]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - lib/radix-tree.c
radix tree test suite: Convert tag_tagged_items to XArray
[mirror_ubuntu-jammy-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
0a835c4f
MW
25#include <linux/bitmap.h>
26#include <linux/bitops.h>
460488c5 27#include <linux/bug.h>
e157b555 28#include <linux/cpu.h>
1da177e4 29#include <linux/errno.h>
0a835c4f
MW
30#include <linux/export.h>
31#include <linux/idr.h>
1da177e4
LT
32#include <linux/init.h>
33#include <linux/kernel.h>
0a835c4f 34#include <linux/kmemleak.h>
1da177e4 35#include <linux/percpu.h>
0a835c4f
MW
36#include <linux/preempt.h> /* in_interrupt() */
37#include <linux/radix-tree.h>
38#include <linux/rcupdate.h>
1da177e4 39#include <linux/slab.h>
1da177e4 40#include <linux/string.h>
02c02bf1 41#include <linux/xarray.h>
1da177e4
LT
42
43
1da177e4
LT
44/*
45 * Radix tree node cache.
46 */
58d6ea30 47struct kmem_cache *radix_tree_node_cachep;
1da177e4 48
55368052
NP
49/*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
0a835c4f
MW
62/*
63 * The IDR does not have to be as high as the radix tree since it uses
64 * signed integers, not unsigned longs.
65 */
66#define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
67#define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
68 RADIX_TREE_MAP_SHIFT))
69#define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
70
7ad3d4d8
MW
71/*
72 * The IDA is even shorter since it uses a bitmap at the last level.
73 */
74#define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
75#define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
76 RADIX_TREE_MAP_SHIFT))
77#define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
78
1da177e4
LT
79/*
80 * Per-cpu pool of preloaded nodes
81 */
82struct radix_tree_preload {
2fcd9005 83 unsigned nr;
1293d5c5 84 /* nodes->parent points to next preallocated node */
9d2a8da0 85 struct radix_tree_node *nodes;
1da177e4 86};
8cef7d57 87static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 88
148deab2
MW
89static inline struct radix_tree_node *entry_to_node(void *ptr)
90{
91 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
92}
93
a4db4dce 94static inline void *node_to_entry(void *ptr)
27d20fdd 95{
30ff46cc 96 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
97}
98
02c02bf1 99#define RADIX_TREE_RETRY XA_RETRY_ENTRY
db050f29 100
d7b62727
MW
101static inline unsigned long
102get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
db050f29 103{
76f070b4 104 return parent ? slot - parent->slots : 0;
db050f29
MW
105}
106
35534c86 107static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
9e85d811 108 struct radix_tree_node **nodep, unsigned long index)
db050f29 109{
9e85d811 110 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
d7b62727 111 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
db050f29 112
02c02bf1
MW
113 if (xa_is_sibling(entry)) {
114 offset = xa_to_sibling(entry);
115 entry = rcu_dereference_raw(parent->slots[offset]);
db050f29 116 }
db050f29
MW
117
118 *nodep = (void *)entry;
119 return offset;
120}
121
35534c86 122static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
612d6c19 123{
f8d5d0cc 124 return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
612d6c19
NP
125}
126
643b52b9
NP
127static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
128 int offset)
129{
130 __set_bit(offset, node->tags[tag]);
131}
132
133static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
134 int offset)
135{
136 __clear_bit(offset, node->tags[tag]);
137}
138
35534c86 139static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
643b52b9
NP
140 int offset)
141{
142 return test_bit(offset, node->tags[tag]);
143}
144
35534c86 145static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
643b52b9 146{
f8d5d0cc 147 root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
148}
149
2fcd9005 150static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9 151{
f8d5d0cc 152 root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
153}
154
155static inline void root_tag_clear_all(struct radix_tree_root *root)
156{
f8d5d0cc 157 root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
643b52b9
NP
158}
159
35534c86 160static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
643b52b9 161{
f8d5d0cc 162 return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
163}
164
35534c86 165static inline unsigned root_tags_get(const struct radix_tree_root *root)
643b52b9 166{
f8d5d0cc 167 return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
643b52b9
NP
168}
169
0a835c4f 170static inline bool is_idr(const struct radix_tree_root *root)
7b60e9ad 171{
f8d5d0cc 172 return !!(root->xa_flags & ROOT_IS_IDR);
7b60e9ad
MW
173}
174
643b52b9
NP
175/*
176 * Returns 1 if any slot in the node has this tag set.
177 * Otherwise returns 0.
178 */
35534c86
MW
179static inline int any_tag_set(const struct radix_tree_node *node,
180 unsigned int tag)
643b52b9 181{
2fcd9005 182 unsigned idx;
643b52b9
NP
183 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
184 if (node->tags[tag][idx])
185 return 1;
186 }
187 return 0;
188}
78c1d784 189
0a835c4f
MW
190static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
191{
192 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
193}
194
78c1d784
KK
195/**
196 * radix_tree_find_next_bit - find the next set bit in a memory region
197 *
198 * @addr: The address to base the search on
199 * @size: The bitmap size in bits
200 * @offset: The bitnumber to start searching at
201 *
202 * Unrollable variant of find_next_bit() for constant size arrays.
203 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
204 * Returns next bit offset, or size if nothing found.
205 */
206static __always_inline unsigned long
bc412fca
MW
207radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
208 unsigned long offset)
78c1d784 209{
bc412fca 210 const unsigned long *addr = node->tags[tag];
78c1d784 211
bc412fca 212 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
213 unsigned long tmp;
214
215 addr += offset / BITS_PER_LONG;
216 tmp = *addr >> (offset % BITS_PER_LONG);
217 if (tmp)
218 return __ffs(tmp) + offset;
219 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 220 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
221 tmp = *++addr;
222 if (tmp)
223 return __ffs(tmp) + offset;
224 offset += BITS_PER_LONG;
225 }
226 }
bc412fca 227 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
228}
229
268f42de
MW
230static unsigned int iter_offset(const struct radix_tree_iter *iter)
231{
232 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
233}
234
218ed750
MW
235/*
236 * The maximum index which can be stored in a radix tree
237 */
238static inline unsigned long shift_maxindex(unsigned int shift)
239{
240 return (RADIX_TREE_MAP_SIZE << shift) - 1;
241}
242
35534c86 243static inline unsigned long node_maxindex(const struct radix_tree_node *node)
218ed750
MW
244{
245 return shift_maxindex(node->shift);
246}
247
0a835c4f
MW
248static unsigned long next_index(unsigned long index,
249 const struct radix_tree_node *node,
250 unsigned long offset)
251{
252 return (index & ~node_maxindex(node)) + (offset << node->shift);
253}
254
1da177e4
LT
255/*
256 * This assumes that the caller has performed appropriate preallocation, and
257 * that the caller has pinned this thread of control to the current CPU.
258 */
259static struct radix_tree_node *
0a835c4f 260radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
d58275bc 261 struct radix_tree_root *root,
e8de4340 262 unsigned int shift, unsigned int offset,
01959dfe 263 unsigned int count, unsigned int nr_values)
1da177e4 264{
e2848a0e 265 struct radix_tree_node *ret = NULL;
1da177e4 266
5e4c0d97 267 /*
2fcd9005
MW
268 * Preload code isn't irq safe and it doesn't make sense to use
269 * preloading during an interrupt anyway as all the allocations have
270 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 271 */
d0164adc 272 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
273 struct radix_tree_preload *rtp;
274
58e698af
VD
275 /*
276 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
277 * cache first for the new node to get accounted to the memory
278 * cgroup.
58e698af
VD
279 */
280 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 281 gfp_mask | __GFP_NOWARN);
58e698af
VD
282 if (ret)
283 goto out;
284
e2848a0e
NP
285 /*
286 * Provided the caller has preloaded here, we will always
287 * succeed in getting a node here (and never reach
288 * kmem_cache_alloc)
289 */
7c8e0181 290 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 291 if (rtp->nr) {
9d2a8da0 292 ret = rtp->nodes;
1293d5c5 293 rtp->nodes = ret->parent;
1da177e4
LT
294 rtp->nr--;
295 }
ce80b067
CM
296 /*
297 * Update the allocation stack trace as this is more useful
298 * for debugging.
299 */
300 kmemleak_update_trace(ret);
58e698af 301 goto out;
1da177e4 302 }
05eb6e72 303 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 304out:
b194d16c 305 BUG_ON(radix_tree_is_internal_node(ret));
e8de4340 306 if (ret) {
e8de4340
MW
307 ret->shift = shift;
308 ret->offset = offset;
309 ret->count = count;
01959dfe 310 ret->nr_values = nr_values;
d58275bc 311 ret->parent = parent;
01959dfe 312 ret->array = root;
e8de4340 313 }
1da177e4
LT
314 return ret;
315}
316
58d6ea30 317void radix_tree_node_rcu_free(struct rcu_head *head)
7cf9c2c7
NP
318{
319 struct radix_tree_node *node =
320 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
321
322 /*
175542f5
MW
323 * Must only free zeroed nodes into the slab. We can be left with
324 * non-NULL entries by radix_tree_free_nodes, so clear the entries
325 * and tags here.
643b52b9 326 */
175542f5
MW
327 memset(node->slots, 0, sizeof(node->slots));
328 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 329 INIT_LIST_HEAD(&node->private_list);
643b52b9 330
7cf9c2c7
NP
331 kmem_cache_free(radix_tree_node_cachep, node);
332}
333
1da177e4
LT
334static inline void
335radix_tree_node_free(struct radix_tree_node *node)
336{
7cf9c2c7 337 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
338}
339
340/*
341 * Load up this CPU's radix_tree_node buffer with sufficient objects to
342 * ensure that the addition of a single element in the tree cannot fail. On
343 * success, return zero, with preemption disabled. On error, return -ENOMEM
344 * with preemption not disabled.
b34df792
DH
345 *
346 * To make use of this facility, the radix tree must be initialised without
d0164adc 347 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 348 */
bc9ae224 349static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
1da177e4
LT
350{
351 struct radix_tree_preload *rtp;
352 struct radix_tree_node *node;
353 int ret = -ENOMEM;
354
05eb6e72
VD
355 /*
356 * Nodes preloaded by one cgroup can be be used by another cgroup, so
357 * they should never be accounted to any particular memory cgroup.
358 */
359 gfp_mask &= ~__GFP_ACCOUNT;
360
1da177e4 361 preempt_disable();
7c8e0181 362 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 363 while (rtp->nr < nr) {
1da177e4 364 preempt_enable();
488514d1 365 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
366 if (node == NULL)
367 goto out;
368 preempt_disable();
7c8e0181 369 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 370 if (rtp->nr < nr) {
1293d5c5 371 node->parent = rtp->nodes;
9d2a8da0
KS
372 rtp->nodes = node;
373 rtp->nr++;
374 } else {
1da177e4 375 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 376 }
1da177e4
LT
377 }
378 ret = 0;
379out:
380 return ret;
381}
5e4c0d97
JK
382
383/*
384 * Load up this CPU's radix_tree_node buffer with sufficient objects to
385 * ensure that the addition of a single element in the tree cannot fail. On
386 * success, return zero, with preemption disabled. On error, return -ENOMEM
387 * with preemption not disabled.
388 *
389 * To make use of this facility, the radix tree must be initialised without
d0164adc 390 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
391 */
392int radix_tree_preload(gfp_t gfp_mask)
393{
394 /* Warn on non-sensical use... */
d0164adc 395 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 396 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 397}
d7f0923d 398EXPORT_SYMBOL(radix_tree_preload);
1da177e4 399
5e4c0d97
JK
400/*
401 * The same as above function, except we don't guarantee preloading happens.
402 * We do it, if we decide it helps. On success, return zero with preemption
403 * disabled. On error, return -ENOMEM with preemption not disabled.
404 */
405int radix_tree_maybe_preload(gfp_t gfp_mask)
406{
d0164adc 407 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 408 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
409 /* Preloading doesn't help anything with this gfp mask, skip it */
410 preempt_disable();
411 return 0;
412}
413EXPORT_SYMBOL(radix_tree_maybe_preload);
414
35534c86 415static unsigned radix_tree_load_root(const struct radix_tree_root *root,
1456a439
MW
416 struct radix_tree_node **nodep, unsigned long *maxindex)
417{
f8d5d0cc 418 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
1456a439
MW
419
420 *nodep = node;
421
b194d16c 422 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 423 node = entry_to_node(node);
1456a439 424 *maxindex = node_maxindex(node);
c12e51b0 425 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
426 }
427
428 *maxindex = 0;
429 return 0;
430}
431
1da177e4
LT
432/*
433 * Extend a radix tree so it can store key @index.
434 */
0a835c4f 435static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
d0891265 436 unsigned long index, unsigned int shift)
1da177e4 437{
d7b62727 438 void *entry;
d0891265 439 unsigned int maxshift;
1da177e4
LT
440 int tag;
441
d0891265
MW
442 /* Figure out what the shift should be. */
443 maxshift = shift;
444 while (index > shift_maxindex(maxshift))
445 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 446
f8d5d0cc 447 entry = rcu_dereference_raw(root->xa_head);
d7b62727 448 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
1da177e4 449 goto out;
1da177e4 450
1da177e4 451 do {
0a835c4f 452 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
d58275bc 453 root, shift, 0, 1, 0);
2fcd9005 454 if (!node)
1da177e4
LT
455 return -ENOMEM;
456
0a835c4f
MW
457 if (is_idr(root)) {
458 all_tag_set(node, IDR_FREE);
459 if (!root_tag_get(root, IDR_FREE)) {
460 tag_clear(node, IDR_FREE, 0);
461 root_tag_set(root, IDR_FREE);
462 }
463 } else {
464 /* Propagate the aggregated tag info to the new child */
465 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
466 if (root_tag_get(root, tag))
467 tag_set(node, tag, 0);
468 }
1da177e4
LT
469 }
470
d0891265 471 BUG_ON(shift > BITS_PER_LONG);
d7b62727
MW
472 if (radix_tree_is_internal_node(entry)) {
473 entry_to_node(entry)->parent = node;
3159f943 474 } else if (xa_is_value(entry)) {
01959dfe
MW
475 /* Moving a value entry root->xa_head to a node */
476 node->nr_values = 1;
f7942430 477 }
d7b62727
MW
478 /*
479 * entry was already in the radix tree, so we do not need
480 * rcu_assign_pointer here
481 */
482 node->slots[0] = (void __rcu *)entry;
483 entry = node_to_entry(node);
f8d5d0cc 484 rcu_assign_pointer(root->xa_head, entry);
d0891265 485 shift += RADIX_TREE_MAP_SHIFT;
d0891265 486 } while (shift <= maxshift);
1da177e4 487out:
d0891265 488 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
489}
490
f4b109c6
JW
491/**
492 * radix_tree_shrink - shrink radix tree to minimum height
493 * @root radix tree root
494 */
1cf56f9d 495static inline bool radix_tree_shrink(struct radix_tree_root *root)
f4b109c6 496{
0ac398ef
MW
497 bool shrunk = false;
498
f4b109c6 499 for (;;) {
f8d5d0cc 500 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
f4b109c6
JW
501 struct radix_tree_node *child;
502
503 if (!radix_tree_is_internal_node(node))
504 break;
505 node = entry_to_node(node);
506
507 /*
508 * The candidate node has more than one child, or its child
509 * is not at the leftmost slot, or the child is a multiorder
510 * entry, we cannot shrink.
511 */
512 if (node->count != 1)
513 break;
12320d0f 514 child = rcu_dereference_raw(node->slots[0]);
f4b109c6
JW
515 if (!child)
516 break;
517 if (!radix_tree_is_internal_node(child) && node->shift)
518 break;
519
66ee620f
MW
520 /*
521 * For an IDR, we must not shrink entry 0 into the root in
522 * case somebody calls idr_replace() with a pointer that
523 * appears to be an internal entry
524 */
525 if (!node->shift && is_idr(root))
526 break;
527
f4b109c6
JW
528 if (radix_tree_is_internal_node(child))
529 entry_to_node(child)->parent = NULL;
530
531 /*
532 * We don't need rcu_assign_pointer(), since we are simply
533 * moving the node from one part of the tree to another: if it
534 * was safe to dereference the old pointer to it
535 * (node->slots[0]), it will be safe to dereference the new
f8d5d0cc 536 * one (root->xa_head) as far as dependent read barriers go.
f4b109c6 537 */
f8d5d0cc 538 root->xa_head = (void __rcu *)child;
0a835c4f
MW
539 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
540 root_tag_clear(root, IDR_FREE);
f4b109c6
JW
541
542 /*
543 * We have a dilemma here. The node's slot[0] must not be
544 * NULLed in case there are concurrent lookups expecting to
545 * find the item. However if this was a bottom-level node,
546 * then it may be subject to the slot pointer being visible
547 * to callers dereferencing it. If item corresponding to
548 * slot[0] is subsequently deleted, these callers would expect
549 * their slot to become empty sooner or later.
550 *
551 * For example, lockless pagecache will look up a slot, deref
552 * the page pointer, and if the page has 0 refcount it means it
553 * was concurrently deleted from pagecache so try the deref
554 * again. Fortunately there is already a requirement for logic
555 * to retry the entire slot lookup -- the indirect pointer
556 * problem (replacing direct root node with an indirect pointer
557 * also results in a stale slot). So tag the slot as indirect
558 * to force callers to retry.
559 */
4d693d08
JW
560 node->count = 0;
561 if (!radix_tree_is_internal_node(child)) {
d7b62727 562 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
4d693d08 563 }
f4b109c6 564
ea07b862 565 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 566 radix_tree_node_free(node);
0ac398ef 567 shrunk = true;
f4b109c6 568 }
0ac398ef
MW
569
570 return shrunk;
f4b109c6
JW
571}
572
0ac398ef 573static bool delete_node(struct radix_tree_root *root,
1cf56f9d 574 struct radix_tree_node *node)
f4b109c6 575{
0ac398ef
MW
576 bool deleted = false;
577
f4b109c6
JW
578 do {
579 struct radix_tree_node *parent;
580
581 if (node->count) {
12320d0f 582 if (node_to_entry(node) ==
f8d5d0cc 583 rcu_dereference_raw(root->xa_head))
1cf56f9d 584 deleted |= radix_tree_shrink(root);
0ac398ef 585 return deleted;
f4b109c6
JW
586 }
587
588 parent = node->parent;
589 if (parent) {
590 parent->slots[node->offset] = NULL;
591 parent->count--;
592 } else {
0a835c4f
MW
593 /*
594 * Shouldn't the tags already have all been cleared
595 * by the caller?
596 */
597 if (!is_idr(root))
598 root_tag_clear_all(root);
f8d5d0cc 599 root->xa_head = NULL;
f4b109c6
JW
600 }
601
ea07b862 602 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 603 radix_tree_node_free(node);
0ac398ef 604 deleted = true;
f4b109c6
JW
605
606 node = parent;
607 } while (node);
0ac398ef
MW
608
609 return deleted;
f4b109c6
JW
610}
611
1da177e4 612/**
139e5616 613 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
614 * @root: radix tree root
615 * @index: index key
e6145236 616 * @order: index occupies 2^order aligned slots
139e5616
JW
617 * @nodep: returns node
618 * @slotp: returns slot
1da177e4 619 *
139e5616
JW
620 * Create, if necessary, and return the node and slot for an item
621 * at position @index in the radix tree @root.
622 *
623 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 624 * allocated and @root->xa_head is used as a direct slot instead of
139e5616
JW
625 * pointing to a node, in which case *@nodep will be NULL.
626 *
627 * Returns -ENOMEM, or 0 for success.
1da177e4 628 */
74d60958
MW
629static int __radix_tree_create(struct radix_tree_root *root,
630 unsigned long index, unsigned order,
631 struct radix_tree_node **nodep, void __rcu ***slotp)
1da177e4 632{
89148aa4 633 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 634 void __rcu **slot = (void __rcu **)&root->xa_head;
49ea6ebc 635 unsigned long maxindex;
89148aa4 636 unsigned int shift, offset = 0;
49ea6ebc 637 unsigned long max = index | ((1UL << order) - 1);
0a835c4f 638 gfp_t gfp = root_gfp_mask(root);
49ea6ebc 639
89148aa4 640 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
641
642 /* Make sure the tree is high enough. */
175542f5
MW
643 if (order > 0 && max == ((1UL << order) - 1))
644 max++;
49ea6ebc 645 if (max > maxindex) {
0a835c4f 646 int error = radix_tree_extend(root, gfp, max, shift);
49ea6ebc 647 if (error < 0)
1da177e4 648 return error;
49ea6ebc 649 shift = error;
f8d5d0cc 650 child = rcu_dereference_raw(root->xa_head);
1da177e4
LT
651 }
652
e6145236 653 while (shift > order) {
c12e51b0 654 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 655 if (child == NULL) {
1da177e4 656 /* Have to add a child node. */
d58275bc 657 child = radix_tree_node_alloc(gfp, node, root, shift,
e8de4340 658 offset, 0, 0);
89148aa4 659 if (!child)
1da177e4 660 return -ENOMEM;
89148aa4
MW
661 rcu_assign_pointer(*slot, node_to_entry(child));
662 if (node)
1da177e4 663 node->count++;
89148aa4 664 } else if (!radix_tree_is_internal_node(child))
e6145236 665 break;
1da177e4
LT
666
667 /* Go a level down */
89148aa4 668 node = entry_to_node(child);
9e85d811 669 offset = radix_tree_descend(node, &child, index);
89148aa4 670 slot = &node->slots[offset];
e6145236
MW
671 }
672
175542f5
MW
673 if (nodep)
674 *nodep = node;
675 if (slotp)
676 *slotp = slot;
677 return 0;
678}
679
175542f5
MW
680/*
681 * Free any nodes below this node. The tree is presumed to not need
682 * shrinking, and any user data in the tree is presumed to not need a
683 * destructor called on it. If we need to add a destructor, we can
684 * add that functionality later. Note that we may not clear tags or
685 * slots from the tree as an RCU walker may still have a pointer into
686 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
687 * but we'll still have to clear those in rcu_free.
688 */
689static void radix_tree_free_nodes(struct radix_tree_node *node)
690{
691 unsigned offset = 0;
692 struct radix_tree_node *child = entry_to_node(node);
693
694 for (;;) {
12320d0f 695 void *entry = rcu_dereference_raw(child->slots[offset]);
02c02bf1 696 if (xa_is_node(entry) && child->shift) {
175542f5
MW
697 child = entry_to_node(entry);
698 offset = 0;
699 continue;
700 }
701 offset++;
702 while (offset == RADIX_TREE_MAP_SIZE) {
703 struct radix_tree_node *old = child;
704 offset = child->offset + 1;
705 child = child->parent;
dd040b6f 706 WARN_ON_ONCE(!list_empty(&old->private_list));
175542f5
MW
707 radix_tree_node_free(old);
708 if (old == entry_to_node(node))
709 return;
710 }
711 }
712}
713
0a835c4f 714#ifdef CONFIG_RADIX_TREE_MULTIORDER
d7b62727
MW
715static inline int insert_entries(struct radix_tree_node *node,
716 void __rcu **slot, void *item, unsigned order, bool replace)
175542f5 717{
02c02bf1 718 void *sibling;
175542f5
MW
719 unsigned i, n, tag, offset, tags = 0;
720
721 if (node) {
e157b555
MW
722 if (order > node->shift)
723 n = 1 << (order - node->shift);
724 else
725 n = 1;
175542f5
MW
726 offset = get_slot_offset(node, slot);
727 } else {
728 n = 1;
729 offset = 0;
730 }
731
732 if (n > 1) {
e6145236 733 offset = offset & ~(n - 1);
89148aa4 734 slot = &node->slots[offset];
175542f5 735 }
02c02bf1 736 sibling = xa_mk_sibling(offset);
175542f5
MW
737
738 for (i = 0; i < n; i++) {
739 if (slot[i]) {
740 if (replace) {
741 node->count--;
742 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
743 if (tag_get(node, tag, offset + i))
744 tags |= 1 << tag;
745 } else
e6145236
MW
746 return -EEXIST;
747 }
175542f5 748 }
e6145236 749
175542f5 750 for (i = 0; i < n; i++) {
12320d0f 751 struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
175542f5 752 if (i) {
02c02bf1 753 rcu_assign_pointer(slot[i], sibling);
175542f5
MW
754 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
755 if (tags & (1 << tag))
756 tag_clear(node, tag, offset + i);
757 } else {
758 rcu_assign_pointer(slot[i], item);
759 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
760 if (tags & (1 << tag))
761 tag_set(node, tag, offset);
e6145236 762 }
02c02bf1 763 if (xa_is_node(old))
175542f5 764 radix_tree_free_nodes(old);
3159f943 765 if (xa_is_value(old))
01959dfe 766 node->nr_values--;
612d6c19 767 }
175542f5
MW
768 if (node) {
769 node->count += n;
3159f943 770 if (xa_is_value(item))
01959dfe 771 node->nr_values += n;
175542f5
MW
772 }
773 return n;
139e5616 774}
175542f5 775#else
d7b62727
MW
776static inline int insert_entries(struct radix_tree_node *node,
777 void __rcu **slot, void *item, unsigned order, bool replace)
175542f5
MW
778{
779 if (*slot)
780 return -EEXIST;
781 rcu_assign_pointer(*slot, item);
782 if (node) {
783 node->count++;
3159f943 784 if (xa_is_value(item))
01959dfe 785 node->nr_values++;
175542f5
MW
786 }
787 return 1;
788}
789#endif
139e5616
JW
790
791/**
e6145236 792 * __radix_tree_insert - insert into a radix tree
139e5616
JW
793 * @root: radix tree root
794 * @index: index key
e6145236 795 * @order: key covers the 2^order indices around index
139e5616
JW
796 * @item: item to insert
797 *
798 * Insert an item into the radix tree at position @index.
799 */
e6145236
MW
800int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
801 unsigned order, void *item)
139e5616
JW
802{
803 struct radix_tree_node *node;
d7b62727 804 void __rcu **slot;
139e5616
JW
805 int error;
806
b194d16c 807 BUG_ON(radix_tree_is_internal_node(item));
139e5616 808
e6145236 809 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
810 if (error)
811 return error;
175542f5
MW
812
813 error = insert_entries(node, slot, item, order, false);
814 if (error < 0)
815 return error;
201b6264 816
612d6c19 817 if (node) {
7b60e9ad 818 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
819 BUG_ON(tag_get(node, 0, offset));
820 BUG_ON(tag_get(node, 1, offset));
821 BUG_ON(tag_get(node, 2, offset));
612d6c19 822 } else {
7b60e9ad 823 BUG_ON(root_tags_get(root));
612d6c19 824 }
1da177e4 825
1da177e4
LT
826 return 0;
827}
e6145236 828EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 829
139e5616
JW
830/**
831 * __radix_tree_lookup - lookup an item in a radix tree
832 * @root: radix tree root
833 * @index: index key
834 * @nodep: returns node
835 * @slotp: returns slot
836 *
837 * Lookup and return the item at position @index in the radix
838 * tree @root.
839 *
840 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 841 * allocated and @root->xa_head is used as a direct slot instead of
139e5616 842 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 843 */
35534c86
MW
844void *__radix_tree_lookup(const struct radix_tree_root *root,
845 unsigned long index, struct radix_tree_node **nodep,
d7b62727 846 void __rcu ***slotp)
1da177e4 847{
139e5616 848 struct radix_tree_node *node, *parent;
85829954 849 unsigned long maxindex;
d7b62727 850 void __rcu **slot;
612d6c19 851
85829954
MW
852 restart:
853 parent = NULL;
f8d5d0cc 854 slot = (void __rcu **)&root->xa_head;
9e85d811 855 radix_tree_load_root(root, &node, &maxindex);
85829954 856 if (index > maxindex)
1da177e4
LT
857 return NULL;
858
b194d16c 859 while (radix_tree_is_internal_node(node)) {
85829954 860 unsigned offset;
1da177e4 861
85829954
MW
862 if (node == RADIX_TREE_RETRY)
863 goto restart;
4dd6c098 864 parent = entry_to_node(node);
9e85d811 865 offset = radix_tree_descend(parent, &node, index);
85829954 866 slot = parent->slots + offset;
66ee620f
MW
867 if (parent->shift == 0)
868 break;
85829954 869 }
1da177e4 870
139e5616
JW
871 if (nodep)
872 *nodep = parent;
873 if (slotp)
874 *slotp = slot;
875 return node;
b72b71c6
HS
876}
877
878/**
879 * radix_tree_lookup_slot - lookup a slot in a radix tree
880 * @root: radix tree root
881 * @index: index key
882 *
883 * Returns: the slot corresponding to the position @index in the
884 * radix tree @root. This is useful for update-if-exists operations.
885 *
886 * This function can be called under rcu_read_lock iff the slot is not
887 * modified by radix_tree_replace_slot, otherwise it must be called
888 * exclusive from other writers. Any dereference of the slot must be done
889 * using radix_tree_deref_slot.
890 */
d7b62727 891void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
35534c86 892 unsigned long index)
b72b71c6 893{
d7b62727 894 void __rcu **slot;
139e5616
JW
895
896 if (!__radix_tree_lookup(root, index, NULL, &slot))
897 return NULL;
898 return slot;
a4331366 899}
a4331366
HR
900EXPORT_SYMBOL(radix_tree_lookup_slot);
901
902/**
903 * radix_tree_lookup - perform lookup operation on a radix tree
904 * @root: radix tree root
905 * @index: index key
906 *
907 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
908 *
909 * This function can be called under rcu_read_lock, however the caller
910 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
911 * them safely). No RCU barriers are required to access or modify the
912 * returned item, however.
a4331366 913 */
35534c86 914void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
a4331366 915{
139e5616 916 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
917}
918EXPORT_SYMBOL(radix_tree_lookup);
919
0a835c4f 920static inline void replace_sibling_entries(struct radix_tree_node *node,
01959dfe 921 void __rcu **slot, int count, int values)
a90eb3a2 922{
a90eb3a2 923#ifdef CONFIG_RADIX_TREE_MULTIORDER
02c02bf1
MW
924 unsigned offset = get_slot_offset(node, slot);
925 void *ptr = xa_mk_sibling(offset);
a90eb3a2 926
02c02bf1 927 while (++offset < RADIX_TREE_MAP_SIZE) {
12320d0f 928 if (rcu_dereference_raw(node->slots[offset]) != ptr)
a90eb3a2 929 break;
0a835c4f
MW
930 if (count < 0) {
931 node->slots[offset] = NULL;
932 node->count--;
933 }
01959dfe 934 node->nr_values += values;
a90eb3a2
MW
935 }
936#endif
a90eb3a2
MW
937}
938
d7b62727 939static void replace_slot(void __rcu **slot, void *item,
01959dfe 940 struct radix_tree_node *node, int count, int values)
f7942430 941{
01959dfe 942 if (node && (count || values)) {
f4b109c6 943 node->count += count;
01959dfe
MW
944 node->nr_values += values;
945 replace_sibling_entries(node, slot, count, values);
f4b109c6 946 }
f7942430
JW
947
948 rcu_assign_pointer(*slot, item);
949}
950
0a835c4f
MW
951static bool node_tag_get(const struct radix_tree_root *root,
952 const struct radix_tree_node *node,
953 unsigned int tag, unsigned int offset)
a90eb3a2 954{
0a835c4f
MW
955 if (node)
956 return tag_get(node, tag, offset);
957 return root_tag_get(root, tag);
958}
a90eb3a2 959
0a835c4f
MW
960/*
961 * IDR users want to be able to store NULL in the tree, so if the slot isn't
962 * free, don't adjust the count, even if it's transitioning between NULL and
963 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
964 * have empty bits, but it only stores NULL in slots when they're being
965 * deleted.
966 */
967static int calculate_count(struct radix_tree_root *root,
d7b62727 968 struct radix_tree_node *node, void __rcu **slot,
0a835c4f
MW
969 void *item, void *old)
970{
971 if (is_idr(root)) {
972 unsigned offset = get_slot_offset(node, slot);
973 bool free = node_tag_get(root, node, IDR_FREE, offset);
974 if (!free)
975 return 0;
976 if (!old)
977 return 1;
a90eb3a2 978 }
0a835c4f 979 return !!item - !!old;
a90eb3a2
MW
980}
981
6d75f366
JW
982/**
983 * __radix_tree_replace - replace item in a slot
4d693d08
JW
984 * @root: radix tree root
985 * @node: pointer to tree node
986 * @slot: pointer to slot in @node
987 * @item: new item to store in the slot.
6d75f366
JW
988 *
989 * For use with __radix_tree_lookup(). Caller must hold tree write locked
990 * across slot lookup and replacement.
991 */
992void __radix_tree_replace(struct radix_tree_root *root,
993 struct radix_tree_node *node,
1cf56f9d 994 void __rcu **slot, void *item)
6d75f366 995{
0a835c4f 996 void *old = rcu_dereference_raw(*slot);
01959dfe 997 int values = !!xa_is_value(item) - !!xa_is_value(old);
0a835c4f
MW
998 int count = calculate_count(root, node, slot, item, old);
999
6d75f366 1000 /*
01959dfe 1001 * This function supports replacing value entries and
f4b109c6 1002 * deleting entries, but that needs accounting against the
f8d5d0cc 1003 * node unless the slot is root->xa_head.
6d75f366 1004 */
f8d5d0cc 1005 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
01959dfe
MW
1006 (count || values));
1007 replace_slot(slot, item, node, count, values);
f4b109c6 1008
4d693d08
JW
1009 if (!node)
1010 return;
1011
1cf56f9d 1012 delete_node(root, node);
6d75f366
JW
1013}
1014
1015/**
1016 * radix_tree_replace_slot - replace item in a slot
1017 * @root: radix tree root
1018 * @slot: pointer to slot
1019 * @item: new item to store in the slot.
1020 *
7b8d046f 1021 * For use with radix_tree_lookup_slot() and
6d75f366
JW
1022 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1023 * across slot lookup and replacement.
1024 *
1025 * NOTE: This cannot be used to switch between non-entries (empty slots),
01959dfe 1026 * regular entries, and value entries, as that requires accounting
f4b109c6 1027 * inside the radix tree node. When switching from one type of entry or
e157b555
MW
1028 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1029 * radix_tree_iter_replace().
6d75f366
JW
1030 */
1031void radix_tree_replace_slot(struct radix_tree_root *root,
d7b62727 1032 void __rcu **slot, void *item)
6d75f366 1033{
1cf56f9d 1034 __radix_tree_replace(root, NULL, slot, item);
6d75f366 1035}
10257d71 1036EXPORT_SYMBOL(radix_tree_replace_slot);
6d75f366 1037
e157b555
MW
1038/**
1039 * radix_tree_iter_replace - replace item in a slot
1040 * @root: radix tree root
1041 * @slot: pointer to slot
1042 * @item: new item to store in the slot.
1043 *
2956c664
MW
1044 * For use with radix_tree_for_each_slot().
1045 * Caller must hold tree write locked.
e157b555
MW
1046 */
1047void radix_tree_iter_replace(struct radix_tree_root *root,
d7b62727
MW
1048 const struct radix_tree_iter *iter,
1049 void __rcu **slot, void *item)
e157b555 1050{
1cf56f9d 1051 __radix_tree_replace(root, iter->node, slot, item);
e157b555
MW
1052}
1053
30b888ba
MW
1054static void node_tag_set(struct radix_tree_root *root,
1055 struct radix_tree_node *node,
1056 unsigned int tag, unsigned int offset)
1057{
1058 while (node) {
1059 if (tag_get(node, tag, offset))
1060 return;
1061 tag_set(node, tag, offset);
1062 offset = node->offset;
1063 node = node->parent;
1064 }
1065
1066 if (!root_tag_get(root, tag))
1067 root_tag_set(root, tag);
1068}
1069
1da177e4
LT
1070/**
1071 * radix_tree_tag_set - set a tag on a radix tree node
1072 * @root: radix tree root
1073 * @index: index key
2fcd9005 1074 * @tag: tag index
1da177e4 1075 *
daff89f3
JC
1076 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1077 * corresponding to @index in the radix tree. From
1da177e4
LT
1078 * the root all the way down to the leaf node.
1079 *
2fcd9005 1080 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
1081 * item is a bug.
1082 */
1083void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 1084 unsigned long index, unsigned int tag)
1da177e4 1085{
fb969909
RZ
1086 struct radix_tree_node *node, *parent;
1087 unsigned long maxindex;
1da177e4 1088
9e85d811 1089 radix_tree_load_root(root, &node, &maxindex);
fb969909 1090 BUG_ON(index > maxindex);
1da177e4 1091
b194d16c 1092 while (radix_tree_is_internal_node(node)) {
fb969909 1093 unsigned offset;
1da177e4 1094
4dd6c098 1095 parent = entry_to_node(node);
9e85d811 1096 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
1097 BUG_ON(!node);
1098
1099 if (!tag_get(parent, tag, offset))
1100 tag_set(parent, tag, offset);
1da177e4
LT
1101 }
1102
612d6c19 1103 /* set the root's tag bit */
fb969909 1104 if (!root_tag_get(root, tag))
612d6c19
NP
1105 root_tag_set(root, tag);
1106
fb969909 1107 return node;
1da177e4
LT
1108}
1109EXPORT_SYMBOL(radix_tree_tag_set);
1110
d604c324
MW
1111static void node_tag_clear(struct radix_tree_root *root,
1112 struct radix_tree_node *node,
1113 unsigned int tag, unsigned int offset)
1114{
1115 while (node) {
1116 if (!tag_get(node, tag, offset))
1117 return;
1118 tag_clear(node, tag, offset);
1119 if (any_tag_set(node, tag))
1120 return;
1121
1122 offset = node->offset;
1123 node = node->parent;
1124 }
1125
1126 /* clear the root's tag bit */
1127 if (root_tag_get(root, tag))
1128 root_tag_clear(root, tag);
1129}
1130
1da177e4
LT
1131/**
1132 * radix_tree_tag_clear - clear a tag on a radix tree node
1133 * @root: radix tree root
1134 * @index: index key
2fcd9005 1135 * @tag: tag index
1da177e4 1136 *
daff89f3 1137 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1138 * corresponding to @index in the radix tree. If this causes
1139 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1140 * next-to-leaf node, etc.
1141 *
1142 * Returns the address of the tagged item on success, else NULL. ie:
1143 * has the same return value and semantics as radix_tree_lookup().
1144 */
1145void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1146 unsigned long index, unsigned int tag)
1da177e4 1147{
00f47b58
RZ
1148 struct radix_tree_node *node, *parent;
1149 unsigned long maxindex;
e2bdb933 1150 int uninitialized_var(offset);
1da177e4 1151
9e85d811 1152 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1153 if (index > maxindex)
1154 return NULL;
1da177e4 1155
00f47b58 1156 parent = NULL;
1da177e4 1157
b194d16c 1158 while (radix_tree_is_internal_node(node)) {
4dd6c098 1159 parent = entry_to_node(node);
9e85d811 1160 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1161 }
1162
d604c324
MW
1163 if (node)
1164 node_tag_clear(root, parent, tag, offset);
1da177e4 1165
00f47b58 1166 return node;
1da177e4
LT
1167}
1168EXPORT_SYMBOL(radix_tree_tag_clear);
1169
30b888ba
MW
1170/**
1171 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1172 * @root: radix tree root
1173 * @iter: iterator state
1174 * @tag: tag to clear
1175 */
1176void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1177 const struct radix_tree_iter *iter, unsigned int tag)
1178{
1179 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1180}
1181
1da177e4 1182/**
32605a18
MT
1183 * radix_tree_tag_get - get a tag on a radix tree node
1184 * @root: radix tree root
1185 * @index: index key
2fcd9005 1186 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1187 *
32605a18 1188 * Return values:
1da177e4 1189 *
612d6c19
NP
1190 * 0: tag not present or not set
1191 * 1: tag set
ce82653d
DH
1192 *
1193 * Note that the return value of this function may not be relied on, even if
1194 * the RCU lock is held, unless tag modification and node deletion are excluded
1195 * from concurrency.
1da177e4 1196 */
35534c86 1197int radix_tree_tag_get(const struct radix_tree_root *root,
daff89f3 1198 unsigned long index, unsigned int tag)
1da177e4 1199{
4589ba6d
RZ
1200 struct radix_tree_node *node, *parent;
1201 unsigned long maxindex;
1da177e4 1202
612d6c19
NP
1203 if (!root_tag_get(root, tag))
1204 return 0;
1205
9e85d811 1206 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1207 if (index > maxindex)
1208 return 0;
7cf9c2c7 1209
b194d16c 1210 while (radix_tree_is_internal_node(node)) {
9e85d811 1211 unsigned offset;
1da177e4 1212
4dd6c098 1213 parent = entry_to_node(node);
9e85d811 1214 offset = radix_tree_descend(parent, &node, index);
1da177e4 1215
4589ba6d 1216 if (!tag_get(parent, tag, offset))
3fa36acb 1217 return 0;
4589ba6d
RZ
1218 if (node == RADIX_TREE_RETRY)
1219 break;
1da177e4 1220 }
4589ba6d
RZ
1221
1222 return 1;
1da177e4
LT
1223}
1224EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1225
21ef5339
RZ
1226static inline void __set_iter_shift(struct radix_tree_iter *iter,
1227 unsigned int shift)
1228{
1229#ifdef CONFIG_RADIX_TREE_MULTIORDER
1230 iter->shift = shift;
1231#endif
1232}
1233
148deab2
MW
1234/* Construct iter->tags bit-mask from node->tags[tag] array */
1235static void set_iter_tags(struct radix_tree_iter *iter,
1236 struct radix_tree_node *node, unsigned offset,
1237 unsigned tag)
1238{
1239 unsigned tag_long = offset / BITS_PER_LONG;
1240 unsigned tag_bit = offset % BITS_PER_LONG;
1241
0a835c4f
MW
1242 if (!node) {
1243 iter->tags = 1;
1244 return;
1245 }
1246
148deab2
MW
1247 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1248
1249 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1250 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1251 /* Pick tags from next element */
1252 if (tag_bit)
1253 iter->tags |= node->tags[tag][tag_long + 1] <<
1254 (BITS_PER_LONG - tag_bit);
1255 /* Clip chunk size, here only BITS_PER_LONG tags */
1256 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1257 }
1258}
1259
1260#ifdef CONFIG_RADIX_TREE_MULTIORDER
d7b62727
MW
1261static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1262 void __rcu **slot, struct radix_tree_iter *iter)
148deab2 1263{
148deab2
MW
1264 while (iter->index < iter->next_index) {
1265 *nodep = rcu_dereference_raw(*slot);
02c02bf1 1266 if (*nodep && !xa_is_sibling(*nodep))
148deab2
MW
1267 return slot;
1268 slot++;
1269 iter->index = __radix_tree_iter_add(iter, 1);
1270 iter->tags >>= 1;
1271 }
1272
1273 *nodep = NULL;
1274 return NULL;
1275}
1276
d7b62727
MW
1277void __rcu **__radix_tree_next_slot(void __rcu **slot,
1278 struct radix_tree_iter *iter, unsigned flags)
148deab2
MW
1279{
1280 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
9f418224 1281 struct radix_tree_node *node;
148deab2
MW
1282
1283 slot = skip_siblings(&node, slot, iter);
1284
1285 while (radix_tree_is_internal_node(node)) {
1286 unsigned offset;
1287 unsigned long next_index;
1288
1289 if (node == RADIX_TREE_RETRY)
1290 return slot;
1291 node = entry_to_node(node);
268f42de 1292 iter->node = node;
148deab2
MW
1293 iter->shift = node->shift;
1294
1295 if (flags & RADIX_TREE_ITER_TAGGED) {
1296 offset = radix_tree_find_next_bit(node, tag, 0);
1297 if (offset == RADIX_TREE_MAP_SIZE)
1298 return NULL;
1299 slot = &node->slots[offset];
1300 iter->index = __radix_tree_iter_add(iter, offset);
1301 set_iter_tags(iter, node, offset, tag);
1302 node = rcu_dereference_raw(*slot);
1303 } else {
1304 offset = 0;
1305 slot = &node->slots[0];
1306 for (;;) {
1307 node = rcu_dereference_raw(*slot);
1308 if (node)
1309 break;
1310 slot++;
1311 offset++;
1312 if (offset == RADIX_TREE_MAP_SIZE)
1313 return NULL;
1314 }
1315 iter->index = __radix_tree_iter_add(iter, offset);
1316 }
1317 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1318 goto none;
1319 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1320 if (next_index < iter->next_index)
1321 iter->next_index = next_index;
1322 }
1323
1324 return slot;
1325 none:
1326 iter->next_index = 0;
1327 return NULL;
1328}
1329EXPORT_SYMBOL(__radix_tree_next_slot);
1330#else
d7b62727
MW
1331static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1332 void __rcu **slot, struct radix_tree_iter *iter)
148deab2
MW
1333{
1334 return slot;
1335}
1336#endif
1337
d7b62727
MW
1338void __rcu **radix_tree_iter_resume(void __rcu **slot,
1339 struct radix_tree_iter *iter)
148deab2
MW
1340{
1341 struct radix_tree_node *node;
1342
1343 slot++;
1344 iter->index = __radix_tree_iter_add(iter, 1);
148deab2
MW
1345 skip_siblings(&node, slot, iter);
1346 iter->next_index = iter->index;
1347 iter->tags = 0;
1348 return NULL;
1349}
1350EXPORT_SYMBOL(radix_tree_iter_resume);
1351
78c1d784
KK
1352/**
1353 * radix_tree_next_chunk - find next chunk of slots for iteration
1354 *
1355 * @root: radix tree root
1356 * @iter: iterator state
1357 * @flags: RADIX_TREE_ITER_* flags and tag index
1358 * Returns: pointer to chunk first slot, or NULL if iteration is over
1359 */
d7b62727 1360void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
78c1d784
KK
1361 struct radix_tree_iter *iter, unsigned flags)
1362{
9e85d811 1363 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1364 struct radix_tree_node *node, *child;
21ef5339 1365 unsigned long index, offset, maxindex;
78c1d784
KK
1366
1367 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1368 return NULL;
1369
1370 /*
1371 * Catch next_index overflow after ~0UL. iter->index never overflows
1372 * during iterating; it can be zero only at the beginning.
1373 * And we cannot overflow iter->next_index in a single step,
1374 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1375 *
1376 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1377 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1378 */
1379 index = iter->next_index;
1380 if (!index && iter->index)
1381 return NULL;
1382
21ef5339 1383 restart:
9e85d811 1384 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1385 if (index > maxindex)
1386 return NULL;
8c1244de
MW
1387 if (!child)
1388 return NULL;
21ef5339 1389
8c1244de 1390 if (!radix_tree_is_internal_node(child)) {
78c1d784 1391 /* Single-slot tree */
21ef5339
RZ
1392 iter->index = index;
1393 iter->next_index = maxindex + 1;
78c1d784 1394 iter->tags = 1;
268f42de 1395 iter->node = NULL;
8c1244de 1396 __set_iter_shift(iter, 0);
f8d5d0cc 1397 return (void __rcu **)&root->xa_head;
8c1244de 1398 }
21ef5339 1399
8c1244de
MW
1400 do {
1401 node = entry_to_node(child);
9e85d811 1402 offset = radix_tree_descend(node, &child, index);
21ef5339 1403
78c1d784 1404 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1405 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1406 /* Hole detected */
1407 if (flags & RADIX_TREE_ITER_CONTIG)
1408 return NULL;
1409
1410 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1411 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1412 offset + 1);
1413 else
1414 while (++offset < RADIX_TREE_MAP_SIZE) {
12320d0f
MW
1415 void *slot = rcu_dereference_raw(
1416 node->slots[offset]);
02c02bf1 1417 if (xa_is_sibling(slot))
21ef5339
RZ
1418 continue;
1419 if (slot)
78c1d784
KK
1420 break;
1421 }
8c1244de 1422 index &= ~node_maxindex(node);
9e85d811 1423 index += offset << node->shift;
78c1d784
KK
1424 /* Overflow after ~0UL */
1425 if (!index)
1426 return NULL;
1427 if (offset == RADIX_TREE_MAP_SIZE)
1428 goto restart;
8c1244de 1429 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1430 }
1431
e157b555 1432 if (!child)
78c1d784 1433 goto restart;
e157b555
MW
1434 if (child == RADIX_TREE_RETRY)
1435 break;
66ee620f 1436 } while (node->shift && radix_tree_is_internal_node(child));
78c1d784
KK
1437
1438 /* Update the iterator state */
8c1244de
MW
1439 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1440 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1441 iter->node = node;
9e85d811 1442 __set_iter_shift(iter, node->shift);
78c1d784 1443
148deab2
MW
1444 if (flags & RADIX_TREE_ITER_TAGGED)
1445 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1446
1447 return node->slots + offset;
1448}
1449EXPORT_SYMBOL(radix_tree_next_chunk);
1450
1da177e4
LT
1451/**
1452 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1453 * @root: radix tree root
1454 * @results: where the results of the lookup are placed
1455 * @first_index: start the lookup from this key
1456 * @max_items: place up to this many items at *results
1457 *
1458 * Performs an index-ascending scan of the tree for present items. Places
1459 * them at *@results and returns the number of items which were placed at
1460 * *@results.
1461 *
1462 * The implementation is naive.
7cf9c2c7
NP
1463 *
1464 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1465 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1466 * an atomic snapshot of the tree at a single point in time, the
1467 * semantics of an RCU protected gang lookup are as though multiple
1468 * radix_tree_lookups have been issued in individual locks, and results
1469 * stored in 'results'.
1da177e4
LT
1470 */
1471unsigned int
35534c86 1472radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1da177e4
LT
1473 unsigned long first_index, unsigned int max_items)
1474{
cebbd29e 1475 struct radix_tree_iter iter;
d7b62727 1476 void __rcu **slot;
cebbd29e 1477 unsigned int ret = 0;
7cf9c2c7 1478
cebbd29e 1479 if (unlikely(!max_items))
7cf9c2c7 1480 return 0;
1da177e4 1481
cebbd29e 1482 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1483 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1484 if (!results[ret])
1485 continue;
b194d16c 1486 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1487 slot = radix_tree_iter_retry(&iter);
1488 continue;
1489 }
cebbd29e 1490 if (++ret == max_items)
1da177e4 1491 break;
1da177e4 1492 }
7cf9c2c7 1493
1da177e4
LT
1494 return ret;
1495}
1496EXPORT_SYMBOL(radix_tree_gang_lookup);
1497
1da177e4
LT
1498/**
1499 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1500 * based on a tag
1501 * @root: radix tree root
1502 * @results: where the results of the lookup are placed
1503 * @first_index: start the lookup from this key
1504 * @max_items: place up to this many items at *results
daff89f3 1505 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1506 *
1507 * Performs an index-ascending scan of the tree for present items which
1508 * have the tag indexed by @tag set. Places the items at *@results and
1509 * returns the number of items which were placed at *@results.
1510 */
1511unsigned int
35534c86 1512radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
daff89f3
JC
1513 unsigned long first_index, unsigned int max_items,
1514 unsigned int tag)
1da177e4 1515{
cebbd29e 1516 struct radix_tree_iter iter;
d7b62727 1517 void __rcu **slot;
cebbd29e 1518 unsigned int ret = 0;
612d6c19 1519
cebbd29e 1520 if (unlikely(!max_items))
7cf9c2c7
NP
1521 return 0;
1522
cebbd29e 1523 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1524 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1525 if (!results[ret])
1526 continue;
b194d16c 1527 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1528 slot = radix_tree_iter_retry(&iter);
1529 continue;
1530 }
cebbd29e 1531 if (++ret == max_items)
1da177e4 1532 break;
1da177e4 1533 }
7cf9c2c7 1534
1da177e4
LT
1535 return ret;
1536}
1537EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1538
47feff2c
NP
1539/**
1540 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1541 * radix tree based on a tag
1542 * @root: radix tree root
1543 * @results: where the results of the lookup are placed
1544 * @first_index: start the lookup from this key
1545 * @max_items: place up to this many items at *results
1546 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1547 *
1548 * Performs an index-ascending scan of the tree for present items which
1549 * have the tag indexed by @tag set. Places the slots at *@results and
1550 * returns the number of slots which were placed at *@results.
1551 */
1552unsigned int
35534c86 1553radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
d7b62727 1554 void __rcu ***results, unsigned long first_index,
35534c86 1555 unsigned int max_items, unsigned int tag)
47feff2c 1556{
cebbd29e 1557 struct radix_tree_iter iter;
d7b62727 1558 void __rcu **slot;
cebbd29e 1559 unsigned int ret = 0;
47feff2c 1560
cebbd29e 1561 if (unlikely(!max_items))
47feff2c
NP
1562 return 0;
1563
cebbd29e
KK
1564 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1565 results[ret] = slot;
1566 if (++ret == max_items)
47feff2c 1567 break;
47feff2c
NP
1568 }
1569
1570 return ret;
1571}
1572EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1573
0ac398ef 1574static bool __radix_tree_delete(struct radix_tree_root *root,
d7b62727 1575 struct radix_tree_node *node, void __rcu **slot)
0ac398ef 1576{
0a835c4f 1577 void *old = rcu_dereference_raw(*slot);
01959dfe 1578 int values = xa_is_value(old) ? -1 : 0;
0ac398ef
MW
1579 unsigned offset = get_slot_offset(node, slot);
1580 int tag;
1581
0a835c4f
MW
1582 if (is_idr(root))
1583 node_tag_set(root, node, IDR_FREE, offset);
1584 else
1585 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1586 node_tag_clear(root, node, tag, offset);
0ac398ef 1587
01959dfe 1588 replace_slot(slot, NULL, node, -1, values);
1cf56f9d 1589 return node && delete_node(root, node);
0ac398ef
MW
1590}
1591
1da177e4 1592/**
0ac398ef
MW
1593 * radix_tree_iter_delete - delete the entry at this iterator position
1594 * @root: radix tree root
1595 * @iter: iterator state
1596 * @slot: pointer to slot
1da177e4 1597 *
0ac398ef
MW
1598 * Delete the entry at the position currently pointed to by the iterator.
1599 * This may result in the current node being freed; if it is, the iterator
1600 * is advanced so that it will not reference the freed memory. This
1601 * function may be called without any locking if there are no other threads
1602 * which can access this tree.
1603 */
1604void radix_tree_iter_delete(struct radix_tree_root *root,
d7b62727 1605 struct radix_tree_iter *iter, void __rcu **slot)
0ac398ef
MW
1606{
1607 if (__radix_tree_delete(root, iter->node, slot))
1608 iter->index = iter->next_index;
1609}
d1b48c1e 1610EXPORT_SYMBOL(radix_tree_iter_delete);
0ac398ef
MW
1611
1612/**
1613 * radix_tree_delete_item - delete an item from a radix tree
1614 * @root: radix tree root
1615 * @index: index key
1616 * @item: expected item
1da177e4 1617 *
0ac398ef 1618 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1619 *
0ac398ef
MW
1620 * Return: the deleted entry, or %NULL if it was not present
1621 * or the entry at the given @index was not @item.
1da177e4 1622 */
53c59f26
JW
1623void *radix_tree_delete_item(struct radix_tree_root *root,
1624 unsigned long index, void *item)
1da177e4 1625{
0a835c4f 1626 struct radix_tree_node *node = NULL;
7a4deea1 1627 void __rcu **slot = NULL;
139e5616 1628 void *entry;
1da177e4 1629
139e5616 1630 entry = __radix_tree_lookup(root, index, &node, &slot);
7a4deea1
MW
1631 if (!slot)
1632 return NULL;
0a835c4f
MW
1633 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1634 get_slot_offset(node, slot))))
139e5616 1635 return NULL;
1da177e4 1636
139e5616
JW
1637 if (item && entry != item)
1638 return NULL;
1639
0ac398ef 1640 __radix_tree_delete(root, node, slot);
612d6c19 1641
139e5616 1642 return entry;
1da177e4 1643}
53c59f26
JW
1644EXPORT_SYMBOL(radix_tree_delete_item);
1645
1646/**
0ac398ef
MW
1647 * radix_tree_delete - delete an entry from a radix tree
1648 * @root: radix tree root
1649 * @index: index key
53c59f26 1650 *
0ac398ef 1651 * Remove the entry at @index from the radix tree rooted at @root.
53c59f26 1652 *
0ac398ef 1653 * Return: The deleted entry, or %NULL if it was not present.
53c59f26
JW
1654 */
1655void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1656{
1657 return radix_tree_delete_item(root, index, NULL);
1658}
1da177e4
LT
1659EXPORT_SYMBOL(radix_tree_delete);
1660
1661/**
1662 * radix_tree_tagged - test whether any items in the tree are tagged
1663 * @root: radix tree root
1664 * @tag: tag to test
1665 */
35534c86 1666int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1da177e4 1667{
612d6c19 1668 return root_tag_get(root, tag);
1da177e4
LT
1669}
1670EXPORT_SYMBOL(radix_tree_tagged);
1671
0a835c4f
MW
1672/**
1673 * idr_preload - preload for idr_alloc()
1674 * @gfp_mask: allocation mask to use for preloading
1675 *
1676 * Preallocate memory to use for the next call to idr_alloc(). This function
1677 * returns with preemption disabled. It will be enabled by idr_preload_end().
1678 */
1679void idr_preload(gfp_t gfp_mask)
1680{
bc9ae224
ED
1681 if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1682 preempt_disable();
0a835c4f
MW
1683}
1684EXPORT_SYMBOL(idr_preload);
1685
460488c5 1686void __rcu **idr_get_free(struct radix_tree_root *root,
388f79fd
CM
1687 struct radix_tree_iter *iter, gfp_t gfp,
1688 unsigned long max)
0a835c4f
MW
1689{
1690 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 1691 void __rcu **slot = (void __rcu **)&root->xa_head;
0a835c4f 1692 unsigned long maxindex, start = iter->next_index;
0a835c4f
MW
1693 unsigned int shift, offset = 0;
1694
1695 grow:
1696 shift = radix_tree_load_root(root, &child, &maxindex);
1697 if (!radix_tree_tagged(root, IDR_FREE))
1698 start = max(start, maxindex + 1);
1699 if (start > max)
1700 return ERR_PTR(-ENOSPC);
1701
1702 if (start > maxindex) {
1703 int error = radix_tree_extend(root, gfp, start, shift);
1704 if (error < 0)
1705 return ERR_PTR(error);
1706 shift = error;
f8d5d0cc 1707 child = rcu_dereference_raw(root->xa_head);
0a835c4f 1708 }
66ee620f
MW
1709 if (start == 0 && shift == 0)
1710 shift = RADIX_TREE_MAP_SHIFT;
0a835c4f
MW
1711
1712 while (shift) {
1713 shift -= RADIX_TREE_MAP_SHIFT;
1714 if (child == NULL) {
1715 /* Have to add a child node. */
d58275bc
MW
1716 child = radix_tree_node_alloc(gfp, node, root, shift,
1717 offset, 0, 0);
0a835c4f
MW
1718 if (!child)
1719 return ERR_PTR(-ENOMEM);
1720 all_tag_set(child, IDR_FREE);
1721 rcu_assign_pointer(*slot, node_to_entry(child));
1722 if (node)
1723 node->count++;
1724 } else if (!radix_tree_is_internal_node(child))
1725 break;
1726
1727 node = entry_to_node(child);
1728 offset = radix_tree_descend(node, &child, start);
1729 if (!tag_get(node, IDR_FREE, offset)) {
1730 offset = radix_tree_find_next_bit(node, IDR_FREE,
1731 offset + 1);
1732 start = next_index(start, node, offset);
1733 if (start > max)
1734 return ERR_PTR(-ENOSPC);
1735 while (offset == RADIX_TREE_MAP_SIZE) {
1736 offset = node->offset + 1;
1737 node = node->parent;
1738 if (!node)
1739 goto grow;
1740 shift = node->shift;
1741 }
1742 child = rcu_dereference_raw(node->slots[offset]);
1743 }
1744 slot = &node->slots[offset];
1745 }
1746
1747 iter->index = start;
1748 if (node)
1749 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1750 else
1751 iter->next_index = 1;
1752 iter->node = node;
1753 __set_iter_shift(iter, shift);
1754 set_iter_tags(iter, node, offset, IDR_FREE);
1755
1756 return slot;
1757}
1758
1759/**
1760 * idr_destroy - release all internal memory from an IDR
1761 * @idr: idr handle
1762 *
1763 * After this function is called, the IDR is empty, and may be reused or
1764 * the data structure containing it may be freed.
1765 *
1766 * A typical clean-up sequence for objects stored in an idr tree will use
1767 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1768 * free the memory used to keep track of those objects.
1769 */
1770void idr_destroy(struct idr *idr)
1771{
f8d5d0cc 1772 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
0a835c4f
MW
1773 if (radix_tree_is_internal_node(node))
1774 radix_tree_free_nodes(node);
f8d5d0cc 1775 idr->idr_rt.xa_head = NULL;
0a835c4f
MW
1776 root_tag_set(&idr->idr_rt, IDR_FREE);
1777}
1778EXPORT_SYMBOL(idr_destroy);
1779
1da177e4 1780static void
449dd698 1781radix_tree_node_ctor(void *arg)
1da177e4 1782{
449dd698
JW
1783 struct radix_tree_node *node = arg;
1784
1785 memset(node, 0, sizeof(*node));
1786 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1787}
1788
d544abd5 1789static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 1790{
2fcd9005
MW
1791 struct radix_tree_preload *rtp;
1792 struct radix_tree_node *node;
1793
1794 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
1795 rtp = &per_cpu(radix_tree_preloads, cpu);
1796 while (rtp->nr) {
1797 node = rtp->nodes;
1293d5c5 1798 rtp->nodes = node->parent;
d544abd5
SAS
1799 kmem_cache_free(radix_tree_node_cachep, node);
1800 rtp->nr--;
2fcd9005 1801 }
d544abd5 1802 return 0;
1da177e4 1803}
1da177e4
LT
1804
1805void __init radix_tree_init(void)
1806{
d544abd5 1807 int ret;
7e784422
MH
1808
1809 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
fa290cda 1810 BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
02c02bf1 1811 BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1da177e4
LT
1812 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1813 sizeof(struct radix_tree_node), 0,
488514d1
CL
1814 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1815 radix_tree_node_ctor);
d544abd5
SAS
1816 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1817 NULL, radix_tree_cpu_dead);
1818 WARN_ON(ret < 0);
1da177e4 1819}