]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - lib/radix-tree.c
lib: radix-tree: update callback for changing leaf nodes
[mirror_ubuntu-bionic-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/errno.h>
26#include <linux/init.h>
27#include <linux/kernel.h>
8bc3bcc9 28#include <linux/export.h>
1da177e4
LT
29#include <linux/radix-tree.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
ce80b067 32#include <linux/kmemleak.h>
2b41226b 33#include <linux/notifier.h>
1da177e4 34#include <linux/cpu.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/bitops.h>
7cf9c2c7 37#include <linux/rcupdate.h>
92cf2118 38#include <linux/preempt.h> /* in_interrupt() */
1da177e4
LT
39
40
c78c66d1
KS
41/* Number of nodes in fully populated tree of given height */
42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
1da177e4
LT
44/*
45 * Radix tree node cache.
46 */
e18b890b 47static struct kmem_cache *radix_tree_node_cachep;
1da177e4 48
55368052
NP
49/*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
1da177e4
LT
62/*
63 * Per-cpu pool of preloaded nodes
64 */
65struct radix_tree_preload {
2fcd9005 66 unsigned nr;
9d2a8da0
KS
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
1da177e4 69};
8cef7d57 70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 71
a4db4dce 72static inline void *node_to_entry(void *ptr)
27d20fdd 73{
30ff46cc 74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
75}
76
a4db4dce 77#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 78
db050f29
MW
79#ifdef CONFIG_RADIX_TREE_MULTIORDER
80/* Sibling slots point directly to another slot in the same node */
81static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
82{
83 void **ptr = node;
84 return (parent->slots <= ptr) &&
85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
86}
87#else
88static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
89{
90 return false;
91}
92#endif
93
94static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
95 void **slot)
96{
97 return slot - parent->slots;
98}
99
9e85d811
MW
100static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 struct radix_tree_node **nodep, unsigned long index)
db050f29 102{
9e85d811 103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
db050f29
MW
104 void **entry = rcu_dereference_raw(parent->slots[offset]);
105
106#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 107 if (radix_tree_is_internal_node(entry)) {
8d2c0d36
LT
108 if (is_sibling_entry(parent, entry)) {
109 void **sibentry = (void **) entry_to_node(entry);
110 offset = get_slot_offset(parent, sibentry);
111 entry = rcu_dereference_raw(*sibentry);
db050f29
MW
112 }
113 }
114#endif
115
116 *nodep = (void *)entry;
117 return offset;
118}
119
612d6c19
NP
120static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121{
122 return root->gfp_mask & __GFP_BITS_MASK;
123}
124
643b52b9
NP
125static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 int offset)
127{
128 __set_bit(offset, node->tags[tag]);
129}
130
131static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 int offset)
133{
134 __clear_bit(offset, node->tags[tag]);
135}
136
137static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 int offset)
139{
140 return test_bit(offset, node->tags[tag]);
141}
142
143static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144{
145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146}
147
2fcd9005 148static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9
NP
149{
150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151}
152
153static inline void root_tag_clear_all(struct radix_tree_root *root)
154{
155 root->gfp_mask &= __GFP_BITS_MASK;
156}
157
158static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159{
2fcd9005 160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
643b52b9
NP
161}
162
7b60e9ad
MW
163static inline unsigned root_tags_get(struct radix_tree_root *root)
164{
165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166}
167
643b52b9
NP
168/*
169 * Returns 1 if any slot in the node has this tag set.
170 * Otherwise returns 0.
171 */
172static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173{
2fcd9005 174 unsigned idx;
643b52b9
NP
175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 if (node->tags[tag][idx])
177 return 1;
178 }
179 return 0;
180}
78c1d784
KK
181
182/**
183 * radix_tree_find_next_bit - find the next set bit in a memory region
184 *
185 * @addr: The address to base the search on
186 * @size: The bitmap size in bits
187 * @offset: The bitnumber to start searching at
188 *
189 * Unrollable variant of find_next_bit() for constant size arrays.
190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191 * Returns next bit offset, or size if nothing found.
192 */
193static __always_inline unsigned long
194radix_tree_find_next_bit(const unsigned long *addr,
195 unsigned long size, unsigned long offset)
196{
197 if (!__builtin_constant_p(size))
198 return find_next_bit(addr, size, offset);
199
200 if (offset < size) {
201 unsigned long tmp;
202
203 addr += offset / BITS_PER_LONG;
204 tmp = *addr >> (offset % BITS_PER_LONG);
205 if (tmp)
206 return __ffs(tmp) + offset;
207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 while (offset < size) {
209 tmp = *++addr;
210 if (tmp)
211 return __ffs(tmp) + offset;
212 offset += BITS_PER_LONG;
213 }
214 }
215 return size;
216}
217
0796c583 218#ifndef __KERNEL__
d0891265 219static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 220{
0796c583 221 unsigned long i;
7cf19af4 222
f7942430 223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n",
0c7fa0a8 224 node, node->offset,
0796c583 225 node->tags[0][0], node->tags[1][0], node->tags[2][0],
f7942430 226 node->shift, node->count, node->exceptional, node->parent);
0796c583
RZ
227
228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
229 unsigned long first = index | (i << node->shift);
230 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
231 void *entry = node->slots[i];
232 if (!entry)
233 continue;
234 if (is_sibling_entry(node, entry)) {
235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
236 entry, i,
4dd6c098 237 *(void **)entry_to_node(entry),
0796c583 238 first, last);
b194d16c 239 } else if (!radix_tree_is_internal_node(entry)) {
0796c583
RZ
240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 entry, i, first, last);
242 } else {
4dd6c098 243 dump_node(entry_to_node(entry), first);
0796c583
RZ
244 }
245 }
7cf19af4
MW
246}
247
248/* For debug */
249static void radix_tree_dump(struct radix_tree_root *root)
250{
d0891265
MW
251 pr_debug("radix root: %p rnode %p tags %x\n",
252 root, root->rnode,
7cf19af4 253 root->gfp_mask >> __GFP_BITS_SHIFT);
b194d16c 254 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 255 return;
4dd6c098 256 dump_node(entry_to_node(root->rnode), 0);
7cf19af4
MW
257}
258#endif
259
1da177e4
LT
260/*
261 * This assumes that the caller has performed appropriate preallocation, and
262 * that the caller has pinned this thread of control to the current CPU.
263 */
264static struct radix_tree_node *
265radix_tree_node_alloc(struct radix_tree_root *root)
266{
e2848a0e 267 struct radix_tree_node *ret = NULL;
612d6c19 268 gfp_t gfp_mask = root_gfp_mask(root);
1da177e4 269
5e4c0d97 270 /*
2fcd9005
MW
271 * Preload code isn't irq safe and it doesn't make sense to use
272 * preloading during an interrupt anyway as all the allocations have
273 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 274 */
d0164adc 275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
276 struct radix_tree_preload *rtp;
277
58e698af
VD
278 /*
279 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
280 * cache first for the new node to get accounted to the memory
281 * cgroup.
58e698af
VD
282 */
283 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 284 gfp_mask | __GFP_NOWARN);
58e698af
VD
285 if (ret)
286 goto out;
287
e2848a0e
NP
288 /*
289 * Provided the caller has preloaded here, we will always
290 * succeed in getting a node here (and never reach
291 * kmem_cache_alloc)
292 */
7c8e0181 293 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 294 if (rtp->nr) {
9d2a8da0
KS
295 ret = rtp->nodes;
296 rtp->nodes = ret->private_data;
297 ret->private_data = NULL;
1da177e4
LT
298 rtp->nr--;
299 }
ce80b067
CM
300 /*
301 * Update the allocation stack trace as this is more useful
302 * for debugging.
303 */
304 kmemleak_update_trace(ret);
58e698af 305 goto out;
1da177e4 306 }
05eb6e72 307 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 308out:
b194d16c 309 BUG_ON(radix_tree_is_internal_node(ret));
1da177e4
LT
310 return ret;
311}
312
7cf9c2c7
NP
313static void radix_tree_node_rcu_free(struct rcu_head *head)
314{
315 struct radix_tree_node *node =
316 container_of(head, struct radix_tree_node, rcu_head);
b6dd0865 317 int i;
643b52b9
NP
318
319 /*
320 * must only free zeroed nodes into the slab. radix_tree_shrink
321 * can leave us with a non-NULL entry in the first slot, so clear
322 * that here to make sure.
323 */
b6dd0865
DC
324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 tag_clear(node, i, 0);
326
643b52b9 327 node->slots[0] = NULL;
643b52b9 328
7cf9c2c7
NP
329 kmem_cache_free(radix_tree_node_cachep, node);
330}
331
1da177e4
LT
332static inline void
333radix_tree_node_free(struct radix_tree_node *node)
334{
7cf9c2c7 335 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
336}
337
338/*
339 * Load up this CPU's radix_tree_node buffer with sufficient objects to
340 * ensure that the addition of a single element in the tree cannot fail. On
341 * success, return zero, with preemption disabled. On error, return -ENOMEM
342 * with preemption not disabled.
b34df792
DH
343 *
344 * To make use of this facility, the radix tree must be initialised without
d0164adc 345 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 346 */
c78c66d1 347static int __radix_tree_preload(gfp_t gfp_mask, int nr)
1da177e4
LT
348{
349 struct radix_tree_preload *rtp;
350 struct radix_tree_node *node;
351 int ret = -ENOMEM;
352
05eb6e72
VD
353 /*
354 * Nodes preloaded by one cgroup can be be used by another cgroup, so
355 * they should never be accounted to any particular memory cgroup.
356 */
357 gfp_mask &= ~__GFP_ACCOUNT;
358
1da177e4 359 preempt_disable();
7c8e0181 360 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 361 while (rtp->nr < nr) {
1da177e4 362 preempt_enable();
488514d1 363 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
364 if (node == NULL)
365 goto out;
366 preempt_disable();
7c8e0181 367 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 368 if (rtp->nr < nr) {
9d2a8da0
KS
369 node->private_data = rtp->nodes;
370 rtp->nodes = node;
371 rtp->nr++;
372 } else {
1da177e4 373 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 374 }
1da177e4
LT
375 }
376 ret = 0;
377out:
378 return ret;
379}
5e4c0d97
JK
380
381/*
382 * Load up this CPU's radix_tree_node buffer with sufficient objects to
383 * ensure that the addition of a single element in the tree cannot fail. On
384 * success, return zero, with preemption disabled. On error, return -ENOMEM
385 * with preemption not disabled.
386 *
387 * To make use of this facility, the radix tree must be initialised without
d0164adc 388 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
389 */
390int radix_tree_preload(gfp_t gfp_mask)
391{
392 /* Warn on non-sensical use... */
d0164adc 393 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 394 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 395}
d7f0923d 396EXPORT_SYMBOL(radix_tree_preload);
1da177e4 397
5e4c0d97
JK
398/*
399 * The same as above function, except we don't guarantee preloading happens.
400 * We do it, if we decide it helps. On success, return zero with preemption
401 * disabled. On error, return -ENOMEM with preemption not disabled.
402 */
403int radix_tree_maybe_preload(gfp_t gfp_mask)
404{
d0164adc 405 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 406 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
407 /* Preloading doesn't help anything with this gfp mask, skip it */
408 preempt_disable();
409 return 0;
410}
411EXPORT_SYMBOL(radix_tree_maybe_preload);
412
c78c66d1
KS
413/*
414 * The same as function above, but preload number of nodes required to insert
415 * (1 << order) continuous naturally-aligned elements.
416 */
417int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
418{
419 unsigned long nr_subtrees;
420 int nr_nodes, subtree_height;
421
422 /* Preloading doesn't help anything with this gfp mask, skip it */
423 if (!gfpflags_allow_blocking(gfp_mask)) {
424 preempt_disable();
425 return 0;
426 }
427
428 /*
429 * Calculate number and height of fully populated subtrees it takes to
430 * store (1 << order) elements.
431 */
432 nr_subtrees = 1 << order;
433 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
434 subtree_height++)
435 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
436
437 /*
438 * The worst case is zero height tree with a single item at index 0 and
439 * then inserting items starting at ULONG_MAX - (1 << order).
440 *
441 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
442 * 0-index item.
443 */
444 nr_nodes = RADIX_TREE_MAX_PATH;
445
446 /* Plus branch to fully populated subtrees. */
447 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
448
449 /* Root node is shared. */
450 nr_nodes--;
451
452 /* Plus nodes required to build subtrees. */
453 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
454
455 return __radix_tree_preload(gfp_mask, nr_nodes);
456}
457
1da177e4 458/*
d0891265 459 * The maximum index which can be stored in a radix tree
1da177e4 460 */
c12e51b0
MW
461static inline unsigned long shift_maxindex(unsigned int shift)
462{
463 return (RADIX_TREE_MAP_SIZE << shift) - 1;
464}
465
1456a439
MW
466static inline unsigned long node_maxindex(struct radix_tree_node *node)
467{
c12e51b0 468 return shift_maxindex(node->shift);
1456a439
MW
469}
470
471static unsigned radix_tree_load_root(struct radix_tree_root *root,
472 struct radix_tree_node **nodep, unsigned long *maxindex)
473{
474 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
475
476 *nodep = node;
477
b194d16c 478 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 479 node = entry_to_node(node);
1456a439 480 *maxindex = node_maxindex(node);
c12e51b0 481 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
482 }
483
484 *maxindex = 0;
485 return 0;
486}
487
1da177e4
LT
488/*
489 * Extend a radix tree so it can store key @index.
490 */
e6145236 491static int radix_tree_extend(struct radix_tree_root *root,
d0891265 492 unsigned long index, unsigned int shift)
1da177e4 493{
e2bdb933 494 struct radix_tree_node *slot;
d0891265 495 unsigned int maxshift;
1da177e4
LT
496 int tag;
497
d0891265
MW
498 /* Figure out what the shift should be. */
499 maxshift = shift;
500 while (index > shift_maxindex(maxshift))
501 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 502
d0891265
MW
503 slot = root->rnode;
504 if (!slot)
1da177e4 505 goto out;
1da177e4 506
1da177e4 507 do {
2fcd9005
MW
508 struct radix_tree_node *node = radix_tree_node_alloc(root);
509
510 if (!node)
1da177e4
LT
511 return -ENOMEM;
512
1da177e4 513 /* Propagate the aggregated tag info into the new root */
daff89f3 514 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
612d6c19 515 if (root_tag_get(root, tag))
1da177e4
LT
516 tag_set(node, tag, 0);
517 }
518
d0891265
MW
519 BUG_ON(shift > BITS_PER_LONG);
520 node->shift = shift;
0c7fa0a8 521 node->offset = 0;
1da177e4 522 node->count = 1;
e2bdb933 523 node->parent = NULL;
f7942430 524 if (radix_tree_is_internal_node(slot)) {
4dd6c098 525 entry_to_node(slot)->parent = node;
f7942430
JW
526 } else {
527 /* Moving an exceptional root->rnode to a node */
528 if (radix_tree_exceptional_entry(slot))
529 node->exceptional = 1;
530 }
e2bdb933 531 node->slots[0] = slot;
a4db4dce
MW
532 slot = node_to_entry(node);
533 rcu_assign_pointer(root->rnode, slot);
d0891265 534 shift += RADIX_TREE_MAP_SHIFT;
d0891265 535 } while (shift <= maxshift);
1da177e4 536out:
d0891265 537 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
538}
539
f4b109c6
JW
540/**
541 * radix_tree_shrink - shrink radix tree to minimum height
542 * @root radix tree root
543 */
4d693d08
JW
544static inline bool radix_tree_shrink(struct radix_tree_root *root,
545 radix_tree_update_node_t update_node,
546 void *private)
f4b109c6
JW
547{
548 bool shrunk = false;
549
550 for (;;) {
551 struct radix_tree_node *node = root->rnode;
552 struct radix_tree_node *child;
553
554 if (!radix_tree_is_internal_node(node))
555 break;
556 node = entry_to_node(node);
557
558 /*
559 * The candidate node has more than one child, or its child
560 * is not at the leftmost slot, or the child is a multiorder
561 * entry, we cannot shrink.
562 */
563 if (node->count != 1)
564 break;
565 child = node->slots[0];
566 if (!child)
567 break;
568 if (!radix_tree_is_internal_node(child) && node->shift)
569 break;
570
571 if (radix_tree_is_internal_node(child))
572 entry_to_node(child)->parent = NULL;
573
574 /*
575 * We don't need rcu_assign_pointer(), since we are simply
576 * moving the node from one part of the tree to another: if it
577 * was safe to dereference the old pointer to it
578 * (node->slots[0]), it will be safe to dereference the new
579 * one (root->rnode) as far as dependent read barriers go.
580 */
581 root->rnode = child;
582
583 /*
584 * We have a dilemma here. The node's slot[0] must not be
585 * NULLed in case there are concurrent lookups expecting to
586 * find the item. However if this was a bottom-level node,
587 * then it may be subject to the slot pointer being visible
588 * to callers dereferencing it. If item corresponding to
589 * slot[0] is subsequently deleted, these callers would expect
590 * their slot to become empty sooner or later.
591 *
592 * For example, lockless pagecache will look up a slot, deref
593 * the page pointer, and if the page has 0 refcount it means it
594 * was concurrently deleted from pagecache so try the deref
595 * again. Fortunately there is already a requirement for logic
596 * to retry the entire slot lookup -- the indirect pointer
597 * problem (replacing direct root node with an indirect pointer
598 * also results in a stale slot). So tag the slot as indirect
599 * to force callers to retry.
600 */
4d693d08
JW
601 node->count = 0;
602 if (!radix_tree_is_internal_node(child)) {
f4b109c6 603 node->slots[0] = RADIX_TREE_RETRY;
4d693d08
JW
604 if (update_node)
605 update_node(node, private);
606 }
f4b109c6
JW
607
608 radix_tree_node_free(node);
609 shrunk = true;
610 }
611
612 return shrunk;
613}
614
615static bool delete_node(struct radix_tree_root *root,
4d693d08
JW
616 struct radix_tree_node *node,
617 radix_tree_update_node_t update_node, void *private)
f4b109c6
JW
618{
619 bool deleted = false;
620
621 do {
622 struct radix_tree_node *parent;
623
624 if (node->count) {
625 if (node == entry_to_node(root->rnode))
4d693d08
JW
626 deleted |= radix_tree_shrink(root, update_node,
627 private);
f4b109c6
JW
628 return deleted;
629 }
630
631 parent = node->parent;
632 if (parent) {
633 parent->slots[node->offset] = NULL;
634 parent->count--;
635 } else {
636 root_tag_clear_all(root);
637 root->rnode = NULL;
638 }
639
640 radix_tree_node_free(node);
641 deleted = true;
642
643 node = parent;
644 } while (node);
645
646 return deleted;
647}
648
1da177e4 649/**
139e5616 650 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
651 * @root: radix tree root
652 * @index: index key
e6145236 653 * @order: index occupies 2^order aligned slots
139e5616
JW
654 * @nodep: returns node
655 * @slotp: returns slot
1da177e4 656 *
139e5616
JW
657 * Create, if necessary, and return the node and slot for an item
658 * at position @index in the radix tree @root.
659 *
660 * Until there is more than one item in the tree, no nodes are
661 * allocated and @root->rnode is used as a direct slot instead of
662 * pointing to a node, in which case *@nodep will be NULL.
663 *
664 * Returns -ENOMEM, or 0 for success.
1da177e4 665 */
139e5616 666int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
667 unsigned order, struct radix_tree_node **nodep,
668 void ***slotp)
1da177e4 669{
89148aa4
MW
670 struct radix_tree_node *node = NULL, *child;
671 void **slot = (void **)&root->rnode;
49ea6ebc 672 unsigned long maxindex;
89148aa4 673 unsigned int shift, offset = 0;
49ea6ebc
MW
674 unsigned long max = index | ((1UL << order) - 1);
675
89148aa4 676 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
677
678 /* Make sure the tree is high enough. */
49ea6ebc 679 if (max > maxindex) {
d0891265 680 int error = radix_tree_extend(root, max, shift);
49ea6ebc 681 if (error < 0)
1da177e4 682 return error;
49ea6ebc 683 shift = error;
89148aa4 684 child = root->rnode;
d0891265 685 if (order == shift)
49ea6ebc 686 shift += RADIX_TREE_MAP_SHIFT;
1da177e4
LT
687 }
688
e6145236 689 while (shift > order) {
c12e51b0 690 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 691 if (child == NULL) {
1da177e4 692 /* Have to add a child node. */
89148aa4
MW
693 child = radix_tree_node_alloc(root);
694 if (!child)
1da177e4 695 return -ENOMEM;
89148aa4
MW
696 child->shift = shift;
697 child->offset = offset;
698 child->parent = node;
699 rcu_assign_pointer(*slot, node_to_entry(child));
700 if (node)
1da177e4 701 node->count++;
89148aa4 702 } else if (!radix_tree_is_internal_node(child))
e6145236 703 break;
1da177e4
LT
704
705 /* Go a level down */
89148aa4 706 node = entry_to_node(child);
9e85d811 707 offset = radix_tree_descend(node, &child, index);
89148aa4 708 slot = &node->slots[offset];
e6145236
MW
709 }
710
57578c2e 711#ifdef CONFIG_RADIX_TREE_MULTIORDER
e6145236 712 /* Insert pointers to the canonical entry */
3b8c00f6 713 if (order > shift) {
89148aa4 714 unsigned i, n = 1 << (order - shift);
e6145236 715 offset = offset & ~(n - 1);
89148aa4
MW
716 slot = &node->slots[offset];
717 child = node_to_entry(slot);
e6145236 718 for (i = 0; i < n; i++) {
89148aa4 719 if (slot[i])
e6145236
MW
720 return -EEXIST;
721 }
722
723 for (i = 1; i < n; i++) {
89148aa4 724 rcu_assign_pointer(slot[i], child);
e6145236
MW
725 node->count++;
726 }
612d6c19 727 }
57578c2e 728#endif
1da177e4 729
139e5616
JW
730 if (nodep)
731 *nodep = node;
732 if (slotp)
89148aa4 733 *slotp = slot;
139e5616
JW
734 return 0;
735}
736
737/**
e6145236 738 * __radix_tree_insert - insert into a radix tree
139e5616
JW
739 * @root: radix tree root
740 * @index: index key
e6145236 741 * @order: key covers the 2^order indices around index
139e5616
JW
742 * @item: item to insert
743 *
744 * Insert an item into the radix tree at position @index.
745 */
e6145236
MW
746int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
747 unsigned order, void *item)
139e5616
JW
748{
749 struct radix_tree_node *node;
750 void **slot;
751 int error;
752
b194d16c 753 BUG_ON(radix_tree_is_internal_node(item));
139e5616 754
e6145236 755 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
756 if (error)
757 return error;
758 if (*slot != NULL)
1da177e4 759 return -EEXIST;
139e5616 760 rcu_assign_pointer(*slot, item);
201b6264 761
612d6c19 762 if (node) {
7b60e9ad 763 unsigned offset = get_slot_offset(node, slot);
612d6c19 764 node->count++;
f7942430
JW
765 if (radix_tree_exceptional_entry(item))
766 node->exceptional++;
7b60e9ad
MW
767 BUG_ON(tag_get(node, 0, offset));
768 BUG_ON(tag_get(node, 1, offset));
769 BUG_ON(tag_get(node, 2, offset));
612d6c19 770 } else {
7b60e9ad 771 BUG_ON(root_tags_get(root));
612d6c19 772 }
1da177e4 773
1da177e4
LT
774 return 0;
775}
e6145236 776EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 777
139e5616
JW
778/**
779 * __radix_tree_lookup - lookup an item in a radix tree
780 * @root: radix tree root
781 * @index: index key
782 * @nodep: returns node
783 * @slotp: returns slot
784 *
785 * Lookup and return the item at position @index in the radix
786 * tree @root.
787 *
788 * Until there is more than one item in the tree, no nodes are
789 * allocated and @root->rnode is used as a direct slot instead of
790 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 791 */
139e5616
JW
792void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
793 struct radix_tree_node **nodep, void ***slotp)
1da177e4 794{
139e5616 795 struct radix_tree_node *node, *parent;
85829954 796 unsigned long maxindex;
139e5616 797 void **slot;
612d6c19 798
85829954
MW
799 restart:
800 parent = NULL;
801 slot = (void **)&root->rnode;
9e85d811 802 radix_tree_load_root(root, &node, &maxindex);
85829954 803 if (index > maxindex)
1da177e4
LT
804 return NULL;
805
b194d16c 806 while (radix_tree_is_internal_node(node)) {
85829954 807 unsigned offset;
1da177e4 808
85829954
MW
809 if (node == RADIX_TREE_RETRY)
810 goto restart;
4dd6c098 811 parent = entry_to_node(node);
9e85d811 812 offset = radix_tree_descend(parent, &node, index);
85829954
MW
813 slot = parent->slots + offset;
814 }
1da177e4 815
139e5616
JW
816 if (nodep)
817 *nodep = parent;
818 if (slotp)
819 *slotp = slot;
820 return node;
b72b71c6
HS
821}
822
823/**
824 * radix_tree_lookup_slot - lookup a slot in a radix tree
825 * @root: radix tree root
826 * @index: index key
827 *
828 * Returns: the slot corresponding to the position @index in the
829 * radix tree @root. This is useful for update-if-exists operations.
830 *
831 * This function can be called under rcu_read_lock iff the slot is not
832 * modified by radix_tree_replace_slot, otherwise it must be called
833 * exclusive from other writers. Any dereference of the slot must be done
834 * using radix_tree_deref_slot.
835 */
836void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
837{
139e5616
JW
838 void **slot;
839
840 if (!__radix_tree_lookup(root, index, NULL, &slot))
841 return NULL;
842 return slot;
a4331366 843}
a4331366
HR
844EXPORT_SYMBOL(radix_tree_lookup_slot);
845
846/**
847 * radix_tree_lookup - perform lookup operation on a radix tree
848 * @root: radix tree root
849 * @index: index key
850 *
851 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
852 *
853 * This function can be called under rcu_read_lock, however the caller
854 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
855 * them safely). No RCU barriers are required to access or modify the
856 * returned item, however.
a4331366
HR
857 */
858void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
859{
139e5616 860 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
861}
862EXPORT_SYMBOL(radix_tree_lookup);
863
6d75f366
JW
864static void replace_slot(struct radix_tree_root *root,
865 struct radix_tree_node *node,
866 void **slot, void *item,
867 bool warn_typeswitch)
f7942430
JW
868{
869 void *old = rcu_dereference_raw(*slot);
f4b109c6 870 int count, exceptional;
f7942430
JW
871
872 WARN_ON_ONCE(radix_tree_is_internal_node(item));
f7942430 873
f4b109c6 874 count = !!item - !!old;
f7942430
JW
875 exceptional = !!radix_tree_exceptional_entry(item) -
876 !!radix_tree_exceptional_entry(old);
877
f4b109c6 878 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
f7942430 879
f4b109c6
JW
880 if (node) {
881 node->count += count;
f7942430 882 node->exceptional += exceptional;
f4b109c6 883 }
f7942430
JW
884
885 rcu_assign_pointer(*slot, item);
886}
887
6d75f366
JW
888/**
889 * __radix_tree_replace - replace item in a slot
4d693d08
JW
890 * @root: radix tree root
891 * @node: pointer to tree node
892 * @slot: pointer to slot in @node
893 * @item: new item to store in the slot.
894 * @update_node: callback for changing leaf nodes
895 * @private: private data to pass to @update_node
6d75f366
JW
896 *
897 * For use with __radix_tree_lookup(). Caller must hold tree write locked
898 * across slot lookup and replacement.
899 */
900void __radix_tree_replace(struct radix_tree_root *root,
901 struct radix_tree_node *node,
4d693d08
JW
902 void **slot, void *item,
903 radix_tree_update_node_t update_node, void *private)
6d75f366
JW
904{
905 /*
f4b109c6
JW
906 * This function supports replacing exceptional entries and
907 * deleting entries, but that needs accounting against the
908 * node unless the slot is root->rnode.
6d75f366
JW
909 */
910 replace_slot(root, node, slot, item,
911 !node && slot != (void **)&root->rnode);
f4b109c6 912
4d693d08
JW
913 if (!node)
914 return;
915
916 if (update_node)
917 update_node(node, private);
918
919 delete_node(root, node, update_node, private);
6d75f366
JW
920}
921
922/**
923 * radix_tree_replace_slot - replace item in a slot
924 * @root: radix tree root
925 * @slot: pointer to slot
926 * @item: new item to store in the slot.
927 *
928 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
929 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
930 * across slot lookup and replacement.
931 *
932 * NOTE: This cannot be used to switch between non-entries (empty slots),
933 * regular entries, and exceptional entries, as that requires accounting
f4b109c6
JW
934 * inside the radix tree node. When switching from one type of entry or
935 * deleting, use __radix_tree_lookup() and __radix_tree_replace().
6d75f366
JW
936 */
937void radix_tree_replace_slot(struct radix_tree_root *root,
938 void **slot, void *item)
939{
940 replace_slot(root, NULL, slot, item, true);
941}
942
1da177e4
LT
943/**
944 * radix_tree_tag_set - set a tag on a radix tree node
945 * @root: radix tree root
946 * @index: index key
2fcd9005 947 * @tag: tag index
1da177e4 948 *
daff89f3
JC
949 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
950 * corresponding to @index in the radix tree. From
1da177e4
LT
951 * the root all the way down to the leaf node.
952 *
2fcd9005 953 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
954 * item is a bug.
955 */
956void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 957 unsigned long index, unsigned int tag)
1da177e4 958{
fb969909
RZ
959 struct radix_tree_node *node, *parent;
960 unsigned long maxindex;
1da177e4 961
9e85d811 962 radix_tree_load_root(root, &node, &maxindex);
fb969909 963 BUG_ON(index > maxindex);
1da177e4 964
b194d16c 965 while (radix_tree_is_internal_node(node)) {
fb969909 966 unsigned offset;
1da177e4 967
4dd6c098 968 parent = entry_to_node(node);
9e85d811 969 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
970 BUG_ON(!node);
971
972 if (!tag_get(parent, tag, offset))
973 tag_set(parent, tag, offset);
1da177e4
LT
974 }
975
612d6c19 976 /* set the root's tag bit */
fb969909 977 if (!root_tag_get(root, tag))
612d6c19
NP
978 root_tag_set(root, tag);
979
fb969909 980 return node;
1da177e4
LT
981}
982EXPORT_SYMBOL(radix_tree_tag_set);
983
d604c324
MW
984static void node_tag_clear(struct radix_tree_root *root,
985 struct radix_tree_node *node,
986 unsigned int tag, unsigned int offset)
987{
988 while (node) {
989 if (!tag_get(node, tag, offset))
990 return;
991 tag_clear(node, tag, offset);
992 if (any_tag_set(node, tag))
993 return;
994
995 offset = node->offset;
996 node = node->parent;
997 }
998
999 /* clear the root's tag bit */
1000 if (root_tag_get(root, tag))
1001 root_tag_clear(root, tag);
1002}
1003
1da177e4
LT
1004/**
1005 * radix_tree_tag_clear - clear a tag on a radix tree node
1006 * @root: radix tree root
1007 * @index: index key
2fcd9005 1008 * @tag: tag index
1da177e4 1009 *
daff89f3 1010 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1011 * corresponding to @index in the radix tree. If this causes
1012 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1013 * next-to-leaf node, etc.
1014 *
1015 * Returns the address of the tagged item on success, else NULL. ie:
1016 * has the same return value and semantics as radix_tree_lookup().
1017 */
1018void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1019 unsigned long index, unsigned int tag)
1da177e4 1020{
00f47b58
RZ
1021 struct radix_tree_node *node, *parent;
1022 unsigned long maxindex;
e2bdb933 1023 int uninitialized_var(offset);
1da177e4 1024
9e85d811 1025 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1026 if (index > maxindex)
1027 return NULL;
1da177e4 1028
00f47b58 1029 parent = NULL;
1da177e4 1030
b194d16c 1031 while (radix_tree_is_internal_node(node)) {
4dd6c098 1032 parent = entry_to_node(node);
9e85d811 1033 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1034 }
1035
d604c324
MW
1036 if (node)
1037 node_tag_clear(root, parent, tag, offset);
1da177e4 1038
00f47b58 1039 return node;
1da177e4
LT
1040}
1041EXPORT_SYMBOL(radix_tree_tag_clear);
1042
1da177e4 1043/**
32605a18
MT
1044 * radix_tree_tag_get - get a tag on a radix tree node
1045 * @root: radix tree root
1046 * @index: index key
2fcd9005 1047 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1048 *
32605a18 1049 * Return values:
1da177e4 1050 *
612d6c19
NP
1051 * 0: tag not present or not set
1052 * 1: tag set
ce82653d
DH
1053 *
1054 * Note that the return value of this function may not be relied on, even if
1055 * the RCU lock is held, unless tag modification and node deletion are excluded
1056 * from concurrency.
1da177e4
LT
1057 */
1058int radix_tree_tag_get(struct radix_tree_root *root,
daff89f3 1059 unsigned long index, unsigned int tag)
1da177e4 1060{
4589ba6d
RZ
1061 struct radix_tree_node *node, *parent;
1062 unsigned long maxindex;
1da177e4 1063
612d6c19
NP
1064 if (!root_tag_get(root, tag))
1065 return 0;
1066
9e85d811 1067 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1068 if (index > maxindex)
1069 return 0;
7cf9c2c7
NP
1070 if (node == NULL)
1071 return 0;
1072
b194d16c 1073 while (radix_tree_is_internal_node(node)) {
9e85d811 1074 unsigned offset;
1da177e4 1075
4dd6c098 1076 parent = entry_to_node(node);
9e85d811 1077 offset = radix_tree_descend(parent, &node, index);
1da177e4 1078
4589ba6d 1079 if (!node)
1da177e4 1080 return 0;
4589ba6d 1081 if (!tag_get(parent, tag, offset))
3fa36acb 1082 return 0;
4589ba6d
RZ
1083 if (node == RADIX_TREE_RETRY)
1084 break;
1da177e4 1085 }
4589ba6d
RZ
1086
1087 return 1;
1da177e4
LT
1088}
1089EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1090
21ef5339
RZ
1091static inline void __set_iter_shift(struct radix_tree_iter *iter,
1092 unsigned int shift)
1093{
1094#ifdef CONFIG_RADIX_TREE_MULTIORDER
1095 iter->shift = shift;
1096#endif
1097}
1098
78c1d784
KK
1099/**
1100 * radix_tree_next_chunk - find next chunk of slots for iteration
1101 *
1102 * @root: radix tree root
1103 * @iter: iterator state
1104 * @flags: RADIX_TREE_ITER_* flags and tag index
1105 * Returns: pointer to chunk first slot, or NULL if iteration is over
1106 */
1107void **radix_tree_next_chunk(struct radix_tree_root *root,
1108 struct radix_tree_iter *iter, unsigned flags)
1109{
9e85d811 1110 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1111 struct radix_tree_node *node, *child;
21ef5339 1112 unsigned long index, offset, maxindex;
78c1d784
KK
1113
1114 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1115 return NULL;
1116
1117 /*
1118 * Catch next_index overflow after ~0UL. iter->index never overflows
1119 * during iterating; it can be zero only at the beginning.
1120 * And we cannot overflow iter->next_index in a single step,
1121 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1122 *
1123 * This condition also used by radix_tree_next_slot() to stop
1124 * contiguous iterating, and forbid swithing to the next chunk.
78c1d784
KK
1125 */
1126 index = iter->next_index;
1127 if (!index && iter->index)
1128 return NULL;
1129
21ef5339 1130 restart:
9e85d811 1131 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1132 if (index > maxindex)
1133 return NULL;
8c1244de
MW
1134 if (!child)
1135 return NULL;
21ef5339 1136
8c1244de 1137 if (!radix_tree_is_internal_node(child)) {
78c1d784 1138 /* Single-slot tree */
21ef5339
RZ
1139 iter->index = index;
1140 iter->next_index = maxindex + 1;
78c1d784 1141 iter->tags = 1;
8c1244de 1142 __set_iter_shift(iter, 0);
78c1d784 1143 return (void **)&root->rnode;
8c1244de 1144 }
21ef5339 1145
8c1244de
MW
1146 do {
1147 node = entry_to_node(child);
9e85d811 1148 offset = radix_tree_descend(node, &child, index);
21ef5339 1149
78c1d784 1150 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1151 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1152 /* Hole detected */
1153 if (flags & RADIX_TREE_ITER_CONTIG)
1154 return NULL;
1155
1156 if (flags & RADIX_TREE_ITER_TAGGED)
1157 offset = radix_tree_find_next_bit(
1158 node->tags[tag],
1159 RADIX_TREE_MAP_SIZE,
1160 offset + 1);
1161 else
1162 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
1163 void *slot = node->slots[offset];
1164 if (is_sibling_entry(node, slot))
1165 continue;
1166 if (slot)
78c1d784
KK
1167 break;
1168 }
8c1244de 1169 index &= ~node_maxindex(node);
9e85d811 1170 index += offset << node->shift;
78c1d784
KK
1171 /* Overflow after ~0UL */
1172 if (!index)
1173 return NULL;
1174 if (offset == RADIX_TREE_MAP_SIZE)
1175 goto restart;
8c1244de 1176 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1177 }
1178
8c1244de 1179 if ((child == NULL) || (child == RADIX_TREE_RETRY))
78c1d784 1180 goto restart;
8c1244de 1181 } while (radix_tree_is_internal_node(child));
78c1d784
KK
1182
1183 /* Update the iterator state */
8c1244de
MW
1184 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1185 iter->next_index = (index | node_maxindex(node)) + 1;
9e85d811 1186 __set_iter_shift(iter, node->shift);
78c1d784
KK
1187
1188 /* Construct iter->tags bit-mask from node->tags[tag] array */
1189 if (flags & RADIX_TREE_ITER_TAGGED) {
1190 unsigned tag_long, tag_bit;
1191
1192 tag_long = offset / BITS_PER_LONG;
1193 tag_bit = offset % BITS_PER_LONG;
1194 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1195 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1196 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1197 /* Pick tags from next element */
1198 if (tag_bit)
1199 iter->tags |= node->tags[tag][tag_long + 1] <<
1200 (BITS_PER_LONG - tag_bit);
1201 /* Clip chunk size, here only BITS_PER_LONG tags */
1202 iter->next_index = index + BITS_PER_LONG;
1203 }
1204 }
1205
1206 return node->slots + offset;
1207}
1208EXPORT_SYMBOL(radix_tree_next_chunk);
1209
ebf8aa44
JK
1210/**
1211 * radix_tree_range_tag_if_tagged - for each item in given range set given
1212 * tag if item has another tag set
1213 * @root: radix tree root
1214 * @first_indexp: pointer to a starting index of a range to scan
1215 * @last_index: last index of a range to scan
1216 * @nr_to_tag: maximum number items to tag
1217 * @iftag: tag index to test
1218 * @settag: tag index to set if tested tag is set
1219 *
1220 * This function scans range of radix tree from first_index to last_index
1221 * (inclusive). For each item in the range if iftag is set, the function sets
1222 * also settag. The function stops either after tagging nr_to_tag items or
1223 * after reaching last_index.
1224 *
144dcfc0
DC
1225 * The tags must be set from the leaf level only and propagated back up the
1226 * path to the root. We must do this so that we resolve the full path before
1227 * setting any tags on intermediate nodes. If we set tags as we descend, then
1228 * we can get to the leaf node and find that the index that has the iftag
1229 * set is outside the range we are scanning. This reults in dangling tags and
1230 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1231 *
2fcd9005 1232 * The function returns the number of leaves where the tag was set and sets
ebf8aa44 1233 * *first_indexp to the first unscanned index.
d5ed3a4a
JK
1234 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1235 * be prepared to handle that.
ebf8aa44
JK
1236 */
1237unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1238 unsigned long *first_indexp, unsigned long last_index,
1239 unsigned long nr_to_tag,
1240 unsigned int iftag, unsigned int settag)
1241{
a8e4da25 1242 struct radix_tree_node *parent, *node, *child;
070c5ac2 1243 unsigned long maxindex;
144dcfc0
DC
1244 unsigned long tagged = 0;
1245 unsigned long index = *first_indexp;
ebf8aa44 1246
9e85d811 1247 radix_tree_load_root(root, &child, &maxindex);
070c5ac2 1248 last_index = min(last_index, maxindex);
ebf8aa44
JK
1249 if (index > last_index)
1250 return 0;
1251 if (!nr_to_tag)
1252 return 0;
1253 if (!root_tag_get(root, iftag)) {
1254 *first_indexp = last_index + 1;
1255 return 0;
1256 }
a8e4da25 1257 if (!radix_tree_is_internal_node(child)) {
ebf8aa44
JK
1258 *first_indexp = last_index + 1;
1259 root_tag_set(root, settag);
1260 return 1;
1261 }
1262
a8e4da25 1263 node = entry_to_node(child);
ebf8aa44
JK
1264
1265 for (;;) {
9e85d811 1266 unsigned offset = radix_tree_descend(node, &child, index);
a8e4da25 1267 if (!child)
ebf8aa44 1268 goto next;
070c5ac2 1269 if (!tag_get(node, iftag, offset))
ebf8aa44 1270 goto next;
070c5ac2 1271 /* Sibling slots never have tags set on them */
a8e4da25
MW
1272 if (radix_tree_is_internal_node(child)) {
1273 node = entry_to_node(child);
070c5ac2 1274 continue;
144dcfc0
DC
1275 }
1276
1277 /* tag the leaf */
070c5ac2
MW
1278 tagged++;
1279 tag_set(node, settag, offset);
144dcfc0
DC
1280
1281 /* walk back up the path tagging interior nodes */
a8e4da25
MW
1282 parent = node;
1283 for (;;) {
1284 offset = parent->offset;
1285 parent = parent->parent;
1286 if (!parent)
1287 break;
144dcfc0 1288 /* stop if we find a node with the tag already set */
a8e4da25 1289 if (tag_get(parent, settag, offset))
144dcfc0 1290 break;
a8e4da25 1291 tag_set(parent, settag, offset);
ebf8aa44 1292 }
070c5ac2 1293 next:
9e85d811
MW
1294 /* Go to next entry in node */
1295 index = ((index >> node->shift) + 1) << node->shift;
d5ed3a4a
JK
1296 /* Overflow can happen when last_index is ~0UL... */
1297 if (index > last_index || !index)
ebf8aa44 1298 break;
9e85d811 1299 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
070c5ac2 1300 while (offset == 0) {
ebf8aa44
JK
1301 /*
1302 * We've fully scanned this node. Go up. Because
1303 * last_index is guaranteed to be in the tree, what
1304 * we do below cannot wander astray.
1305 */
070c5ac2 1306 node = node->parent;
9e85d811 1307 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
ebf8aa44 1308 }
070c5ac2
MW
1309 if (is_sibling_entry(node, node->slots[offset]))
1310 goto next;
1311 if (tagged >= nr_to_tag)
1312 break;
ebf8aa44
JK
1313 }
1314 /*
ac15ee69
TO
1315 * We need not to tag the root tag if there is no tag which is set with
1316 * settag within the range from *first_indexp to last_index.
ebf8aa44 1317 */
ac15ee69
TO
1318 if (tagged > 0)
1319 root_tag_set(root, settag);
ebf8aa44
JK
1320 *first_indexp = index;
1321
1322 return tagged;
1323}
1324EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1325
1da177e4
LT
1326/**
1327 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1328 * @root: radix tree root
1329 * @results: where the results of the lookup are placed
1330 * @first_index: start the lookup from this key
1331 * @max_items: place up to this many items at *results
1332 *
1333 * Performs an index-ascending scan of the tree for present items. Places
1334 * them at *@results and returns the number of items which were placed at
1335 * *@results.
1336 *
1337 * The implementation is naive.
7cf9c2c7
NP
1338 *
1339 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1340 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1341 * an atomic snapshot of the tree at a single point in time, the
1342 * semantics of an RCU protected gang lookup are as though multiple
1343 * radix_tree_lookups have been issued in individual locks, and results
1344 * stored in 'results'.
1da177e4
LT
1345 */
1346unsigned int
1347radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1348 unsigned long first_index, unsigned int max_items)
1349{
cebbd29e
KK
1350 struct radix_tree_iter iter;
1351 void **slot;
1352 unsigned int ret = 0;
7cf9c2c7 1353
cebbd29e 1354 if (unlikely(!max_items))
7cf9c2c7 1355 return 0;
1da177e4 1356
cebbd29e 1357 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1358 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1359 if (!results[ret])
1360 continue;
b194d16c 1361 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1362 slot = radix_tree_iter_retry(&iter);
1363 continue;
1364 }
cebbd29e 1365 if (++ret == max_items)
1da177e4 1366 break;
1da177e4 1367 }
7cf9c2c7 1368
1da177e4
LT
1369 return ret;
1370}
1371EXPORT_SYMBOL(radix_tree_gang_lookup);
1372
47feff2c
NP
1373/**
1374 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1375 * @root: radix tree root
1376 * @results: where the results of the lookup are placed
6328650b 1377 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1378 * @first_index: start the lookup from this key
1379 * @max_items: place up to this many items at *results
1380 *
1381 * Performs an index-ascending scan of the tree for present items. Places
1382 * their slots at *@results and returns the number of items which were
1383 * placed at *@results.
1384 *
1385 * The implementation is naive.
1386 *
1387 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1388 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1389 * protection, radix_tree_deref_slot may fail requiring a retry.
1390 */
1391unsigned int
6328650b
HD
1392radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1393 void ***results, unsigned long *indices,
47feff2c
NP
1394 unsigned long first_index, unsigned int max_items)
1395{
cebbd29e
KK
1396 struct radix_tree_iter iter;
1397 void **slot;
1398 unsigned int ret = 0;
47feff2c 1399
cebbd29e 1400 if (unlikely(!max_items))
47feff2c
NP
1401 return 0;
1402
cebbd29e
KK
1403 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1404 results[ret] = slot;
6328650b 1405 if (indices)
cebbd29e
KK
1406 indices[ret] = iter.index;
1407 if (++ret == max_items)
47feff2c 1408 break;
47feff2c
NP
1409 }
1410
1411 return ret;
1412}
1413EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1414
1da177e4
LT
1415/**
1416 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1417 * based on a tag
1418 * @root: radix tree root
1419 * @results: where the results of the lookup are placed
1420 * @first_index: start the lookup from this key
1421 * @max_items: place up to this many items at *results
daff89f3 1422 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1423 *
1424 * Performs an index-ascending scan of the tree for present items which
1425 * have the tag indexed by @tag set. Places the items at *@results and
1426 * returns the number of items which were placed at *@results.
1427 */
1428unsigned int
1429radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
daff89f3
JC
1430 unsigned long first_index, unsigned int max_items,
1431 unsigned int tag)
1da177e4 1432{
cebbd29e
KK
1433 struct radix_tree_iter iter;
1434 void **slot;
1435 unsigned int ret = 0;
612d6c19 1436
cebbd29e 1437 if (unlikely(!max_items))
7cf9c2c7
NP
1438 return 0;
1439
cebbd29e 1440 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1441 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1442 if (!results[ret])
1443 continue;
b194d16c 1444 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1445 slot = radix_tree_iter_retry(&iter);
1446 continue;
1447 }
cebbd29e 1448 if (++ret == max_items)
1da177e4 1449 break;
1da177e4 1450 }
7cf9c2c7 1451
1da177e4
LT
1452 return ret;
1453}
1454EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1455
47feff2c
NP
1456/**
1457 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1458 * radix tree based on a tag
1459 * @root: radix tree root
1460 * @results: where the results of the lookup are placed
1461 * @first_index: start the lookup from this key
1462 * @max_items: place up to this many items at *results
1463 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1464 *
1465 * Performs an index-ascending scan of the tree for present items which
1466 * have the tag indexed by @tag set. Places the slots at *@results and
1467 * returns the number of slots which were placed at *@results.
1468 */
1469unsigned int
1470radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1471 unsigned long first_index, unsigned int max_items,
1472 unsigned int tag)
1473{
cebbd29e
KK
1474 struct radix_tree_iter iter;
1475 void **slot;
1476 unsigned int ret = 0;
47feff2c 1477
cebbd29e 1478 if (unlikely(!max_items))
47feff2c
NP
1479 return 0;
1480
cebbd29e
KK
1481 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1482 results[ret] = slot;
1483 if (++ret == max_items)
47feff2c 1484 break;
47feff2c
NP
1485 }
1486
1487 return ret;
1488}
1489EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1490
e504f3fd
HD
1491#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1492#include <linux/sched.h> /* for cond_resched() */
1493
0a2efc6c
MW
1494struct locate_info {
1495 unsigned long found_index;
1496 bool stop;
1497};
1498
e504f3fd
HD
1499/*
1500 * This linear search is at present only useful to shmem_unuse_inode().
1501 */
1502static unsigned long __locate(struct radix_tree_node *slot, void *item,
0a2efc6c 1503 unsigned long index, struct locate_info *info)
e504f3fd 1504{
e504f3fd
HD
1505 unsigned long i;
1506
0a2efc6c 1507 do {
9e85d811 1508 unsigned int shift = slot->shift;
e504f3fd 1509
0a2efc6c
MW
1510 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1511 i < RADIX_TREE_MAP_SIZE;
1512 i++, index += (1UL << shift)) {
1513 struct radix_tree_node *node =
1514 rcu_dereference_raw(slot->slots[i]);
1515 if (node == RADIX_TREE_RETRY)
1516 goto out;
b194d16c 1517 if (!radix_tree_is_internal_node(node)) {
0a2efc6c
MW
1518 if (node == item) {
1519 info->found_index = index;
1520 info->stop = true;
1521 goto out;
1522 }
1523 continue;
e6145236 1524 }
4dd6c098 1525 node = entry_to_node(node);
0a2efc6c
MW
1526 if (is_sibling_entry(slot, node))
1527 continue;
1528 slot = node;
1529 break;
e6145236 1530 }
9e85d811 1531 } while (i < RADIX_TREE_MAP_SIZE);
e504f3fd 1532
e504f3fd 1533out:
0a2efc6c
MW
1534 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1535 info->stop = true;
e504f3fd
HD
1536 return index;
1537}
1538
1539/**
1540 * radix_tree_locate_item - search through radix tree for item
1541 * @root: radix tree root
1542 * @item: item to be found
1543 *
1544 * Returns index where item was found, or -1 if not found.
1545 * Caller must hold no lock (since this time-consuming function needs
1546 * to be preemptible), and must check afterwards if item is still there.
1547 */
1548unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1549{
1550 struct radix_tree_node *node;
1551 unsigned long max_index;
1552 unsigned long cur_index = 0;
0a2efc6c
MW
1553 struct locate_info info = {
1554 .found_index = -1,
1555 .stop = false,
1556 };
e504f3fd
HD
1557
1558 do {
1559 rcu_read_lock();
1560 node = rcu_dereference_raw(root->rnode);
b194d16c 1561 if (!radix_tree_is_internal_node(node)) {
e504f3fd
HD
1562 rcu_read_unlock();
1563 if (node == item)
0a2efc6c 1564 info.found_index = 0;
e504f3fd
HD
1565 break;
1566 }
1567
4dd6c098 1568 node = entry_to_node(node);
0a2efc6c
MW
1569
1570 max_index = node_maxindex(node);
5f30fc94
HD
1571 if (cur_index > max_index) {
1572 rcu_read_unlock();
e504f3fd 1573 break;
5f30fc94 1574 }
e504f3fd 1575
0a2efc6c 1576 cur_index = __locate(node, item, cur_index, &info);
e504f3fd
HD
1577 rcu_read_unlock();
1578 cond_resched();
0a2efc6c 1579 } while (!info.stop && cur_index <= max_index);
e504f3fd 1580
0a2efc6c 1581 return info.found_index;
e504f3fd
HD
1582}
1583#else
1584unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1585{
1586 return -1;
1587}
1588#endif /* CONFIG_SHMEM && CONFIG_SWAP */
47feff2c 1589
139e5616
JW
1590/**
1591 * __radix_tree_delete_node - try to free node after clearing a slot
1592 * @root: radix tree root
139e5616
JW
1593 * @node: node containing @index
1594 *
1595 * After clearing the slot at @index in @node from radix tree
1596 * rooted at @root, call this function to attempt freeing the
1597 * node and shrinking the tree.
1598 *
1599 * Returns %true if @node was freed, %false otherwise.
1600 */
449dd698 1601bool __radix_tree_delete_node(struct radix_tree_root *root,
139e5616
JW
1602 struct radix_tree_node *node)
1603{
4d693d08 1604 return delete_node(root, node, NULL, NULL);
139e5616
JW
1605}
1606
57578c2e
MW
1607static inline void delete_sibling_entries(struct radix_tree_node *node,
1608 void *ptr, unsigned offset)
1609{
1610#ifdef CONFIG_RADIX_TREE_MULTIORDER
1611 int i;
1612 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1613 if (node->slots[offset + i] != ptr)
1614 break;
1615 node->slots[offset + i] = NULL;
1616 node->count--;
1617 }
1618#endif
1619}
1620
1da177e4 1621/**
53c59f26 1622 * radix_tree_delete_item - delete an item from a radix tree
1da177e4
LT
1623 * @root: radix tree root
1624 * @index: index key
53c59f26 1625 * @item: expected item
1da177e4 1626 *
53c59f26 1627 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1628 *
53c59f26
JW
1629 * Returns the address of the deleted item, or NULL if it was not present
1630 * or the entry at the given @index was not @item.
1da177e4 1631 */
53c59f26
JW
1632void *radix_tree_delete_item(struct radix_tree_root *root,
1633 unsigned long index, void *item)
1da177e4 1634{
139e5616 1635 struct radix_tree_node *node;
57578c2e 1636 unsigned int offset;
139e5616
JW
1637 void **slot;
1638 void *entry;
d5274261 1639 int tag;
1da177e4 1640
139e5616
JW
1641 entry = __radix_tree_lookup(root, index, &node, &slot);
1642 if (!entry)
1643 return NULL;
1da177e4 1644
139e5616
JW
1645 if (item && entry != item)
1646 return NULL;
1647
1648 if (!node) {
612d6c19
NP
1649 root_tag_clear_all(root);
1650 root->rnode = NULL;
139e5616 1651 return entry;
612d6c19 1652 }
1da177e4 1653
29e0967c 1654 offset = get_slot_offset(node, slot);
53c59f26 1655
d604c324
MW
1656 /* Clear all tags associated with the item to be deleted. */
1657 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1658 node_tag_clear(root, node, tag, offset);
1da177e4 1659
a4db4dce 1660 delete_sibling_entries(node, node_to_entry(slot), offset);
4d693d08 1661 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
612d6c19 1662
139e5616 1663 return entry;
1da177e4 1664}
53c59f26
JW
1665EXPORT_SYMBOL(radix_tree_delete_item);
1666
1667/**
1668 * radix_tree_delete - delete an item from a radix tree
1669 * @root: radix tree root
1670 * @index: index key
1671 *
1672 * Remove the item at @index from the radix tree rooted at @root.
1673 *
1674 * Returns the address of the deleted item, or NULL if it was not present.
1675 */
1676void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1677{
1678 return radix_tree_delete_item(root, index, NULL);
1679}
1da177e4
LT
1680EXPORT_SYMBOL(radix_tree_delete);
1681
d3798ae8
JW
1682void radix_tree_clear_tags(struct radix_tree_root *root,
1683 struct radix_tree_node *node,
1684 void **slot)
d604c324 1685{
d604c324
MW
1686 if (node) {
1687 unsigned int tag, offset = get_slot_offset(node, slot);
1688 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1689 node_tag_clear(root, node, tag, offset);
1690 } else {
1691 /* Clear root node tags */
1692 root->gfp_mask &= __GFP_BITS_MASK;
1693 }
d604c324
MW
1694}
1695
1da177e4
LT
1696/**
1697 * radix_tree_tagged - test whether any items in the tree are tagged
1698 * @root: radix tree root
1699 * @tag: tag to test
1700 */
daff89f3 1701int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1da177e4 1702{
612d6c19 1703 return root_tag_get(root, tag);
1da177e4
LT
1704}
1705EXPORT_SYMBOL(radix_tree_tagged);
1706
1707static void
449dd698 1708radix_tree_node_ctor(void *arg)
1da177e4 1709{
449dd698
JW
1710 struct radix_tree_node *node = arg;
1711
1712 memset(node, 0, sizeof(*node));
1713 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1714}
1715
c78c66d1
KS
1716static __init unsigned long __maxindex(unsigned int height)
1717{
1718 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1719 int shift = RADIX_TREE_INDEX_BITS - width;
1720
1721 if (shift < 0)
1722 return ~0UL;
1723 if (shift >= BITS_PER_LONG)
1724 return 0UL;
1725 return ~0UL >> shift;
1726}
1727
1728static __init void radix_tree_init_maxnodes(void)
1729{
1730 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1731 unsigned int i, j;
1732
1733 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1734 height_to_maxindex[i] = __maxindex(i);
1735 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1736 for (j = i; j > 0; j--)
1737 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1738 }
1739}
1740
1da177e4 1741static int radix_tree_callback(struct notifier_block *nfb,
2fcd9005 1742 unsigned long action, void *hcpu)
1da177e4 1743{
2fcd9005
MW
1744 int cpu = (long)hcpu;
1745 struct radix_tree_preload *rtp;
1746 struct radix_tree_node *node;
1747
1748 /* Free per-cpu pool of preloaded nodes */
1749 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1750 rtp = &per_cpu(radix_tree_preloads, cpu);
1751 while (rtp->nr) {
9d2a8da0
KS
1752 node = rtp->nodes;
1753 rtp->nodes = node->private_data;
1754 kmem_cache_free(radix_tree_node_cachep, node);
1755 rtp->nr--;
2fcd9005
MW
1756 }
1757 }
1758 return NOTIFY_OK;
1da177e4 1759}
1da177e4
LT
1760
1761void __init radix_tree_init(void)
1762{
1763 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1764 sizeof(struct radix_tree_node), 0,
488514d1
CL
1765 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1766 radix_tree_node_ctor);
c78c66d1 1767 radix_tree_init_maxnodes();
1da177e4
LT
1768 hotcpu_notifier(radix_tree_callback, 0);
1769}