]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - lib/radix-tree.c
UBUNTU: Ubuntu-5.11.0-20.21
[mirror_ubuntu-hirsute-kernel.git] / lib / radix-tree.c
CommitLineData
de6cc651 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 5 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 6 * Copyright (C) 2006 Nick Piggin
78c1d784 7 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
8 * Copyright (C) 2016 Intel, Matthew Wilcox
9 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
10 */
11
0a835c4f
MW
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
460488c5 14#include <linux/bug.h>
e157b555 15#include <linux/cpu.h>
1da177e4 16#include <linux/errno.h>
0a835c4f
MW
17#include <linux/export.h>
18#include <linux/idr.h>
1da177e4
LT
19#include <linux/init.h>
20#include <linux/kernel.h>
0a835c4f 21#include <linux/kmemleak.h>
1da177e4 22#include <linux/percpu.h>
0a835c4f
MW
23#include <linux/preempt.h> /* in_interrupt() */
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
1da177e4 26#include <linux/slab.h>
1da177e4 27#include <linux/string.h>
02c02bf1 28#include <linux/xarray.h>
1da177e4 29
d04295c9 30
1da177e4
LT
31/*
32 * Radix tree node cache.
33 */
58d6ea30 34struct kmem_cache *radix_tree_node_cachep;
1da177e4 35
55368052
NP
36/*
37 * The radix tree is variable-height, so an insert operation not only has
38 * to build the branch to its corresponding item, it also has to build the
39 * branch to existing items if the size has to be increased (by
40 * radix_tree_extend).
41 *
42 * The worst case is a zero height tree with just a single item at index 0,
43 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
44 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
45 * Hence:
46 */
47#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
48
0a835c4f
MW
49/*
50 * The IDR does not have to be as high as the radix tree since it uses
51 * signed integers, not unsigned longs.
52 */
53#define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
54#define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
55 RADIX_TREE_MAP_SHIFT))
56#define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
57
1da177e4
LT
58/*
59 * Per-cpu pool of preloaded nodes
60 */
d04295c9
SF
61struct radix_tree_preload {
62 unsigned nr;
63 /* nodes->parent points to next preallocated node */
64 struct radix_tree_node *nodes;
1da177e4 65};
d04295c9 66static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 67
148deab2
MW
68static inline struct radix_tree_node *entry_to_node(void *ptr)
69{
70 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
71}
72
a4db4dce 73static inline void *node_to_entry(void *ptr)
27d20fdd 74{
30ff46cc 75 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
76}
77
02c02bf1 78#define RADIX_TREE_RETRY XA_RETRY_ENTRY
db050f29 79
d7b62727
MW
80static inline unsigned long
81get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
db050f29 82{
76f070b4 83 return parent ? slot - parent->slots : 0;
db050f29
MW
84}
85
35534c86 86static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
9e85d811 87 struct radix_tree_node **nodep, unsigned long index)
db050f29 88{
9e85d811 89 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
d7b62727 90 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
db050f29 91
db050f29
MW
92 *nodep = (void *)entry;
93 return offset;
94}
95
35534c86 96static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
612d6c19 97{
f8d5d0cc 98 return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
612d6c19
NP
99}
100
643b52b9
NP
101static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
102 int offset)
103{
104 __set_bit(offset, node->tags[tag]);
105}
106
107static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
108 int offset)
109{
110 __clear_bit(offset, node->tags[tag]);
111}
112
35534c86 113static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
643b52b9
NP
114 int offset)
115{
116 return test_bit(offset, node->tags[tag]);
117}
118
35534c86 119static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
643b52b9 120{
f8d5d0cc 121 root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
122}
123
2fcd9005 124static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9 125{
f8d5d0cc 126 root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
127}
128
129static inline void root_tag_clear_all(struct radix_tree_root *root)
130{
f8d5d0cc 131 root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
643b52b9
NP
132}
133
35534c86 134static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
643b52b9 135{
f8d5d0cc 136 return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
137}
138
35534c86 139static inline unsigned root_tags_get(const struct radix_tree_root *root)
643b52b9 140{
f8d5d0cc 141 return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
643b52b9
NP
142}
143
0a835c4f 144static inline bool is_idr(const struct radix_tree_root *root)
7b60e9ad 145{
f8d5d0cc 146 return !!(root->xa_flags & ROOT_IS_IDR);
7b60e9ad
MW
147}
148
643b52b9
NP
149/*
150 * Returns 1 if any slot in the node has this tag set.
151 * Otherwise returns 0.
152 */
35534c86
MW
153static inline int any_tag_set(const struct radix_tree_node *node,
154 unsigned int tag)
643b52b9 155{
2fcd9005 156 unsigned idx;
643b52b9
NP
157 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
158 if (node->tags[tag][idx])
159 return 1;
160 }
161 return 0;
162}
78c1d784 163
0a835c4f
MW
164static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
165{
166 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
167}
168
78c1d784
KK
169/**
170 * radix_tree_find_next_bit - find the next set bit in a memory region
171 *
172 * @addr: The address to base the search on
173 * @size: The bitmap size in bits
174 * @offset: The bitnumber to start searching at
175 *
176 * Unrollable variant of find_next_bit() for constant size arrays.
177 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
178 * Returns next bit offset, or size if nothing found.
179 */
180static __always_inline unsigned long
bc412fca
MW
181radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
182 unsigned long offset)
78c1d784 183{
bc412fca 184 const unsigned long *addr = node->tags[tag];
78c1d784 185
bc412fca 186 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
187 unsigned long tmp;
188
189 addr += offset / BITS_PER_LONG;
190 tmp = *addr >> (offset % BITS_PER_LONG);
191 if (tmp)
192 return __ffs(tmp) + offset;
193 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 194 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
195 tmp = *++addr;
196 if (tmp)
197 return __ffs(tmp) + offset;
198 offset += BITS_PER_LONG;
199 }
200 }
bc412fca 201 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
202}
203
268f42de
MW
204static unsigned int iter_offset(const struct radix_tree_iter *iter)
205{
3a08cd52 206 return iter->index & RADIX_TREE_MAP_MASK;
268f42de
MW
207}
208
218ed750
MW
209/*
210 * The maximum index which can be stored in a radix tree
211 */
212static inline unsigned long shift_maxindex(unsigned int shift)
213{
214 return (RADIX_TREE_MAP_SIZE << shift) - 1;
215}
216
35534c86 217static inline unsigned long node_maxindex(const struct radix_tree_node *node)
218ed750
MW
218{
219 return shift_maxindex(node->shift);
220}
221
0a835c4f
MW
222static unsigned long next_index(unsigned long index,
223 const struct radix_tree_node *node,
224 unsigned long offset)
225{
226 return (index & ~node_maxindex(node)) + (offset << node->shift);
227}
228
1da177e4
LT
229/*
230 * This assumes that the caller has performed appropriate preallocation, and
231 * that the caller has pinned this thread of control to the current CPU.
232 */
233static struct radix_tree_node *
0a835c4f 234radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
d58275bc 235 struct radix_tree_root *root,
e8de4340 236 unsigned int shift, unsigned int offset,
01959dfe 237 unsigned int count, unsigned int nr_values)
1da177e4 238{
e2848a0e 239 struct radix_tree_node *ret = NULL;
1da177e4 240
5e4c0d97 241 /*
2fcd9005
MW
242 * Preload code isn't irq safe and it doesn't make sense to use
243 * preloading during an interrupt anyway as all the allocations have
244 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 245 */
d0164adc 246 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
247 struct radix_tree_preload *rtp;
248
58e698af
VD
249 /*
250 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
251 * cache first for the new node to get accounted to the memory
252 * cgroup.
58e698af
VD
253 */
254 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 255 gfp_mask | __GFP_NOWARN);
58e698af
VD
256 if (ret)
257 goto out;
258
e2848a0e
NP
259 /*
260 * Provided the caller has preloaded here, we will always
261 * succeed in getting a node here (and never reach
262 * kmem_cache_alloc)
263 */
7c8e0181 264 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 265 if (rtp->nr) {
9d2a8da0 266 ret = rtp->nodes;
1293d5c5 267 rtp->nodes = ret->parent;
1da177e4
LT
268 rtp->nr--;
269 }
ce80b067
CM
270 /*
271 * Update the allocation stack trace as this is more useful
272 * for debugging.
273 */
274 kmemleak_update_trace(ret);
58e698af 275 goto out;
1da177e4 276 }
05eb6e72 277 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 278out:
b194d16c 279 BUG_ON(radix_tree_is_internal_node(ret));
e8de4340 280 if (ret) {
e8de4340
MW
281 ret->shift = shift;
282 ret->offset = offset;
283 ret->count = count;
01959dfe 284 ret->nr_values = nr_values;
d58275bc 285 ret->parent = parent;
01959dfe 286 ret->array = root;
e8de4340 287 }
1da177e4
LT
288 return ret;
289}
290
58d6ea30 291void radix_tree_node_rcu_free(struct rcu_head *head)
7cf9c2c7
NP
292{
293 struct radix_tree_node *node =
294 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
295
296 /*
175542f5
MW
297 * Must only free zeroed nodes into the slab. We can be left with
298 * non-NULL entries by radix_tree_free_nodes, so clear the entries
299 * and tags here.
643b52b9 300 */
175542f5
MW
301 memset(node->slots, 0, sizeof(node->slots));
302 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 303 INIT_LIST_HEAD(&node->private_list);
643b52b9 304
7cf9c2c7
NP
305 kmem_cache_free(radix_tree_node_cachep, node);
306}
307
1da177e4
LT
308static inline void
309radix_tree_node_free(struct radix_tree_node *node)
310{
7cf9c2c7 311 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
312}
313
314/*
315 * Load up this CPU's radix_tree_node buffer with sufficient objects to
316 * ensure that the addition of a single element in the tree cannot fail. On
317 * success, return zero, with preemption disabled. On error, return -ENOMEM
318 * with preemption not disabled.
b34df792
DH
319 *
320 * To make use of this facility, the radix tree must be initialised without
d0164adc 321 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 322 */
bc9ae224 323static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
1da177e4
LT
324{
325 struct radix_tree_preload *rtp;
326 struct radix_tree_node *node;
327 int ret = -ENOMEM;
328
05eb6e72 329 /*
e0656501 330 * Nodes preloaded by one cgroup can be used by another cgroup, so
05eb6e72
VD
331 * they should never be accounted to any particular memory cgroup.
332 */
333 gfp_mask &= ~__GFP_ACCOUNT;
334
d04295c9 335 preempt_disable();
7c8e0181 336 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 337 while (rtp->nr < nr) {
d04295c9 338 preempt_enable();
488514d1 339 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
340 if (node == NULL)
341 goto out;
d04295c9 342 preempt_disable();
7c8e0181 343 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 344 if (rtp->nr < nr) {
1293d5c5 345 node->parent = rtp->nodes;
9d2a8da0
KS
346 rtp->nodes = node;
347 rtp->nr++;
348 } else {
1da177e4 349 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 350 }
1da177e4
LT
351 }
352 ret = 0;
353out:
354 return ret;
355}
5e4c0d97
JK
356
357/*
358 * Load up this CPU's radix_tree_node buffer with sufficient objects to
359 * ensure that the addition of a single element in the tree cannot fail. On
360 * success, return zero, with preemption disabled. On error, return -ENOMEM
361 * with preemption not disabled.
362 *
363 * To make use of this facility, the radix tree must be initialised without
d0164adc 364 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
365 */
366int radix_tree_preload(gfp_t gfp_mask)
367{
368 /* Warn on non-sensical use... */
d0164adc 369 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 370 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 371}
d7f0923d 372EXPORT_SYMBOL(radix_tree_preload);
1da177e4 373
5e4c0d97
JK
374/*
375 * The same as above function, except we don't guarantee preloading happens.
376 * We do it, if we decide it helps. On success, return zero with preemption
377 * disabled. On error, return -ENOMEM with preemption not disabled.
378 */
379int radix_tree_maybe_preload(gfp_t gfp_mask)
380{
d0164adc 381 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 382 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 383 /* Preloading doesn't help anything with this gfp mask, skip it */
d04295c9 384 preempt_disable();
5e4c0d97
JK
385 return 0;
386}
387EXPORT_SYMBOL(radix_tree_maybe_preload);
388
35534c86 389static unsigned radix_tree_load_root(const struct radix_tree_root *root,
1456a439
MW
390 struct radix_tree_node **nodep, unsigned long *maxindex)
391{
f8d5d0cc 392 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
1456a439
MW
393
394 *nodep = node;
395
b194d16c 396 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 397 node = entry_to_node(node);
1456a439 398 *maxindex = node_maxindex(node);
c12e51b0 399 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
400 }
401
402 *maxindex = 0;
403 return 0;
404}
405
1da177e4
LT
406/*
407 * Extend a radix tree so it can store key @index.
408 */
0a835c4f 409static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
d0891265 410 unsigned long index, unsigned int shift)
1da177e4 411{
d7b62727 412 void *entry;
d0891265 413 unsigned int maxshift;
1da177e4
LT
414 int tag;
415
d0891265
MW
416 /* Figure out what the shift should be. */
417 maxshift = shift;
418 while (index > shift_maxindex(maxshift))
419 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 420
f8d5d0cc 421 entry = rcu_dereference_raw(root->xa_head);
d7b62727 422 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
1da177e4 423 goto out;
1da177e4 424
1da177e4 425 do {
0a835c4f 426 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
d58275bc 427 root, shift, 0, 1, 0);
2fcd9005 428 if (!node)
1da177e4
LT
429 return -ENOMEM;
430
0a835c4f
MW
431 if (is_idr(root)) {
432 all_tag_set(node, IDR_FREE);
433 if (!root_tag_get(root, IDR_FREE)) {
434 tag_clear(node, IDR_FREE, 0);
435 root_tag_set(root, IDR_FREE);
436 }
437 } else {
438 /* Propagate the aggregated tag info to the new child */
439 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
440 if (root_tag_get(root, tag))
441 tag_set(node, tag, 0);
442 }
1da177e4
LT
443 }
444
d0891265 445 BUG_ON(shift > BITS_PER_LONG);
d7b62727
MW
446 if (radix_tree_is_internal_node(entry)) {
447 entry_to_node(entry)->parent = node;
3159f943 448 } else if (xa_is_value(entry)) {
01959dfe
MW
449 /* Moving a value entry root->xa_head to a node */
450 node->nr_values = 1;
f7942430 451 }
d7b62727
MW
452 /*
453 * entry was already in the radix tree, so we do not need
454 * rcu_assign_pointer here
455 */
456 node->slots[0] = (void __rcu *)entry;
457 entry = node_to_entry(node);
f8d5d0cc 458 rcu_assign_pointer(root->xa_head, entry);
d0891265 459 shift += RADIX_TREE_MAP_SHIFT;
d0891265 460 } while (shift <= maxshift);
1da177e4 461out:
d0891265 462 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
463}
464
f4b109c6
JW
465/**
466 * radix_tree_shrink - shrink radix tree to minimum height
467 * @root radix tree root
468 */
1cf56f9d 469static inline bool radix_tree_shrink(struct radix_tree_root *root)
f4b109c6 470{
0ac398ef
MW
471 bool shrunk = false;
472
f4b109c6 473 for (;;) {
f8d5d0cc 474 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
f4b109c6
JW
475 struct radix_tree_node *child;
476
477 if (!radix_tree_is_internal_node(node))
478 break;
479 node = entry_to_node(node);
480
481 /*
482 * The candidate node has more than one child, or its child
3a08cd52 483 * is not at the leftmost slot, we cannot shrink.
f4b109c6
JW
484 */
485 if (node->count != 1)
486 break;
12320d0f 487 child = rcu_dereference_raw(node->slots[0]);
f4b109c6
JW
488 if (!child)
489 break;
f4b109c6 490
66ee620f
MW
491 /*
492 * For an IDR, we must not shrink entry 0 into the root in
493 * case somebody calls idr_replace() with a pointer that
494 * appears to be an internal entry
495 */
496 if (!node->shift && is_idr(root))
497 break;
498
f4b109c6
JW
499 if (radix_tree_is_internal_node(child))
500 entry_to_node(child)->parent = NULL;
501
502 /*
503 * We don't need rcu_assign_pointer(), since we are simply
504 * moving the node from one part of the tree to another: if it
505 * was safe to dereference the old pointer to it
506 * (node->slots[0]), it will be safe to dereference the new
f8d5d0cc 507 * one (root->xa_head) as far as dependent read barriers go.
f4b109c6 508 */
f8d5d0cc 509 root->xa_head = (void __rcu *)child;
0a835c4f
MW
510 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
511 root_tag_clear(root, IDR_FREE);
f4b109c6
JW
512
513 /*
514 * We have a dilemma here. The node's slot[0] must not be
515 * NULLed in case there are concurrent lookups expecting to
516 * find the item. However if this was a bottom-level node,
517 * then it may be subject to the slot pointer being visible
518 * to callers dereferencing it. If item corresponding to
519 * slot[0] is subsequently deleted, these callers would expect
520 * their slot to become empty sooner or later.
521 *
522 * For example, lockless pagecache will look up a slot, deref
523 * the page pointer, and if the page has 0 refcount it means it
524 * was concurrently deleted from pagecache so try the deref
525 * again. Fortunately there is already a requirement for logic
526 * to retry the entire slot lookup -- the indirect pointer
527 * problem (replacing direct root node with an indirect pointer
528 * also results in a stale slot). So tag the slot as indirect
529 * to force callers to retry.
530 */
4d693d08
JW
531 node->count = 0;
532 if (!radix_tree_is_internal_node(child)) {
d7b62727 533 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
4d693d08 534 }
f4b109c6 535
ea07b862 536 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 537 radix_tree_node_free(node);
0ac398ef 538 shrunk = true;
f4b109c6 539 }
0ac398ef
MW
540
541 return shrunk;
f4b109c6
JW
542}
543
0ac398ef 544static bool delete_node(struct radix_tree_root *root,
1cf56f9d 545 struct radix_tree_node *node)
f4b109c6 546{
0ac398ef
MW
547 bool deleted = false;
548
f4b109c6
JW
549 do {
550 struct radix_tree_node *parent;
551
552 if (node->count) {
12320d0f 553 if (node_to_entry(node) ==
f8d5d0cc 554 rcu_dereference_raw(root->xa_head))
1cf56f9d 555 deleted |= radix_tree_shrink(root);
0ac398ef 556 return deleted;
f4b109c6
JW
557 }
558
559 parent = node->parent;
560 if (parent) {
561 parent->slots[node->offset] = NULL;
562 parent->count--;
563 } else {
0a835c4f
MW
564 /*
565 * Shouldn't the tags already have all been cleared
566 * by the caller?
567 */
568 if (!is_idr(root))
569 root_tag_clear_all(root);
f8d5d0cc 570 root->xa_head = NULL;
f4b109c6
JW
571 }
572
ea07b862 573 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 574 radix_tree_node_free(node);
0ac398ef 575 deleted = true;
f4b109c6
JW
576
577 node = parent;
578 } while (node);
0ac398ef
MW
579
580 return deleted;
f4b109c6
JW
581}
582
1da177e4 583/**
139e5616 584 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
585 * @root: radix tree root
586 * @index: index key
139e5616
JW
587 * @nodep: returns node
588 * @slotp: returns slot
1da177e4 589 *
139e5616
JW
590 * Create, if necessary, and return the node and slot for an item
591 * at position @index in the radix tree @root.
592 *
593 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 594 * allocated and @root->xa_head is used as a direct slot instead of
139e5616
JW
595 * pointing to a node, in which case *@nodep will be NULL.
596 *
597 * Returns -ENOMEM, or 0 for success.
1da177e4 598 */
74d60958 599static int __radix_tree_create(struct radix_tree_root *root,
3a08cd52
MW
600 unsigned long index, struct radix_tree_node **nodep,
601 void __rcu ***slotp)
1da177e4 602{
89148aa4 603 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 604 void __rcu **slot = (void __rcu **)&root->xa_head;
49ea6ebc 605 unsigned long maxindex;
89148aa4 606 unsigned int shift, offset = 0;
3a08cd52 607 unsigned long max = index;
0a835c4f 608 gfp_t gfp = root_gfp_mask(root);
49ea6ebc 609
89148aa4 610 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
611
612 /* Make sure the tree is high enough. */
49ea6ebc 613 if (max > maxindex) {
0a835c4f 614 int error = radix_tree_extend(root, gfp, max, shift);
49ea6ebc 615 if (error < 0)
1da177e4 616 return error;
49ea6ebc 617 shift = error;
f8d5d0cc 618 child = rcu_dereference_raw(root->xa_head);
1da177e4
LT
619 }
620
3a08cd52 621 while (shift > 0) {
c12e51b0 622 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 623 if (child == NULL) {
1da177e4 624 /* Have to add a child node. */
d58275bc 625 child = radix_tree_node_alloc(gfp, node, root, shift,
e8de4340 626 offset, 0, 0);
89148aa4 627 if (!child)
1da177e4 628 return -ENOMEM;
89148aa4
MW
629 rcu_assign_pointer(*slot, node_to_entry(child));
630 if (node)
1da177e4 631 node->count++;
89148aa4 632 } else if (!radix_tree_is_internal_node(child))
e6145236 633 break;
1da177e4
LT
634
635 /* Go a level down */
89148aa4 636 node = entry_to_node(child);
9e85d811 637 offset = radix_tree_descend(node, &child, index);
89148aa4 638 slot = &node->slots[offset];
e6145236
MW
639 }
640
175542f5
MW
641 if (nodep)
642 *nodep = node;
643 if (slotp)
644 *slotp = slot;
645 return 0;
646}
647
175542f5
MW
648/*
649 * Free any nodes below this node. The tree is presumed to not need
650 * shrinking, and any user data in the tree is presumed to not need a
651 * destructor called on it. If we need to add a destructor, we can
652 * add that functionality later. Note that we may not clear tags or
653 * slots from the tree as an RCU walker may still have a pointer into
654 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
655 * but we'll still have to clear those in rcu_free.
656 */
657static void radix_tree_free_nodes(struct radix_tree_node *node)
658{
659 unsigned offset = 0;
660 struct radix_tree_node *child = entry_to_node(node);
661
662 for (;;) {
12320d0f 663 void *entry = rcu_dereference_raw(child->slots[offset]);
02c02bf1 664 if (xa_is_node(entry) && child->shift) {
175542f5
MW
665 child = entry_to_node(entry);
666 offset = 0;
667 continue;
668 }
669 offset++;
670 while (offset == RADIX_TREE_MAP_SIZE) {
671 struct radix_tree_node *old = child;
672 offset = child->offset + 1;
673 child = child->parent;
dd040b6f 674 WARN_ON_ONCE(!list_empty(&old->private_list));
175542f5
MW
675 radix_tree_node_free(old);
676 if (old == entry_to_node(node))
677 return;
678 }
679 }
680}
681
d7b62727 682static inline int insert_entries(struct radix_tree_node *node,
3a08cd52 683 void __rcu **slot, void *item, bool replace)
175542f5
MW
684{
685 if (*slot)
686 return -EEXIST;
687 rcu_assign_pointer(*slot, item);
688 if (node) {
689 node->count++;
3159f943 690 if (xa_is_value(item))
01959dfe 691 node->nr_values++;
175542f5
MW
692 }
693 return 1;
694}
139e5616
JW
695
696/**
e6145236 697 * __radix_tree_insert - insert into a radix tree
139e5616
JW
698 * @root: radix tree root
699 * @index: index key
700 * @item: item to insert
701 *
702 * Insert an item into the radix tree at position @index.
703 */
3a08cd52
MW
704int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
705 void *item)
139e5616
JW
706{
707 struct radix_tree_node *node;
d7b62727 708 void __rcu **slot;
139e5616
JW
709 int error;
710
b194d16c 711 BUG_ON(radix_tree_is_internal_node(item));
139e5616 712
3a08cd52 713 error = __radix_tree_create(root, index, &node, &slot);
139e5616
JW
714 if (error)
715 return error;
175542f5 716
3a08cd52 717 error = insert_entries(node, slot, item, false);
175542f5
MW
718 if (error < 0)
719 return error;
201b6264 720
612d6c19 721 if (node) {
7b60e9ad 722 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
723 BUG_ON(tag_get(node, 0, offset));
724 BUG_ON(tag_get(node, 1, offset));
725 BUG_ON(tag_get(node, 2, offset));
612d6c19 726 } else {
7b60e9ad 727 BUG_ON(root_tags_get(root));
612d6c19 728 }
1da177e4 729
1da177e4
LT
730 return 0;
731}
3a08cd52 732EXPORT_SYMBOL(radix_tree_insert);
1da177e4 733
139e5616
JW
734/**
735 * __radix_tree_lookup - lookup an item in a radix tree
736 * @root: radix tree root
737 * @index: index key
738 * @nodep: returns node
739 * @slotp: returns slot
740 *
741 * Lookup and return the item at position @index in the radix
742 * tree @root.
743 *
744 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 745 * allocated and @root->xa_head is used as a direct slot instead of
139e5616 746 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 747 */
35534c86
MW
748void *__radix_tree_lookup(const struct radix_tree_root *root,
749 unsigned long index, struct radix_tree_node **nodep,
d7b62727 750 void __rcu ***slotp)
1da177e4 751{
139e5616 752 struct radix_tree_node *node, *parent;
85829954 753 unsigned long maxindex;
d7b62727 754 void __rcu **slot;
612d6c19 755
85829954
MW
756 restart:
757 parent = NULL;
f8d5d0cc 758 slot = (void __rcu **)&root->xa_head;
9e85d811 759 radix_tree_load_root(root, &node, &maxindex);
85829954 760 if (index > maxindex)
1da177e4
LT
761 return NULL;
762
b194d16c 763 while (radix_tree_is_internal_node(node)) {
85829954 764 unsigned offset;
1da177e4 765
4dd6c098 766 parent = entry_to_node(node);
9e85d811 767 offset = radix_tree_descend(parent, &node, index);
85829954 768 slot = parent->slots + offset;
eff3860b
MW
769 if (node == RADIX_TREE_RETRY)
770 goto restart;
66ee620f
MW
771 if (parent->shift == 0)
772 break;
85829954 773 }
1da177e4 774
139e5616
JW
775 if (nodep)
776 *nodep = parent;
777 if (slotp)
778 *slotp = slot;
779 return node;
b72b71c6
HS
780}
781
782/**
783 * radix_tree_lookup_slot - lookup a slot in a radix tree
784 * @root: radix tree root
785 * @index: index key
786 *
787 * Returns: the slot corresponding to the position @index in the
788 * radix tree @root. This is useful for update-if-exists operations.
789 *
790 * This function can be called under rcu_read_lock iff the slot is not
791 * modified by radix_tree_replace_slot, otherwise it must be called
792 * exclusive from other writers. Any dereference of the slot must be done
793 * using radix_tree_deref_slot.
794 */
d7b62727 795void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
35534c86 796 unsigned long index)
b72b71c6 797{
d7b62727 798 void __rcu **slot;
139e5616
JW
799
800 if (!__radix_tree_lookup(root, index, NULL, &slot))
801 return NULL;
802 return slot;
a4331366 803}
a4331366
HR
804EXPORT_SYMBOL(radix_tree_lookup_slot);
805
806/**
807 * radix_tree_lookup - perform lookup operation on a radix tree
808 * @root: radix tree root
809 * @index: index key
810 *
811 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
812 *
813 * This function can be called under rcu_read_lock, however the caller
814 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
815 * them safely). No RCU barriers are required to access or modify the
816 * returned item, however.
a4331366 817 */
35534c86 818void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
a4331366 819{
139e5616 820 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
821}
822EXPORT_SYMBOL(radix_tree_lookup);
823
d7b62727 824static void replace_slot(void __rcu **slot, void *item,
01959dfe 825 struct radix_tree_node *node, int count, int values)
f7942430 826{
01959dfe 827 if (node && (count || values)) {
f4b109c6 828 node->count += count;
01959dfe 829 node->nr_values += values;
f4b109c6 830 }
f7942430
JW
831
832 rcu_assign_pointer(*slot, item);
833}
834
0a835c4f
MW
835static bool node_tag_get(const struct radix_tree_root *root,
836 const struct radix_tree_node *node,
837 unsigned int tag, unsigned int offset)
a90eb3a2 838{
0a835c4f
MW
839 if (node)
840 return tag_get(node, tag, offset);
841 return root_tag_get(root, tag);
842}
a90eb3a2 843
0a835c4f
MW
844/*
845 * IDR users want to be able to store NULL in the tree, so if the slot isn't
846 * free, don't adjust the count, even if it's transitioning between NULL and
847 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
848 * have empty bits, but it only stores NULL in slots when they're being
849 * deleted.
850 */
851static int calculate_count(struct radix_tree_root *root,
d7b62727 852 struct radix_tree_node *node, void __rcu **slot,
0a835c4f
MW
853 void *item, void *old)
854{
855 if (is_idr(root)) {
856 unsigned offset = get_slot_offset(node, slot);
857 bool free = node_tag_get(root, node, IDR_FREE, offset);
858 if (!free)
859 return 0;
860 if (!old)
861 return 1;
a90eb3a2 862 }
0a835c4f 863 return !!item - !!old;
a90eb3a2
MW
864}
865
6d75f366
JW
866/**
867 * __radix_tree_replace - replace item in a slot
4d693d08
JW
868 * @root: radix tree root
869 * @node: pointer to tree node
870 * @slot: pointer to slot in @node
871 * @item: new item to store in the slot.
6d75f366
JW
872 *
873 * For use with __radix_tree_lookup(). Caller must hold tree write locked
874 * across slot lookup and replacement.
875 */
876void __radix_tree_replace(struct radix_tree_root *root,
877 struct radix_tree_node *node,
1cf56f9d 878 void __rcu **slot, void *item)
6d75f366 879{
0a835c4f 880 void *old = rcu_dereference_raw(*slot);
01959dfe 881 int values = !!xa_is_value(item) - !!xa_is_value(old);
0a835c4f
MW
882 int count = calculate_count(root, node, slot, item, old);
883
6d75f366 884 /*
01959dfe 885 * This function supports replacing value entries and
f4b109c6 886 * deleting entries, but that needs accounting against the
f8d5d0cc 887 * node unless the slot is root->xa_head.
6d75f366 888 */
f8d5d0cc 889 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
01959dfe
MW
890 (count || values));
891 replace_slot(slot, item, node, count, values);
f4b109c6 892
4d693d08
JW
893 if (!node)
894 return;
895
1cf56f9d 896 delete_node(root, node);
6d75f366
JW
897}
898
899/**
900 * radix_tree_replace_slot - replace item in a slot
901 * @root: radix tree root
902 * @slot: pointer to slot
903 * @item: new item to store in the slot.
904 *
7b8d046f 905 * For use with radix_tree_lookup_slot() and
6d75f366
JW
906 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
907 * across slot lookup and replacement.
908 *
909 * NOTE: This cannot be used to switch between non-entries (empty slots),
01959dfe 910 * regular entries, and value entries, as that requires accounting
f4b109c6 911 * inside the radix tree node. When switching from one type of entry or
e157b555
MW
912 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
913 * radix_tree_iter_replace().
6d75f366
JW
914 */
915void radix_tree_replace_slot(struct radix_tree_root *root,
d7b62727 916 void __rcu **slot, void *item)
6d75f366 917{
1cf56f9d 918 __radix_tree_replace(root, NULL, slot, item);
6d75f366 919}
10257d71 920EXPORT_SYMBOL(radix_tree_replace_slot);
6d75f366 921
e157b555
MW
922/**
923 * radix_tree_iter_replace - replace item in a slot
924 * @root: radix tree root
925 * @slot: pointer to slot
926 * @item: new item to store in the slot.
927 *
2956c664
MW
928 * For use with radix_tree_for_each_slot().
929 * Caller must hold tree write locked.
e157b555
MW
930 */
931void radix_tree_iter_replace(struct radix_tree_root *root,
d7b62727
MW
932 const struct radix_tree_iter *iter,
933 void __rcu **slot, void *item)
e157b555 934{
1cf56f9d 935 __radix_tree_replace(root, iter->node, slot, item);
e157b555
MW
936}
937
30b888ba
MW
938static void node_tag_set(struct radix_tree_root *root,
939 struct radix_tree_node *node,
940 unsigned int tag, unsigned int offset)
941{
942 while (node) {
943 if (tag_get(node, tag, offset))
944 return;
945 tag_set(node, tag, offset);
946 offset = node->offset;
947 node = node->parent;
948 }
949
950 if (!root_tag_get(root, tag))
951 root_tag_set(root, tag);
952}
953
1da177e4
LT
954/**
955 * radix_tree_tag_set - set a tag on a radix tree node
956 * @root: radix tree root
957 * @index: index key
2fcd9005 958 * @tag: tag index
1da177e4 959 *
daff89f3
JC
960 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
961 * corresponding to @index in the radix tree. From
1da177e4
LT
962 * the root all the way down to the leaf node.
963 *
2fcd9005 964 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
965 * item is a bug.
966 */
967void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 968 unsigned long index, unsigned int tag)
1da177e4 969{
fb969909
RZ
970 struct radix_tree_node *node, *parent;
971 unsigned long maxindex;
1da177e4 972
9e85d811 973 radix_tree_load_root(root, &node, &maxindex);
fb969909 974 BUG_ON(index > maxindex);
1da177e4 975
b194d16c 976 while (radix_tree_is_internal_node(node)) {
fb969909 977 unsigned offset;
1da177e4 978
4dd6c098 979 parent = entry_to_node(node);
9e85d811 980 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
981 BUG_ON(!node);
982
983 if (!tag_get(parent, tag, offset))
984 tag_set(parent, tag, offset);
1da177e4
LT
985 }
986
612d6c19 987 /* set the root's tag bit */
fb969909 988 if (!root_tag_get(root, tag))
612d6c19
NP
989 root_tag_set(root, tag);
990
fb969909 991 return node;
1da177e4
LT
992}
993EXPORT_SYMBOL(radix_tree_tag_set);
994
d604c324
MW
995static void node_tag_clear(struct radix_tree_root *root,
996 struct radix_tree_node *node,
997 unsigned int tag, unsigned int offset)
998{
999 while (node) {
1000 if (!tag_get(node, tag, offset))
1001 return;
1002 tag_clear(node, tag, offset);
1003 if (any_tag_set(node, tag))
1004 return;
1005
1006 offset = node->offset;
1007 node = node->parent;
1008 }
1009
1010 /* clear the root's tag bit */
1011 if (root_tag_get(root, tag))
1012 root_tag_clear(root, tag);
1013}
1014
1da177e4
LT
1015/**
1016 * radix_tree_tag_clear - clear a tag on a radix tree node
1017 * @root: radix tree root
1018 * @index: index key
2fcd9005 1019 * @tag: tag index
1da177e4 1020 *
daff89f3 1021 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1022 * corresponding to @index in the radix tree. If this causes
1023 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1024 * next-to-leaf node, etc.
1025 *
1026 * Returns the address of the tagged item on success, else NULL. ie:
1027 * has the same return value and semantics as radix_tree_lookup().
1028 */
1029void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1030 unsigned long index, unsigned int tag)
1da177e4 1031{
00f47b58
RZ
1032 struct radix_tree_node *node, *parent;
1033 unsigned long maxindex;
3f649ab7 1034 int offset;
1da177e4 1035
9e85d811 1036 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1037 if (index > maxindex)
1038 return NULL;
1da177e4 1039
00f47b58 1040 parent = NULL;
1da177e4 1041
b194d16c 1042 while (radix_tree_is_internal_node(node)) {
4dd6c098 1043 parent = entry_to_node(node);
9e85d811 1044 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1045 }
1046
d604c324
MW
1047 if (node)
1048 node_tag_clear(root, parent, tag, offset);
1da177e4 1049
00f47b58 1050 return node;
1da177e4
LT
1051}
1052EXPORT_SYMBOL(radix_tree_tag_clear);
1053
30b888ba
MW
1054/**
1055 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1056 * @root: radix tree root
1057 * @iter: iterator state
1058 * @tag: tag to clear
1059 */
1060void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1061 const struct radix_tree_iter *iter, unsigned int tag)
1062{
1063 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1064}
1065
1da177e4 1066/**
32605a18
MT
1067 * radix_tree_tag_get - get a tag on a radix tree node
1068 * @root: radix tree root
1069 * @index: index key
2fcd9005 1070 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1071 *
32605a18 1072 * Return values:
1da177e4 1073 *
612d6c19
NP
1074 * 0: tag not present or not set
1075 * 1: tag set
ce82653d
DH
1076 *
1077 * Note that the return value of this function may not be relied on, even if
1078 * the RCU lock is held, unless tag modification and node deletion are excluded
1079 * from concurrency.
1da177e4 1080 */
35534c86 1081int radix_tree_tag_get(const struct radix_tree_root *root,
daff89f3 1082 unsigned long index, unsigned int tag)
1da177e4 1083{
4589ba6d
RZ
1084 struct radix_tree_node *node, *parent;
1085 unsigned long maxindex;
1da177e4 1086
612d6c19
NP
1087 if (!root_tag_get(root, tag))
1088 return 0;
1089
9e85d811 1090 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1091 if (index > maxindex)
1092 return 0;
7cf9c2c7 1093
b194d16c 1094 while (radix_tree_is_internal_node(node)) {
9e85d811 1095 unsigned offset;
1da177e4 1096
4dd6c098 1097 parent = entry_to_node(node);
9e85d811 1098 offset = radix_tree_descend(parent, &node, index);
1da177e4 1099
4589ba6d 1100 if (!tag_get(parent, tag, offset))
3fa36acb 1101 return 0;
4589ba6d
RZ
1102 if (node == RADIX_TREE_RETRY)
1103 break;
1da177e4 1104 }
4589ba6d
RZ
1105
1106 return 1;
1da177e4
LT
1107}
1108EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1109
148deab2
MW
1110/* Construct iter->tags bit-mask from node->tags[tag] array */
1111static void set_iter_tags(struct radix_tree_iter *iter,
1112 struct radix_tree_node *node, unsigned offset,
1113 unsigned tag)
1114{
1115 unsigned tag_long = offset / BITS_PER_LONG;
1116 unsigned tag_bit = offset % BITS_PER_LONG;
1117
0a835c4f
MW
1118 if (!node) {
1119 iter->tags = 1;
1120 return;
1121 }
1122
148deab2
MW
1123 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1124
1125 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1126 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1127 /* Pick tags from next element */
1128 if (tag_bit)
1129 iter->tags |= node->tags[tag][tag_long + 1] <<
1130 (BITS_PER_LONG - tag_bit);
1131 /* Clip chunk size, here only BITS_PER_LONG tags */
1132 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1133 }
1134}
1135
d7b62727
MW
1136void __rcu **radix_tree_iter_resume(void __rcu **slot,
1137 struct radix_tree_iter *iter)
148deab2 1138{
148deab2
MW
1139 slot++;
1140 iter->index = __radix_tree_iter_add(iter, 1);
148deab2
MW
1141 iter->next_index = iter->index;
1142 iter->tags = 0;
1143 return NULL;
1144}
1145EXPORT_SYMBOL(radix_tree_iter_resume);
1146
78c1d784
KK
1147/**
1148 * radix_tree_next_chunk - find next chunk of slots for iteration
1149 *
1150 * @root: radix tree root
1151 * @iter: iterator state
1152 * @flags: RADIX_TREE_ITER_* flags and tag index
1153 * Returns: pointer to chunk first slot, or NULL if iteration is over
1154 */
d7b62727 1155void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
78c1d784
KK
1156 struct radix_tree_iter *iter, unsigned flags)
1157{
9e85d811 1158 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1159 struct radix_tree_node *node, *child;
21ef5339 1160 unsigned long index, offset, maxindex;
78c1d784
KK
1161
1162 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1163 return NULL;
1164
1165 /*
1166 * Catch next_index overflow after ~0UL. iter->index never overflows
1167 * during iterating; it can be zero only at the beginning.
1168 * And we cannot overflow iter->next_index in a single step,
1169 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1170 *
1171 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1172 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1173 */
1174 index = iter->next_index;
1175 if (!index && iter->index)
1176 return NULL;
1177
21ef5339 1178 restart:
9e85d811 1179 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1180 if (index > maxindex)
1181 return NULL;
8c1244de
MW
1182 if (!child)
1183 return NULL;
21ef5339 1184
8c1244de 1185 if (!radix_tree_is_internal_node(child)) {
78c1d784 1186 /* Single-slot tree */
21ef5339
RZ
1187 iter->index = index;
1188 iter->next_index = maxindex + 1;
78c1d784 1189 iter->tags = 1;
268f42de 1190 iter->node = NULL;
f8d5d0cc 1191 return (void __rcu **)&root->xa_head;
8c1244de 1192 }
21ef5339 1193
8c1244de
MW
1194 do {
1195 node = entry_to_node(child);
9e85d811 1196 offset = radix_tree_descend(node, &child, index);
21ef5339 1197
78c1d784 1198 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1199 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1200 /* Hole detected */
1201 if (flags & RADIX_TREE_ITER_CONTIG)
1202 return NULL;
1203
1204 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1205 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1206 offset + 1);
1207 else
1208 while (++offset < RADIX_TREE_MAP_SIZE) {
12320d0f
MW
1209 void *slot = rcu_dereference_raw(
1210 node->slots[offset]);
21ef5339 1211 if (slot)
78c1d784
KK
1212 break;
1213 }
8c1244de 1214 index &= ~node_maxindex(node);
9e85d811 1215 index += offset << node->shift;
78c1d784
KK
1216 /* Overflow after ~0UL */
1217 if (!index)
1218 return NULL;
1219 if (offset == RADIX_TREE_MAP_SIZE)
1220 goto restart;
8c1244de 1221 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1222 }
1223
e157b555 1224 if (!child)
78c1d784 1225 goto restart;
e157b555
MW
1226 if (child == RADIX_TREE_RETRY)
1227 break;
66ee620f 1228 } while (node->shift && radix_tree_is_internal_node(child));
78c1d784
KK
1229
1230 /* Update the iterator state */
3a08cd52 1231 iter->index = (index &~ node_maxindex(node)) | offset;
8c1244de 1232 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1233 iter->node = node;
78c1d784 1234
148deab2
MW
1235 if (flags & RADIX_TREE_ITER_TAGGED)
1236 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1237
1238 return node->slots + offset;
1239}
1240EXPORT_SYMBOL(radix_tree_next_chunk);
1241
1da177e4
LT
1242/**
1243 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1244 * @root: radix tree root
1245 * @results: where the results of the lookup are placed
1246 * @first_index: start the lookup from this key
1247 * @max_items: place up to this many items at *results
1248 *
1249 * Performs an index-ascending scan of the tree for present items. Places
1250 * them at *@results and returns the number of items which were placed at
1251 * *@results.
1252 *
1253 * The implementation is naive.
7cf9c2c7
NP
1254 *
1255 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1256 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1257 * an atomic snapshot of the tree at a single point in time, the
1258 * semantics of an RCU protected gang lookup are as though multiple
1259 * radix_tree_lookups have been issued in individual locks, and results
1260 * stored in 'results'.
1da177e4
LT
1261 */
1262unsigned int
35534c86 1263radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1da177e4
LT
1264 unsigned long first_index, unsigned int max_items)
1265{
cebbd29e 1266 struct radix_tree_iter iter;
d7b62727 1267 void __rcu **slot;
cebbd29e 1268 unsigned int ret = 0;
7cf9c2c7 1269
cebbd29e 1270 if (unlikely(!max_items))
7cf9c2c7 1271 return 0;
1da177e4 1272
cebbd29e 1273 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1274 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1275 if (!results[ret])
1276 continue;
b194d16c 1277 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1278 slot = radix_tree_iter_retry(&iter);
1279 continue;
1280 }
cebbd29e 1281 if (++ret == max_items)
1da177e4 1282 break;
1da177e4 1283 }
7cf9c2c7 1284
1da177e4
LT
1285 return ret;
1286}
1287EXPORT_SYMBOL(radix_tree_gang_lookup);
1288
1da177e4
LT
1289/**
1290 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1291 * based on a tag
1292 * @root: radix tree root
1293 * @results: where the results of the lookup are placed
1294 * @first_index: start the lookup from this key
1295 * @max_items: place up to this many items at *results
daff89f3 1296 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1297 *
1298 * Performs an index-ascending scan of the tree for present items which
1299 * have the tag indexed by @tag set. Places the items at *@results and
1300 * returns the number of items which were placed at *@results.
1301 */
1302unsigned int
35534c86 1303radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
daff89f3
JC
1304 unsigned long first_index, unsigned int max_items,
1305 unsigned int tag)
1da177e4 1306{
cebbd29e 1307 struct radix_tree_iter iter;
d7b62727 1308 void __rcu **slot;
cebbd29e 1309 unsigned int ret = 0;
612d6c19 1310
cebbd29e 1311 if (unlikely(!max_items))
7cf9c2c7
NP
1312 return 0;
1313
cebbd29e 1314 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1315 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1316 if (!results[ret])
1317 continue;
b194d16c 1318 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1319 slot = radix_tree_iter_retry(&iter);
1320 continue;
1321 }
cebbd29e 1322 if (++ret == max_items)
1da177e4 1323 break;
1da177e4 1324 }
7cf9c2c7 1325
1da177e4
LT
1326 return ret;
1327}
1328EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1329
47feff2c
NP
1330/**
1331 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1332 * radix tree based on a tag
1333 * @root: radix tree root
1334 * @results: where the results of the lookup are placed
1335 * @first_index: start the lookup from this key
1336 * @max_items: place up to this many items at *results
1337 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1338 *
1339 * Performs an index-ascending scan of the tree for present items which
1340 * have the tag indexed by @tag set. Places the slots at *@results and
1341 * returns the number of slots which were placed at *@results.
1342 */
1343unsigned int
35534c86 1344radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
d7b62727 1345 void __rcu ***results, unsigned long first_index,
35534c86 1346 unsigned int max_items, unsigned int tag)
47feff2c 1347{
cebbd29e 1348 struct radix_tree_iter iter;
d7b62727 1349 void __rcu **slot;
cebbd29e 1350 unsigned int ret = 0;
47feff2c 1351
cebbd29e 1352 if (unlikely(!max_items))
47feff2c
NP
1353 return 0;
1354
cebbd29e
KK
1355 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1356 results[ret] = slot;
1357 if (++ret == max_items)
47feff2c 1358 break;
47feff2c
NP
1359 }
1360
1361 return ret;
1362}
1363EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1364
0ac398ef 1365static bool __radix_tree_delete(struct radix_tree_root *root,
d7b62727 1366 struct radix_tree_node *node, void __rcu **slot)
0ac398ef 1367{
0a835c4f 1368 void *old = rcu_dereference_raw(*slot);
01959dfe 1369 int values = xa_is_value(old) ? -1 : 0;
0ac398ef
MW
1370 unsigned offset = get_slot_offset(node, slot);
1371 int tag;
1372
0a835c4f
MW
1373 if (is_idr(root))
1374 node_tag_set(root, node, IDR_FREE, offset);
1375 else
1376 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1377 node_tag_clear(root, node, tag, offset);
0ac398ef 1378
01959dfe 1379 replace_slot(slot, NULL, node, -1, values);
1cf56f9d 1380 return node && delete_node(root, node);
0ac398ef
MW
1381}
1382
1da177e4 1383/**
0ac398ef
MW
1384 * radix_tree_iter_delete - delete the entry at this iterator position
1385 * @root: radix tree root
1386 * @iter: iterator state
1387 * @slot: pointer to slot
1da177e4 1388 *
0ac398ef
MW
1389 * Delete the entry at the position currently pointed to by the iterator.
1390 * This may result in the current node being freed; if it is, the iterator
1391 * is advanced so that it will not reference the freed memory. This
1392 * function may be called without any locking if there are no other threads
1393 * which can access this tree.
1394 */
1395void radix_tree_iter_delete(struct radix_tree_root *root,
d7b62727 1396 struct radix_tree_iter *iter, void __rcu **slot)
0ac398ef
MW
1397{
1398 if (__radix_tree_delete(root, iter->node, slot))
1399 iter->index = iter->next_index;
1400}
d1b48c1e 1401EXPORT_SYMBOL(radix_tree_iter_delete);
0ac398ef
MW
1402
1403/**
1404 * radix_tree_delete_item - delete an item from a radix tree
1405 * @root: radix tree root
1406 * @index: index key
1407 * @item: expected item
1da177e4 1408 *
0ac398ef 1409 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1410 *
0ac398ef
MW
1411 * Return: the deleted entry, or %NULL if it was not present
1412 * or the entry at the given @index was not @item.
1da177e4 1413 */
53c59f26
JW
1414void *radix_tree_delete_item(struct radix_tree_root *root,
1415 unsigned long index, void *item)
1da177e4 1416{
0a835c4f 1417 struct radix_tree_node *node = NULL;
7a4deea1 1418 void __rcu **slot = NULL;
139e5616 1419 void *entry;
1da177e4 1420
139e5616 1421 entry = __radix_tree_lookup(root, index, &node, &slot);
7a4deea1
MW
1422 if (!slot)
1423 return NULL;
0a835c4f
MW
1424 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1425 get_slot_offset(node, slot))))
139e5616 1426 return NULL;
1da177e4 1427
139e5616
JW
1428 if (item && entry != item)
1429 return NULL;
1430
0ac398ef 1431 __radix_tree_delete(root, node, slot);
612d6c19 1432
139e5616 1433 return entry;
1da177e4 1434}
53c59f26
JW
1435EXPORT_SYMBOL(radix_tree_delete_item);
1436
1437/**
0ac398ef
MW
1438 * radix_tree_delete - delete an entry from a radix tree
1439 * @root: radix tree root
1440 * @index: index key
53c59f26 1441 *
0ac398ef 1442 * Remove the entry at @index from the radix tree rooted at @root.
53c59f26 1443 *
0ac398ef 1444 * Return: The deleted entry, or %NULL if it was not present.
53c59f26
JW
1445 */
1446void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1447{
1448 return radix_tree_delete_item(root, index, NULL);
1449}
1da177e4
LT
1450EXPORT_SYMBOL(radix_tree_delete);
1451
1452/**
1453 * radix_tree_tagged - test whether any items in the tree are tagged
1454 * @root: radix tree root
1455 * @tag: tag to test
1456 */
35534c86 1457int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1da177e4 1458{
612d6c19 1459 return root_tag_get(root, tag);
1da177e4
LT
1460}
1461EXPORT_SYMBOL(radix_tree_tagged);
1462
0a835c4f
MW
1463/**
1464 * idr_preload - preload for idr_alloc()
1465 * @gfp_mask: allocation mask to use for preloading
1466 *
1467 * Preallocate memory to use for the next call to idr_alloc(). This function
1468 * returns with preemption disabled. It will be enabled by idr_preload_end().
1469 */
1470void idr_preload(gfp_t gfp_mask)
1471{
bc9ae224 1472 if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
d04295c9 1473 preempt_disable();
0a835c4f
MW
1474}
1475EXPORT_SYMBOL(idr_preload);
1476
460488c5 1477void __rcu **idr_get_free(struct radix_tree_root *root,
388f79fd
CM
1478 struct radix_tree_iter *iter, gfp_t gfp,
1479 unsigned long max)
0a835c4f
MW
1480{
1481 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 1482 void __rcu **slot = (void __rcu **)&root->xa_head;
0a835c4f 1483 unsigned long maxindex, start = iter->next_index;
0a835c4f
MW
1484 unsigned int shift, offset = 0;
1485
1486 grow:
1487 shift = radix_tree_load_root(root, &child, &maxindex);
1488 if (!radix_tree_tagged(root, IDR_FREE))
1489 start = max(start, maxindex + 1);
1490 if (start > max)
1491 return ERR_PTR(-ENOSPC);
1492
1493 if (start > maxindex) {
1494 int error = radix_tree_extend(root, gfp, start, shift);
1495 if (error < 0)
1496 return ERR_PTR(error);
1497 shift = error;
f8d5d0cc 1498 child = rcu_dereference_raw(root->xa_head);
0a835c4f 1499 }
66ee620f
MW
1500 if (start == 0 && shift == 0)
1501 shift = RADIX_TREE_MAP_SHIFT;
0a835c4f
MW
1502
1503 while (shift) {
1504 shift -= RADIX_TREE_MAP_SHIFT;
1505 if (child == NULL) {
1506 /* Have to add a child node. */
d58275bc
MW
1507 child = radix_tree_node_alloc(gfp, node, root, shift,
1508 offset, 0, 0);
0a835c4f
MW
1509 if (!child)
1510 return ERR_PTR(-ENOMEM);
1511 all_tag_set(child, IDR_FREE);
1512 rcu_assign_pointer(*slot, node_to_entry(child));
1513 if (node)
1514 node->count++;
1515 } else if (!radix_tree_is_internal_node(child))
1516 break;
1517
1518 node = entry_to_node(child);
1519 offset = radix_tree_descend(node, &child, start);
1520 if (!tag_get(node, IDR_FREE, offset)) {
1521 offset = radix_tree_find_next_bit(node, IDR_FREE,
1522 offset + 1);
1523 start = next_index(start, node, offset);
b7e9728f 1524 if (start > max || start == 0)
0a835c4f
MW
1525 return ERR_PTR(-ENOSPC);
1526 while (offset == RADIX_TREE_MAP_SIZE) {
1527 offset = node->offset + 1;
1528 node = node->parent;
1529 if (!node)
1530 goto grow;
1531 shift = node->shift;
1532 }
1533 child = rcu_dereference_raw(node->slots[offset]);
1534 }
1535 slot = &node->slots[offset];
1536 }
1537
1538 iter->index = start;
1539 if (node)
1540 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1541 else
1542 iter->next_index = 1;
1543 iter->node = node;
0a835c4f
MW
1544 set_iter_tags(iter, node, offset, IDR_FREE);
1545
1546 return slot;
1547}
1548
1549/**
1550 * idr_destroy - release all internal memory from an IDR
1551 * @idr: idr handle
1552 *
1553 * After this function is called, the IDR is empty, and may be reused or
1554 * the data structure containing it may be freed.
1555 *
1556 * A typical clean-up sequence for objects stored in an idr tree will use
1557 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1558 * free the memory used to keep track of those objects.
1559 */
1560void idr_destroy(struct idr *idr)
1561{
f8d5d0cc 1562 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
0a835c4f
MW
1563 if (radix_tree_is_internal_node(node))
1564 radix_tree_free_nodes(node);
f8d5d0cc 1565 idr->idr_rt.xa_head = NULL;
0a835c4f
MW
1566 root_tag_set(&idr->idr_rt, IDR_FREE);
1567}
1568EXPORT_SYMBOL(idr_destroy);
1569
1da177e4 1570static void
449dd698 1571radix_tree_node_ctor(void *arg)
1da177e4 1572{
449dd698
JW
1573 struct radix_tree_node *node = arg;
1574
1575 memset(node, 0, sizeof(*node));
1576 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1577}
1578
d544abd5 1579static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 1580{
2fcd9005
MW
1581 struct radix_tree_preload *rtp;
1582 struct radix_tree_node *node;
1583
1584 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
1585 rtp = &per_cpu(radix_tree_preloads, cpu);
1586 while (rtp->nr) {
1587 node = rtp->nodes;
1293d5c5 1588 rtp->nodes = node->parent;
d544abd5
SAS
1589 kmem_cache_free(radix_tree_node_cachep, node);
1590 rtp->nr--;
2fcd9005 1591 }
d544abd5 1592 return 0;
1da177e4 1593}
1da177e4
LT
1594
1595void __init radix_tree_init(void)
1596{
d544abd5 1597 int ret;
7e784422
MH
1598
1599 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
fa290cda 1600 BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
02c02bf1 1601 BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1da177e4
LT
1602 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1603 sizeof(struct radix_tree_node), 0,
488514d1
CL
1604 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1605 radix_tree_node_ctor);
d544abd5
SAS
1606 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1607 NULL, radix_tree_cpu_dead);
1608 WARN_ON(ret < 0);
1da177e4 1609}