]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/radix-tree.c
radix-tree: tidy up range_tag_if_tagged
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/errno.h>
26#include <linux/init.h>
27#include <linux/kernel.h>
8bc3bcc9 28#include <linux/export.h>
1da177e4
LT
29#include <linux/radix-tree.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
ce80b067 32#include <linux/kmemleak.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/cpu.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/bitops.h>
7cf9c2c7 37#include <linux/rcupdate.h>
92cf2118 38#include <linux/preempt.h> /* in_interrupt() */
1da177e4
LT
39
40
1da177e4
LT
41/*
42 * Radix tree node cache.
43 */
e18b890b 44static struct kmem_cache *radix_tree_node_cachep;
1da177e4 45
55368052
NP
46/*
47 * The radix tree is variable-height, so an insert operation not only has
48 * to build the branch to its corresponding item, it also has to build the
49 * branch to existing items if the size has to be increased (by
50 * radix_tree_extend).
51 *
52 * The worst case is a zero height tree with just a single item at index 0,
53 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
54 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
55 * Hence:
56 */
57#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
58
1da177e4
LT
59/*
60 * Per-cpu pool of preloaded nodes
61 */
62struct radix_tree_preload {
2fcd9005 63 unsigned nr;
9d2a8da0
KS
64 /* nodes->private_data points to next preallocated node */
65 struct radix_tree_node *nodes;
1da177e4 66};
8cef7d57 67static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 68
a4db4dce 69static inline void *node_to_entry(void *ptr)
27d20fdd 70{
30ff46cc 71 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
72}
73
a4db4dce 74#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 75
db050f29
MW
76#ifdef CONFIG_RADIX_TREE_MULTIORDER
77/* Sibling slots point directly to another slot in the same node */
78static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
79{
80 void **ptr = node;
81 return (parent->slots <= ptr) &&
82 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
83}
84#else
85static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
86{
87 return false;
88}
89#endif
90
91static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
92 void **slot)
93{
94 return slot - parent->slots;
95}
96
97static unsigned radix_tree_descend(struct radix_tree_node *parent,
98 struct radix_tree_node **nodep, unsigned offset)
99{
100 void **entry = rcu_dereference_raw(parent->slots[offset]);
101
102#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 103 if (radix_tree_is_internal_node(entry)) {
db050f29
MW
104 unsigned long siboff = get_slot_offset(parent, entry);
105 if (siboff < RADIX_TREE_MAP_SIZE) {
106 offset = siboff;
107 entry = rcu_dereference_raw(parent->slots[offset]);
108 }
109 }
110#endif
111
112 *nodep = (void *)entry;
113 return offset;
114}
115
612d6c19
NP
116static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
117{
118 return root->gfp_mask & __GFP_BITS_MASK;
119}
120
643b52b9
NP
121static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
122 int offset)
123{
124 __set_bit(offset, node->tags[tag]);
125}
126
127static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
128 int offset)
129{
130 __clear_bit(offset, node->tags[tag]);
131}
132
133static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
134 int offset)
135{
136 return test_bit(offset, node->tags[tag]);
137}
138
139static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
140{
141 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
142}
143
2fcd9005 144static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9
NP
145{
146 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
147}
148
149static inline void root_tag_clear_all(struct radix_tree_root *root)
150{
151 root->gfp_mask &= __GFP_BITS_MASK;
152}
153
154static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
155{
2fcd9005 156 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
643b52b9
NP
157}
158
7b60e9ad
MW
159static inline unsigned root_tags_get(struct radix_tree_root *root)
160{
161 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
162}
163
643b52b9
NP
164/*
165 * Returns 1 if any slot in the node has this tag set.
166 * Otherwise returns 0.
167 */
168static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
169{
2fcd9005 170 unsigned idx;
643b52b9
NP
171 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
172 if (node->tags[tag][idx])
173 return 1;
174 }
175 return 0;
176}
78c1d784
KK
177
178/**
179 * radix_tree_find_next_bit - find the next set bit in a memory region
180 *
181 * @addr: The address to base the search on
182 * @size: The bitmap size in bits
183 * @offset: The bitnumber to start searching at
184 *
185 * Unrollable variant of find_next_bit() for constant size arrays.
186 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
187 * Returns next bit offset, or size if nothing found.
188 */
189static __always_inline unsigned long
190radix_tree_find_next_bit(const unsigned long *addr,
191 unsigned long size, unsigned long offset)
192{
193 if (!__builtin_constant_p(size))
194 return find_next_bit(addr, size, offset);
195
196 if (offset < size) {
197 unsigned long tmp;
198
199 addr += offset / BITS_PER_LONG;
200 tmp = *addr >> (offset % BITS_PER_LONG);
201 if (tmp)
202 return __ffs(tmp) + offset;
203 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
204 while (offset < size) {
205 tmp = *++addr;
206 if (tmp)
207 return __ffs(tmp) + offset;
208 offset += BITS_PER_LONG;
209 }
210 }
211 return size;
212}
213
0796c583 214#ifndef __KERNEL__
d0891265 215static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 216{
0796c583 217 unsigned long i;
7cf19af4 218
c12e51b0 219 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n",
0c7fa0a8 220 node, node->offset,
0796c583 221 node->tags[0][0], node->tags[1][0], node->tags[2][0],
c12e51b0 222 node->shift, node->count, node->parent);
0796c583
RZ
223
224 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
225 unsigned long first = index | (i << node->shift);
226 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
227 void *entry = node->slots[i];
228 if (!entry)
229 continue;
230 if (is_sibling_entry(node, entry)) {
231 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
232 entry, i,
4dd6c098 233 *(void **)entry_to_node(entry),
0796c583 234 first, last);
b194d16c 235 } else if (!radix_tree_is_internal_node(entry)) {
0796c583
RZ
236 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
237 entry, i, first, last);
238 } else {
4dd6c098 239 dump_node(entry_to_node(entry), first);
0796c583
RZ
240 }
241 }
7cf19af4
MW
242}
243
244/* For debug */
245static void radix_tree_dump(struct radix_tree_root *root)
246{
d0891265
MW
247 pr_debug("radix root: %p rnode %p tags %x\n",
248 root, root->rnode,
7cf19af4 249 root->gfp_mask >> __GFP_BITS_SHIFT);
b194d16c 250 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 251 return;
4dd6c098 252 dump_node(entry_to_node(root->rnode), 0);
7cf19af4
MW
253}
254#endif
255
1da177e4
LT
256/*
257 * This assumes that the caller has performed appropriate preallocation, and
258 * that the caller has pinned this thread of control to the current CPU.
259 */
260static struct radix_tree_node *
261radix_tree_node_alloc(struct radix_tree_root *root)
262{
e2848a0e 263 struct radix_tree_node *ret = NULL;
612d6c19 264 gfp_t gfp_mask = root_gfp_mask(root);
1da177e4 265
5e4c0d97 266 /*
2fcd9005
MW
267 * Preload code isn't irq safe and it doesn't make sense to use
268 * preloading during an interrupt anyway as all the allocations have
269 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 270 */
d0164adc 271 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
272 struct radix_tree_preload *rtp;
273
58e698af
VD
274 /*
275 * Even if the caller has preloaded, try to allocate from the
276 * cache first for the new node to get accounted.
277 */
278 ret = kmem_cache_alloc(radix_tree_node_cachep,
279 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
280 if (ret)
281 goto out;
282
e2848a0e
NP
283 /*
284 * Provided the caller has preloaded here, we will always
285 * succeed in getting a node here (and never reach
286 * kmem_cache_alloc)
287 */
7c8e0181 288 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 289 if (rtp->nr) {
9d2a8da0
KS
290 ret = rtp->nodes;
291 rtp->nodes = ret->private_data;
292 ret->private_data = NULL;
1da177e4
LT
293 rtp->nr--;
294 }
ce80b067
CM
295 /*
296 * Update the allocation stack trace as this is more useful
297 * for debugging.
298 */
299 kmemleak_update_trace(ret);
58e698af 300 goto out;
1da177e4 301 }
58e698af
VD
302 ret = kmem_cache_alloc(radix_tree_node_cachep,
303 gfp_mask | __GFP_ACCOUNT);
304out:
b194d16c 305 BUG_ON(radix_tree_is_internal_node(ret));
1da177e4
LT
306 return ret;
307}
308
7cf9c2c7
NP
309static void radix_tree_node_rcu_free(struct rcu_head *head)
310{
311 struct radix_tree_node *node =
312 container_of(head, struct radix_tree_node, rcu_head);
b6dd0865 313 int i;
643b52b9
NP
314
315 /*
316 * must only free zeroed nodes into the slab. radix_tree_shrink
317 * can leave us with a non-NULL entry in the first slot, so clear
318 * that here to make sure.
319 */
b6dd0865
DC
320 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
321 tag_clear(node, i, 0);
322
643b52b9
NP
323 node->slots[0] = NULL;
324 node->count = 0;
325
7cf9c2c7
NP
326 kmem_cache_free(radix_tree_node_cachep, node);
327}
328
1da177e4
LT
329static inline void
330radix_tree_node_free(struct radix_tree_node *node)
331{
7cf9c2c7 332 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
333}
334
335/*
336 * Load up this CPU's radix_tree_node buffer with sufficient objects to
337 * ensure that the addition of a single element in the tree cannot fail. On
338 * success, return zero, with preemption disabled. On error, return -ENOMEM
339 * with preemption not disabled.
b34df792
DH
340 *
341 * To make use of this facility, the radix tree must be initialised without
d0164adc 342 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 343 */
5e4c0d97 344static int __radix_tree_preload(gfp_t gfp_mask)
1da177e4
LT
345{
346 struct radix_tree_preload *rtp;
347 struct radix_tree_node *node;
348 int ret = -ENOMEM;
349
350 preempt_disable();
7c8e0181 351 rtp = this_cpu_ptr(&radix_tree_preloads);
9d2a8da0 352 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
1da177e4 353 preempt_enable();
488514d1 354 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
355 if (node == NULL)
356 goto out;
357 preempt_disable();
7c8e0181 358 rtp = this_cpu_ptr(&radix_tree_preloads);
9d2a8da0
KS
359 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
360 node->private_data = rtp->nodes;
361 rtp->nodes = node;
362 rtp->nr++;
363 } else {
1da177e4 364 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 365 }
1da177e4
LT
366 }
367 ret = 0;
368out:
369 return ret;
370}
5e4c0d97
JK
371
372/*
373 * Load up this CPU's radix_tree_node buffer with sufficient objects to
374 * ensure that the addition of a single element in the tree cannot fail. On
375 * success, return zero, with preemption disabled. On error, return -ENOMEM
376 * with preemption not disabled.
377 *
378 * To make use of this facility, the radix tree must be initialised without
d0164adc 379 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
380 */
381int radix_tree_preload(gfp_t gfp_mask)
382{
383 /* Warn on non-sensical use... */
d0164adc 384 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
5e4c0d97
JK
385 return __radix_tree_preload(gfp_mask);
386}
d7f0923d 387EXPORT_SYMBOL(radix_tree_preload);
1da177e4 388
5e4c0d97
JK
389/*
390 * The same as above function, except we don't guarantee preloading happens.
391 * We do it, if we decide it helps. On success, return zero with preemption
392 * disabled. On error, return -ENOMEM with preemption not disabled.
393 */
394int radix_tree_maybe_preload(gfp_t gfp_mask)
395{
d0164adc 396 if (gfpflags_allow_blocking(gfp_mask))
5e4c0d97
JK
397 return __radix_tree_preload(gfp_mask);
398 /* Preloading doesn't help anything with this gfp mask, skip it */
399 preempt_disable();
400 return 0;
401}
402EXPORT_SYMBOL(radix_tree_maybe_preload);
403
1da177e4 404/*
d0891265 405 * The maximum index which can be stored in a radix tree
1da177e4 406 */
c12e51b0
MW
407static inline unsigned long shift_maxindex(unsigned int shift)
408{
409 return (RADIX_TREE_MAP_SIZE << shift) - 1;
410}
411
1456a439
MW
412static inline unsigned long node_maxindex(struct radix_tree_node *node)
413{
c12e51b0 414 return shift_maxindex(node->shift);
1456a439
MW
415}
416
417static unsigned radix_tree_load_root(struct radix_tree_root *root,
418 struct radix_tree_node **nodep, unsigned long *maxindex)
419{
420 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
421
422 *nodep = node;
423
b194d16c 424 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 425 node = entry_to_node(node);
1456a439 426 *maxindex = node_maxindex(node);
c12e51b0 427 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
428 }
429
430 *maxindex = 0;
431 return 0;
432}
433
1da177e4
LT
434/*
435 * Extend a radix tree so it can store key @index.
436 */
e6145236 437static int radix_tree_extend(struct radix_tree_root *root,
d0891265 438 unsigned long index, unsigned int shift)
1da177e4 439{
e2bdb933 440 struct radix_tree_node *slot;
d0891265 441 unsigned int maxshift;
1da177e4
LT
442 int tag;
443
d0891265
MW
444 /* Figure out what the shift should be. */
445 maxshift = shift;
446 while (index > shift_maxindex(maxshift))
447 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 448
d0891265
MW
449 slot = root->rnode;
450 if (!slot)
1da177e4 451 goto out;
1da177e4 452
1da177e4 453 do {
2fcd9005
MW
454 struct radix_tree_node *node = radix_tree_node_alloc(root);
455
456 if (!node)
1da177e4
LT
457 return -ENOMEM;
458
1da177e4 459 /* Propagate the aggregated tag info into the new root */
daff89f3 460 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
612d6c19 461 if (root_tag_get(root, tag))
1da177e4
LT
462 tag_set(node, tag, 0);
463 }
464
d0891265
MW
465 BUG_ON(shift > BITS_PER_LONG);
466 node->shift = shift;
0c7fa0a8 467 node->offset = 0;
1da177e4 468 node->count = 1;
e2bdb933 469 node->parent = NULL;
b194d16c 470 if (radix_tree_is_internal_node(slot))
4dd6c098 471 entry_to_node(slot)->parent = node;
e2bdb933 472 node->slots[0] = slot;
a4db4dce
MW
473 slot = node_to_entry(node);
474 rcu_assign_pointer(root->rnode, slot);
d0891265 475 shift += RADIX_TREE_MAP_SHIFT;
d0891265 476 } while (shift <= maxshift);
1da177e4 477out:
d0891265 478 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
479}
480
481/**
139e5616 482 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
483 * @root: radix tree root
484 * @index: index key
e6145236 485 * @order: index occupies 2^order aligned slots
139e5616
JW
486 * @nodep: returns node
487 * @slotp: returns slot
1da177e4 488 *
139e5616
JW
489 * Create, if necessary, and return the node and slot for an item
490 * at position @index in the radix tree @root.
491 *
492 * Until there is more than one item in the tree, no nodes are
493 * allocated and @root->rnode is used as a direct slot instead of
494 * pointing to a node, in which case *@nodep will be NULL.
495 *
496 * Returns -ENOMEM, or 0 for success.
1da177e4 497 */
139e5616 498int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
499 unsigned order, struct radix_tree_node **nodep,
500 void ***slotp)
1da177e4 501{
201b6264 502 struct radix_tree_node *node = NULL, *slot;
49ea6ebc 503 unsigned long maxindex;
c12e51b0 504 unsigned int shift, offset;
49ea6ebc
MW
505 unsigned long max = index | ((1UL << order) - 1);
506
507 shift = radix_tree_load_root(root, &slot, &maxindex);
1da177e4
LT
508
509 /* Make sure the tree is high enough. */
49ea6ebc 510 if (max > maxindex) {
d0891265 511 int error = radix_tree_extend(root, max, shift);
49ea6ebc 512 if (error < 0)
1da177e4 513 return error;
49ea6ebc
MW
514 shift = error;
515 slot = root->rnode;
d0891265 516 if (order == shift)
49ea6ebc 517 shift += RADIX_TREE_MAP_SHIFT;
1da177e4
LT
518 }
519
1da177e4 520 offset = 0; /* uninitialised var warning */
e6145236 521 while (shift > order) {
c12e51b0 522 shift -= RADIX_TREE_MAP_SHIFT;
201b6264 523 if (slot == NULL) {
1da177e4 524 /* Have to add a child node. */
2fcd9005
MW
525 slot = radix_tree_node_alloc(root);
526 if (!slot)
1da177e4 527 return -ENOMEM;
c12e51b0 528 slot->shift = shift;
0c7fa0a8 529 slot->offset = offset;
e2bdb933 530 slot->parent = node;
201b6264 531 if (node) {
339e6353 532 rcu_assign_pointer(node->slots[offset],
a4db4dce 533 node_to_entry(slot));
1da177e4 534 node->count++;
201b6264 535 } else
339e6353 536 rcu_assign_pointer(root->rnode,
a4db4dce 537 node_to_entry(slot));
b194d16c 538 } else if (!radix_tree_is_internal_node(slot))
e6145236 539 break;
1da177e4
LT
540
541 /* Go a level down */
4dd6c098 542 node = entry_to_node(slot);
8a14f4d8
MW
543 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
544 offset = radix_tree_descend(node, &slot, offset);
e6145236
MW
545 }
546
57578c2e 547#ifdef CONFIG_RADIX_TREE_MULTIORDER
e6145236 548 /* Insert pointers to the canonical entry */
3b8c00f6
MW
549 if (order > shift) {
550 int i, n = 1 << (order - shift);
e6145236 551 offset = offset & ~(n - 1);
a4db4dce 552 slot = node_to_entry(&node->slots[offset]);
e6145236
MW
553 for (i = 0; i < n; i++) {
554 if (node->slots[offset + i])
555 return -EEXIST;
556 }
557
558 for (i = 1; i < n; i++) {
559 rcu_assign_pointer(node->slots[offset + i], slot);
560 node->count++;
561 }
612d6c19 562 }
57578c2e 563#endif
1da177e4 564
139e5616
JW
565 if (nodep)
566 *nodep = node;
567 if (slotp)
568 *slotp = node ? node->slots + offset : (void **)&root->rnode;
569 return 0;
570}
571
572/**
e6145236 573 * __radix_tree_insert - insert into a radix tree
139e5616
JW
574 * @root: radix tree root
575 * @index: index key
e6145236 576 * @order: key covers the 2^order indices around index
139e5616
JW
577 * @item: item to insert
578 *
579 * Insert an item into the radix tree at position @index.
580 */
e6145236
MW
581int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
582 unsigned order, void *item)
139e5616
JW
583{
584 struct radix_tree_node *node;
585 void **slot;
586 int error;
587
b194d16c 588 BUG_ON(radix_tree_is_internal_node(item));
139e5616 589
e6145236 590 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
591 if (error)
592 return error;
593 if (*slot != NULL)
1da177e4 594 return -EEXIST;
139e5616 595 rcu_assign_pointer(*slot, item);
201b6264 596
612d6c19 597 if (node) {
7b60e9ad 598 unsigned offset = get_slot_offset(node, slot);
612d6c19 599 node->count++;
7b60e9ad
MW
600 BUG_ON(tag_get(node, 0, offset));
601 BUG_ON(tag_get(node, 1, offset));
602 BUG_ON(tag_get(node, 2, offset));
612d6c19 603 } else {
7b60e9ad 604 BUG_ON(root_tags_get(root));
612d6c19 605 }
1da177e4 606
1da177e4
LT
607 return 0;
608}
e6145236 609EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 610
139e5616
JW
611/**
612 * __radix_tree_lookup - lookup an item in a radix tree
613 * @root: radix tree root
614 * @index: index key
615 * @nodep: returns node
616 * @slotp: returns slot
617 *
618 * Lookup and return the item at position @index in the radix
619 * tree @root.
620 *
621 * Until there is more than one item in the tree, no nodes are
622 * allocated and @root->rnode is used as a direct slot instead of
623 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 624 */
139e5616
JW
625void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
626 struct radix_tree_node **nodep, void ***slotp)
1da177e4 627{
139e5616 628 struct radix_tree_node *node, *parent;
85829954
MW
629 unsigned long maxindex;
630 unsigned int shift;
139e5616 631 void **slot;
612d6c19 632
85829954
MW
633 restart:
634 parent = NULL;
635 slot = (void **)&root->rnode;
636 shift = radix_tree_load_root(root, &node, &maxindex);
637 if (index > maxindex)
1da177e4
LT
638 return NULL;
639
b194d16c 640 while (radix_tree_is_internal_node(node)) {
85829954 641 unsigned offset;
1da177e4 642
85829954
MW
643 if (node == RADIX_TREE_RETRY)
644 goto restart;
4dd6c098 645 parent = entry_to_node(node);
1da177e4 646 shift -= RADIX_TREE_MAP_SHIFT;
85829954
MW
647 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
648 offset = radix_tree_descend(parent, &node, offset);
649 slot = parent->slots + offset;
650 }
1da177e4 651
139e5616
JW
652 if (nodep)
653 *nodep = parent;
654 if (slotp)
655 *slotp = slot;
656 return node;
b72b71c6
HS
657}
658
659/**
660 * radix_tree_lookup_slot - lookup a slot in a radix tree
661 * @root: radix tree root
662 * @index: index key
663 *
664 * Returns: the slot corresponding to the position @index in the
665 * radix tree @root. This is useful for update-if-exists operations.
666 *
667 * This function can be called under rcu_read_lock iff the slot is not
668 * modified by radix_tree_replace_slot, otherwise it must be called
669 * exclusive from other writers. Any dereference of the slot must be done
670 * using radix_tree_deref_slot.
671 */
672void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
673{
139e5616
JW
674 void **slot;
675
676 if (!__radix_tree_lookup(root, index, NULL, &slot))
677 return NULL;
678 return slot;
a4331366 679}
a4331366
HR
680EXPORT_SYMBOL(radix_tree_lookup_slot);
681
682/**
683 * radix_tree_lookup - perform lookup operation on a radix tree
684 * @root: radix tree root
685 * @index: index key
686 *
687 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
688 *
689 * This function can be called under rcu_read_lock, however the caller
690 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
691 * them safely). No RCU barriers are required to access or modify the
692 * returned item, however.
a4331366
HR
693 */
694void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
695{
139e5616 696 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
697}
698EXPORT_SYMBOL(radix_tree_lookup);
699
700/**
701 * radix_tree_tag_set - set a tag on a radix tree node
702 * @root: radix tree root
703 * @index: index key
2fcd9005 704 * @tag: tag index
1da177e4 705 *
daff89f3
JC
706 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
707 * corresponding to @index in the radix tree. From
1da177e4
LT
708 * the root all the way down to the leaf node.
709 *
2fcd9005 710 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
711 * item is a bug.
712 */
713void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 714 unsigned long index, unsigned int tag)
1da177e4 715{
fb969909
RZ
716 struct radix_tree_node *node, *parent;
717 unsigned long maxindex;
718 unsigned int shift;
1da177e4 719
fb969909
RZ
720 shift = radix_tree_load_root(root, &node, &maxindex);
721 BUG_ON(index > maxindex);
1da177e4 722
b194d16c 723 while (radix_tree_is_internal_node(node)) {
fb969909 724 unsigned offset;
1da177e4 725
1da177e4 726 shift -= RADIX_TREE_MAP_SHIFT;
fb969909
RZ
727 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
728
4dd6c098 729 parent = entry_to_node(node);
fb969909
RZ
730 offset = radix_tree_descend(parent, &node, offset);
731 BUG_ON(!node);
732
733 if (!tag_get(parent, tag, offset))
734 tag_set(parent, tag, offset);
1da177e4
LT
735 }
736
612d6c19 737 /* set the root's tag bit */
fb969909 738 if (!root_tag_get(root, tag))
612d6c19
NP
739 root_tag_set(root, tag);
740
fb969909 741 return node;
1da177e4
LT
742}
743EXPORT_SYMBOL(radix_tree_tag_set);
744
745/**
746 * radix_tree_tag_clear - clear a tag on a radix tree node
747 * @root: radix tree root
748 * @index: index key
2fcd9005 749 * @tag: tag index
1da177e4 750 *
daff89f3 751 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
752 * corresponding to @index in the radix tree. If this causes
753 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
754 * next-to-leaf node, etc.
755 *
756 * Returns the address of the tagged item on success, else NULL. ie:
757 * has the same return value and semantics as radix_tree_lookup().
758 */
759void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 760 unsigned long index, unsigned int tag)
1da177e4 761{
00f47b58
RZ
762 struct radix_tree_node *node, *parent;
763 unsigned long maxindex;
764 unsigned int shift;
e2bdb933 765 int uninitialized_var(offset);
1da177e4 766
00f47b58
RZ
767 shift = radix_tree_load_root(root, &node, &maxindex);
768 if (index > maxindex)
769 return NULL;
1da177e4 770
00f47b58 771 parent = NULL;
1da177e4 772
b194d16c 773 while (radix_tree_is_internal_node(node)) {
e2bdb933 774 shift -= RADIX_TREE_MAP_SHIFT;
1da177e4 775 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
00f47b58 776
4dd6c098 777 parent = entry_to_node(node);
00f47b58 778 offset = radix_tree_descend(parent, &node, offset);
1da177e4
LT
779 }
780
00f47b58 781 if (node == NULL)
1da177e4
LT
782 goto out;
783
00f47b58
RZ
784 index >>= shift;
785
786 while (parent) {
787 if (!tag_get(parent, tag, offset))
d5274261 788 goto out;
00f47b58
RZ
789 tag_clear(parent, tag, offset);
790 if (any_tag_set(parent, tag))
6e954b9e 791 goto out;
e2bdb933
HD
792
793 index >>= RADIX_TREE_MAP_SHIFT;
794 offset = index & RADIX_TREE_MAP_MASK;
00f47b58 795 parent = parent->parent;
612d6c19
NP
796 }
797
798 /* clear the root's tag bit */
799 if (root_tag_get(root, tag))
800 root_tag_clear(root, tag);
801
1da177e4 802out:
00f47b58 803 return node;
1da177e4
LT
804}
805EXPORT_SYMBOL(radix_tree_tag_clear);
806
1da177e4 807/**
32605a18
MT
808 * radix_tree_tag_get - get a tag on a radix tree node
809 * @root: radix tree root
810 * @index: index key
2fcd9005 811 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 812 *
32605a18 813 * Return values:
1da177e4 814 *
612d6c19
NP
815 * 0: tag not present or not set
816 * 1: tag set
ce82653d
DH
817 *
818 * Note that the return value of this function may not be relied on, even if
819 * the RCU lock is held, unless tag modification and node deletion are excluded
820 * from concurrency.
1da177e4
LT
821 */
822int radix_tree_tag_get(struct radix_tree_root *root,
daff89f3 823 unsigned long index, unsigned int tag)
1da177e4 824{
4589ba6d
RZ
825 struct radix_tree_node *node, *parent;
826 unsigned long maxindex;
827 unsigned int shift;
1da177e4 828
612d6c19
NP
829 if (!root_tag_get(root, tag))
830 return 0;
831
4589ba6d
RZ
832 shift = radix_tree_load_root(root, &node, &maxindex);
833 if (index > maxindex)
834 return 0;
7cf9c2c7
NP
835 if (node == NULL)
836 return 0;
837
b194d16c 838 while (radix_tree_is_internal_node(node)) {
4589ba6d 839 int offset;
612d6c19 840
4589ba6d
RZ
841 shift -= RADIX_TREE_MAP_SHIFT;
842 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1da177e4 843
4dd6c098 844 parent = entry_to_node(node);
4589ba6d 845 offset = radix_tree_descend(parent, &node, offset);
1da177e4 846
4589ba6d 847 if (!node)
1da177e4 848 return 0;
4589ba6d 849 if (!tag_get(parent, tag, offset))
3fa36acb 850 return 0;
4589ba6d
RZ
851 if (node == RADIX_TREE_RETRY)
852 break;
1da177e4 853 }
4589ba6d
RZ
854
855 return 1;
1da177e4
LT
856}
857EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 858
21ef5339
RZ
859static inline void __set_iter_shift(struct radix_tree_iter *iter,
860 unsigned int shift)
861{
862#ifdef CONFIG_RADIX_TREE_MULTIORDER
863 iter->shift = shift;
864#endif
865}
866
78c1d784
KK
867/**
868 * radix_tree_next_chunk - find next chunk of slots for iteration
869 *
870 * @root: radix tree root
871 * @iter: iterator state
872 * @flags: RADIX_TREE_ITER_* flags and tag index
873 * Returns: pointer to chunk first slot, or NULL if iteration is over
874 */
875void **radix_tree_next_chunk(struct radix_tree_root *root,
876 struct radix_tree_iter *iter, unsigned flags)
877{
878 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 879 struct radix_tree_node *node, *child;
21ef5339 880 unsigned long index, offset, maxindex;
78c1d784
KK
881
882 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
883 return NULL;
884
885 /*
886 * Catch next_index overflow after ~0UL. iter->index never overflows
887 * during iterating; it can be zero only at the beginning.
888 * And we cannot overflow iter->next_index in a single step,
889 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
890 *
891 * This condition also used by radix_tree_next_slot() to stop
892 * contiguous iterating, and forbid swithing to the next chunk.
78c1d784
KK
893 */
894 index = iter->next_index;
895 if (!index && iter->index)
896 return NULL;
897
21ef5339 898 restart:
8c1244de 899 shift = radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
900 if (index > maxindex)
901 return NULL;
8c1244de
MW
902 if (!child)
903 return NULL;
21ef5339 904
8c1244de 905 if (!radix_tree_is_internal_node(child)) {
78c1d784 906 /* Single-slot tree */
21ef5339
RZ
907 iter->index = index;
908 iter->next_index = maxindex + 1;
78c1d784 909 iter->tags = 1;
8c1244de 910 __set_iter_shift(iter, 0);
78c1d784 911 return (void **)&root->rnode;
8c1244de 912 }
21ef5339 913
8c1244de
MW
914 do {
915 node = entry_to_node(child);
916 shift -= RADIX_TREE_MAP_SHIFT;
917 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
918 offset = radix_tree_descend(node, &child, offset);
21ef5339 919
78c1d784 920 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 921 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
922 /* Hole detected */
923 if (flags & RADIX_TREE_ITER_CONTIG)
924 return NULL;
925
926 if (flags & RADIX_TREE_ITER_TAGGED)
927 offset = radix_tree_find_next_bit(
928 node->tags[tag],
929 RADIX_TREE_MAP_SIZE,
930 offset + 1);
931 else
932 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
933 void *slot = node->slots[offset];
934 if (is_sibling_entry(node, slot))
935 continue;
936 if (slot)
78c1d784
KK
937 break;
938 }
8c1244de 939 index &= ~node_maxindex(node);
78c1d784
KK
940 index += offset << shift;
941 /* Overflow after ~0UL */
942 if (!index)
943 return NULL;
944 if (offset == RADIX_TREE_MAP_SIZE)
945 goto restart;
8c1244de 946 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
947 }
948
8c1244de 949 if ((child == NULL) || (child == RADIX_TREE_RETRY))
78c1d784 950 goto restart;
8c1244de 951 } while (radix_tree_is_internal_node(child));
78c1d784
KK
952
953 /* Update the iterator state */
8c1244de
MW
954 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
955 iter->next_index = (index | node_maxindex(node)) + 1;
21ef5339 956 __set_iter_shift(iter, shift);
78c1d784
KK
957
958 /* Construct iter->tags bit-mask from node->tags[tag] array */
959 if (flags & RADIX_TREE_ITER_TAGGED) {
960 unsigned tag_long, tag_bit;
961
962 tag_long = offset / BITS_PER_LONG;
963 tag_bit = offset % BITS_PER_LONG;
964 iter->tags = node->tags[tag][tag_long] >> tag_bit;
965 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
966 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
967 /* Pick tags from next element */
968 if (tag_bit)
969 iter->tags |= node->tags[tag][tag_long + 1] <<
970 (BITS_PER_LONG - tag_bit);
971 /* Clip chunk size, here only BITS_PER_LONG tags */
972 iter->next_index = index + BITS_PER_LONG;
973 }
974 }
975
976 return node->slots + offset;
977}
978EXPORT_SYMBOL(radix_tree_next_chunk);
979
ebf8aa44
JK
980/**
981 * radix_tree_range_tag_if_tagged - for each item in given range set given
982 * tag if item has another tag set
983 * @root: radix tree root
984 * @first_indexp: pointer to a starting index of a range to scan
985 * @last_index: last index of a range to scan
986 * @nr_to_tag: maximum number items to tag
987 * @iftag: tag index to test
988 * @settag: tag index to set if tested tag is set
989 *
990 * This function scans range of radix tree from first_index to last_index
991 * (inclusive). For each item in the range if iftag is set, the function sets
992 * also settag. The function stops either after tagging nr_to_tag items or
993 * after reaching last_index.
994 *
144dcfc0
DC
995 * The tags must be set from the leaf level only and propagated back up the
996 * path to the root. We must do this so that we resolve the full path before
997 * setting any tags on intermediate nodes. If we set tags as we descend, then
998 * we can get to the leaf node and find that the index that has the iftag
999 * set is outside the range we are scanning. This reults in dangling tags and
1000 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1001 *
2fcd9005 1002 * The function returns the number of leaves where the tag was set and sets
ebf8aa44 1003 * *first_indexp to the first unscanned index.
d5ed3a4a
JK
1004 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1005 * be prepared to handle that.
ebf8aa44
JK
1006 */
1007unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1008 unsigned long *first_indexp, unsigned long last_index,
1009 unsigned long nr_to_tag,
1010 unsigned int iftag, unsigned int settag)
1011{
a8e4da25 1012 struct radix_tree_node *parent, *node, *child;
070c5ac2 1013 unsigned long maxindex;
a8e4da25 1014 unsigned int shift = radix_tree_load_root(root, &child, &maxindex);
144dcfc0
DC
1015 unsigned long tagged = 0;
1016 unsigned long index = *first_indexp;
ebf8aa44 1017
070c5ac2 1018 last_index = min(last_index, maxindex);
ebf8aa44
JK
1019 if (index > last_index)
1020 return 0;
1021 if (!nr_to_tag)
1022 return 0;
1023 if (!root_tag_get(root, iftag)) {
1024 *first_indexp = last_index + 1;
1025 return 0;
1026 }
a8e4da25 1027 if (!radix_tree_is_internal_node(child)) {
ebf8aa44
JK
1028 *first_indexp = last_index + 1;
1029 root_tag_set(root, settag);
1030 return 1;
1031 }
1032
a8e4da25 1033 node = entry_to_node(child);
070c5ac2 1034 shift -= RADIX_TREE_MAP_SHIFT;
ebf8aa44
JK
1035
1036 for (;;) {
a8e4da25
MW
1037 unsigned offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1038 offset = radix_tree_descend(node, &child, offset);
1039 if (!child)
ebf8aa44 1040 goto next;
070c5ac2 1041 if (!tag_get(node, iftag, offset))
ebf8aa44 1042 goto next;
070c5ac2 1043 /* Sibling slots never have tags set on them */
a8e4da25
MW
1044 if (radix_tree_is_internal_node(child)) {
1045 node = entry_to_node(child);
070c5ac2
MW
1046 shift -= RADIX_TREE_MAP_SHIFT;
1047 continue;
144dcfc0
DC
1048 }
1049
1050 /* tag the leaf */
070c5ac2
MW
1051 tagged++;
1052 tag_set(node, settag, offset);
144dcfc0
DC
1053
1054 /* walk back up the path tagging interior nodes */
a8e4da25
MW
1055 parent = node;
1056 for (;;) {
1057 offset = parent->offset;
1058 parent = parent->parent;
1059 if (!parent)
1060 break;
144dcfc0 1061 /* stop if we find a node with the tag already set */
a8e4da25 1062 if (tag_get(parent, settag, offset))
144dcfc0 1063 break;
a8e4da25 1064 tag_set(parent, settag, offset);
ebf8aa44 1065 }
070c5ac2 1066 next:
ebf8aa44
JK
1067 /* Go to next item at level determined by 'shift' */
1068 index = ((index >> shift) + 1) << shift;
d5ed3a4a
JK
1069 /* Overflow can happen when last_index is ~0UL... */
1070 if (index > last_index || !index)
ebf8aa44 1071 break;
070c5ac2
MW
1072 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1073 while (offset == 0) {
ebf8aa44
JK
1074 /*
1075 * We've fully scanned this node. Go up. Because
1076 * last_index is guaranteed to be in the tree, what
1077 * we do below cannot wander astray.
1078 */
070c5ac2 1079 node = node->parent;
ebf8aa44 1080 shift += RADIX_TREE_MAP_SHIFT;
070c5ac2 1081 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
ebf8aa44 1082 }
070c5ac2
MW
1083 if (is_sibling_entry(node, node->slots[offset]))
1084 goto next;
1085 if (tagged >= nr_to_tag)
1086 break;
ebf8aa44
JK
1087 }
1088 /*
ac15ee69
TO
1089 * We need not to tag the root tag if there is no tag which is set with
1090 * settag within the range from *first_indexp to last_index.
ebf8aa44 1091 */
ac15ee69
TO
1092 if (tagged > 0)
1093 root_tag_set(root, settag);
ebf8aa44
JK
1094 *first_indexp = index;
1095
1096 return tagged;
1097}
1098EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1099
1da177e4
LT
1100/**
1101 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1102 * @root: radix tree root
1103 * @results: where the results of the lookup are placed
1104 * @first_index: start the lookup from this key
1105 * @max_items: place up to this many items at *results
1106 *
1107 * Performs an index-ascending scan of the tree for present items. Places
1108 * them at *@results and returns the number of items which were placed at
1109 * *@results.
1110 *
1111 * The implementation is naive.
7cf9c2c7
NP
1112 *
1113 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1114 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1115 * an atomic snapshot of the tree at a single point in time, the
1116 * semantics of an RCU protected gang lookup are as though multiple
1117 * radix_tree_lookups have been issued in individual locks, and results
1118 * stored in 'results'.
1da177e4
LT
1119 */
1120unsigned int
1121radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1122 unsigned long first_index, unsigned int max_items)
1123{
cebbd29e
KK
1124 struct radix_tree_iter iter;
1125 void **slot;
1126 unsigned int ret = 0;
7cf9c2c7 1127
cebbd29e 1128 if (unlikely(!max_items))
7cf9c2c7 1129 return 0;
1da177e4 1130
cebbd29e 1131 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1132 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1133 if (!results[ret])
1134 continue;
b194d16c 1135 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1136 slot = radix_tree_iter_retry(&iter);
1137 continue;
1138 }
cebbd29e 1139 if (++ret == max_items)
1da177e4 1140 break;
1da177e4 1141 }
7cf9c2c7 1142
1da177e4
LT
1143 return ret;
1144}
1145EXPORT_SYMBOL(radix_tree_gang_lookup);
1146
47feff2c
NP
1147/**
1148 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1149 * @root: radix tree root
1150 * @results: where the results of the lookup are placed
6328650b 1151 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1152 * @first_index: start the lookup from this key
1153 * @max_items: place up to this many items at *results
1154 *
1155 * Performs an index-ascending scan of the tree for present items. Places
1156 * their slots at *@results and returns the number of items which were
1157 * placed at *@results.
1158 *
1159 * The implementation is naive.
1160 *
1161 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1162 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1163 * protection, radix_tree_deref_slot may fail requiring a retry.
1164 */
1165unsigned int
6328650b
HD
1166radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1167 void ***results, unsigned long *indices,
47feff2c
NP
1168 unsigned long first_index, unsigned int max_items)
1169{
cebbd29e
KK
1170 struct radix_tree_iter iter;
1171 void **slot;
1172 unsigned int ret = 0;
47feff2c 1173
cebbd29e 1174 if (unlikely(!max_items))
47feff2c
NP
1175 return 0;
1176
cebbd29e
KK
1177 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1178 results[ret] = slot;
6328650b 1179 if (indices)
cebbd29e
KK
1180 indices[ret] = iter.index;
1181 if (++ret == max_items)
47feff2c 1182 break;
47feff2c
NP
1183 }
1184
1185 return ret;
1186}
1187EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1188
1da177e4
LT
1189/**
1190 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1191 * based on a tag
1192 * @root: radix tree root
1193 * @results: where the results of the lookup are placed
1194 * @first_index: start the lookup from this key
1195 * @max_items: place up to this many items at *results
daff89f3 1196 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1197 *
1198 * Performs an index-ascending scan of the tree for present items which
1199 * have the tag indexed by @tag set. Places the items at *@results and
1200 * returns the number of items which were placed at *@results.
1201 */
1202unsigned int
1203radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
daff89f3
JC
1204 unsigned long first_index, unsigned int max_items,
1205 unsigned int tag)
1da177e4 1206{
cebbd29e
KK
1207 struct radix_tree_iter iter;
1208 void **slot;
1209 unsigned int ret = 0;
612d6c19 1210
cebbd29e 1211 if (unlikely(!max_items))
7cf9c2c7
NP
1212 return 0;
1213
cebbd29e 1214 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1215 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1216 if (!results[ret])
1217 continue;
b194d16c 1218 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1219 slot = radix_tree_iter_retry(&iter);
1220 continue;
1221 }
cebbd29e 1222 if (++ret == max_items)
1da177e4 1223 break;
1da177e4 1224 }
7cf9c2c7 1225
1da177e4
LT
1226 return ret;
1227}
1228EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1229
47feff2c
NP
1230/**
1231 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1232 * radix tree based on a tag
1233 * @root: radix tree root
1234 * @results: where the results of the lookup are placed
1235 * @first_index: start the lookup from this key
1236 * @max_items: place up to this many items at *results
1237 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1238 *
1239 * Performs an index-ascending scan of the tree for present items which
1240 * have the tag indexed by @tag set. Places the slots at *@results and
1241 * returns the number of slots which were placed at *@results.
1242 */
1243unsigned int
1244radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1245 unsigned long first_index, unsigned int max_items,
1246 unsigned int tag)
1247{
cebbd29e
KK
1248 struct radix_tree_iter iter;
1249 void **slot;
1250 unsigned int ret = 0;
47feff2c 1251
cebbd29e 1252 if (unlikely(!max_items))
47feff2c
NP
1253 return 0;
1254
cebbd29e
KK
1255 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1256 results[ret] = slot;
1257 if (++ret == max_items)
47feff2c 1258 break;
47feff2c
NP
1259 }
1260
1261 return ret;
1262}
1263EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1264
e504f3fd
HD
1265#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1266#include <linux/sched.h> /* for cond_resched() */
1267
0a2efc6c
MW
1268struct locate_info {
1269 unsigned long found_index;
1270 bool stop;
1271};
1272
e504f3fd
HD
1273/*
1274 * This linear search is at present only useful to shmem_unuse_inode().
1275 */
1276static unsigned long __locate(struct radix_tree_node *slot, void *item,
0a2efc6c 1277 unsigned long index, struct locate_info *info)
e504f3fd 1278{
0c7fa0a8 1279 unsigned int shift;
e504f3fd
HD
1280 unsigned long i;
1281
c12e51b0 1282 shift = slot->shift + RADIX_TREE_MAP_SHIFT;
e504f3fd 1283
0a2efc6c
MW
1284 do {
1285 shift -= RADIX_TREE_MAP_SHIFT;
e504f3fd 1286
0a2efc6c
MW
1287 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1288 i < RADIX_TREE_MAP_SIZE;
1289 i++, index += (1UL << shift)) {
1290 struct radix_tree_node *node =
1291 rcu_dereference_raw(slot->slots[i]);
1292 if (node == RADIX_TREE_RETRY)
1293 goto out;
b194d16c 1294 if (!radix_tree_is_internal_node(node)) {
0a2efc6c
MW
1295 if (node == item) {
1296 info->found_index = index;
1297 info->stop = true;
1298 goto out;
1299 }
1300 continue;
e6145236 1301 }
4dd6c098 1302 node = entry_to_node(node);
0a2efc6c
MW
1303 if (is_sibling_entry(slot, node))
1304 continue;
1305 slot = node;
1306 break;
e6145236 1307 }
0a2efc6c
MW
1308 if (i == RADIX_TREE_MAP_SIZE)
1309 break;
1310 } while (shift);
e504f3fd 1311
e504f3fd 1312out:
0a2efc6c
MW
1313 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1314 info->stop = true;
e504f3fd
HD
1315 return index;
1316}
1317
1318/**
1319 * radix_tree_locate_item - search through radix tree for item
1320 * @root: radix tree root
1321 * @item: item to be found
1322 *
1323 * Returns index where item was found, or -1 if not found.
1324 * Caller must hold no lock (since this time-consuming function needs
1325 * to be preemptible), and must check afterwards if item is still there.
1326 */
1327unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1328{
1329 struct radix_tree_node *node;
1330 unsigned long max_index;
1331 unsigned long cur_index = 0;
0a2efc6c
MW
1332 struct locate_info info = {
1333 .found_index = -1,
1334 .stop = false,
1335 };
e504f3fd
HD
1336
1337 do {
1338 rcu_read_lock();
1339 node = rcu_dereference_raw(root->rnode);
b194d16c 1340 if (!radix_tree_is_internal_node(node)) {
e504f3fd
HD
1341 rcu_read_unlock();
1342 if (node == item)
0a2efc6c 1343 info.found_index = 0;
e504f3fd
HD
1344 break;
1345 }
1346
4dd6c098 1347 node = entry_to_node(node);
0a2efc6c
MW
1348
1349 max_index = node_maxindex(node);
5f30fc94
HD
1350 if (cur_index > max_index) {
1351 rcu_read_unlock();
e504f3fd 1352 break;
5f30fc94 1353 }
e504f3fd 1354
0a2efc6c 1355 cur_index = __locate(node, item, cur_index, &info);
e504f3fd
HD
1356 rcu_read_unlock();
1357 cond_resched();
0a2efc6c 1358 } while (!info.stop && cur_index <= max_index);
e504f3fd 1359
0a2efc6c 1360 return info.found_index;
e504f3fd
HD
1361}
1362#else
1363unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1364{
1365 return -1;
1366}
1367#endif /* CONFIG_SHMEM && CONFIG_SWAP */
47feff2c 1368
a5f51c96 1369/**
d0891265 1370 * radix_tree_shrink - shrink radix tree to minimum height
a5f51c96
NP
1371 * @root radix tree root
1372 */
fb209019 1373static inline bool radix_tree_shrink(struct radix_tree_root *root)
a5f51c96 1374{
fb209019
MW
1375 bool shrunk = false;
1376
d0891265 1377 for (;;) {
af49a63e
MW
1378 struct radix_tree_node *node = root->rnode;
1379 struct radix_tree_node *child;
a5f51c96 1380
af49a63e 1381 if (!radix_tree_is_internal_node(node))
d0891265 1382 break;
af49a63e 1383 node = entry_to_node(node);
c0bc9875
NP
1384
1385 /*
1386 * The candidate node has more than one child, or its child
d0891265
MW
1387 * is not at the leftmost slot, or the child is a multiorder
1388 * entry, we cannot shrink.
c0bc9875 1389 */
af49a63e 1390 if (node->count != 1)
c0bc9875 1391 break;
af49a63e
MW
1392 child = node->slots[0];
1393 if (!child)
c0bc9875 1394 break;
af49a63e 1395 if (!radix_tree_is_internal_node(child) && node->shift)
afe0e395
MW
1396 break;
1397
af49a63e
MW
1398 if (radix_tree_is_internal_node(child))
1399 entry_to_node(child)->parent = NULL;
c0bc9875 1400
7cf9c2c7
NP
1401 /*
1402 * We don't need rcu_assign_pointer(), since we are simply
27d20fdd
NP
1403 * moving the node from one part of the tree to another: if it
1404 * was safe to dereference the old pointer to it
af49a63e 1405 * (node->slots[0]), it will be safe to dereference the new
27d20fdd 1406 * one (root->rnode) as far as dependent read barriers go.
7cf9c2c7 1407 */
af49a63e 1408 root->rnode = child;
27d20fdd
NP
1409
1410 /*
1411 * We have a dilemma here. The node's slot[0] must not be
1412 * NULLed in case there are concurrent lookups expecting to
1413 * find the item. However if this was a bottom-level node,
1414 * then it may be subject to the slot pointer being visible
1415 * to callers dereferencing it. If item corresponding to
1416 * slot[0] is subsequently deleted, these callers would expect
1417 * their slot to become empty sooner or later.
1418 *
1419 * For example, lockless pagecache will look up a slot, deref
2fcd9005 1420 * the page pointer, and if the page has 0 refcount it means it
27d20fdd
NP
1421 * was concurrently deleted from pagecache so try the deref
1422 * again. Fortunately there is already a requirement for logic
1423 * to retry the entire slot lookup -- the indirect pointer
1424 * problem (replacing direct root node with an indirect pointer
1425 * also results in a stale slot). So tag the slot as indirect
1426 * to force callers to retry.
1427 */
af49a63e
MW
1428 if (!radix_tree_is_internal_node(child))
1429 node->slots[0] = RADIX_TREE_RETRY;
27d20fdd 1430
af49a63e 1431 radix_tree_node_free(node);
fb209019 1432 shrunk = true;
a5f51c96 1433 }
fb209019
MW
1434
1435 return shrunk;
a5f51c96
NP
1436}
1437
139e5616
JW
1438/**
1439 * __radix_tree_delete_node - try to free node after clearing a slot
1440 * @root: radix tree root
139e5616
JW
1441 * @node: node containing @index
1442 *
1443 * After clearing the slot at @index in @node from radix tree
1444 * rooted at @root, call this function to attempt freeing the
1445 * node and shrinking the tree.
1446 *
1447 * Returns %true if @node was freed, %false otherwise.
1448 */
449dd698 1449bool __radix_tree_delete_node(struct radix_tree_root *root,
139e5616
JW
1450 struct radix_tree_node *node)
1451{
1452 bool deleted = false;
1453
1454 do {
1455 struct radix_tree_node *parent;
1456
1457 if (node->count) {
4dd6c098 1458 if (node == entry_to_node(root->rnode))
fb209019 1459 deleted |= radix_tree_shrink(root);
139e5616
JW
1460 return deleted;
1461 }
1462
1463 parent = node->parent;
1464 if (parent) {
0c7fa0a8 1465 parent->slots[node->offset] = NULL;
139e5616
JW
1466 parent->count--;
1467 } else {
1468 root_tag_clear_all(root);
139e5616
JW
1469 root->rnode = NULL;
1470 }
1471
1472 radix_tree_node_free(node);
1473 deleted = true;
1474
1475 node = parent;
1476 } while (node);
1477
1478 return deleted;
1479}
1480
57578c2e
MW
1481static inline void delete_sibling_entries(struct radix_tree_node *node,
1482 void *ptr, unsigned offset)
1483{
1484#ifdef CONFIG_RADIX_TREE_MULTIORDER
1485 int i;
1486 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1487 if (node->slots[offset + i] != ptr)
1488 break;
1489 node->slots[offset + i] = NULL;
1490 node->count--;
1491 }
1492#endif
1493}
1494
1da177e4 1495/**
53c59f26 1496 * radix_tree_delete_item - delete an item from a radix tree
1da177e4
LT
1497 * @root: radix tree root
1498 * @index: index key
53c59f26 1499 * @item: expected item
1da177e4 1500 *
53c59f26 1501 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1502 *
53c59f26
JW
1503 * Returns the address of the deleted item, or NULL if it was not present
1504 * or the entry at the given @index was not @item.
1da177e4 1505 */
53c59f26
JW
1506void *radix_tree_delete_item(struct radix_tree_root *root,
1507 unsigned long index, void *item)
1da177e4 1508{
139e5616 1509 struct radix_tree_node *node;
57578c2e 1510 unsigned int offset;
139e5616
JW
1511 void **slot;
1512 void *entry;
d5274261 1513 int tag;
1da177e4 1514
139e5616
JW
1515 entry = __radix_tree_lookup(root, index, &node, &slot);
1516 if (!entry)
1517 return NULL;
1da177e4 1518
139e5616
JW
1519 if (item && entry != item)
1520 return NULL;
1521
1522 if (!node) {
612d6c19
NP
1523 root_tag_clear_all(root);
1524 root->rnode = NULL;
139e5616 1525 return entry;
612d6c19 1526 }
1da177e4 1527
29e0967c 1528 offset = get_slot_offset(node, slot);
53c59f26 1529
1da177e4 1530 /*
e2bdb933
HD
1531 * Clear all tags associated with the item to be deleted.
1532 * This way of doing it would be inefficient, but seldom is any set.
1da177e4 1533 */
daff89f3 1534 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
e2bdb933 1535 if (tag_get(node, tag, offset))
612d6c19 1536 radix_tree_tag_clear(root, index, tag);
d5274261 1537 }
1da177e4 1538
a4db4dce 1539 delete_sibling_entries(node, node_to_entry(slot), offset);
139e5616
JW
1540 node->slots[offset] = NULL;
1541 node->count--;
e2bdb933 1542
449dd698 1543 __radix_tree_delete_node(root, node);
612d6c19 1544
139e5616 1545 return entry;
1da177e4 1546}
53c59f26
JW
1547EXPORT_SYMBOL(radix_tree_delete_item);
1548
1549/**
1550 * radix_tree_delete - delete an item from a radix tree
1551 * @root: radix tree root
1552 * @index: index key
1553 *
1554 * Remove the item at @index from the radix tree rooted at @root.
1555 *
1556 * Returns the address of the deleted item, or NULL if it was not present.
1557 */
1558void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1559{
1560 return radix_tree_delete_item(root, index, NULL);
1561}
1da177e4
LT
1562EXPORT_SYMBOL(radix_tree_delete);
1563
1564/**
1565 * radix_tree_tagged - test whether any items in the tree are tagged
1566 * @root: radix tree root
1567 * @tag: tag to test
1568 */
daff89f3 1569int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1da177e4 1570{
612d6c19 1571 return root_tag_get(root, tag);
1da177e4
LT
1572}
1573EXPORT_SYMBOL(radix_tree_tagged);
1574
1575static void
449dd698 1576radix_tree_node_ctor(void *arg)
1da177e4 1577{
449dd698
JW
1578 struct radix_tree_node *node = arg;
1579
1580 memset(node, 0, sizeof(*node));
1581 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1582}
1583
1da177e4 1584static int radix_tree_callback(struct notifier_block *nfb,
2fcd9005 1585 unsigned long action, void *hcpu)
1da177e4 1586{
2fcd9005
MW
1587 int cpu = (long)hcpu;
1588 struct radix_tree_preload *rtp;
1589 struct radix_tree_node *node;
1590
1591 /* Free per-cpu pool of preloaded nodes */
1592 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1593 rtp = &per_cpu(radix_tree_preloads, cpu);
1594 while (rtp->nr) {
9d2a8da0
KS
1595 node = rtp->nodes;
1596 rtp->nodes = node->private_data;
1597 kmem_cache_free(radix_tree_node_cachep, node);
1598 rtp->nr--;
2fcd9005
MW
1599 }
1600 }
1601 return NOTIFY_OK;
1da177e4 1602}
1da177e4
LT
1603
1604void __init radix_tree_init(void)
1605{
1606 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1607 sizeof(struct radix_tree_node), 0,
488514d1
CL
1608 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1609 radix_tree_node_ctor);
1da177e4
LT
1610 hotcpu_notifier(radix_tree_callback, 0);
1611}