]> git.proxmox.com Git - ovs.git/blame - lib/packets.c
Fix misspellings in comments and docs.
[ovs.git] / lib / packets.c
CommitLineData
b9e8b45a 1/*
48cecbdc 2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
b9e8b45a
BP
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <config.h>
18#include "packets.h"
d31f1109 19#include <arpa/inet.h>
6ca00f6f 20#include <sys/socket.h>
b9e8b45a 21#include <netinet/in.h>
bc7a5acd 22#include <netinet/ip6.h>
76343538 23#include <stdlib.h>
d31f1109 24#include "byte-order.h"
c97664b3 25#include "csum.h"
12113c39 26#include "flow.h"
7d48a4cc 27#include "hmap.h"
d31f1109 28#include "dynamic-string.h"
b9e8b45a
BP
29#include "ofpbuf.h"
30
d31f1109
JP
31const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
32
093ca5b3
BP
33/* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
34 * success stores the dpid into '*dpidp' and returns true, on failure stores 0
35 * into '*dpidp' and returns false.
36 *
37 * Rejects an all-zeros dpid as invalid. */
76343538
BP
38bool
39dpid_from_string(const char *s, uint64_t *dpidp)
40{
b123cc3c 41 *dpidp = (strlen(s) == 16 && strspn(s, "0123456789abcdefABCDEF") == 16
093ca5b3 42 ? strtoull(s, NULL, 16)
76343538
BP
43 : 0);
44 return *dpidp != 0;
45}
46
7d48a4cc
BP
47/* Returns true if 'ea' is a reserved address, that a bridge must never
48 * forward, false otherwise.
05be4e2c
EJ
49 *
50 * If you change this function's behavior, please update corresponding
51 * documentation in vswitch.xml at the same time. */
52bool
53eth_addr_is_reserved(const uint8_t ea[ETH_ADDR_LEN])
54{
7d48a4cc
BP
55 struct eth_addr_node {
56 struct hmap_node hmap_node;
57 uint64_t ea64;
05be4e2c
EJ
58 };
59
7d48a4cc
BP
60 static struct eth_addr_node nodes[] = {
61 /* STP, IEEE pause frames, and other reserved protocols. */
62 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000000ULL },
63 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000001ULL },
64 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000002ULL },
65 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000003ULL },
66 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000004ULL },
67 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000005ULL },
68 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000006ULL },
69 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000007ULL },
70 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000008ULL },
71 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000009ULL },
72 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000aULL },
73 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000bULL },
74 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000cULL },
75 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000dULL },
76 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000eULL },
77 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000fULL },
78
79 /* Extreme protocols. */
80 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
81 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
82 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
83
84 /* Cisco protocols. */
85 { HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
86 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
87 * DTP, VTP. */
88 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
89 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
90 * FlexLink. */
91
92 /* Cisco CFM. */
93 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
94 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
95 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
96 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
97 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
98 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
99 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
100 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
101 };
05be4e2c 102
7d48a4cc
BP
103 static struct hmap addrs = HMAP_INITIALIZER(&addrs);
104 struct eth_addr_node *node;
105 uint64_t ea64;
05be4e2c 106
7d48a4cc
BP
107 if (hmap_is_empty(&addrs)) {
108 for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
109 hmap_insert(&addrs, &node->hmap_node,
110 hash_2words(node->ea64, node->ea64 >> 32));
111 }
112 }
05be4e2c 113
7d48a4cc
BP
114 ea64 = eth_addr_to_uint64(ea);
115 HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_2words(ea64, ea64 >> 32),
116 &addrs) {
117 if (node->ea64 == ea64) {
05be4e2c
EJ
118 return true;
119 }
120 }
121 return false;
122}
123
76343538
BP
124bool
125eth_addr_from_string(const char *s, uint8_t ea[ETH_ADDR_LEN])
126{
127 if (sscanf(s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(ea))
128 == ETH_ADDR_SCAN_COUNT) {
129 return true;
130 } else {
131 memset(ea, 0, ETH_ADDR_LEN);
132 return false;
133 }
134}
135
38f7147c 136/* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
b9e8b45a 137 * This function is used by Open vSwitch to compose packets in cases where
38f7147c
EJ
138 * context is important but content doesn't (or shouldn't) matter.
139 *
140 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
141 * desired. */
b9e8b45a 142void
2ea838ac 143compose_rarp(struct ofpbuf *b, const uint8_t eth_src[ETH_ADDR_LEN])
b9e8b45a 144{
38f7147c 145 struct eth_header *eth;
7cb57d10 146 struct arp_eth_header *arp;
b9e8b45a 147
38f7147c
EJ
148 ofpbuf_clear(b);
149 ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN
7cb57d10 150 + ARP_ETH_HEADER_LEN);
38f7147c
EJ
151 ofpbuf_reserve(b, VLAN_HEADER_LEN);
152 eth = ofpbuf_put_uninit(b, sizeof *eth);
153 memcpy(eth->eth_dst, eth_addr_broadcast, ETH_ADDR_LEN);
154 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
155 eth->eth_type = htons(ETH_TYPE_RARP);
156
7cb57d10
EJ
157 arp = ofpbuf_put_uninit(b, sizeof *arp);
158 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
159 arp->ar_pro = htons(ARP_PRO_IP);
160 arp->ar_hln = sizeof arp->ar_sha;
161 arp->ar_pln = sizeof arp->ar_spa;
162 arp->ar_op = htons(ARP_OP_RARP);
163 memcpy(arp->ar_sha, eth_src, ETH_ADDR_LEN);
164 arp->ar_spa = htonl(0);
165 memcpy(arp->ar_tha, eth_src, ETH_ADDR_LEN);
166 arp->ar_tpa = htonl(0);
b9e8b45a 167}
d31f1109 168
d9065a90 169/* Insert VLAN header according to given TCI. Packet passed must be Ethernet
2f4ca41b 170 * packet. Ignores the CFI bit of 'tci' using 0 instead.
7c66b273
BP
171 *
172 * Also sets 'packet->l2' to point to the new Ethernet header. */
173void
d9065a90 174eth_push_vlan(struct ofpbuf *packet, ovs_be16 tci)
7c66b273
BP
175{
176 struct eth_header *eh = packet->data;
177 struct vlan_eth_header *veh;
178
d9065a90
PS
179 /* Insert new 802.1Q header. */
180 struct vlan_eth_header tmp;
181 memcpy(tmp.veth_dst, eh->eth_dst, ETH_ADDR_LEN);
182 memcpy(tmp.veth_src, eh->eth_src, ETH_ADDR_LEN);
183 tmp.veth_type = htons(ETH_TYPE_VLAN);
2f4ca41b 184 tmp.veth_tci = tci & htons(~VLAN_CFI);
d9065a90
PS
185 tmp.veth_next_type = eh->eth_type;
186
187 veh = ofpbuf_push_uninit(packet, VLAN_HEADER_LEN);
188 memcpy(veh, &tmp, sizeof tmp);
7c66b273 189
7c66b273
BP
190 packet->l2 = packet->data;
191}
192
f4ebc25e
BP
193/* Removes outermost VLAN header (if any is present) from 'packet'.
194 *
b02475c5
SH
195 * 'packet->l2_5' should initially point to 'packet''s outer-most MPLS header
196 * or may be NULL if there are no MPLS headers. */
f4ebc25e
BP
197void
198eth_pop_vlan(struct ofpbuf *packet)
199{
200 struct vlan_eth_header *veh = packet->l2;
201 if (packet->size >= sizeof *veh
202 && veh->veth_type == htons(ETH_TYPE_VLAN)) {
203 struct eth_header tmp;
204
205 memcpy(tmp.eth_dst, veh->veth_dst, ETH_ADDR_LEN);
206 memcpy(tmp.eth_src, veh->veth_src, ETH_ADDR_LEN);
207 tmp.eth_type = veh->veth_next_type;
208
209 ofpbuf_pull(packet, VLAN_HEADER_LEN);
210 packet->l2 = (char*)packet->l2 + VLAN_HEADER_LEN;
211 memcpy(packet->data, &tmp, sizeof tmp);
212 }
213}
214
b02475c5
SH
215/* Return depth of mpls stack.
216 *
217 * 'packet->l2_5' should initially point to 'packet''s outer-most MPLS header
218 * or may be NULL if there are no MPLS headers. */
219uint16_t
220eth_mpls_depth(const struct ofpbuf *packet)
221{
222 struct mpls_hdr *mh = packet->l2_5;
223 uint16_t depth;
224
225 if (!mh) {
226 return 0;
227 }
228
229 depth = 0;
230 while (packet->size >= ((char *)mh - (char *)packet->data) + sizeof *mh) {
231 depth++;
232 if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
233 break;
234 }
235 mh++;
236 }
237
238 return depth;
239}
240
241/* Set ethertype of the packet. */
242void
243set_ethertype(struct ofpbuf *packet, ovs_be16 eth_type)
244{
245 struct eth_header *eh = packet->data;
246
247 if (eh->eth_type == htons(ETH_TYPE_VLAN)) {
248 ovs_be16 *p;
249 p = (ovs_be16 *)((char *)(packet->l2_5 ? packet->l2_5 : packet->l3) - 2);
250 *p = eth_type;
251 } else {
252 eh->eth_type = eth_type;
253 }
254}
255
256static bool is_mpls(struct ofpbuf *packet)
257{
258 return packet->l2_5 != NULL;
259}
260
261/* Set time to live (TTL) of an MPLS label stack entry (LSE). */
b676167a 262void
b02475c5
SH
263set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
264{
265 *lse &= ~htonl(MPLS_TTL_MASK);
266 *lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
267}
268
269/* Set traffic class (TC) of an MPLS label stack entry (LSE). */
270void
271set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
272{
273 *lse &= ~htonl(MPLS_TC_MASK);
274 *lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
275}
276
277/* Set label of an MPLS label stack entry (LSE). */
278void
279set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
280{
281 *lse &= ~htonl(MPLS_LABEL_MASK);
282 *lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
283}
284
285/* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
286void
287set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
288{
289 *lse &= ~htonl(MPLS_BOS_MASK);
290 *lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
291}
292
293/* Compose an MPLS label stack entry (LSE) from its components:
294 * label, traffic class (TC), time to live (TTL) and
295 * bottom of stack (BoS) bit. */
296ovs_be32
297set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
298{
299 ovs_be32 lse = htonl(0);
300 set_mpls_lse_ttl(&lse, ttl);
301 set_mpls_lse_tc(&lse, tc);
302 set_mpls_lse_bos(&lse, bos);
303 set_mpls_lse_label(&lse, label);
304 return lse;
305}
306
307/* Push an new MPLS stack entry onto the MPLS stack and adjust 'packet->l2' and
308 * 'packet->l2_5' accordingly. The new entry will be the outermost entry on
309 * the stack.
310 *
311 * Previous to calling this function, 'packet->l2_5' must be set; if the MPLS
312 * label to be pushed will be the first label in 'packet', then it should be
313 * the same as 'packet->l3'. */
314static void
315push_mpls_lse(struct ofpbuf *packet, struct mpls_hdr *mh)
316{
317 char * header;
318 size_t len;
319 header = ofpbuf_push_uninit(packet, MPLS_HLEN);
320 len = (char *)packet->l2_5 - (char *)packet->l2;
321 memmove(header, packet->l2, len);
322 memcpy(header + len, mh, sizeof *mh);
323 packet->l2 = (char*)packet->l2 - MPLS_HLEN;
324 packet->l2_5 = (char*)packet->l2_5 - MPLS_HLEN;
325}
326
327/* Set MPLS label stack entry to outermost MPLS header.*/
328void
329set_mpls_lse(struct ofpbuf *packet, ovs_be32 mpls_lse)
330{
331 struct mpls_hdr *mh = packet->l2_5;
332
333 /* Packet type should be MPLS to set label stack entry. */
334 if (is_mpls(packet)) {
335 /* Update mpls label stack entry. */
336 mh->mpls_lse = mpls_lse;
337 }
338}
339
340/* Push MPLS label stack entry 'lse' onto 'packet' as the the outermost MPLS
341 * header. If 'packet' does not already have any MPLS labels, then its
342 * Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
343void
344push_mpls(struct ofpbuf *packet, ovs_be16 ethtype, ovs_be32 lse)
345{
346 struct mpls_hdr mh;
347
348 if (!eth_type_mpls(ethtype)) {
349 return;
350 }
351
352 if (!is_mpls(packet)) {
353 /* Set ethtype and MPLS label stack entry. */
354 set_ethertype(packet, ethtype);
355 packet->l2_5 = packet->l3;
356 }
357
358 /* Push new MPLS shim header onto packet. */
359 mh.mpls_lse = lse;
360 push_mpls_lse(packet, &mh);
361}
362
363/* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
364 * If the label that was removed was the only MPLS label, changes 'packet''s
365 * Ethertype to 'ethtype' (which ordinarily should not be an MPLS
366 * Ethertype). */
367void
368pop_mpls(struct ofpbuf *packet, ovs_be16 ethtype)
369{
370 struct mpls_hdr *mh = NULL;
371
372 if (is_mpls(packet)) {
373 size_t len;
374 mh = packet->l2_5;
375 len = (char*)packet->l2_5 - (char*)packet->l2;
376 /* If bottom of the stack set ethertype. */
377 if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
b02475c5 378 set_ethertype(packet, ethtype);
2555b1db 379 packet->l2_5 = NULL;
b02475c5
SH
380 } else {
381 packet->l2_5 = (char*)packet->l2_5 + MPLS_HLEN;
382 }
383 /* Shift the l2 header forward. */
384 memmove((char*)packet->data + MPLS_HLEN, packet->data, len);
385 packet->size -= MPLS_HLEN;
386 packet->data = (char*)packet->data + MPLS_HLEN;
387 packet->l2 = (char*)packet->l2 + MPLS_HLEN;
388 }
389}
390
e22f1753
BP
391/* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
392 * caller must free '*packetp'. On success, returns NULL. On failure, returns
393 * an error message and stores NULL in '*packetp'. */
394const char *
395eth_from_hex(const char *hex, struct ofpbuf **packetp)
396{
397 struct ofpbuf *packet;
398
399 packet = *packetp = ofpbuf_new(strlen(hex) / 2);
400
401 if (ofpbuf_put_hex(packet, hex, NULL)[0] != '\0') {
402 ofpbuf_delete(packet);
403 *packetp = NULL;
404 return "Trailing garbage in packet data";
405 }
406
407 if (packet->size < ETH_HEADER_LEN) {
408 ofpbuf_delete(packet);
409 *packetp = NULL;
410 return "Packet data too short for Ethernet";
411 }
412
413 return NULL;
414}
415
3b4d8ad3
JS
416void
417eth_format_masked(const uint8_t eth[ETH_ADDR_LEN],
418 const uint8_t mask[ETH_ADDR_LEN], struct ds *s)
419{
420 ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
73c0ce34 421 if (mask && !eth_mask_is_exact(mask)) {
3b4d8ad3
JS
422 ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(mask));
423 }
424}
425
426void
427eth_addr_bitand(const uint8_t src[ETH_ADDR_LEN],
428 const uint8_t mask[ETH_ADDR_LEN],
429 uint8_t dst[ETH_ADDR_LEN])
430{
431 int i;
432
433 for (i = 0; i < ETH_ADDR_LEN; i++) {
434 dst[i] = src[i] & mask[i];
435 }
436}
437
aad29cd1 438/* Given the IP netmask 'netmask', returns the number of bits of the IP address
c08201d6
BP
439 * that it specifies, that is, the number of 1-bits in 'netmask'.
440 *
441 * If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
442 * still be in the valid range but isn't otherwise meaningful. */
aad29cd1
BP
443int
444ip_count_cidr_bits(ovs_be32 netmask)
445{
aad29cd1
BP
446 return 32 - ctz(ntohl(netmask));
447}
448
449void
450ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
451{
ed36537e 452 ds_put_format(s, IP_FMT, IP_ARGS(ip));
aad29cd1
BP
453 if (mask != htonl(UINT32_MAX)) {
454 if (ip_is_cidr(mask)) {
455 ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
456 } else {
ed36537e 457 ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
aad29cd1
BP
458 }
459 }
460}
461
462
d31f1109
JP
463/* Stores the string representation of the IPv6 address 'addr' into the
464 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
465 * bytes long. */
466void
467format_ipv6_addr(char *addr_str, const struct in6_addr *addr)
468{
469 inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
470}
471
472void
473print_ipv6_addr(struct ds *string, const struct in6_addr *addr)
474{
aad29cd1
BP
475 char *dst;
476
477 ds_reserve(string, string->length + INET6_ADDRSTRLEN);
478
479 dst = string->string + string->length;
480 format_ipv6_addr(dst, addr);
481 string->length += strlen(dst);
482}
d31f1109 483
aad29cd1
BP
484void
485print_ipv6_masked(struct ds *s, const struct in6_addr *addr,
486 const struct in6_addr *mask)
487{
488 print_ipv6_addr(s, addr);
489 if (mask && !ipv6_mask_is_exact(mask)) {
490 if (ipv6_is_cidr(mask)) {
491 int cidr_bits = ipv6_count_cidr_bits(mask);
492 ds_put_format(s, "/%d", cidr_bits);
493 } else {
494 ds_put_char(s, '/');
495 print_ipv6_addr(s, mask);
496 }
497 }
d31f1109
JP
498}
499
500struct in6_addr ipv6_addr_bitand(const struct in6_addr *a,
501 const struct in6_addr *b)
502{
503 int i;
504 struct in6_addr dst;
505
506#ifdef s6_addr32
507 for (i=0; i<4; i++) {
508 dst.s6_addr32[i] = a->s6_addr32[i] & b->s6_addr32[i];
509 }
510#else
511 for (i=0; i<16; i++) {
512 dst.s6_addr[i] = a->s6_addr[i] & b->s6_addr[i];
513 }
514#endif
515
516 return dst;
517}
518
519/* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
520 * low-order 0-bits. */
521struct in6_addr
522ipv6_create_mask(int mask)
523{
524 struct in6_addr netmask;
525 uint8_t *netmaskp = &netmask.s6_addr[0];
526
527 memset(&netmask, 0, sizeof netmask);
528 while (mask > 8) {
529 *netmaskp = 0xff;
530 netmaskp++;
531 mask -= 8;
532 }
533
534 if (mask) {
535 *netmaskp = 0xff << (8 - mask);
536 }
537
538 return netmask;
539}
540
aad29cd1
BP
541/* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
542 * address that it specifies, that is, the number of 1-bits in 'netmask'.
ff0b06ee
BP
543 * 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
544 *
545 * If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
546 * will still be in the valid range but isn't otherwise meaningful. */
d31f1109
JP
547int
548ipv6_count_cidr_bits(const struct in6_addr *netmask)
549{
550 int i;
551 int count = 0;
552 const uint8_t *netmaskp = &netmask->s6_addr[0];
553
d31f1109
JP
554 for (i=0; i<16; i++) {
555 if (netmaskp[i] == 0xff) {
556 count += 8;
557 } else {
558 uint8_t nm;
559
560 for(nm = netmaskp[i]; nm; nm <<= 1) {
561 count++;
562 }
563 break;
564 }
565
566 }
567
568 return count;
569}
570
d31f1109
JP
571/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
572 * high-order 1-bits and 128-N low-order 0-bits. */
573bool
574ipv6_is_cidr(const struct in6_addr *netmask)
575{
576 const uint8_t *netmaskp = &netmask->s6_addr[0];
577 int i;
578
579 for (i=0; i<16; i++) {
580 if (netmaskp[i] != 0xff) {
581 uint8_t x = ~netmaskp[i];
582 if (x & (x + 1)) {
583 return false;
584 }
585 while (++i < 16) {
586 if (netmaskp[i]) {
587 return false;
588 }
589 }
590 }
591 }
592
593 return true;
594}
c25c91fd 595
5de1bb5c
BP
596/* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
597 * 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
598 * in 'b' and returned. This payload may be populated with appropriate
75a4ead1
EJ
599 * information by the caller. Sets 'b''s 'l2' and 'l3' pointers to the
600 * Ethernet header and payload respectively.
eda1f38d
BP
601 *
602 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
603 * desired. */
40f78b38 604void *
5de1bb5c
BP
605eth_compose(struct ofpbuf *b, const uint8_t eth_dst[ETH_ADDR_LEN],
606 const uint8_t eth_src[ETH_ADDR_LEN], uint16_t eth_type,
607 size_t size)
c25c91fd 608{
40f78b38 609 void *data;
c25c91fd 610 struct eth_header *eth;
c25c91fd
EJ
611
612 ofpbuf_clear(b);
613
eda1f38d
BP
614 ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
615 ofpbuf_reserve(b, VLAN_HEADER_LEN);
40f78b38
EJ
616 eth = ofpbuf_put_uninit(b, ETH_HEADER_LEN);
617 data = ofpbuf_put_uninit(b, size);
c25c91fd 618
40f78b38 619 memcpy(eth->eth_dst, eth_dst, ETH_ADDR_LEN);
c25c91fd 620 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
40f78b38
EJ
621 eth->eth_type = htons(eth_type);
622
75a4ead1
EJ
623 b->l2 = eth;
624 b->l3 = data;
625
40f78b38 626 return data;
07a6cf77
EJ
627}
628
c97664b3
EJ
629static void
630packet_set_ipv4_addr(struct ofpbuf *packet, ovs_be32 *addr, ovs_be32 new_addr)
631{
632 struct ip_header *nh = packet->l3;
633
634 if (nh->ip_proto == IPPROTO_TCP && packet->l7) {
635 struct tcp_header *th = packet->l4;
636
637 th->tcp_csum = recalc_csum32(th->tcp_csum, *addr, new_addr);
638 } else if (nh->ip_proto == IPPROTO_UDP && packet->l7) {
639 struct udp_header *uh = packet->l4;
640
641 if (uh->udp_csum) {
642 uh->udp_csum = recalc_csum32(uh->udp_csum, *addr, new_addr);
643 if (!uh->udp_csum) {
644 uh->udp_csum = htons(0xffff);
645 }
646 }
647 }
648 nh->ip_csum = recalc_csum32(nh->ip_csum, *addr, new_addr);
649 *addr = new_addr;
650}
651
bc7a5acd
AA
652/* Returns true, if packet contains at least one routing header where
653 * segements_left > 0.
654 *
655 * This function assumes that L3 and L4 markers are set in the packet. */
656static bool
657packet_rh_present(struct ofpbuf *packet)
658{
659 const struct ip6_hdr *nh;
660 int nexthdr;
661 size_t len;
662 size_t remaining;
663 uint8_t *data = packet->l3;
664
665 remaining = (uint8_t *)packet->l4 - (uint8_t *)packet->l3;
666
667 if (remaining < sizeof *nh) {
668 return false;
669 }
670 nh = (struct ip6_hdr *)data;
671 data += sizeof *nh;
672 remaining -= sizeof *nh;
673 nexthdr = nh->ip6_nxt;
674
675 while (1) {
676 if ((nexthdr != IPPROTO_HOPOPTS)
677 && (nexthdr != IPPROTO_ROUTING)
678 && (nexthdr != IPPROTO_DSTOPTS)
679 && (nexthdr != IPPROTO_AH)
680 && (nexthdr != IPPROTO_FRAGMENT)) {
681 /* It's either a terminal header (e.g., TCP, UDP) or one we
682 * don't understand. In either case, we're done with the
683 * packet, so use it to fill in 'nw_proto'. */
684 break;
685 }
686
687 /* We only verify that at least 8 bytes of the next header are
688 * available, but many of these headers are longer. Ensure that
689 * accesses within the extension header are within those first 8
690 * bytes. All extension headers are required to be at least 8
691 * bytes. */
692 if (remaining < 8) {
693 return false;
694 }
695
696 if (nexthdr == IPPROTO_AH) {
697 /* A standard AH definition isn't available, but the fields
698 * we care about are in the same location as the generic
699 * option header--only the header length is calculated
700 * differently. */
701 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
702
703 nexthdr = ext_hdr->ip6e_nxt;
704 len = (ext_hdr->ip6e_len + 2) * 4;
705 } else if (nexthdr == IPPROTO_FRAGMENT) {
706 const struct ip6_frag *frag_hdr = (struct ip6_frag *)data;
707
708 nexthdr = frag_hdr->ip6f_nxt;
709 len = sizeof *frag_hdr;
710 } else if (nexthdr == IPPROTO_ROUTING) {
711 const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
712
713 if (rh->ip6r_segleft > 0) {
714 return true;
715 }
716
717 nexthdr = rh->ip6r_nxt;
718 len = (rh->ip6r_len + 1) * 8;
719 } else {
720 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
721
722 nexthdr = ext_hdr->ip6e_nxt;
723 len = (ext_hdr->ip6e_len + 1) * 8;
724 }
725
726 if (remaining < len) {
727 return false;
728 }
729 remaining -= len;
730 data += len;
731 }
732
733 return false;
734}
735
736static void
737packet_update_csum128(struct ofpbuf *packet, uint8_t proto,
738 ovs_be32 addr[4], const ovs_be32 new_addr[4])
739{
740 if (proto == IPPROTO_TCP && packet->l7) {
741 struct tcp_header *th = packet->l4;
742
743 th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
744 } else if (proto == IPPROTO_UDP && packet->l7) {
745 struct udp_header *uh = packet->l4;
746
747 if (uh->udp_csum) {
748 uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
749 if (!uh->udp_csum) {
750 uh->udp_csum = htons(0xffff);
751 }
752 }
753 }
754}
755
756static void
757packet_set_ipv6_addr(struct ofpbuf *packet, uint8_t proto,
758 struct in6_addr *addr, const ovs_be32 new_addr[4],
759 bool recalculate_csum)
760{
761 if (recalculate_csum) {
762 packet_update_csum128(packet, proto, (ovs_be32 *)addr, new_addr);
763 }
764 memcpy(addr, new_addr, sizeof(*addr));
765}
766
767static void
768packet_set_ipv6_flow_label(ovs_be32 *flow_label, ovs_be32 flow_key)
769{
770 *flow_label = (*flow_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
771}
772
773static void
774packet_set_ipv6_tc(ovs_be32 *flow_label, uint8_t tc)
775{
776 *flow_label = (*flow_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
777}
778
c97664b3
EJ
779/* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
780 * 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
781 * 'packet' must contain a valid IPv4 packet with correctly populated l[347]
782 * markers. */
783void
784packet_set_ipv4(struct ofpbuf *packet, ovs_be32 src, ovs_be32 dst,
785 uint8_t tos, uint8_t ttl)
786{
787 struct ip_header *nh = packet->l3;
788
789 if (nh->ip_src != src) {
790 packet_set_ipv4_addr(packet, &nh->ip_src, src);
791 }
792
793 if (nh->ip_dst != dst) {
794 packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
795 }
796
797 if (nh->ip_tos != tos) {
798 uint8_t *field = &nh->ip_tos;
799
800 nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
801 htons((uint16_t) tos));
802 *field = tos;
803 }
804
805 if (nh->ip_ttl != ttl) {
806 uint8_t *field = &nh->ip_ttl;
807
808 nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
809 htons(ttl << 8));
810 *field = ttl;
811 }
812}
813
bc7a5acd
AA
814/* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
815 * 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
816 * appropriate. 'packet' must contain a valid IPv6 packet with correctly
817 * populated l[347] markers. */
818void
819packet_set_ipv6(struct ofpbuf *packet, uint8_t proto, const ovs_be32 src[4],
820 const ovs_be32 dst[4], uint8_t key_tc, ovs_be32 key_fl,
821 uint8_t key_hl)
822{
823 struct ip6_hdr *nh = packet->l3;
824
825 if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
826 packet_set_ipv6_addr(packet, proto, &nh->ip6_src, src, true);
827 }
828
829 if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
830 packet_set_ipv6_addr(packet, proto, &nh->ip6_dst, dst,
831 !packet_rh_present(packet));
832 }
833
834 packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
835
836 packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
837
838 nh->ip6_hlim = key_hl;
839}
840
c97664b3
EJ
841static void
842packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
843{
844 if (*port != new_port) {
845 *csum = recalc_csum16(*csum, *port, new_port);
846 *port = new_port;
847 }
848}
849
850/* Sets the TCP source and destination port ('src' and 'dst' respectively) of
851 * the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
852 * with its l4 marker properly populated. */
853void
854packet_set_tcp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
855{
856 struct tcp_header *th = packet->l4;
857
858 packet_set_port(&th->tcp_src, src, &th->tcp_csum);
859 packet_set_port(&th->tcp_dst, dst, &th->tcp_csum);
860}
861
862/* Sets the UDP source and destination port ('src' and 'dst' respectively) of
863 * the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
864 * with its l4 marker properly populated. */
865void
866packet_set_udp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
867{
868 struct udp_header *uh = packet->l4;
869
870 if (uh->udp_csum) {
871 packet_set_port(&uh->udp_src, src, &uh->udp_csum);
872 packet_set_port(&uh->udp_dst, dst, &uh->udp_csum);
873
874 if (!uh->udp_csum) {
875 uh->udp_csum = htons(0xffff);
876 }
877 } else {
878 uh->udp_src = src;
879 uh->udp_dst = dst;
880 }
881}
12113c39
BP
882
883/* If 'packet' is a TCP packet, returns the TCP flags. Otherwise, returns 0.
884 *
885 * 'flow' must be the flow corresponding to 'packet' and 'packet''s header
886 * pointers must be properly initialized (e.g. with flow_extract()). */
887uint8_t
888packet_get_tcp_flags(const struct ofpbuf *packet, const struct flow *flow)
889{
cff78c88 890 if (dl_type_is_ip_any(flow->dl_type) &&
e8c16d83 891 flow->nw_proto == IPPROTO_TCP && packet->l7) {
12113c39
BP
892 const struct tcp_header *tcp = packet->l4;
893 return TCP_FLAGS(tcp->tcp_ctl);
894 } else {
895 return 0;
896 }
897}
7393104d
BP
898
899/* Appends a string representation of the TCP flags value 'tcp_flags'
900 * (e.g. obtained via packet_get_tcp_flags() or TCP_FLAGS) to 's', in the
901 * format used by tcpdump. */
902void
903packet_format_tcp_flags(struct ds *s, uint8_t tcp_flags)
904{
905 if (!tcp_flags) {
906 ds_put_cstr(s, "none");
907 return;
908 }
909
910 if (tcp_flags & TCP_SYN) {
911 ds_put_char(s, 'S');
912 }
913 if (tcp_flags & TCP_FIN) {
914 ds_put_char(s, 'F');
915 }
916 if (tcp_flags & TCP_PSH) {
917 ds_put_char(s, 'P');
918 }
919 if (tcp_flags & TCP_RST) {
920 ds_put_char(s, 'R');
921 }
922 if (tcp_flags & TCP_URG) {
923 ds_put_char(s, 'U');
924 }
925 if (tcp_flags & TCP_ACK) {
926 ds_put_char(s, '.');
927 }
928 if (tcp_flags & 0x40) {
929 ds_put_cstr(s, "[40]");
930 }
931 if (tcp_flags & 0x80) {
932 ds_put_cstr(s, "[80]");
933 }
934}