]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/rbtree.c
rbtree: low level optimizations in __rb_erase_color()
[mirror_ubuntu-artful-kernel.git] / lib / rbtree.c
CommitLineData
1da177e4
LT
1/*
2 Red Black Trees
3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19
20 linux/lib/rbtree.c
21*/
22
23#include <linux/rbtree.h>
8bc3bcc9 24#include <linux/export.h>
1da177e4 25
5bc9188a
ML
26/*
27 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
28 *
29 * 1) A node is either red or black
30 * 2) The root is black
31 * 3) All leaves (NULL) are black
32 * 4) Both children of every red node are black
33 * 5) Every simple path from root to leaves contains the same number
34 * of black nodes.
35 *
36 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
37 * consecutive red nodes in a path and every red node is therefore followed by
38 * a black. So if B is the number of black nodes on every simple path (as per
39 * 5), then the longest possible path due to 4 is 2B.
40 *
41 * We shall indicate color with case, where black nodes are uppercase and red
6280d235
ML
42 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
43 * parentheses and have some accompanying text comment.
5bc9188a
ML
44 */
45
bf7ad8ee
ML
46#define RB_RED 0
47#define RB_BLACK 1
48
49#define rb_color(r) ((r)->__rb_parent_color & 1)
50#define rb_is_red(r) (!rb_color(r))
51#define rb_is_black(r) rb_color(r)
bf7ad8ee
ML
52
53static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
54{
55 rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
56}
bf7ad8ee 57
5bc9188a
ML
58static inline void rb_set_parent_color(struct rb_node *rb,
59 struct rb_node *p, int color)
60{
61 rb->__rb_parent_color = (unsigned long)p | color;
62}
63
64static inline struct rb_node *rb_red_parent(struct rb_node *red)
65{
66 return (struct rb_node *)red->__rb_parent_color;
67}
68
5bc9188a
ML
69/*
70 * Helper function for rotations:
71 * - old's parent and color get assigned to new
72 * - old gets assigned new as a parent and 'color' as a color.
73 */
74static inline void
75__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
76 struct rb_root *root, int color)
77{
78 struct rb_node *parent = rb_parent(old);
79 new->__rb_parent_color = old->__rb_parent_color;
80 rb_set_parent_color(old, new, color);
81 if (parent) {
82 if (parent->rb_left == old)
83 parent->rb_left = new;
84 else
85 parent->rb_right = new;
86 } else
87 root->rb_node = new;
88}
89
1da177e4
LT
90void rb_insert_color(struct rb_node *node, struct rb_root *root)
91{
5bc9188a 92 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
1da177e4 93
6d58452d
ML
94 while (true) {
95 /*
96 * Loop invariant: node is red
97 *
98 * If there is a black parent, we are done.
99 * Otherwise, take some corrective action as we don't
100 * want a red root or two consecutive red nodes.
101 */
6d58452d 102 if (!parent) {
5bc9188a 103 rb_set_parent_color(node, NULL, RB_BLACK);
6d58452d
ML
104 break;
105 } else if (rb_is_black(parent))
106 break;
107
5bc9188a
ML
108 gparent = rb_red_parent(parent);
109
110 if (parent == gparent->rb_left) {
111 tmp = gparent->rb_right;
112 if (tmp && rb_is_red(tmp)) {
113 /*
114 * Case 1 - color flips
115 *
116 * G g
117 * / \ / \
118 * p u --> P U
119 * / /
120 * n N
121 *
122 * However, since g's parent might be red, and
123 * 4) does not allow this, we need to recurse
124 * at g.
125 */
126 rb_set_parent_color(tmp, gparent, RB_BLACK);
127 rb_set_parent_color(parent, gparent, RB_BLACK);
128 node = gparent;
129 parent = rb_parent(node);
130 rb_set_parent_color(node, parent, RB_RED);
131 continue;
1da177e4
LT
132 }
133
1f052865 134 if (parent->rb_right == node) {
5bc9188a
ML
135 /*
136 * Case 2 - left rotate at parent
137 *
138 * G G
139 * / \ / \
140 * p U --> n U
141 * \ /
142 * n p
143 *
144 * This still leaves us in violation of 4), the
145 * continuation into Case 3 will fix that.
146 */
147 parent->rb_right = tmp = node->rb_left;
148 node->rb_left = parent;
149 if (tmp)
150 rb_set_parent_color(tmp, parent,
151 RB_BLACK);
152 rb_set_parent_color(parent, node, RB_RED);
1da177e4 153 parent = node;
1da177e4
LT
154 }
155
5bc9188a
ML
156 /*
157 * Case 3 - right rotate at gparent
158 *
159 * G P
160 * / \ / \
161 * p U --> n g
162 * / \
163 * n U
164 */
165 gparent->rb_left = tmp = parent->rb_right;
166 parent->rb_right = gparent;
167 if (tmp)
168 rb_set_parent_color(tmp, gparent, RB_BLACK);
169 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
1f052865 170 break;
1da177e4 171 } else {
5bc9188a
ML
172 tmp = gparent->rb_left;
173 if (tmp && rb_is_red(tmp)) {
174 /* Case 1 - color flips */
175 rb_set_parent_color(tmp, gparent, RB_BLACK);
176 rb_set_parent_color(parent, gparent, RB_BLACK);
177 node = gparent;
178 parent = rb_parent(node);
179 rb_set_parent_color(node, parent, RB_RED);
180 continue;
1da177e4
LT
181 }
182
1f052865 183 if (parent->rb_left == node) {
5bc9188a
ML
184 /* Case 2 - right rotate at parent */
185 parent->rb_left = tmp = node->rb_right;
186 node->rb_right = parent;
187 if (tmp)
188 rb_set_parent_color(tmp, parent,
189 RB_BLACK);
190 rb_set_parent_color(parent, node, RB_RED);
1da177e4 191 parent = node;
1da177e4
LT
192 }
193
5bc9188a
ML
194 /* Case 3 - left rotate at gparent */
195 gparent->rb_right = tmp = parent->rb_left;
196 parent->rb_left = gparent;
197 if (tmp)
198 rb_set_parent_color(tmp, gparent, RB_BLACK);
199 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
1f052865 200 break;
1da177e4
LT
201 }
202 }
1da177e4
LT
203}
204EXPORT_SYMBOL(rb_insert_color);
205
206static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
207 struct rb_root *root)
208{
6280d235 209 struct rb_node *sibling, *tmp1, *tmp2;
1da177e4 210
d6ff1273
ML
211 while (true) {
212 /*
213 * Loop invariant: all leaf paths going through node have a
214 * black node count that is 1 lower than other leaf paths.
215 *
216 * If node is red, we can flip it to black to adjust.
217 * If node is the root, all leaf paths go through it.
218 * Otherwise, we need to adjust the tree through color flips
219 * and tree rotations as per one of the 4 cases below.
220 */
221 if (node && rb_is_red(node)) {
6280d235 222 rb_set_parent_color(node, parent, RB_BLACK);
d6ff1273
ML
223 break;
224 } else if (!parent) {
225 break;
226 } else if (parent->rb_left == node) {
6280d235
ML
227 sibling = parent->rb_right;
228 if (rb_is_red(sibling)) {
229 /*
230 * Case 1 - left rotate at parent
231 *
232 * P S
233 * / \ / \
234 * N s --> p Sr
235 * / \ / \
236 * Sl Sr N Sl
237 */
238 parent->rb_right = tmp1 = sibling->rb_left;
239 sibling->rb_left = parent;
240 rb_set_parent_color(tmp1, parent, RB_BLACK);
241 __rb_rotate_set_parents(parent, sibling, root,
242 RB_RED);
243 sibling = tmp1;
1da177e4 244 }
6280d235
ML
245 tmp1 = sibling->rb_right;
246 if (!tmp1 || rb_is_black(tmp1)) {
247 tmp2 = sibling->rb_left;
248 if (!tmp2 || rb_is_black(tmp2)) {
249 /*
250 * Case 2 - sibling color flip
251 * (p could be either color here)
252 *
253 * (p) (p)
254 * / \ / \
255 * N S --> N s
256 * / \ / \
257 * Sl Sr Sl Sr
258 *
259 * This leaves us violating 5), so
260 * recurse at p. If p is red, the
261 * recursion will just flip it to black
262 * and exit. If coming from Case 1,
263 * p is known to be red.
264 */
265 rb_set_parent_color(sibling, parent,
266 RB_RED);
e125d147
ML
267 node = parent;
268 parent = rb_parent(node);
269 continue;
1da177e4 270 }
6280d235
ML
271 /*
272 * Case 3 - right rotate at sibling
273 * (p could be either color here)
274 *
275 * (p) (p)
276 * / \ / \
277 * N S --> N Sl
278 * / \ \
279 * sl Sr s
280 * \
281 * Sr
282 */
283 sibling->rb_left = tmp1 = tmp2->rb_right;
284 tmp2->rb_right = sibling;
285 parent->rb_right = tmp2;
286 if (tmp1)
287 rb_set_parent_color(tmp1, sibling,
288 RB_BLACK);
289 tmp1 = sibling;
290 sibling = tmp2;
1da177e4 291 }
6280d235
ML
292 /*
293 * Case 4 - left rotate at parent + color flips
294 * (p and sl could be either color here.
295 * After rotation, p becomes black, s acquires
296 * p's color, and sl keeps its color)
297 *
298 * (p) (s)
299 * / \ / \
300 * N S --> P Sr
301 * / \ / \
302 * (sl) sr N (sl)
303 */
304 parent->rb_right = tmp2 = sibling->rb_left;
305 sibling->rb_left = parent;
306 rb_set_parent_color(tmp1, sibling, RB_BLACK);
307 if (tmp2)
308 rb_set_parent(tmp2, parent);
309 __rb_rotate_set_parents(parent, sibling, root,
310 RB_BLACK);
e125d147 311 break;
d6ff1273 312 } else {
6280d235
ML
313 sibling = parent->rb_left;
314 if (rb_is_red(sibling)) {
315 /* Case 1 - right rotate at parent */
316 parent->rb_left = tmp1 = sibling->rb_right;
317 sibling->rb_right = parent;
318 rb_set_parent_color(tmp1, parent, RB_BLACK);
319 __rb_rotate_set_parents(parent, sibling, root,
320 RB_RED);
321 sibling = tmp1;
1da177e4 322 }
6280d235
ML
323 tmp1 = sibling->rb_left;
324 if (!tmp1 || rb_is_black(tmp1)) {
325 tmp2 = sibling->rb_right;
326 if (!tmp2 || rb_is_black(tmp2)) {
327 /* Case 2 - sibling color flip */
328 rb_set_parent_color(sibling, parent,
329 RB_RED);
e125d147
ML
330 node = parent;
331 parent = rb_parent(node);
332 continue;
1da177e4 333 }
6280d235
ML
334 /* Case 3 - right rotate at sibling */
335 sibling->rb_right = tmp1 = tmp2->rb_left;
336 tmp2->rb_left = sibling;
337 parent->rb_left = tmp2;
338 if (tmp1)
339 rb_set_parent_color(tmp1, sibling,
340 RB_BLACK);
341 tmp1 = sibling;
342 sibling = tmp2;
1da177e4 343 }
6280d235
ML
344 /* Case 4 - left rotate at parent + color flips */
345 parent->rb_left = tmp2 = sibling->rb_right;
346 sibling->rb_right = parent;
347 rb_set_parent_color(tmp1, sibling, RB_BLACK);
348 if (tmp2)
349 rb_set_parent(tmp2, parent);
350 __rb_rotate_set_parents(parent, sibling, root,
351 RB_BLACK);
e125d147 352 break;
1da177e4
LT
353 }
354 }
1da177e4
LT
355}
356
357void rb_erase(struct rb_node *node, struct rb_root *root)
358{
359 struct rb_node *child, *parent;
360 int color;
361
362 if (!node->rb_left)
363 child = node->rb_right;
364 else if (!node->rb_right)
365 child = node->rb_left;
366 else
367 {
368 struct rb_node *old = node, *left;
369
370 node = node->rb_right;
371 while ((left = node->rb_left) != NULL)
372 node = left;
16c047ad
WS
373
374 if (rb_parent(old)) {
375 if (rb_parent(old)->rb_left == old)
376 rb_parent(old)->rb_left = node;
377 else
378 rb_parent(old)->rb_right = node;
379 } else
380 root->rb_node = node;
381
1da177e4 382 child = node->rb_right;
55a98102 383 parent = rb_parent(node);
2f3243ae 384 color = rb_color(node);
1da177e4 385
55a98102 386 if (parent == old) {
1da177e4 387 parent = node;
4c601178
WS
388 } else {
389 if (child)
390 rb_set_parent(child, parent);
1975e593 391 parent->rb_left = child;
4b324126
WS
392
393 node->rb_right = old->rb_right;
394 rb_set_parent(old->rb_right, node);
4c601178 395 }
1975e593 396
bf7ad8ee 397 node->__rb_parent_color = old->__rb_parent_color;
1da177e4 398 node->rb_left = old->rb_left;
55a98102 399 rb_set_parent(old->rb_left, node);
4b324126 400
1da177e4
LT
401 goto color;
402 }
403
55a98102 404 parent = rb_parent(node);
2f3243ae 405 color = rb_color(node);
1da177e4
LT
406
407 if (child)
55a98102 408 rb_set_parent(child, parent);
b945d6b2
PZ
409 if (parent)
410 {
1da177e4
LT
411 if (parent->rb_left == node)
412 parent->rb_left = child;
413 else
414 parent->rb_right = child;
17d9ddc7 415 }
b945d6b2
PZ
416 else
417 root->rb_node = child;
1da177e4
LT
418
419 color:
420 if (color == RB_BLACK)
421 __rb_erase_color(child, parent, root);
422}
423EXPORT_SYMBOL(rb_erase);
424
b945d6b2
PZ
425static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
426{
427 struct rb_node *parent;
428
429up:
430 func(node, data);
431 parent = rb_parent(node);
432 if (!parent)
433 return;
434
435 if (node == parent->rb_left && parent->rb_right)
436 func(parent->rb_right, data);
437 else if (parent->rb_left)
438 func(parent->rb_left, data);
439
440 node = parent;
441 goto up;
442}
443
444/*
445 * after inserting @node into the tree, update the tree to account for
446 * both the new entry and any damage done by rebalance
447 */
448void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
449{
450 if (node->rb_left)
451 node = node->rb_left;
452 else if (node->rb_right)
453 node = node->rb_right;
454
455 rb_augment_path(node, func, data);
456}
0b6bb66d 457EXPORT_SYMBOL(rb_augment_insert);
b945d6b2
PZ
458
459/*
460 * before removing the node, find the deepest node on the rebalance path
461 * that will still be there after @node gets removed
462 */
463struct rb_node *rb_augment_erase_begin(struct rb_node *node)
464{
465 struct rb_node *deepest;
466
467 if (!node->rb_right && !node->rb_left)
468 deepest = rb_parent(node);
469 else if (!node->rb_right)
470 deepest = node->rb_left;
471 else if (!node->rb_left)
472 deepest = node->rb_right;
473 else {
474 deepest = rb_next(node);
475 if (deepest->rb_right)
476 deepest = deepest->rb_right;
477 else if (rb_parent(deepest) != node)
478 deepest = rb_parent(deepest);
479 }
480
481 return deepest;
482}
0b6bb66d 483EXPORT_SYMBOL(rb_augment_erase_begin);
b945d6b2
PZ
484
485/*
486 * after removal, update the tree to account for the removed entry
487 * and any rebalance damage.
488 */
489void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
490{
491 if (node)
492 rb_augment_path(node, func, data);
493}
0b6bb66d 494EXPORT_SYMBOL(rb_augment_erase_end);
b945d6b2 495
1da177e4
LT
496/*
497 * This function returns the first node (in sort order) of the tree.
498 */
f4b477c4 499struct rb_node *rb_first(const struct rb_root *root)
1da177e4
LT
500{
501 struct rb_node *n;
502
503 n = root->rb_node;
504 if (!n)
505 return NULL;
506 while (n->rb_left)
507 n = n->rb_left;
508 return n;
509}
510EXPORT_SYMBOL(rb_first);
511
f4b477c4 512struct rb_node *rb_last(const struct rb_root *root)
1da177e4
LT
513{
514 struct rb_node *n;
515
516 n = root->rb_node;
517 if (!n)
518 return NULL;
519 while (n->rb_right)
520 n = n->rb_right;
521 return n;
522}
523EXPORT_SYMBOL(rb_last);
524
f4b477c4 525struct rb_node *rb_next(const struct rb_node *node)
1da177e4 526{
55a98102
DW
527 struct rb_node *parent;
528
4c199a93 529 if (RB_EMPTY_NODE(node))
10fd48f2
JA
530 return NULL;
531
1da177e4
LT
532 /* If we have a right-hand child, go down and then left as far
533 as we can. */
534 if (node->rb_right) {
535 node = node->rb_right;
536 while (node->rb_left)
537 node=node->rb_left;
f4b477c4 538 return (struct rb_node *)node;
1da177e4
LT
539 }
540
541 /* No right-hand children. Everything down and left is
542 smaller than us, so any 'next' node must be in the general
543 direction of our parent. Go up the tree; any time the
544 ancestor is a right-hand child of its parent, keep going
545 up. First time it's a left-hand child of its parent, said
546 parent is our 'next' node. */
55a98102
DW
547 while ((parent = rb_parent(node)) && node == parent->rb_right)
548 node = parent;
1da177e4 549
55a98102 550 return parent;
1da177e4
LT
551}
552EXPORT_SYMBOL(rb_next);
553
f4b477c4 554struct rb_node *rb_prev(const struct rb_node *node)
1da177e4 555{
55a98102
DW
556 struct rb_node *parent;
557
4c199a93 558 if (RB_EMPTY_NODE(node))
10fd48f2
JA
559 return NULL;
560
1da177e4
LT
561 /* If we have a left-hand child, go down and then right as far
562 as we can. */
563 if (node->rb_left) {
564 node = node->rb_left;
565 while (node->rb_right)
566 node=node->rb_right;
f4b477c4 567 return (struct rb_node *)node;
1da177e4
LT
568 }
569
570 /* No left-hand children. Go up till we find an ancestor which
571 is a right-hand child of its parent */
55a98102
DW
572 while ((parent = rb_parent(node)) && node == parent->rb_left)
573 node = parent;
1da177e4 574
55a98102 575 return parent;
1da177e4
LT
576}
577EXPORT_SYMBOL(rb_prev);
578
579void rb_replace_node(struct rb_node *victim, struct rb_node *new,
580 struct rb_root *root)
581{
55a98102 582 struct rb_node *parent = rb_parent(victim);
1da177e4
LT
583
584 /* Set the surrounding nodes to point to the replacement */
585 if (parent) {
586 if (victim == parent->rb_left)
587 parent->rb_left = new;
588 else
589 parent->rb_right = new;
590 } else {
591 root->rb_node = new;
592 }
593 if (victim->rb_left)
55a98102 594 rb_set_parent(victim->rb_left, new);
1da177e4 595 if (victim->rb_right)
55a98102 596 rb_set_parent(victim->rb_right, new);
1da177e4
LT
597
598 /* Copy the pointers/colour from the victim to the replacement */
599 *new = *victim;
600}
601EXPORT_SYMBOL(rb_replace_node);