]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | Red Black Trees | |
3 | (C) 1999 Andrea Arcangeli <andrea@suse.de> | |
4 | (C) 2002 David Woodhouse <dwmw2@infradead.org> | |
46b6135a ML |
5 | (C) 2012 Michel Lespinasse <walken@google.com> |
6 | ||
1da177e4 LT |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
20 | ||
21 | linux/lib/rbtree.c | |
22 | */ | |
23 | ||
9c079add | 24 | #include <linux/rbtree_augmented.h> |
8bc3bcc9 | 25 | #include <linux/export.h> |
1da177e4 | 26 | |
5bc9188a ML |
27 | /* |
28 | * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree | |
29 | * | |
30 | * 1) A node is either red or black | |
31 | * 2) The root is black | |
32 | * 3) All leaves (NULL) are black | |
33 | * 4) Both children of every red node are black | |
34 | * 5) Every simple path from root to leaves contains the same number | |
35 | * of black nodes. | |
36 | * | |
37 | * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two | |
38 | * consecutive red nodes in a path and every red node is therefore followed by | |
39 | * a black. So if B is the number of black nodes on every simple path (as per | |
40 | * 5), then the longest possible path due to 4 is 2B. | |
41 | * | |
42 | * We shall indicate color with case, where black nodes are uppercase and red | |
6280d235 ML |
43 | * nodes will be lowercase. Unknown color nodes shall be drawn as red within |
44 | * parentheses and have some accompanying text comment. | |
5bc9188a ML |
45 | */ |
46 | ||
d72da4a4 PZ |
47 | /* |
48 | * Notes on lockless lookups: | |
49 | * | |
50 | * All stores to the tree structure (rb_left and rb_right) must be done using | |
51 | * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the | |
52 | * tree structure as seen in program order. | |
53 | * | |
54 | * These two requirements will allow lockless iteration of the tree -- not | |
55 | * correct iteration mind you, tree rotations are not atomic so a lookup might | |
56 | * miss entire subtrees. | |
57 | * | |
58 | * But they do guarantee that any such traversal will only see valid elements | |
59 | * and that it will indeed complete -- does not get stuck in a loop. | |
60 | * | |
61 | * It also guarantees that if the lookup returns an element it is the 'correct' | |
62 | * one. But not returning an element does _NOT_ mean it's not present. | |
63 | * | |
64 | * NOTE: | |
65 | * | |
66 | * Stores to __rb_parent_color are not important for simple lookups so those | |
67 | * are left undone as of now. Nor did I check for loops involving parent | |
68 | * pointers. | |
69 | */ | |
70 | ||
46b6135a ML |
71 | static inline void rb_set_black(struct rb_node *rb) |
72 | { | |
73 | rb->__rb_parent_color |= RB_BLACK; | |
74 | } | |
75 | ||
5bc9188a ML |
76 | static inline struct rb_node *rb_red_parent(struct rb_node *red) |
77 | { | |
78 | return (struct rb_node *)red->__rb_parent_color; | |
79 | } | |
80 | ||
5bc9188a ML |
81 | /* |
82 | * Helper function for rotations: | |
83 | * - old's parent and color get assigned to new | |
84 | * - old gets assigned new as a parent and 'color' as a color. | |
85 | */ | |
86 | static inline void | |
87 | __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new, | |
88 | struct rb_root *root, int color) | |
89 | { | |
90 | struct rb_node *parent = rb_parent(old); | |
91 | new->__rb_parent_color = old->__rb_parent_color; | |
92 | rb_set_parent_color(old, new, color); | |
7abc704a | 93 | __rb_change_child(old, new, parent, root); |
5bc9188a ML |
94 | } |
95 | ||
14b94af0 ML |
96 | static __always_inline void |
97 | __rb_insert(struct rb_node *node, struct rb_root *root, | |
98 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
1da177e4 | 99 | { |
5bc9188a | 100 | struct rb_node *parent = rb_red_parent(node), *gparent, *tmp; |
1da177e4 | 101 | |
6d58452d ML |
102 | while (true) { |
103 | /* | |
104 | * Loop invariant: node is red | |
105 | * | |
106 | * If there is a black parent, we are done. | |
107 | * Otherwise, take some corrective action as we don't | |
108 | * want a red root or two consecutive red nodes. | |
109 | */ | |
6d58452d | 110 | if (!parent) { |
5bc9188a | 111 | rb_set_parent_color(node, NULL, RB_BLACK); |
6d58452d ML |
112 | break; |
113 | } else if (rb_is_black(parent)) | |
114 | break; | |
115 | ||
5bc9188a ML |
116 | gparent = rb_red_parent(parent); |
117 | ||
59633abf ML |
118 | tmp = gparent->rb_right; |
119 | if (parent != tmp) { /* parent == gparent->rb_left */ | |
5bc9188a ML |
120 | if (tmp && rb_is_red(tmp)) { |
121 | /* | |
122 | * Case 1 - color flips | |
123 | * | |
124 | * G g | |
125 | * / \ / \ | |
126 | * p u --> P U | |
127 | * / / | |
1b9c53e8 | 128 | * n n |
5bc9188a ML |
129 | * |
130 | * However, since g's parent might be red, and | |
131 | * 4) does not allow this, we need to recurse | |
132 | * at g. | |
133 | */ | |
134 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
135 | rb_set_parent_color(parent, gparent, RB_BLACK); | |
136 | node = gparent; | |
137 | parent = rb_parent(node); | |
138 | rb_set_parent_color(node, parent, RB_RED); | |
139 | continue; | |
1da177e4 LT |
140 | } |
141 | ||
59633abf ML |
142 | tmp = parent->rb_right; |
143 | if (node == tmp) { | |
5bc9188a ML |
144 | /* |
145 | * Case 2 - left rotate at parent | |
146 | * | |
147 | * G G | |
148 | * / \ / \ | |
149 | * p U --> n U | |
150 | * \ / | |
151 | * n p | |
152 | * | |
153 | * This still leaves us in violation of 4), the | |
154 | * continuation into Case 3 will fix that. | |
155 | */ | |
d72da4a4 PZ |
156 | tmp = node->rb_left; |
157 | WRITE_ONCE(parent->rb_right, tmp); | |
158 | WRITE_ONCE(node->rb_left, parent); | |
5bc9188a ML |
159 | if (tmp) |
160 | rb_set_parent_color(tmp, parent, | |
161 | RB_BLACK); | |
162 | rb_set_parent_color(parent, node, RB_RED); | |
14b94af0 | 163 | augment_rotate(parent, node); |
1da177e4 | 164 | parent = node; |
59633abf | 165 | tmp = node->rb_right; |
1da177e4 LT |
166 | } |
167 | ||
5bc9188a ML |
168 | /* |
169 | * Case 3 - right rotate at gparent | |
170 | * | |
171 | * G P | |
172 | * / \ / \ | |
173 | * p U --> n g | |
174 | * / \ | |
175 | * n U | |
176 | */ | |
d72da4a4 PZ |
177 | WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */ |
178 | WRITE_ONCE(parent->rb_right, gparent); | |
5bc9188a ML |
179 | if (tmp) |
180 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
181 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | |
14b94af0 | 182 | augment_rotate(gparent, parent); |
1f052865 | 183 | break; |
1da177e4 | 184 | } else { |
5bc9188a ML |
185 | tmp = gparent->rb_left; |
186 | if (tmp && rb_is_red(tmp)) { | |
187 | /* Case 1 - color flips */ | |
188 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
189 | rb_set_parent_color(parent, gparent, RB_BLACK); | |
190 | node = gparent; | |
191 | parent = rb_parent(node); | |
192 | rb_set_parent_color(node, parent, RB_RED); | |
193 | continue; | |
1da177e4 LT |
194 | } |
195 | ||
59633abf ML |
196 | tmp = parent->rb_left; |
197 | if (node == tmp) { | |
5bc9188a | 198 | /* Case 2 - right rotate at parent */ |
d72da4a4 PZ |
199 | tmp = node->rb_right; |
200 | WRITE_ONCE(parent->rb_left, tmp); | |
201 | WRITE_ONCE(node->rb_right, parent); | |
5bc9188a ML |
202 | if (tmp) |
203 | rb_set_parent_color(tmp, parent, | |
204 | RB_BLACK); | |
205 | rb_set_parent_color(parent, node, RB_RED); | |
14b94af0 | 206 | augment_rotate(parent, node); |
1da177e4 | 207 | parent = node; |
59633abf | 208 | tmp = node->rb_left; |
1da177e4 LT |
209 | } |
210 | ||
5bc9188a | 211 | /* Case 3 - left rotate at gparent */ |
d72da4a4 PZ |
212 | WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */ |
213 | WRITE_ONCE(parent->rb_left, gparent); | |
5bc9188a ML |
214 | if (tmp) |
215 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
216 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | |
14b94af0 | 217 | augment_rotate(gparent, parent); |
1f052865 | 218 | break; |
1da177e4 LT |
219 | } |
220 | } | |
1da177e4 | 221 | } |
1da177e4 | 222 | |
3cb7a563 ML |
223 | /* |
224 | * Inline version for rb_erase() use - we want to be able to inline | |
225 | * and eliminate the dummy_rotate callback there | |
226 | */ | |
227 | static __always_inline void | |
228 | ____rb_erase_color(struct rb_node *parent, struct rb_root *root, | |
9c079add | 229 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
1da177e4 | 230 | { |
46b6135a | 231 | struct rb_node *node = NULL, *sibling, *tmp1, *tmp2; |
1da177e4 | 232 | |
d6ff1273 ML |
233 | while (true) { |
234 | /* | |
46b6135a ML |
235 | * Loop invariants: |
236 | * - node is black (or NULL on first iteration) | |
237 | * - node is not the root (parent is not NULL) | |
238 | * - All leaf paths going through parent and node have a | |
239 | * black node count that is 1 lower than other leaf paths. | |
d6ff1273 | 240 | */ |
59633abf ML |
241 | sibling = parent->rb_right; |
242 | if (node != sibling) { /* node == parent->rb_left */ | |
6280d235 ML |
243 | if (rb_is_red(sibling)) { |
244 | /* | |
245 | * Case 1 - left rotate at parent | |
246 | * | |
247 | * P S | |
248 | * / \ / \ | |
249 | * N s --> p Sr | |
250 | * / \ / \ | |
251 | * Sl Sr N Sl | |
252 | */ | |
d72da4a4 PZ |
253 | tmp1 = sibling->rb_left; |
254 | WRITE_ONCE(parent->rb_right, tmp1); | |
255 | WRITE_ONCE(sibling->rb_left, parent); | |
6280d235 ML |
256 | rb_set_parent_color(tmp1, parent, RB_BLACK); |
257 | __rb_rotate_set_parents(parent, sibling, root, | |
258 | RB_RED); | |
9c079add | 259 | augment_rotate(parent, sibling); |
6280d235 | 260 | sibling = tmp1; |
1da177e4 | 261 | } |
6280d235 ML |
262 | tmp1 = sibling->rb_right; |
263 | if (!tmp1 || rb_is_black(tmp1)) { | |
264 | tmp2 = sibling->rb_left; | |
265 | if (!tmp2 || rb_is_black(tmp2)) { | |
266 | /* | |
267 | * Case 2 - sibling color flip | |
268 | * (p could be either color here) | |
269 | * | |
270 | * (p) (p) | |
271 | * / \ / \ | |
272 | * N S --> N s | |
273 | * / \ / \ | |
274 | * Sl Sr Sl Sr | |
275 | * | |
46b6135a ML |
276 | * This leaves us violating 5) which |
277 | * can be fixed by flipping p to black | |
278 | * if it was red, or by recursing at p. | |
279 | * p is red when coming from Case 1. | |
6280d235 ML |
280 | */ |
281 | rb_set_parent_color(sibling, parent, | |
282 | RB_RED); | |
46b6135a ML |
283 | if (rb_is_red(parent)) |
284 | rb_set_black(parent); | |
285 | else { | |
286 | node = parent; | |
287 | parent = rb_parent(node); | |
288 | if (parent) | |
289 | continue; | |
290 | } | |
291 | break; | |
1da177e4 | 292 | } |
6280d235 ML |
293 | /* |
294 | * Case 3 - right rotate at sibling | |
295 | * (p could be either color here) | |
296 | * | |
297 | * (p) (p) | |
298 | * / \ / \ | |
ce093a04 | 299 | * N S --> N sl |
6280d235 | 300 | * / \ \ |
ce093a04 | 301 | * sl Sr S |
6280d235 ML |
302 | * \ |
303 | * Sr | |
ce093a04 JC |
304 | * |
305 | * Note: p might be red, and then both | |
306 | * p and sl are red after rotation(which | |
307 | * breaks property 4). This is fixed in | |
308 | * Case 4 (in __rb_rotate_set_parents() | |
309 | * which set sl the color of p | |
310 | * and set p RB_BLACK) | |
311 | * | |
312 | * (p) (sl) | |
313 | * / \ / \ | |
314 | * N sl --> P S | |
315 | * \ / \ | |
316 | * S N Sr | |
317 | * \ | |
318 | * Sr | |
6280d235 | 319 | */ |
d72da4a4 PZ |
320 | tmp1 = tmp2->rb_right; |
321 | WRITE_ONCE(sibling->rb_left, tmp1); | |
322 | WRITE_ONCE(tmp2->rb_right, sibling); | |
323 | WRITE_ONCE(parent->rb_right, tmp2); | |
6280d235 ML |
324 | if (tmp1) |
325 | rb_set_parent_color(tmp1, sibling, | |
326 | RB_BLACK); | |
9c079add | 327 | augment_rotate(sibling, tmp2); |
6280d235 ML |
328 | tmp1 = sibling; |
329 | sibling = tmp2; | |
1da177e4 | 330 | } |
6280d235 ML |
331 | /* |
332 | * Case 4 - left rotate at parent + color flips | |
333 | * (p and sl could be either color here. | |
334 | * After rotation, p becomes black, s acquires | |
335 | * p's color, and sl keeps its color) | |
336 | * | |
337 | * (p) (s) | |
338 | * / \ / \ | |
339 | * N S --> P Sr | |
340 | * / \ / \ | |
341 | * (sl) sr N (sl) | |
342 | */ | |
d72da4a4 PZ |
343 | tmp2 = sibling->rb_left; |
344 | WRITE_ONCE(parent->rb_right, tmp2); | |
345 | WRITE_ONCE(sibling->rb_left, parent); | |
6280d235 ML |
346 | rb_set_parent_color(tmp1, sibling, RB_BLACK); |
347 | if (tmp2) | |
348 | rb_set_parent(tmp2, parent); | |
349 | __rb_rotate_set_parents(parent, sibling, root, | |
350 | RB_BLACK); | |
9c079add | 351 | augment_rotate(parent, sibling); |
e125d147 | 352 | break; |
d6ff1273 | 353 | } else { |
6280d235 ML |
354 | sibling = parent->rb_left; |
355 | if (rb_is_red(sibling)) { | |
356 | /* Case 1 - right rotate at parent */ | |
d72da4a4 PZ |
357 | tmp1 = sibling->rb_right; |
358 | WRITE_ONCE(parent->rb_left, tmp1); | |
359 | WRITE_ONCE(sibling->rb_right, parent); | |
6280d235 ML |
360 | rb_set_parent_color(tmp1, parent, RB_BLACK); |
361 | __rb_rotate_set_parents(parent, sibling, root, | |
362 | RB_RED); | |
9c079add | 363 | augment_rotate(parent, sibling); |
6280d235 | 364 | sibling = tmp1; |
1da177e4 | 365 | } |
6280d235 ML |
366 | tmp1 = sibling->rb_left; |
367 | if (!tmp1 || rb_is_black(tmp1)) { | |
368 | tmp2 = sibling->rb_right; | |
369 | if (!tmp2 || rb_is_black(tmp2)) { | |
370 | /* Case 2 - sibling color flip */ | |
371 | rb_set_parent_color(sibling, parent, | |
372 | RB_RED); | |
46b6135a ML |
373 | if (rb_is_red(parent)) |
374 | rb_set_black(parent); | |
375 | else { | |
376 | node = parent; | |
377 | parent = rb_parent(node); | |
378 | if (parent) | |
379 | continue; | |
380 | } | |
381 | break; | |
1da177e4 | 382 | } |
ce093a04 | 383 | /* Case 3 - left rotate at sibling */ |
d72da4a4 PZ |
384 | tmp1 = tmp2->rb_left; |
385 | WRITE_ONCE(sibling->rb_right, tmp1); | |
386 | WRITE_ONCE(tmp2->rb_left, sibling); | |
387 | WRITE_ONCE(parent->rb_left, tmp2); | |
6280d235 ML |
388 | if (tmp1) |
389 | rb_set_parent_color(tmp1, sibling, | |
390 | RB_BLACK); | |
9c079add | 391 | augment_rotate(sibling, tmp2); |
6280d235 ML |
392 | tmp1 = sibling; |
393 | sibling = tmp2; | |
1da177e4 | 394 | } |
ce093a04 | 395 | /* Case 4 - right rotate at parent + color flips */ |
d72da4a4 PZ |
396 | tmp2 = sibling->rb_right; |
397 | WRITE_ONCE(parent->rb_left, tmp2); | |
398 | WRITE_ONCE(sibling->rb_right, parent); | |
6280d235 ML |
399 | rb_set_parent_color(tmp1, sibling, RB_BLACK); |
400 | if (tmp2) | |
401 | rb_set_parent(tmp2, parent); | |
402 | __rb_rotate_set_parents(parent, sibling, root, | |
403 | RB_BLACK); | |
9c079add | 404 | augment_rotate(parent, sibling); |
e125d147 | 405 | break; |
1da177e4 LT |
406 | } |
407 | } | |
1da177e4 | 408 | } |
3cb7a563 ML |
409 | |
410 | /* Non-inline version for rb_erase_augmented() use */ | |
411 | void __rb_erase_color(struct rb_node *parent, struct rb_root *root, | |
412 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
413 | { | |
414 | ____rb_erase_color(parent, root, augment_rotate); | |
415 | } | |
9c079add | 416 | EXPORT_SYMBOL(__rb_erase_color); |
14b94af0 ML |
417 | |
418 | /* | |
419 | * Non-augmented rbtree manipulation functions. | |
420 | * | |
421 | * We use dummy augmented callbacks here, and have the compiler optimize them | |
422 | * out of the rb_insert_color() and rb_erase() function definitions. | |
423 | */ | |
424 | ||
425 | static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {} | |
426 | static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {} | |
427 | static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {} | |
428 | ||
429 | static const struct rb_augment_callbacks dummy_callbacks = { | |
430 | dummy_propagate, dummy_copy, dummy_rotate | |
431 | }; | |
432 | ||
433 | void rb_insert_color(struct rb_node *node, struct rb_root *root) | |
434 | { | |
435 | __rb_insert(node, root, dummy_rotate); | |
436 | } | |
437 | EXPORT_SYMBOL(rb_insert_color); | |
438 | ||
439 | void rb_erase(struct rb_node *node, struct rb_root *root) | |
440 | { | |
3cb7a563 ML |
441 | struct rb_node *rebalance; |
442 | rebalance = __rb_erase_augmented(node, root, &dummy_callbacks); | |
443 | if (rebalance) | |
444 | ____rb_erase_color(rebalance, root, dummy_rotate); | |
1da177e4 LT |
445 | } |
446 | EXPORT_SYMBOL(rb_erase); | |
447 | ||
14b94af0 ML |
448 | /* |
449 | * Augmented rbtree manipulation functions. | |
450 | * | |
451 | * This instantiates the same __always_inline functions as in the non-augmented | |
452 | * case, but this time with user-defined callbacks. | |
453 | */ | |
454 | ||
455 | void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, | |
456 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
457 | { | |
458 | __rb_insert(node, root, augment_rotate); | |
459 | } | |
460 | EXPORT_SYMBOL(__rb_insert_augmented); | |
461 | ||
1da177e4 LT |
462 | /* |
463 | * This function returns the first node (in sort order) of the tree. | |
464 | */ | |
f4b477c4 | 465 | struct rb_node *rb_first(const struct rb_root *root) |
1da177e4 LT |
466 | { |
467 | struct rb_node *n; | |
468 | ||
469 | n = root->rb_node; | |
470 | if (!n) | |
471 | return NULL; | |
472 | while (n->rb_left) | |
473 | n = n->rb_left; | |
474 | return n; | |
475 | } | |
476 | EXPORT_SYMBOL(rb_first); | |
477 | ||
f4b477c4 | 478 | struct rb_node *rb_last(const struct rb_root *root) |
1da177e4 LT |
479 | { |
480 | struct rb_node *n; | |
481 | ||
482 | n = root->rb_node; | |
483 | if (!n) | |
484 | return NULL; | |
485 | while (n->rb_right) | |
486 | n = n->rb_right; | |
487 | return n; | |
488 | } | |
489 | EXPORT_SYMBOL(rb_last); | |
490 | ||
f4b477c4 | 491 | struct rb_node *rb_next(const struct rb_node *node) |
1da177e4 | 492 | { |
55a98102 DW |
493 | struct rb_node *parent; |
494 | ||
4c199a93 | 495 | if (RB_EMPTY_NODE(node)) |
10fd48f2 JA |
496 | return NULL; |
497 | ||
7ce6ff9e ML |
498 | /* |
499 | * If we have a right-hand child, go down and then left as far | |
500 | * as we can. | |
501 | */ | |
1da177e4 LT |
502 | if (node->rb_right) { |
503 | node = node->rb_right; | |
504 | while (node->rb_left) | |
505 | node=node->rb_left; | |
f4b477c4 | 506 | return (struct rb_node *)node; |
1da177e4 LT |
507 | } |
508 | ||
7ce6ff9e ML |
509 | /* |
510 | * No right-hand children. Everything down and left is smaller than us, | |
511 | * so any 'next' node must be in the general direction of our parent. | |
512 | * Go up the tree; any time the ancestor is a right-hand child of its | |
513 | * parent, keep going up. First time it's a left-hand child of its | |
514 | * parent, said parent is our 'next' node. | |
515 | */ | |
55a98102 DW |
516 | while ((parent = rb_parent(node)) && node == parent->rb_right) |
517 | node = parent; | |
1da177e4 | 518 | |
55a98102 | 519 | return parent; |
1da177e4 LT |
520 | } |
521 | EXPORT_SYMBOL(rb_next); | |
522 | ||
f4b477c4 | 523 | struct rb_node *rb_prev(const struct rb_node *node) |
1da177e4 | 524 | { |
55a98102 DW |
525 | struct rb_node *parent; |
526 | ||
4c199a93 | 527 | if (RB_EMPTY_NODE(node)) |
10fd48f2 JA |
528 | return NULL; |
529 | ||
7ce6ff9e ML |
530 | /* |
531 | * If we have a left-hand child, go down and then right as far | |
532 | * as we can. | |
533 | */ | |
1da177e4 LT |
534 | if (node->rb_left) { |
535 | node = node->rb_left; | |
536 | while (node->rb_right) | |
537 | node=node->rb_right; | |
f4b477c4 | 538 | return (struct rb_node *)node; |
1da177e4 LT |
539 | } |
540 | ||
7ce6ff9e ML |
541 | /* |
542 | * No left-hand children. Go up till we find an ancestor which | |
543 | * is a right-hand child of its parent. | |
544 | */ | |
55a98102 DW |
545 | while ((parent = rb_parent(node)) && node == parent->rb_left) |
546 | node = parent; | |
1da177e4 | 547 | |
55a98102 | 548 | return parent; |
1da177e4 LT |
549 | } |
550 | EXPORT_SYMBOL(rb_prev); | |
551 | ||
552 | void rb_replace_node(struct rb_node *victim, struct rb_node *new, | |
553 | struct rb_root *root) | |
554 | { | |
55a98102 | 555 | struct rb_node *parent = rb_parent(victim); |
1da177e4 | 556 | |
c1adf200 DH |
557 | /* Copy the pointers/colour from the victim to the replacement */ |
558 | *new = *victim; | |
559 | ||
1da177e4 | 560 | /* Set the surrounding nodes to point to the replacement */ |
1da177e4 | 561 | if (victim->rb_left) |
55a98102 | 562 | rb_set_parent(victim->rb_left, new); |
1da177e4 | 563 | if (victim->rb_right) |
55a98102 | 564 | rb_set_parent(victim->rb_right, new); |
c1adf200 DH |
565 | __rb_change_child(victim, new, parent, root); |
566 | } | |
567 | EXPORT_SYMBOL(rb_replace_node); | |
568 | ||
569 | void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new, | |
570 | struct rb_root *root) | |
571 | { | |
572 | struct rb_node *parent = rb_parent(victim); | |
1da177e4 LT |
573 | |
574 | /* Copy the pointers/colour from the victim to the replacement */ | |
575 | *new = *victim; | |
c1adf200 DH |
576 | |
577 | /* Set the surrounding nodes to point to the replacement */ | |
578 | if (victim->rb_left) | |
579 | rb_set_parent(victim->rb_left, new); | |
580 | if (victim->rb_right) | |
581 | rb_set_parent(victim->rb_right, new); | |
582 | ||
583 | /* Set the parent's pointer to the new node last after an RCU barrier | |
584 | * so that the pointers onwards are seen to be set correctly when doing | |
585 | * an RCU walk over the tree. | |
586 | */ | |
587 | __rb_change_child_rcu(victim, new, parent, root); | |
1da177e4 | 588 | } |
c1adf200 | 589 | EXPORT_SYMBOL(rb_replace_node_rcu); |
9dee5c51 CS |
590 | |
591 | static struct rb_node *rb_left_deepest_node(const struct rb_node *node) | |
592 | { | |
593 | for (;;) { | |
594 | if (node->rb_left) | |
595 | node = node->rb_left; | |
596 | else if (node->rb_right) | |
597 | node = node->rb_right; | |
598 | else | |
599 | return (struct rb_node *)node; | |
600 | } | |
601 | } | |
602 | ||
603 | struct rb_node *rb_next_postorder(const struct rb_node *node) | |
604 | { | |
605 | const struct rb_node *parent; | |
606 | if (!node) | |
607 | return NULL; | |
608 | parent = rb_parent(node); | |
609 | ||
610 | /* If we're sitting on node, we've already seen our children */ | |
611 | if (parent && node == parent->rb_left && parent->rb_right) { | |
612 | /* If we are the parent's left node, go to the parent's right | |
613 | * node then all the way down to the left */ | |
614 | return rb_left_deepest_node(parent->rb_right); | |
615 | } else | |
616 | /* Otherwise we are the parent's right node, and the parent | |
617 | * should be next */ | |
618 | return (struct rb_node *)parent; | |
619 | } | |
620 | EXPORT_SYMBOL(rb_next_postorder); | |
621 | ||
622 | struct rb_node *rb_first_postorder(const struct rb_root *root) | |
623 | { | |
624 | if (!root->rb_node) | |
625 | return NULL; | |
626 | ||
627 | return rb_left_deepest_node(root->rb_node); | |
628 | } | |
629 | EXPORT_SYMBOL(rb_first_postorder); |