b3
EJ
765/* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
766 * 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
767 * 'packet' must contain a valid IPv4 packet with correctly populated l[347]
768 * markers. */
769void
cf62fa4c 770packet_set_ipv4(struct dp_packet *packet, ovs_be32 src, ovs_be32 dst,
c97664b3
EJ
771 uint8_t tos, uint8_t ttl)
772{
cf62fa4c 773 struct ip_header *nh = dp_packet_l3(packet);
c97664b3 774
7c457c33 775 if (get_16aligned_be32(&nh->ip_src) != src) {
c97664b3
EJ
776 packet_set_ipv4_addr(packet, &nh->ip_src, src);
777 }
778
7c457c33 779 if (get_16aligned_be32(&nh->ip_dst) != dst) {
c97664b3
EJ
780 packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
781 }
782
783 if (nh->ip_tos != tos) {
784 uint8_t *field = &nh->ip_tos;
785
786 nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
787 htons((uint16_t) tos));
788 *field = tos;
789 }
790
791 if (nh->ip_ttl != ttl) {
792 uint8_t *field = &nh->ip_ttl;
793
794 nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
795 htons(ttl << 8));
796 *field = ttl;
797 }
798}
799
bc7a5acd
AA
800/* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
801 * 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
802 * appropriate. 'packet' must contain a valid IPv6 packet with correctly
437d0d22 803 * populated l[34] offsets. */
bc7a5acd 804void
cf62fa4c 805packet_set_ipv6(struct dp_packet *packet, uint8_t proto, const ovs_be32 src[4],
bc7a5acd
AA
806 const ovs_be32 dst[4], uint8_t key_tc, ovs_be32 key_fl,
807 uint8_t key_hl)
808{
cf62fa4c 809 struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(packet);
bc7a5acd
AA
810
811 if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
4528f34f 812 packet_set_ipv6_addr(packet, proto, nh->ip6_src.be32, src, true);
bc7a5acd
AA
813 }
814
815 if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
4528f34f 816 packet_set_ipv6_addr(packet, proto, nh->ip6_dst.be32, dst,
bc7a5acd
AA
817 !packet_rh_present(packet));
818 }
819
820 packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
821
822 packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
823
824 nh->ip6_hlim = key_hl;
825}
826
c97664b3
EJ
827static void
828packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
829{
830 if (*port != new_port) {
831 *csum = recalc_csum16(*csum, *port, new_port);
832 *port = new_port;
833 }
834}
835
836/* Sets the TCP source and destination port ('src' and 'dst' respectively) of
837 * the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
437d0d22 838 * with its l4 offset properly populated. */
c97664b3 839void
cf62fa4c 840packet_set_tcp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
c97664b3 841{
cf62fa4c 842 struct tcp_header *th = dp_packet_l4(packet);
c97664b3
EJ
843
844 packet_set_port(&th->tcp_src, src, &th->tcp_csum);
845 packet_set_port(&th->tcp_dst, dst, &th->tcp_csum);
846}
847
848/* Sets the UDP source and destination port ('src' and 'dst' respectively) of
849 * the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
437d0d22 850 * with its l4 offset properly populated. */
c97664b3 851void
cf62fa4c 852packet_set_udp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
c97664b3 853{
cf62fa4c 854 struct udp_header *uh = dp_packet_l4(packet);
c97664b3
EJ
855
856 if (uh->udp_csum) {
857 packet_set_port(&uh->udp_src, src, &uh->udp_csum);
858 packet_set_port(&uh->udp_dst, dst, &uh->udp_csum);
859
860 if (!uh->udp_csum) {
861 uh->udp_csum = htons(0xffff);
862 }
863 } else {
864 uh->udp_src = src;
865 uh->udp_dst = dst;
866 }
867}
12113c39 868
c6bcb685
JS
869/* Sets the SCTP source and destination port ('src' and 'dst' respectively) of
870 * the SCTP header contained in 'packet'. 'packet' must be a valid SCTP packet
437d0d22 871 * with its l4 offset properly populated. */
c6bcb685 872void
cf62fa4c 873packet_set_sctp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
c6bcb685 874{
cf62fa4c 875 struct sctp_header *sh = dp_packet_l4(packet);
c6bcb685 876 ovs_be32 old_csum, old_correct_csum, new_csum;
cf62fa4c 877 uint16_t tp_len = dp_packet_l4_size(packet);
c6bcb685 878
5fa008d4
BP
879 old_csum = get_16aligned_be32(&sh->sctp_csum);
880 put_16aligned_be32(&sh->sctp_csum, 0);
437d0d22 881 old_correct_csum = crc32c((void *)sh, tp_len);
c6bcb685
JS
882
883 sh->sctp_src = src;
884 sh->sctp_dst = dst;
885
437d0d22 886 new_csum = crc32c((void *)sh, tp_len);
5fa008d4 887 put_16aligned_be32(&sh->sctp_csum, old_csum ^ old_correct_csum ^ new_csum);
c6bcb685
JS
888}
889
e60e935b 890void
cf62fa4c 891packet_set_nd(struct dp_packet *packet, const ovs_be32 target[4],
e60e935b
SRCSA
892 const uint8_t sll[ETH_ADDR_LEN],
893 const uint8_t tll[ETH_ADDR_LEN]) {
894 struct ovs_nd_msg *ns;
895 struct ovs_nd_opt *nd_opt;
cf62fa4c 896 int bytes_remain = dp_packet_l4_size(packet);
e60e935b
SRCSA
897
898 if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
899 return;
900 }
901
cf62fa4c 902 ns = dp_packet_l4(packet);
e60e935b
SRCSA
903 nd_opt = &ns->options[0];
904 bytes_remain -= sizeof(*ns);
905
906 if (memcmp(&ns->target, target, sizeof(ovs_be32[4]))) {
907 packet_set_ipv6_addr(packet, IPPROTO_ICMPV6,
908 ns->target.be32,
909 target, true);
910 }
911
912 while (bytes_remain >= ND_OPT_LEN && nd_opt->nd_opt_len != 0) {
913 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
914 && nd_opt->nd_opt_len == 1) {
915 if (memcmp(nd_opt->nd_opt_data, sll, ETH_ADDR_LEN)) {
916 ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
917
918 *csum = recalc_csum48(*csum, nd_opt->nd_opt_data, sll);
919 memcpy(nd_opt->nd_opt_data, sll, ETH_ADDR_LEN);
920 }
921
922 /* A packet can only contain one SLL or TLL option */
923 break;
924 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
925 && nd_opt->nd_opt_len == 1) {
926 if (memcmp(nd_opt->nd_opt_data, tll, ETH_ADDR_LEN)) {
927 ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
928
929 *csum = recalc_csum48(*csum, nd_opt->nd_opt_data, tll);
930 memcpy(nd_opt->nd_opt_data, tll, ETH_ADDR_LEN);
931 }
932
933 /* A packet can only contain one SLL or TLL option */
934 break;
935 }
936
937 nd_opt += nd_opt->nd_opt_len;
938 bytes_remain -= nd_opt->nd_opt_len * ND_OPT_LEN;
939 }
940}
941
61bf6666
JR
942const char *
943packet_tcp_flag_to_string(uint32_t flag)
944{
945 switch (flag) {
946 case TCP_FIN:
947 return "fin";
948 case TCP_SYN:
949 return "syn";
950 case TCP_RST:
951 return "rst";
952 case TCP_PSH:
953 return "psh";
954 case TCP_ACK:
955 return "ack";
956 case TCP_URG:
957 return "urg";
958 case TCP_ECE:
959 return "ece";
960 case TCP_CWR:
961 return "cwr";
962 case TCP_NS:
963 return "ns";
964 case 0x200:
965 return "[200]";
966 case 0x400:
967 return "[400]";
968 case 0x800:
969 return "[800]";
970 default:
971 return NULL;
972 }
973}
974
7393104d 975/* Appends a string representation of the TCP flags value 'tcp_flags'
f41b5b3b 976 * (e.g. from struct flow.tcp_flags or obtained via TCP_FLAGS) to 's', in the
7393104d
BP
977 * format used by tcpdump. */
978void
a66733a8 979packet_format_tcp_flags(struct ds *s, uint16_t tcp_flags)
7393104d
BP
980{
981 if (!tcp_flags) {
982 ds_put_cstr(s, "none");
983 return;
984 }
985
986 if (tcp_flags & TCP_SYN) {
987 ds_put_char(s, 'S');
988 }
989 if (tcp_flags & TCP_FIN) {
990 ds_put_char(s, 'F');
991 }
992 if (tcp_flags & TCP_PSH) {
993 ds_put_char(s, 'P');
994 }
995 if (tcp_flags & TCP_RST) {
996 ds_put_char(s, 'R');
997 }
998 if (tcp_flags & TCP_URG) {
999 ds_put_char(s, 'U');
1000 }
1001 if (tcp_flags & TCP_ACK) {
1002 ds_put_char(s, '.');
1003 }
a66733a8
JR
1004 if (tcp_flags & TCP_ECE) {
1005 ds_put_cstr(s, "E");
7393104d 1006 }
a66733a8
JR
1007 if (tcp_flags & TCP_CWR) {
1008 ds_put_cstr(s, "C");
1009 }
1010 if (tcp_flags & TCP_NS) {
1011 ds_put_cstr(s, "N");
1012 }
1013 if (tcp_flags & 0x200) {
1014 ds_put_cstr(s, "[200]");
1015 }
1016 if (tcp_flags & 0x400) {
1017 ds_put_cstr(s, "[400]");
1018 }
1019 if (tcp_flags & 0x800) {
1020 ds_put_cstr(s, "[800]");
7393104d
BP
1021 }
1022}
a36de779
PS
1023
1024#define ARP_PACKET_SIZE (2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + \
1025 ARP_ETH_HEADER_LEN)
1026
eb0b295e
BP
1027/* Clears 'b' and replaces its contents by an ARP frame with the specified
1028 * 'arp_op', 'arp_sha', 'arp_tha', 'arp_spa', and 'arp_tpa'. The outer
1029 * Ethernet frame is initialized with Ethernet source 'arp_sha' and destination
1030 * 'arp_tha', except that destination ff:ff:ff:ff:ff:ff is used instead if
1031 * 'broadcast' is true. */
a36de779 1032void
eb0b295e
BP
1033compose_arp(struct dp_packet *b, uint16_t arp_op,
1034 const uint8_t arp_sha[ETH_ADDR_LEN],
1035 const uint8_t arp_tha[ETH_ADDR_LEN], bool broadcast,
1036 ovs_be32 arp_spa, ovs_be32 arp_tpa)
a36de779
PS
1037{
1038 struct eth_header *eth;
1039 struct arp_eth_header *arp;
1040
cf62fa4c
PS
1041 dp_packet_clear(b);
1042 dp_packet_prealloc_tailroom(b, ARP_PACKET_SIZE);
1043 dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
a36de779 1044
cf62fa4c 1045 eth = dp_packet_put_uninit(b, sizeof *eth);
eb0b295e
BP
1046 memcpy(eth->eth_dst, broadcast ? eth_addr_broadcast : arp_tha,
1047 ETH_ADDR_LEN);
1048 memcpy(eth->eth_src, arp_sha, ETH_ADDR_LEN);
a36de779
PS
1049 eth->eth_type = htons(ETH_TYPE_ARP);
1050
cf62fa4c 1051 arp = dp_packet_put_uninit(b, sizeof *arp);
a36de779
PS
1052 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
1053 arp->ar_pro = htons(ARP_PRO_IP);
1054 arp->ar_hln = sizeof arp->ar_sha;
1055 arp->ar_pln = sizeof arp->ar_spa;
eb0b295e
BP
1056 arp->ar_op = htons(arp_op);
1057 memcpy(arp->ar_sha, arp_sha, ETH_ADDR_LEN);
1058 memcpy(arp->ar_tha, arp_tha, ETH_ADDR_LEN);
a36de779 1059
eb0b295e
BP
1060 put_16aligned_be32(&arp->ar_spa, arp_spa);
1061 put_16aligned_be32(&arp->ar_tpa, arp_tpa);
a36de779 1062
82eb5b0a 1063 dp_packet_reset_offsets(b);
cf62fa4c 1064 dp_packet_set_l3(b, arp);
a36de779 1065}
0292a0c9
JG
1066
1067uint32_t
1068packet_csum_pseudoheader(const struct ip_header *ip)
1069{
1070 uint32_t partial = 0;
1071
1072 partial = csum_add32(partial, get_16aligned_be32(&ip->ip_src));
1073 partial = csum_add32(partial, get_16aligned_be32(&ip->ip_dst));
1074 partial = csum_add16(partial, htons(ip->ip_proto));
1075 partial = csum_add16(partial, htons(ntohs(ip->ip_tot_len) -
1076 IP_IHL(ip->ip_ihl_ver) * 4));
1077
1078 return partial;
1079}