]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - lib/radix-tree.c
lib: earlycpio: delete duplicated words
[mirror_ubuntu-jammy-kernel.git] / lib / radix-tree.c
CommitLineData
de6cc651 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 5 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 6 * Copyright (C) 2006 Nick Piggin
78c1d784 7 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
8 * Copyright (C) 2016 Intel, Matthew Wilcox
9 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
10 */
11
0a835c4f
MW
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
460488c5 14#include <linux/bug.h>
e157b555 15#include <linux/cpu.h>
1da177e4 16#include <linux/errno.h>
0a835c4f
MW
17#include <linux/export.h>
18#include <linux/idr.h>
1da177e4
LT
19#include <linux/init.h>
20#include <linux/kernel.h>
0a835c4f 21#include <linux/kmemleak.h>
1da177e4 22#include <linux/percpu.h>
cfa6705d 23#include <linux/local_lock.h>
0a835c4f
MW
24#include <linux/preempt.h> /* in_interrupt() */
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
1da177e4 27#include <linux/slab.h>
1da177e4 28#include <linux/string.h>
02c02bf1 29#include <linux/xarray.h>
1da177e4 30
1da177e4
LT
31/*
32 * Radix tree node cache.
33 */
58d6ea30 34struct kmem_cache *radix_tree_node_cachep;
1da177e4 35
55368052
NP
36/*
37 * The radix tree is variable-height, so an insert operation not only has
38 * to build the branch to its corresponding item, it also has to build the
39 * branch to existing items if the size has to be increased (by
40 * radix_tree_extend).
41 *
42 * The worst case is a zero height tree with just a single item at index 0,
43 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
44 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
45 * Hence:
46 */
47#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
48
0a835c4f
MW
49/*
50 * The IDR does not have to be as high as the radix tree since it uses
51 * signed integers, not unsigned longs.
52 */
53#define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
54#define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
55 RADIX_TREE_MAP_SHIFT))
56#define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
57
1da177e4
LT
58/*
59 * Per-cpu pool of preloaded nodes
60 */
cfa6705d
SAS
61DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
62 .lock = INIT_LOCAL_LOCK(lock),
1da177e4 63};
cfa6705d 64EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
1da177e4 65
148deab2
MW
66static inline struct radix_tree_node *entry_to_node(void *ptr)
67{
68 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
69}
70
a4db4dce 71static inline void *node_to_entry(void *ptr)
27d20fdd 72{
30ff46cc 73 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
74}
75
02c02bf1 76#define RADIX_TREE_RETRY XA_RETRY_ENTRY
db050f29 77
d7b62727
MW
78static inline unsigned long
79get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
db050f29 80{
76f070b4 81 return parent ? slot - parent->slots : 0;
db050f29
MW
82}
83
35534c86 84static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
9e85d811 85 struct radix_tree_node **nodep, unsigned long index)
db050f29 86{
9e85d811 87 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
d7b62727 88 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
db050f29 89
db050f29
MW
90 *nodep = (void *)entry;
91 return offset;
92}
93
35534c86 94static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
612d6c19 95{
f8d5d0cc 96 return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
612d6c19
NP
97}
98
643b52b9
NP
99static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
100 int offset)
101{
102 __set_bit(offset, node->tags[tag]);
103}
104
105static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
106 int offset)
107{
108 __clear_bit(offset, node->tags[tag]);
109}
110
35534c86 111static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
643b52b9
NP
112 int offset)
113{
114 return test_bit(offset, node->tags[tag]);
115}
116
35534c86 117static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
643b52b9 118{
f8d5d0cc 119 root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
120}
121
2fcd9005 122static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9 123{
f8d5d0cc 124 root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
125}
126
127static inline void root_tag_clear_all(struct radix_tree_root *root)
128{
f8d5d0cc 129 root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
643b52b9
NP
130}
131
35534c86 132static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
643b52b9 133{
f8d5d0cc 134 return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
135}
136
35534c86 137static inline unsigned root_tags_get(const struct radix_tree_root *root)
643b52b9 138{
f8d5d0cc 139 return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
643b52b9
NP
140}
141
0a835c4f 142static inline bool is_idr(const struct radix_tree_root *root)
7b60e9ad 143{
f8d5d0cc 144 return !!(root->xa_flags & ROOT_IS_IDR);
7b60e9ad
MW
145}
146
643b52b9
NP
147/*
148 * Returns 1 if any slot in the node has this tag set.
149 * Otherwise returns 0.
150 */
35534c86
MW
151static inline int any_tag_set(const struct radix_tree_node *node,
152 unsigned int tag)
643b52b9 153{
2fcd9005 154 unsigned idx;
643b52b9
NP
155 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
156 if (node->tags[tag][idx])
157 return 1;
158 }
159 return 0;
160}
78c1d784 161
0a835c4f
MW
162static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
163{
164 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
165}
166
78c1d784
KK
167/**
168 * radix_tree_find_next_bit - find the next set bit in a memory region
169 *
170 * @addr: The address to base the search on
171 * @size: The bitmap size in bits
172 * @offset: The bitnumber to start searching at
173 *
174 * Unrollable variant of find_next_bit() for constant size arrays.
175 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
176 * Returns next bit offset, or size if nothing found.
177 */
178static __always_inline unsigned long
bc412fca
MW
179radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
180 unsigned long offset)
78c1d784 181{
bc412fca 182 const unsigned long *addr = node->tags[tag];
78c1d784 183
bc412fca 184 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
185 unsigned long tmp;
186
187 addr += offset / BITS_PER_LONG;
188 tmp = *addr >> (offset % BITS_PER_LONG);
189 if (tmp)
190 return __ffs(tmp) + offset;
191 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 192 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
193 tmp = *++addr;
194 if (tmp)
195 return __ffs(tmp) + offset;
196 offset += BITS_PER_LONG;
197 }
198 }
bc412fca 199 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
200}
201
268f42de
MW
202static unsigned int iter_offset(const struct radix_tree_iter *iter)
203{
3a08cd52 204 return iter->index & RADIX_TREE_MAP_MASK;
268f42de
MW
205}
206
218ed750
MW
207/*
208 * The maximum index which can be stored in a radix tree
209 */
210static inline unsigned long shift_maxindex(unsigned int shift)
211{
212 return (RADIX_TREE_MAP_SIZE << shift) - 1;
213}
214
35534c86 215static inline unsigned long node_maxindex(const struct radix_tree_node *node)
218ed750
MW
216{
217 return shift_maxindex(node->shift);
218}
219
0a835c4f
MW
220static unsigned long next_index(unsigned long index,
221 const struct radix_tree_node *node,
222 unsigned long offset)
223{
224 return (index & ~node_maxindex(node)) + (offset << node->shift);
225}
226
1da177e4
LT
227/*
228 * This assumes that the caller has performed appropriate preallocation, and
229 * that the caller has pinned this thread of control to the current CPU.
230 */
231static struct radix_tree_node *
0a835c4f 232radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
d58275bc 233 struct radix_tree_root *root,
e8de4340 234 unsigned int shift, unsigned int offset,
01959dfe 235 unsigned int count, unsigned int nr_values)
1da177e4 236{
e2848a0e 237 struct radix_tree_node *ret = NULL;
1da177e4 238
5e4c0d97 239 /*
2fcd9005
MW
240 * Preload code isn't irq safe and it doesn't make sense to use
241 * preloading during an interrupt anyway as all the allocations have
242 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 243 */
d0164adc 244 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
245 struct radix_tree_preload *rtp;
246
58e698af
VD
247 /*
248 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
249 * cache first for the new node to get accounted to the memory
250 * cgroup.
58e698af
VD
251 */
252 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 253 gfp_mask | __GFP_NOWARN);
58e698af
VD
254 if (ret)
255 goto out;
256
e2848a0e
NP
257 /*
258 * Provided the caller has preloaded here, we will always
259 * succeed in getting a node here (and never reach
260 * kmem_cache_alloc)
261 */
7c8e0181 262 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 263 if (rtp->nr) {
9d2a8da0 264 ret = rtp->nodes;
1293d5c5 265 rtp->nodes = ret->parent;
1da177e4
LT
266 rtp->nr--;
267 }
ce80b067
CM
268 /*
269 * Update the allocation stack trace as this is more useful
270 * for debugging.
271 */
272 kmemleak_update_trace(ret);
58e698af 273 goto out;
1da177e4 274 }
05eb6e72 275 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 276out:
b194d16c 277 BUG_ON(radix_tree_is_internal_node(ret));
e8de4340 278 if (ret) {
e8de4340
MW
279 ret->shift = shift;
280 ret->offset = offset;
281 ret->count = count;
01959dfe 282 ret->nr_values = nr_values;
d58275bc 283 ret->parent = parent;
01959dfe 284 ret->array = root;
e8de4340 285 }
1da177e4
LT
286 return ret;
287}
288
58d6ea30 289void radix_tree_node_rcu_free(struct rcu_head *head)
7cf9c2c7
NP
290{
291 struct radix_tree_node *node =
292 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
293
294 /*
175542f5
MW
295 * Must only free zeroed nodes into the slab. We can be left with
296 * non-NULL entries by radix_tree_free_nodes, so clear the entries
297 * and tags here.
643b52b9 298 */
175542f5
MW
299 memset(node->slots, 0, sizeof(node->slots));
300 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 301 INIT_LIST_HEAD(&node->private_list);
643b52b9 302
7cf9c2c7
NP
303 kmem_cache_free(radix_tree_node_cachep, node);
304}
305
1da177e4
LT
306static inline void
307radix_tree_node_free(struct radix_tree_node *node)
308{
7cf9c2c7 309 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
310}
311
312/*
313 * Load up this CPU's radix_tree_node buffer with sufficient objects to
314 * ensure that the addition of a single element in the tree cannot fail. On
315 * success, return zero, with preemption disabled. On error, return -ENOMEM
316 * with preemption not disabled.
b34df792
DH
317 *
318 * To make use of this facility, the radix tree must be initialised without
d0164adc 319 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 320 */
bc9ae224 321static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
1da177e4
LT
322{
323 struct radix_tree_preload *rtp;
324 struct radix_tree_node *node;
325 int ret = -ENOMEM;
326
05eb6e72
VD
327 /*
328 * Nodes preloaded by one cgroup can be be used by another cgroup, so
329 * they should never be accounted to any particular memory cgroup.
330 */
331 gfp_mask &= ~__GFP_ACCOUNT;
332
cfa6705d 333 local_lock(&radix_tree_preloads.lock);
7c8e0181 334 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 335 while (rtp->nr < nr) {
cfa6705d 336 local_unlock(&radix_tree_preloads.lock);
488514d1 337 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
338 if (node == NULL)
339 goto out;
cfa6705d 340 local_lock(&radix_tree_preloads.lock);
7c8e0181 341 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 342 if (rtp->nr < nr) {
1293d5c5 343 node->parent = rtp->nodes;
9d2a8da0
KS
344 rtp->nodes = node;
345 rtp->nr++;
346 } else {
1da177e4 347 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 348 }
1da177e4
LT
349 }
350 ret = 0;
351out:
352 return ret;
353}
5e4c0d97
JK
354
355/*
356 * Load up this CPU's radix_tree_node buffer with sufficient objects to
357 * ensure that the addition of a single element in the tree cannot fail. On
358 * success, return zero, with preemption disabled. On error, return -ENOMEM
359 * with preemption not disabled.
360 *
361 * To make use of this facility, the radix tree must be initialised without
d0164adc 362 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
363 */
364int radix_tree_preload(gfp_t gfp_mask)
365{
366 /* Warn on non-sensical use... */
d0164adc 367 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 368 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 369}
d7f0923d 370EXPORT_SYMBOL(radix_tree_preload);
1da177e4 371
5e4c0d97
JK
372/*
373 * The same as above function, except we don't guarantee preloading happens.
374 * We do it, if we decide it helps. On success, return zero with preemption
375 * disabled. On error, return -ENOMEM with preemption not disabled.
376 */
377int radix_tree_maybe_preload(gfp_t gfp_mask)
378{
d0164adc 379 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 380 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 381 /* Preloading doesn't help anything with this gfp mask, skip it */
cfa6705d 382 local_lock(&radix_tree_preloads.lock);
5e4c0d97
JK
383 return 0;
384}
385EXPORT_SYMBOL(radix_tree_maybe_preload);
386
35534c86 387static unsigned radix_tree_load_root(const struct radix_tree_root *root,
1456a439
MW
388 struct radix_tree_node **nodep, unsigned long *maxindex)
389{
f8d5d0cc 390 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
1456a439
MW
391
392 *nodep = node;
393
b194d16c 394 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 395 node = entry_to_node(node);
1456a439 396 *maxindex = node_maxindex(node);
c12e51b0 397 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
398 }
399
400 *maxindex = 0;
401 return 0;
402}
403
1da177e4
LT
404/*
405 * Extend a radix tree so it can store key @index.
406 */
0a835c4f 407static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
d0891265 408 unsigned long index, unsigned int shift)
1da177e4 409{
d7b62727 410 void *entry;
d0891265 411 unsigned int maxshift;
1da177e4
LT
412 int tag;
413
d0891265
MW
414 /* Figure out what the shift should be. */
415 maxshift = shift;
416 while (index > shift_maxindex(maxshift))
417 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 418
f8d5d0cc 419 entry = rcu_dereference_raw(root->xa_head);
d7b62727 420 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
1da177e4 421 goto out;
1da177e4 422
1da177e4 423 do {
0a835c4f 424 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
d58275bc 425 root, shift, 0, 1, 0);
2fcd9005 426 if (!node)
1da177e4
LT
427 return -ENOMEM;
428
0a835c4f
MW
429 if (is_idr(root)) {
430 all_tag_set(node, IDR_FREE);
431 if (!root_tag_get(root, IDR_FREE)) {
432 tag_clear(node, IDR_FREE, 0);
433 root_tag_set(root, IDR_FREE);
434 }
435 } else {
436 /* Propagate the aggregated tag info to the new child */
437 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
438 if (root_tag_get(root, tag))
439 tag_set(node, tag, 0);
440 }
1da177e4
LT
441 }
442
d0891265 443 BUG_ON(shift > BITS_PER_LONG);
d7b62727
MW
444 if (radix_tree_is_internal_node(entry)) {
445 entry_to_node(entry)->parent = node;
3159f943 446 } else if (xa_is_value(entry)) {
01959dfe
MW
447 /* Moving a value entry root->xa_head to a node */
448 node->nr_values = 1;
f7942430 449 }
d7b62727
MW
450 /*
451 * entry was already in the radix tree, so we do not need
452 * rcu_assign_pointer here
453 */
454 node->slots[0] = (void __rcu *)entry;
455 entry = node_to_entry(node);
f8d5d0cc 456 rcu_assign_pointer(root->xa_head, entry);
d0891265 457 shift += RADIX_TREE_MAP_SHIFT;
d0891265 458 } while (shift <= maxshift);
1da177e4 459out:
d0891265 460 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
461}
462
f4b109c6
JW
463/**
464 * radix_tree_shrink - shrink radix tree to minimum height
465 * @root radix tree root
466 */
1cf56f9d 467static inline bool radix_tree_shrink(struct radix_tree_root *root)
f4b109c6 468{
0ac398ef
MW
469 bool shrunk = false;
470
f4b109c6 471 for (;;) {
f8d5d0cc 472 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
f4b109c6
JW
473 struct radix_tree_node *child;
474
475 if (!radix_tree_is_internal_node(node))
476 break;
477 node = entry_to_node(node);
478
479 /*
480 * The candidate node has more than one child, or its child
3a08cd52 481 * is not at the leftmost slot, we cannot shrink.
f4b109c6
JW
482 */
483 if (node->count != 1)
484 break;
12320d0f 485 child = rcu_dereference_raw(node->slots[0]);
f4b109c6
JW
486 if (!child)
487 break;
f4b109c6 488
66ee620f
MW
489 /*
490 * For an IDR, we must not shrink entry 0 into the root in
491 * case somebody calls idr_replace() with a pointer that
492 * appears to be an internal entry
493 */
494 if (!node->shift && is_idr(root))
495 break;
496
f4b109c6
JW
497 if (radix_tree_is_internal_node(child))
498 entry_to_node(child)->parent = NULL;
499
500 /*
501 * We don't need rcu_assign_pointer(), since we are simply
502 * moving the node from one part of the tree to another: if it
503 * was safe to dereference the old pointer to it
504 * (node->slots[0]), it will be safe to dereference the new
f8d5d0cc 505 * one (root->xa_head) as far as dependent read barriers go.
f4b109c6 506 */
f8d5d0cc 507 root->xa_head = (void __rcu *)child;
0a835c4f
MW
508 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
509 root_tag_clear(root, IDR_FREE);
f4b109c6
JW
510
511 /*
512 * We have a dilemma here. The node's slot[0] must not be
513 * NULLed in case there are concurrent lookups expecting to
514 * find the item. However if this was a bottom-level node,
515 * then it may be subject to the slot pointer being visible
516 * to callers dereferencing it. If item corresponding to
517 * slot[0] is subsequently deleted, these callers would expect
518 * their slot to become empty sooner or later.
519 *
520 * For example, lockless pagecache will look up a slot, deref
521 * the page pointer, and if the page has 0 refcount it means it
522 * was concurrently deleted from pagecache so try the deref
523 * again. Fortunately there is already a requirement for logic
524 * to retry the entire slot lookup -- the indirect pointer
525 * problem (replacing direct root node with an indirect pointer
526 * also results in a stale slot). So tag the slot as indirect
527 * to force callers to retry.
528 */
4d693d08
JW
529 node->count = 0;
530 if (!radix_tree_is_internal_node(child)) {
d7b62727 531 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
4d693d08 532 }
f4b109c6 533
ea07b862 534 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 535 radix_tree_node_free(node);
0ac398ef 536 shrunk = true;
f4b109c6 537 }
0ac398ef
MW
538
539 return shrunk;
f4b109c6
JW
540}
541
0ac398ef 542static bool delete_node(struct radix_tree_root *root,
1cf56f9d 543 struct radix_tree_node *node)
f4b109c6 544{
0ac398ef
MW
545 bool deleted = false;
546
f4b109c6
JW
547 do {
548 struct radix_tree_node *parent;
549
550 if (node->count) {
12320d0f 551 if (node_to_entry(node) ==
f8d5d0cc 552 rcu_dereference_raw(root->xa_head))
1cf56f9d 553 deleted |= radix_tree_shrink(root);
0ac398ef 554 return deleted;
f4b109c6
JW
555 }
556
557 parent = node->parent;
558 if (parent) {
559 parent->slots[node->offset] = NULL;
560 parent->count--;
561 } else {
0a835c4f
MW
562 /*
563 * Shouldn't the tags already have all been cleared
564 * by the caller?
565 */
566 if (!is_idr(root))
567 root_tag_clear_all(root);
f8d5d0cc 568 root->xa_head = NULL;
f4b109c6
JW
569 }
570
ea07b862 571 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 572 radix_tree_node_free(node);
0ac398ef 573 deleted = true;
f4b109c6
JW
574
575 node = parent;
576 } while (node);
0ac398ef
MW
577
578 return deleted;
f4b109c6
JW
579}
580
1da177e4 581/**
139e5616 582 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
583 * @root: radix tree root
584 * @index: index key
139e5616
JW
585 * @nodep: returns node
586 * @slotp: returns slot
1da177e4 587 *
139e5616
JW
588 * Create, if necessary, and return the node and slot for an item
589 * at position @index in the radix tree @root.
590 *
591 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 592 * allocated and @root->xa_head is used as a direct slot instead of
139e5616
JW
593 * pointing to a node, in which case *@nodep will be NULL.
594 *
595 * Returns -ENOMEM, or 0 for success.
1da177e4 596 */
74d60958 597static int __radix_tree_create(struct radix_tree_root *root,
3a08cd52
MW
598 unsigned long index, struct radix_tree_node **nodep,
599 void __rcu ***slotp)
1da177e4 600{
89148aa4 601 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 602 void __rcu **slot = (void __rcu **)&root->xa_head;
49ea6ebc 603 unsigned long maxindex;
89148aa4 604 unsigned int shift, offset = 0;
3a08cd52 605 unsigned long max = index;
0a835c4f 606 gfp_t gfp = root_gfp_mask(root);
49ea6ebc 607
89148aa4 608 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
609
610 /* Make sure the tree is high enough. */
49ea6ebc 611 if (max > maxindex) {
0a835c4f 612 int error = radix_tree_extend(root, gfp, max, shift);
49ea6ebc 613 if (error < 0)
1da177e4 614 return error;
49ea6ebc 615 shift = error;
f8d5d0cc 616 child = rcu_dereference_raw(root->xa_head);
1da177e4
LT
617 }
618
3a08cd52 619 while (shift > 0) {
c12e51b0 620 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 621 if (child == NULL) {
1da177e4 622 /* Have to add a child node. */
d58275bc 623 child = radix_tree_node_alloc(gfp, node, root, shift,
e8de4340 624 offset, 0, 0);
89148aa4 625 if (!child)
1da177e4 626 return -ENOMEM;
89148aa4
MW
627 rcu_assign_pointer(*slot, node_to_entry(child));
628 if (node)
1da177e4 629 node->count++;
89148aa4 630 } else if (!radix_tree_is_internal_node(child))
e6145236 631 break;
1da177e4
LT
632
633 /* Go a level down */
89148aa4 634 node = entry_to_node(child);
9e85d811 635 offset = radix_tree_descend(node, &child, index);
89148aa4 636 slot = &node->slots[offset];
e6145236
MW
637 }
638
175542f5
MW
639 if (nodep)
640 *nodep = node;
641 if (slotp)
642 *slotp = slot;
643 return 0;
644}
645
175542f5
MW
646/*
647 * Free any nodes below this node. The tree is presumed to not need
648 * shrinking, and any user data in the tree is presumed to not need a
649 * destructor called on it. If we need to add a destructor, we can
650 * add that functionality later. Note that we may not clear tags or
651 * slots from the tree as an RCU walker may still have a pointer into
652 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
653 * but we'll still have to clear those in rcu_free.
654 */
655static void radix_tree_free_nodes(struct radix_tree_node *node)
656{
657 unsigned offset = 0;
658 struct radix_tree_node *child = entry_to_node(node);
659
660 for (;;) {
12320d0f 661 void *entry = rcu_dereference_raw(child->slots[offset]);
02c02bf1 662 if (xa_is_node(entry) && child->shift) {
175542f5
MW
663 child = entry_to_node(entry);
664 offset = 0;
665 continue;
666 }
667 offset++;
668 while (offset == RADIX_TREE_MAP_SIZE) {
669 struct radix_tree_node *old = child;
670 offset = child->offset + 1;
671 child = child->parent;
dd040b6f 672 WARN_ON_ONCE(!list_empty(&old->private_list));
175542f5
MW
673 radix_tree_node_free(old);
674 if (old == entry_to_node(node))
675 return;
676 }
677 }
678}
679
d7b62727 680static inline int insert_entries(struct radix_tree_node *node,
3a08cd52 681 void __rcu **slot, void *item, bool replace)
175542f5
MW
682{
683 if (*slot)
684 return -EEXIST;
685 rcu_assign_pointer(*slot, item);
686 if (node) {
687 node->count++;
3159f943 688 if (xa_is_value(item))
01959dfe 689 node->nr_values++;
175542f5
MW
690 }
691 return 1;
692}
139e5616
JW
693
694/**
e6145236 695 * __radix_tree_insert - insert into a radix tree
139e5616
JW
696 * @root: radix tree root
697 * @index: index key
698 * @item: item to insert
699 *
700 * Insert an item into the radix tree at position @index.
701 */
3a08cd52
MW
702int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
703 void *item)
139e5616
JW
704{
705 struct radix_tree_node *node;
d7b62727 706 void __rcu **slot;
139e5616
JW
707 int error;
708
b194d16c 709 BUG_ON(radix_tree_is_internal_node(item));
139e5616 710
3a08cd52 711 error = __radix_tree_create(root, index, &node, &slot);
139e5616
JW
712 if (error)
713 return error;
175542f5 714
3a08cd52 715 error = insert_entries(node, slot, item, false);
175542f5
MW
716 if (error < 0)
717 return error;
201b6264 718
612d6c19 719 if (node) {
7b60e9ad 720 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
721 BUG_ON(tag_get(node, 0, offset));
722 BUG_ON(tag_get(node, 1, offset));
723 BUG_ON(tag_get(node, 2, offset));
612d6c19 724 } else {
7b60e9ad 725 BUG_ON(root_tags_get(root));
612d6c19 726 }
1da177e4 727
1da177e4
LT
728 return 0;
729}
3a08cd52 730EXPORT_SYMBOL(radix_tree_insert);
1da177e4 731
139e5616
JW
732/**
733 * __radix_tree_lookup - lookup an item in a radix tree
734 * @root: radix tree root
735 * @index: index key
736 * @nodep: returns node
737 * @slotp: returns slot
738 *
739 * Lookup and return the item at position @index in the radix
740 * tree @root.
741 *
742 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 743 * allocated and @root->xa_head is used as a direct slot instead of
139e5616 744 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 745 */
35534c86
MW
746void *__radix_tree_lookup(const struct radix_tree_root *root,
747 unsigned long index, struct radix_tree_node **nodep,
d7b62727 748 void __rcu ***slotp)
1da177e4 749{
139e5616 750 struct radix_tree_node *node, *parent;
85829954 751 unsigned long maxindex;
d7b62727 752 void __rcu **slot;
612d6c19 753
85829954
MW
754 restart:
755 parent = NULL;
f8d5d0cc 756 slot = (void __rcu **)&root->xa_head;
9e85d811 757 radix_tree_load_root(root, &node, &maxindex);
85829954 758 if (index > maxindex)
1da177e4
LT
759 return NULL;
760
b194d16c 761 while (radix_tree_is_internal_node(node)) {
85829954 762 unsigned offset;
1da177e4 763
4dd6c098 764 parent = entry_to_node(node);
9e85d811 765 offset = radix_tree_descend(parent, &node, index);
85829954 766 slot = parent->slots + offset;
eff3860b
MW
767 if (node == RADIX_TREE_RETRY)
768 goto restart;
66ee620f
MW
769 if (parent->shift == 0)
770 break;
85829954 771 }
1da177e4 772
139e5616
JW
773 if (nodep)
774 *nodep = parent;
775 if (slotp)
776 *slotp = slot;
777 return node;
b72b71c6
HS
778}
779
780/**
781 * radix_tree_lookup_slot - lookup a slot in a radix tree
782 * @root: radix tree root
783 * @index: index key
784 *
785 * Returns: the slot corresponding to the position @index in the
786 * radix tree @root. This is useful for update-if-exists operations.
787 *
788 * This function can be called under rcu_read_lock iff the slot is not
789 * modified by radix_tree_replace_slot, otherwise it must be called
790 * exclusive from other writers. Any dereference of the slot must be done
791 * using radix_tree_deref_slot.
792 */
d7b62727 793void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
35534c86 794 unsigned long index)
b72b71c6 795{
d7b62727 796 void __rcu **slot;
139e5616
JW
797
798 if (!__radix_tree_lookup(root, index, NULL, &slot))
799 return NULL;
800 return slot;
a4331366 801}
a4331366
HR
802EXPORT_SYMBOL(radix_tree_lookup_slot);
803
804/**
805 * radix_tree_lookup - perform lookup operation on a radix tree
806 * @root: radix tree root
807 * @index: index key
808 *
809 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
810 *
811 * This function can be called under rcu_read_lock, however the caller
812 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
813 * them safely). No RCU barriers are required to access or modify the
814 * returned item, however.
a4331366 815 */
35534c86 816void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
a4331366 817{
139e5616 818 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
819}
820EXPORT_SYMBOL(radix_tree_lookup);
821
d7b62727 822static void replace_slot(void __rcu **slot, void *item,
01959dfe 823 struct radix_tree_node *node, int count, int values)
f7942430 824{
01959dfe 825 if (node && (count || values)) {
f4b109c6 826 node->count += count;
01959dfe 827 node->nr_values += values;
f4b109c6 828 }
f7942430
JW
829
830 rcu_assign_pointer(*slot, item);
831}
832
0a835c4f
MW
833static bool node_tag_get(const struct radix_tree_root *root,
834 const struct radix_tree_node *node,
835 unsigned int tag, unsigned int offset)
a90eb3a2 836{
0a835c4f
MW
837 if (node)
838 return tag_get(node, tag, offset);
839 return root_tag_get(root, tag);
840}
a90eb3a2 841
0a835c4f
MW
842/*
843 * IDR users want to be able to store NULL in the tree, so if the slot isn't
844 * free, don't adjust the count, even if it's transitioning between NULL and
845 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
846 * have empty bits, but it only stores NULL in slots when they're being
847 * deleted.
848 */
849static int calculate_count(struct radix_tree_root *root,
d7b62727 850 struct radix_tree_node *node, void __rcu **slot,
0a835c4f
MW
851 void *item, void *old)
852{
853 if (is_idr(root)) {
854 unsigned offset = get_slot_offset(node, slot);
855 bool free = node_tag_get(root, node, IDR_FREE, offset);
856 if (!free)
857 return 0;
858 if (!old)
859 return 1;
a90eb3a2 860 }
0a835c4f 861 return !!item - !!old;
a90eb3a2
MW
862}
863
6d75f366
JW
864/**
865 * __radix_tree_replace - replace item in a slot
4d693d08
JW
866 * @root: radix tree root
867 * @node: pointer to tree node
868 * @slot: pointer to slot in @node
869 * @item: new item to store in the slot.
6d75f366
JW
870 *
871 * For use with __radix_tree_lookup(). Caller must hold tree write locked
872 * across slot lookup and replacement.
873 */
874void __radix_tree_replace(struct radix_tree_root *root,
875 struct radix_tree_node *node,
1cf56f9d 876 void __rcu **slot, void *item)
6d75f366 877{
0a835c4f 878 void *old = rcu_dereference_raw(*slot);
01959dfe 879 int values = !!xa_is_value(item) - !!xa_is_value(old);
0a835c4f
MW
880 int count = calculate_count(root, node, slot, item, old);
881
6d75f366 882 /*
01959dfe 883 * This function supports replacing value entries and
f4b109c6 884 * deleting entries, but that needs accounting against the
f8d5d0cc 885 * node unless the slot is root->xa_head.
6d75f366 886 */
f8d5d0cc 887 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
01959dfe
MW
888 (count || values));
889 replace_slot(slot, item, node, count, values);
f4b109c6 890
4d693d08
JW
891 if (!node)
892 return;
893
1cf56f9d 894 delete_node(root, node);
6d75f366
JW
895}
896
897/**
898 * radix_tree_replace_slot - replace item in a slot
899 * @root: radix tree root
900 * @slot: pointer to slot
901 * @item: new item to store in the slot.
902 *
7b8d046f 903 * For use with radix_tree_lookup_slot() and
6d75f366
JW
904 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
905 * across slot lookup and replacement.
906 *
907 * NOTE: This cannot be used to switch between non-entries (empty slots),
01959dfe 908 * regular entries, and value entries, as that requires accounting
f4b109c6 909 * inside the radix tree node. When switching from one type of entry or
e157b555
MW
910 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
911 * radix_tree_iter_replace().
6d75f366
JW
912 */
913void radix_tree_replace_slot(struct radix_tree_root *root,
d7b62727 914 void __rcu **slot, void *item)
6d75f366 915{
1cf56f9d 916 __radix_tree_replace(root, NULL, slot, item);
6d75f366 917}
10257d71 918EXPORT_SYMBOL(radix_tree_replace_slot);
6d75f366 919
e157b555
MW
920/**
921 * radix_tree_iter_replace - replace item in a slot
922 * @root: radix tree root
923 * @slot: pointer to slot
924 * @item: new item to store in the slot.
925 *
2956c664
MW
926 * For use with radix_tree_for_each_slot().
927 * Caller must hold tree write locked.
e157b555
MW
928 */
929void radix_tree_iter_replace(struct radix_tree_root *root,
d7b62727
MW
930 const struct radix_tree_iter *iter,
931 void __rcu **slot, void *item)
e157b555 932{
1cf56f9d 933 __radix_tree_replace(root, iter->node, slot, item);
e157b555
MW
934}
935
30b888ba
MW
936static void node_tag_set(struct radix_tree_root *root,
937 struct radix_tree_node *node,
938 unsigned int tag, unsigned int offset)
939{
940 while (node) {
941 if (tag_get(node, tag, offset))
942 return;
943 tag_set(node, tag, offset);
944 offset = node->offset;
945 node = node->parent;
946 }
947
948 if (!root_tag_get(root, tag))
949 root_tag_set(root, tag);
950}
951
1da177e4
LT
952/**
953 * radix_tree_tag_set - set a tag on a radix tree node
954 * @root: radix tree root
955 * @index: index key
2fcd9005 956 * @tag: tag index
1da177e4 957 *
daff89f3
JC
958 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
959 * corresponding to @index in the radix tree. From
1da177e4
LT
960 * the root all the way down to the leaf node.
961 *
2fcd9005 962 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
963 * item is a bug.
964 */
965void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 966 unsigned long index, unsigned int tag)
1da177e4 967{
fb969909
RZ
968 struct radix_tree_node *node, *parent;
969 unsigned long maxindex;
1da177e4 970
9e85d811 971 radix_tree_load_root(root, &node, &maxindex);
fb969909 972 BUG_ON(index > maxindex);
1da177e4 973
b194d16c 974 while (radix_tree_is_internal_node(node)) {
fb969909 975 unsigned offset;
1da177e4 976
4dd6c098 977 parent = entry_to_node(node);
9e85d811 978 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
979 BUG_ON(!node);
980
981 if (!tag_get(parent, tag, offset))
982 tag_set(parent, tag, offset);
1da177e4
LT
983 }
984
612d6c19 985 /* set the root's tag bit */
fb969909 986 if (!root_tag_get(root, tag))
612d6c19
NP
987 root_tag_set(root, tag);
988
fb969909 989 return node;
1da177e4
LT
990}
991EXPORT_SYMBOL(radix_tree_tag_set);
992
d604c324
MW
993static void node_tag_clear(struct radix_tree_root *root,
994 struct radix_tree_node *node,
995 unsigned int tag, unsigned int offset)
996{
997 while (node) {
998 if (!tag_get(node, tag, offset))
999 return;
1000 tag_clear(node, tag, offset);
1001 if (any_tag_set(node, tag))
1002 return;
1003
1004 offset = node->offset;
1005 node = node->parent;
1006 }
1007
1008 /* clear the root's tag bit */
1009 if (root_tag_get(root, tag))
1010 root_tag_clear(root, tag);
1011}
1012
1da177e4
LT
1013/**
1014 * radix_tree_tag_clear - clear a tag on a radix tree node
1015 * @root: radix tree root
1016 * @index: index key
2fcd9005 1017 * @tag: tag index
1da177e4 1018 *
daff89f3 1019 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1020 * corresponding to @index in the radix tree. If this causes
1021 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1022 * next-to-leaf node, etc.
1023 *
1024 * Returns the address of the tagged item on success, else NULL. ie:
1025 * has the same return value and semantics as radix_tree_lookup().
1026 */
1027void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1028 unsigned long index, unsigned int tag)
1da177e4 1029{
00f47b58
RZ
1030 struct radix_tree_node *node, *parent;
1031 unsigned long maxindex;
3f649ab7 1032 int offset;
1da177e4 1033
9e85d811 1034 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1035 if (index > maxindex)
1036 return NULL;
1da177e4 1037
00f47b58 1038 parent = NULL;
1da177e4 1039
b194d16c 1040 while (radix_tree_is_internal_node(node)) {
4dd6c098 1041 parent = entry_to_node(node);
9e85d811 1042 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1043 }
1044
d604c324
MW
1045 if (node)
1046 node_tag_clear(root, parent, tag, offset);
1da177e4 1047
00f47b58 1048 return node;
1da177e4
LT
1049}
1050EXPORT_SYMBOL(radix_tree_tag_clear);
1051
30b888ba
MW
1052/**
1053 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1054 * @root: radix tree root
1055 * @iter: iterator state
1056 * @tag: tag to clear
1057 */
1058void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1059 const struct radix_tree_iter *iter, unsigned int tag)
1060{
1061 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1062}
1063
1da177e4 1064/**
32605a18
MT
1065 * radix_tree_tag_get - get a tag on a radix tree node
1066 * @root: radix tree root
1067 * @index: index key
2fcd9005 1068 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1069 *
32605a18 1070 * Return values:
1da177e4 1071 *
612d6c19
NP
1072 * 0: tag not present or not set
1073 * 1: tag set
ce82653d
DH
1074 *
1075 * Note that the return value of this function may not be relied on, even if
1076 * the RCU lock is held, unless tag modification and node deletion are excluded
1077 * from concurrency.
1da177e4 1078 */
35534c86 1079int radix_tree_tag_get(const struct radix_tree_root *root,
daff89f3 1080 unsigned long index, unsigned int tag)
1da177e4 1081{
4589ba6d
RZ
1082 struct radix_tree_node *node, *parent;
1083 unsigned long maxindex;
1da177e4 1084
612d6c19
NP
1085 if (!root_tag_get(root, tag))
1086 return 0;
1087
9e85d811 1088 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1089 if (index > maxindex)
1090 return 0;
7cf9c2c7 1091
b194d16c 1092 while (radix_tree_is_internal_node(node)) {
9e85d811 1093 unsigned offset;
1da177e4 1094
4dd6c098 1095 parent = entry_to_node(node);
9e85d811 1096 offset = radix_tree_descend(parent, &node, index);
1da177e4 1097
4589ba6d 1098 if (!tag_get(parent, tag, offset))
3fa36acb 1099 return 0;
4589ba6d
RZ
1100 if (node == RADIX_TREE_RETRY)
1101 break;
1da177e4 1102 }
4589ba6d
RZ
1103
1104 return 1;
1da177e4
LT
1105}
1106EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1107
148deab2
MW
1108/* Construct iter->tags bit-mask from node->tags[tag] array */
1109static void set_iter_tags(struct radix_tree_iter *iter,
1110 struct radix_tree_node *node, unsigned offset,
1111 unsigned tag)
1112{
1113 unsigned tag_long = offset / BITS_PER_LONG;
1114 unsigned tag_bit = offset % BITS_PER_LONG;
1115
0a835c4f
MW
1116 if (!node) {
1117 iter->tags = 1;
1118 return;
1119 }
1120
148deab2
MW
1121 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1122
1123 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1124 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1125 /* Pick tags from next element */
1126 if (tag_bit)
1127 iter->tags |= node->tags[tag][tag_long + 1] <<
1128 (BITS_PER_LONG - tag_bit);
1129 /* Clip chunk size, here only BITS_PER_LONG tags */
1130 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1131 }
1132}
1133
d7b62727
MW
1134void __rcu **radix_tree_iter_resume(void __rcu **slot,
1135 struct radix_tree_iter *iter)
148deab2 1136{
148deab2
MW
1137 slot++;
1138 iter->index = __radix_tree_iter_add(iter, 1);
148deab2
MW
1139 iter->next_index = iter->index;
1140 iter->tags = 0;
1141 return NULL;
1142}
1143EXPORT_SYMBOL(radix_tree_iter_resume);
1144
78c1d784
KK
1145/**
1146 * radix_tree_next_chunk - find next chunk of slots for iteration
1147 *
1148 * @root: radix tree root
1149 * @iter: iterator state
1150 * @flags: RADIX_TREE_ITER_* flags and tag index
1151 * Returns: pointer to chunk first slot, or NULL if iteration is over
1152 */
d7b62727 1153void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
78c1d784
KK
1154 struct radix_tree_iter *iter, unsigned flags)
1155{
9e85d811 1156 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1157 struct radix_tree_node *node, *child;
21ef5339 1158 unsigned long index, offset, maxindex;
78c1d784
KK
1159
1160 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1161 return NULL;
1162
1163 /*
1164 * Catch next_index overflow after ~0UL. iter->index never overflows
1165 * during iterating; it can be zero only at the beginning.
1166 * And we cannot overflow iter->next_index in a single step,
1167 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1168 *
1169 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1170 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1171 */
1172 index = iter->next_index;
1173 if (!index && iter->index)
1174 return NULL;
1175
21ef5339 1176 restart:
9e85d811 1177 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1178 if (index > maxindex)
1179 return NULL;
8c1244de
MW
1180 if (!child)
1181 return NULL;
21ef5339 1182
8c1244de 1183 if (!radix_tree_is_internal_node(child)) {
78c1d784 1184 /* Single-slot tree */
21ef5339
RZ
1185 iter->index = index;
1186 iter->next_index = maxindex + 1;
78c1d784 1187 iter->tags = 1;
268f42de 1188 iter->node = NULL;
f8d5d0cc 1189 return (void __rcu **)&root->xa_head;
8c1244de 1190 }
21ef5339 1191
8c1244de
MW
1192 do {
1193 node = entry_to_node(child);
9e85d811 1194 offset = radix_tree_descend(node, &child, index);
21ef5339 1195
78c1d784 1196 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1197 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1198 /* Hole detected */
1199 if (flags & RADIX_TREE_ITER_CONTIG)
1200 return NULL;
1201
1202 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1203 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1204 offset + 1);
1205 else
1206 while (++offset < RADIX_TREE_MAP_SIZE) {
12320d0f
MW
1207 void *slot = rcu_dereference_raw(
1208 node->slots[offset]);
21ef5339 1209 if (slot)
78c1d784
KK
1210 break;
1211 }
8c1244de 1212 index &= ~node_maxindex(node);
9e85d811 1213 index += offset << node->shift;
78c1d784
KK
1214 /* Overflow after ~0UL */
1215 if (!index)
1216 return NULL;
1217 if (offset == RADIX_TREE_MAP_SIZE)
1218 goto restart;
8c1244de 1219 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1220 }
1221
e157b555 1222 if (!child)
78c1d784 1223 goto restart;
e157b555
MW
1224 if (child == RADIX_TREE_RETRY)
1225 break;
66ee620f 1226 } while (node->shift && radix_tree_is_internal_node(child));
78c1d784
KK
1227
1228 /* Update the iterator state */
3a08cd52 1229 iter->index = (index &~ node_maxindex(node)) | offset;
8c1244de 1230 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1231 iter->node = node;
78c1d784 1232
148deab2
MW
1233 if (flags & RADIX_TREE_ITER_TAGGED)
1234 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1235
1236 return node->slots + offset;
1237}
1238EXPORT_SYMBOL(radix_tree_next_chunk);
1239
1da177e4
LT
1240/**
1241 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1242 * @root: radix tree root
1243 * @results: where the results of the lookup are placed
1244 * @first_index: start the lookup from this key
1245 * @max_items: place up to this many items at *results
1246 *
1247 * Performs an index-ascending scan of the tree for present items. Places
1248 * them at *@results and returns the number of items which were placed at
1249 * *@results.
1250 *
1251 * The implementation is naive.
7cf9c2c7
NP
1252 *
1253 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1254 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1255 * an atomic snapshot of the tree at a single point in time, the
1256 * semantics of an RCU protected gang lookup are as though multiple
1257 * radix_tree_lookups have been issued in individual locks, and results
1258 * stored in 'results'.
1da177e4
LT
1259 */
1260unsigned int
35534c86 1261radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1da177e4
LT
1262 unsigned long first_index, unsigned int max_items)
1263{
cebbd29e 1264 struct radix_tree_iter iter;
d7b62727 1265 void __rcu **slot;
cebbd29e 1266 unsigned int ret = 0;
7cf9c2c7 1267
cebbd29e 1268 if (unlikely(!max_items))
7cf9c2c7 1269 return 0;
1da177e4 1270
cebbd29e 1271 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1272 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1273 if (!results[ret])
1274 continue;
b194d16c 1275 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1276 slot = radix_tree_iter_retry(&iter);
1277 continue;
1278 }
cebbd29e 1279 if (++ret == max_items)
1da177e4 1280 break;
1da177e4 1281 }
7cf9c2c7 1282
1da177e4
LT
1283 return ret;
1284}
1285EXPORT_SYMBOL(radix_tree_gang_lookup);
1286
1da177e4
LT
1287/**
1288 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1289 * based on a tag
1290 * @root: radix tree root
1291 * @results: where the results of the lookup are placed
1292 * @first_index: start the lookup from this key
1293 * @max_items: place up to this many items at *results
daff89f3 1294 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1295 *
1296 * Performs an index-ascending scan of the tree for present items which
1297 * have the tag indexed by @tag set. Places the items at *@results and
1298 * returns the number of items which were placed at *@results.
1299 */
1300unsigned int
35534c86 1301radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
daff89f3
JC
1302 unsigned long first_index, unsigned int max_items,
1303 unsigned int tag)
1da177e4 1304{
cebbd29e 1305 struct radix_tree_iter iter;
d7b62727 1306 void __rcu **slot;
cebbd29e 1307 unsigned int ret = 0;
612d6c19 1308
cebbd29e 1309 if (unlikely(!max_items))
7cf9c2c7
NP
1310 return 0;
1311
cebbd29e 1312 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1313 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1314 if (!results[ret])
1315 continue;
b194d16c 1316 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1317 slot = radix_tree_iter_retry(&iter);
1318 continue;
1319 }
cebbd29e 1320 if (++ret == max_items)
1da177e4 1321 break;
1da177e4 1322 }
7cf9c2c7 1323
1da177e4
LT
1324 return ret;
1325}
1326EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1327
47feff2c
NP
1328/**
1329 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1330 * radix tree based on a tag
1331 * @root: radix tree root
1332 * @results: where the results of the lookup are placed
1333 * @first_index: start the lookup from this key
1334 * @max_items: place up to this many items at *results
1335 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1336 *
1337 * Performs an index-ascending scan of the tree for present items which
1338 * have the tag indexed by @tag set. Places the slots at *@results and
1339 * returns the number of slots which were placed at *@results.
1340 */
1341unsigned int
35534c86 1342radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
d7b62727 1343 void __rcu ***results, unsigned long first_index,
35534c86 1344 unsigned int max_items, unsigned int tag)
47feff2c 1345{
cebbd29e 1346 struct radix_tree_iter iter;
d7b62727 1347 void __rcu **slot;
cebbd29e 1348 unsigned int ret = 0;
47feff2c 1349
cebbd29e 1350 if (unlikely(!max_items))
47feff2c
NP
1351 return 0;
1352
cebbd29e
KK
1353 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1354 results[ret] = slot;
1355 if (++ret == max_items)
47feff2c 1356 break;
47feff2c
NP
1357 }
1358
1359 return ret;
1360}
1361EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1362
0ac398ef 1363static bool __radix_tree_delete(struct radix_tree_root *root,
d7b62727 1364 struct radix_tree_node *node, void __rcu **slot)
0ac398ef 1365{
0a835c4f 1366 void *old = rcu_dereference_raw(*slot);
01959dfe 1367 int values = xa_is_value(old) ? -1 : 0;
0ac398ef
MW
1368 unsigned offset = get_slot_offset(node, slot);
1369 int tag;
1370
0a835c4f
MW
1371 if (is_idr(root))
1372 node_tag_set(root, node, IDR_FREE, offset);
1373 else
1374 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1375 node_tag_clear(root, node, tag, offset);
0ac398ef 1376
01959dfe 1377 replace_slot(slot, NULL, node, -1, values);
1cf56f9d 1378 return node && delete_node(root, node);
0ac398ef
MW
1379}
1380
1da177e4 1381/**
0ac398ef
MW
1382 * radix_tree_iter_delete - delete the entry at this iterator position
1383 * @root: radix tree root
1384 * @iter: iterator state
1385 * @slot: pointer to slot
1da177e4 1386 *
0ac398ef
MW
1387 * Delete the entry at the position currently pointed to by the iterator.
1388 * This may result in the current node being freed; if it is, the iterator
1389 * is advanced so that it will not reference the freed memory. This
1390 * function may be called without any locking if there are no other threads
1391 * which can access this tree.
1392 */
1393void radix_tree_iter_delete(struct radix_tree_root *root,
d7b62727 1394 struct radix_tree_iter *iter, void __rcu **slot)
0ac398ef
MW
1395{
1396 if (__radix_tree_delete(root, iter->node, slot))
1397 iter->index = iter->next_index;
1398}
d1b48c1e 1399EXPORT_SYMBOL(radix_tree_iter_delete);
0ac398ef
MW
1400
1401/**
1402 * radix_tree_delete_item - delete an item from a radix tree
1403 * @root: radix tree root
1404 * @index: index key
1405 * @item: expected item
1da177e4 1406 *
0ac398ef 1407 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1408 *
0ac398ef
MW
1409 * Return: the deleted entry, or %NULL if it was not present
1410 * or the entry at the given @index was not @item.
1da177e4 1411 */
53c59f26
JW
1412void *radix_tree_delete_item(struct radix_tree_root *root,
1413 unsigned long index, void *item)
1da177e4 1414{
0a835c4f 1415 struct radix_tree_node *node = NULL;
7a4deea1 1416 void __rcu **slot = NULL;
139e5616 1417 void *entry;
1da177e4 1418
139e5616 1419 entry = __radix_tree_lookup(root, index, &node, &slot);
7a4deea1
MW
1420 if (!slot)
1421 return NULL;
0a835c4f
MW
1422 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1423 get_slot_offset(node, slot))))
139e5616 1424 return NULL;
1da177e4 1425
139e5616
JW
1426 if (item && entry != item)
1427 return NULL;
1428
0ac398ef 1429 __radix_tree_delete(root, node, slot);
612d6c19 1430
139e5616 1431 return entry;
1da177e4 1432}
53c59f26
JW
1433EXPORT_SYMBOL(radix_tree_delete_item);
1434
1435/**
0ac398ef
MW
1436 * radix_tree_delete - delete an entry from a radix tree
1437 * @root: radix tree root
1438 * @index: index key
53c59f26 1439 *
0ac398ef 1440 * Remove the entry at @index from the radix tree rooted at @root.
53c59f26 1441 *
0ac398ef 1442 * Return: The deleted entry, or %NULL if it was not present.
53c59f26
JW
1443 */
1444void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1445{
1446 return radix_tree_delete_item(root, index, NULL);
1447}
1da177e4
LT
1448EXPORT_SYMBOL(radix_tree_delete);
1449
1450/**
1451 * radix_tree_tagged - test whether any items in the tree are tagged
1452 * @root: radix tree root
1453 * @tag: tag to test
1454 */
35534c86 1455int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1da177e4 1456{
612d6c19 1457 return root_tag_get(root, tag);
1da177e4
LT
1458}
1459EXPORT_SYMBOL(radix_tree_tagged);
1460
0a835c4f
MW
1461/**
1462 * idr_preload - preload for idr_alloc()
1463 * @gfp_mask: allocation mask to use for preloading
1464 *
1465 * Preallocate memory to use for the next call to idr_alloc(). This function
1466 * returns with preemption disabled. It will be enabled by idr_preload_end().
1467 */
1468void idr_preload(gfp_t gfp_mask)
1469{
bc9ae224 1470 if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
cfa6705d 1471 local_lock(&radix_tree_preloads.lock);
0a835c4f
MW
1472}
1473EXPORT_SYMBOL(idr_preload);
1474
460488c5 1475void __rcu **idr_get_free(struct radix_tree_root *root,
388f79fd
CM
1476 struct radix_tree_iter *iter, gfp_t gfp,
1477 unsigned long max)
0a835c4f
MW
1478{
1479 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 1480 void __rcu **slot = (void __rcu **)&root->xa_head;
0a835c4f 1481 unsigned long maxindex, start = iter->next_index;
0a835c4f
MW
1482 unsigned int shift, offset = 0;
1483
1484 grow:
1485 shift = radix_tree_load_root(root, &child, &maxindex);
1486 if (!radix_tree_tagged(root, IDR_FREE))
1487 start = max(start, maxindex + 1);
1488 if (start > max)
1489 return ERR_PTR(-ENOSPC);
1490
1491 if (start > maxindex) {
1492 int error = radix_tree_extend(root, gfp, start, shift);
1493 if (error < 0)
1494 return ERR_PTR(error);
1495 shift = error;
f8d5d0cc 1496 child = rcu_dereference_raw(root->xa_head);
0a835c4f 1497 }
66ee620f
MW
1498 if (start == 0 && shift == 0)
1499 shift = RADIX_TREE_MAP_SHIFT;
0a835c4f
MW
1500
1501 while (shift) {
1502 shift -= RADIX_TREE_MAP_SHIFT;
1503 if (child == NULL) {
1504 /* Have to add a child node. */
d58275bc
MW
1505 child = radix_tree_node_alloc(gfp, node, root, shift,
1506 offset, 0, 0);
0a835c4f
MW
1507 if (!child)
1508 return ERR_PTR(-ENOMEM);
1509 all_tag_set(child, IDR_FREE);
1510 rcu_assign_pointer(*slot, node_to_entry(child));
1511 if (node)
1512 node->count++;
1513 } else if (!radix_tree_is_internal_node(child))
1514 break;
1515
1516 node = entry_to_node(child);
1517 offset = radix_tree_descend(node, &child, start);
1518 if (!tag_get(node, IDR_FREE, offset)) {
1519 offset = radix_tree_find_next_bit(node, IDR_FREE,
1520 offset + 1);
1521 start = next_index(start, node, offset);
b7e9728f 1522 if (start > max || start == 0)
0a835c4f
MW
1523 return ERR_PTR(-ENOSPC);
1524 while (offset == RADIX_TREE_MAP_SIZE) {
1525 offset = node->offset + 1;
1526 node = node->parent;
1527 if (!node)
1528 goto grow;
1529 shift = node->shift;
1530 }
1531 child = rcu_dereference_raw(node->slots[offset]);
1532 }
1533 slot = &node->slots[offset];
1534 }
1535
1536 iter->index = start;
1537 if (node)
1538 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1539 else
1540 iter->next_index = 1;
1541 iter->node = node;
0a835c4f
MW
1542 set_iter_tags(iter, node, offset, IDR_FREE);
1543
1544 return slot;
1545}
1546
1547/**
1548 * idr_destroy - release all internal memory from an IDR
1549 * @idr: idr handle
1550 *
1551 * After this function is called, the IDR is empty, and may be reused or
1552 * the data structure containing it may be freed.
1553 *
1554 * A typical clean-up sequence for objects stored in an idr tree will use
1555 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1556 * free the memory used to keep track of those objects.
1557 */
1558void idr_destroy(struct idr *idr)
1559{
f8d5d0cc 1560 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
0a835c4f
MW
1561 if (radix_tree_is_internal_node(node))
1562 radix_tree_free_nodes(node);
f8d5d0cc 1563 idr->idr_rt.xa_head = NULL;
0a835c4f
MW
1564 root_tag_set(&idr->idr_rt, IDR_FREE);
1565}
1566EXPORT_SYMBOL(idr_destroy);
1567
1da177e4 1568static void
449dd698 1569radix_tree_node_ctor(void *arg)
1da177e4 1570{
449dd698
JW
1571 struct radix_tree_node *node = arg;
1572
1573 memset(node, 0, sizeof(*node));
1574 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1575}
1576
d544abd5 1577static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 1578{
2fcd9005
MW
1579 struct radix_tree_preload *rtp;
1580 struct radix_tree_node *node;
1581
1582 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
1583 rtp = &per_cpu(radix_tree_preloads, cpu);
1584 while (rtp->nr) {
1585 node = rtp->nodes;
1293d5c5 1586 rtp->nodes = node->parent;
d544abd5
SAS
1587 kmem_cache_free(radix_tree_node_cachep, node);
1588 rtp->nr--;
2fcd9005 1589 }
d544abd5 1590 return 0;
1da177e4 1591}
1da177e4
LT
1592
1593void __init radix_tree_init(void)
1594{
d544abd5 1595 int ret;
7e784422
MH
1596
1597 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
fa290cda 1598 BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
02c02bf1 1599 BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1da177e4
LT
1600 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1601 sizeof(struct radix_tree_node), 0,
488514d1
CL
1602 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1603 radix_tree_node_ctor);
d544abd5
SAS
1604 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1605 NULL, radix_tree_cpu_dead);
1606 WARN_ON(ret < 0);
1da177e4 1607}