]>
Commit | Line | Data |
---|---|---|
8759ef32 OS |
1 | /* |
2 | * rational fractions | |
3 | * | |
4 | * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com> | |
5 | * | |
6 | * helper functions when coping with rational numbers | |
7 | */ | |
8 | ||
9 | #include <linux/rational.h> | |
7ee3aebe | 10 | #include <linux/module.h> |
8759ef32 OS |
11 | |
12 | /* | |
13 | * calculate best rational approximation for a given fraction | |
14 | * taking into account restricted register size, e.g. to find | |
15 | * appropriate values for a pll with 5 bit denominator and | |
16 | * 8 bit numerator register fields, trying to set up with a | |
17 | * frequency ratio of 3.1415, one would say: | |
18 | * | |
19 | * rational_best_approximation(31415, 10000, | |
20 | * (1 << 8) - 1, (1 << 5) - 1, &n, &d); | |
21 | * | |
22 | * you may look at given_numerator as a fixed point number, | |
23 | * with the fractional part size described in given_denominator. | |
24 | * | |
25 | * for theoretical background, see: | |
26 | * http://en.wikipedia.org/wiki/Continued_fraction | |
27 | */ | |
28 | ||
29 | void rational_best_approximation( | |
30 | unsigned long given_numerator, unsigned long given_denominator, | |
31 | unsigned long max_numerator, unsigned long max_denominator, | |
32 | unsigned long *best_numerator, unsigned long *best_denominator) | |
33 | { | |
34 | unsigned long n, d, n0, d0, n1, d1; | |
35 | n = given_numerator; | |
36 | d = given_denominator; | |
37 | n0 = d1 = 0; | |
38 | n1 = d0 = 1; | |
39 | for (;;) { | |
40 | unsigned long t, a; | |
41 | if ((n1 > max_numerator) || (d1 > max_denominator)) { | |
42 | n1 = n0; | |
43 | d1 = d0; | |
44 | break; | |
45 | } | |
46 | if (d == 0) | |
47 | break; | |
48 | t = d; | |
49 | a = n / d; | |
50 | d = n % d; | |
51 | n = t; | |
52 | t = n0 + a * n1; | |
53 | n0 = n1; | |
54 | n1 = t; | |
55 | t = d0 + a * d1; | |
56 | d0 = d1; | |
57 | d1 = t; | |
58 | } | |
59 | *best_numerator = n1; | |
60 | *best_denominator = d1; | |
61 | } | |
62 | ||
63 | EXPORT_SYMBOL(rational_best_approximation); |