]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/rbtree.c
rbtree: coding style adjustments
[mirror_ubuntu-artful-kernel.git] / lib / rbtree.c
CommitLineData
1da177e4
LT
1/*
2 Red Black Trees
3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19
20 linux/lib/rbtree.c
21*/
22
23#include <linux/rbtree.h>
8bc3bcc9 24#include <linux/export.h>
1da177e4 25
5bc9188a
ML
26/*
27 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
28 *
29 * 1) A node is either red or black
30 * 2) The root is black
31 * 3) All leaves (NULL) are black
32 * 4) Both children of every red node are black
33 * 5) Every simple path from root to leaves contains the same number
34 * of black nodes.
35 *
36 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
37 * consecutive red nodes in a path and every red node is therefore followed by
38 * a black. So if B is the number of black nodes on every simple path (as per
39 * 5), then the longest possible path due to 4 is 2B.
40 *
41 * We shall indicate color with case, where black nodes are uppercase and red
6280d235
ML
42 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
43 * parentheses and have some accompanying text comment.
5bc9188a
ML
44 */
45
bf7ad8ee
ML
46#define RB_RED 0
47#define RB_BLACK 1
48
49#define rb_color(r) ((r)->__rb_parent_color & 1)
50#define rb_is_red(r) (!rb_color(r))
51#define rb_is_black(r) rb_color(r)
bf7ad8ee
ML
52
53static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
54{
55 rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
56}
bf7ad8ee 57
5bc9188a
ML
58static inline void rb_set_parent_color(struct rb_node *rb,
59 struct rb_node *p, int color)
60{
61 rb->__rb_parent_color = (unsigned long)p | color;
62}
63
64static inline struct rb_node *rb_red_parent(struct rb_node *red)
65{
66 return (struct rb_node *)red->__rb_parent_color;
67}
68
5bc9188a
ML
69/*
70 * Helper function for rotations:
71 * - old's parent and color get assigned to new
72 * - old gets assigned new as a parent and 'color' as a color.
73 */
74static inline void
75__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
76 struct rb_root *root, int color)
77{
78 struct rb_node *parent = rb_parent(old);
79 new->__rb_parent_color = old->__rb_parent_color;
80 rb_set_parent_color(old, new, color);
81 if (parent) {
82 if (parent->rb_left == old)
83 parent->rb_left = new;
84 else
85 parent->rb_right = new;
86 } else
87 root->rb_node = new;
88}
89
1da177e4
LT
90void rb_insert_color(struct rb_node *node, struct rb_root *root)
91{
5bc9188a 92 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
1da177e4 93
6d58452d
ML
94 while (true) {
95 /*
96 * Loop invariant: node is red
97 *
98 * If there is a black parent, we are done.
99 * Otherwise, take some corrective action as we don't
100 * want a red root or two consecutive red nodes.
101 */
6d58452d 102 if (!parent) {
5bc9188a 103 rb_set_parent_color(node, NULL, RB_BLACK);
6d58452d
ML
104 break;
105 } else if (rb_is_black(parent))
106 break;
107
5bc9188a
ML
108 gparent = rb_red_parent(parent);
109
110 if (parent == gparent->rb_left) {
111 tmp = gparent->rb_right;
112 if (tmp && rb_is_red(tmp)) {
113 /*
114 * Case 1 - color flips
115 *
116 * G g
117 * / \ / \
118 * p u --> P U
119 * / /
120 * n N
121 *
122 * However, since g's parent might be red, and
123 * 4) does not allow this, we need to recurse
124 * at g.
125 */
126 rb_set_parent_color(tmp, gparent, RB_BLACK);
127 rb_set_parent_color(parent, gparent, RB_BLACK);
128 node = gparent;
129 parent = rb_parent(node);
130 rb_set_parent_color(node, parent, RB_RED);
131 continue;
1da177e4
LT
132 }
133
1f052865 134 if (parent->rb_right == node) {
5bc9188a
ML
135 /*
136 * Case 2 - left rotate at parent
137 *
138 * G G
139 * / \ / \
140 * p U --> n U
141 * \ /
142 * n p
143 *
144 * This still leaves us in violation of 4), the
145 * continuation into Case 3 will fix that.
146 */
147 parent->rb_right = tmp = node->rb_left;
148 node->rb_left = parent;
149 if (tmp)
150 rb_set_parent_color(tmp, parent,
151 RB_BLACK);
152 rb_set_parent_color(parent, node, RB_RED);
1da177e4 153 parent = node;
1da177e4
LT
154 }
155
5bc9188a
ML
156 /*
157 * Case 3 - right rotate at gparent
158 *
159 * G P
160 * / \ / \
161 * p U --> n g
162 * / \
163 * n U
164 */
165 gparent->rb_left = tmp = parent->rb_right;
166 parent->rb_right = gparent;
167 if (tmp)
168 rb_set_parent_color(tmp, gparent, RB_BLACK);
169 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
1f052865 170 break;
1da177e4 171 } else {
5bc9188a
ML
172 tmp = gparent->rb_left;
173 if (tmp && rb_is_red(tmp)) {
174 /* Case 1 - color flips */
175 rb_set_parent_color(tmp, gparent, RB_BLACK);
176 rb_set_parent_color(parent, gparent, RB_BLACK);
177 node = gparent;
178 parent = rb_parent(node);
179 rb_set_parent_color(node, parent, RB_RED);
180 continue;
1da177e4
LT
181 }
182
1f052865 183 if (parent->rb_left == node) {
5bc9188a
ML
184 /* Case 2 - right rotate at parent */
185 parent->rb_left = tmp = node->rb_right;
186 node->rb_right = parent;
187 if (tmp)
188 rb_set_parent_color(tmp, parent,
189 RB_BLACK);
190 rb_set_parent_color(parent, node, RB_RED);
1da177e4 191 parent = node;
1da177e4
LT
192 }
193
5bc9188a
ML
194 /* Case 3 - left rotate at gparent */
195 gparent->rb_right = tmp = parent->rb_left;
196 parent->rb_left = gparent;
197 if (tmp)
198 rb_set_parent_color(tmp, gparent, RB_BLACK);
199 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
1f052865 200 break;
1da177e4
LT
201 }
202 }
1da177e4
LT
203}
204EXPORT_SYMBOL(rb_insert_color);
205
206static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
207 struct rb_root *root)
208{
6280d235 209 struct rb_node *sibling, *tmp1, *tmp2;
1da177e4 210
d6ff1273
ML
211 while (true) {
212 /*
213 * Loop invariant: all leaf paths going through node have a
214 * black node count that is 1 lower than other leaf paths.
215 *
216 * If node is red, we can flip it to black to adjust.
217 * If node is the root, all leaf paths go through it.
218 * Otherwise, we need to adjust the tree through color flips
219 * and tree rotations as per one of the 4 cases below.
220 */
221 if (node && rb_is_red(node)) {
6280d235 222 rb_set_parent_color(node, parent, RB_BLACK);
d6ff1273
ML
223 break;
224 } else if (!parent) {
225 break;
226 } else if (parent->rb_left == node) {
6280d235
ML
227 sibling = parent->rb_right;
228 if (rb_is_red(sibling)) {
229 /*
230 * Case 1 - left rotate at parent
231 *
232 * P S
233 * / \ / \
234 * N s --> p Sr
235 * / \ / \
236 * Sl Sr N Sl
237 */
238 parent->rb_right = tmp1 = sibling->rb_left;
239 sibling->rb_left = parent;
240 rb_set_parent_color(tmp1, parent, RB_BLACK);
241 __rb_rotate_set_parents(parent, sibling, root,
242 RB_RED);
243 sibling = tmp1;
1da177e4 244 }
6280d235
ML
245 tmp1 = sibling->rb_right;
246 if (!tmp1 || rb_is_black(tmp1)) {
247 tmp2 = sibling->rb_left;
248 if (!tmp2 || rb_is_black(tmp2)) {
249 /*
250 * Case 2 - sibling color flip
251 * (p could be either color here)
252 *
253 * (p) (p)
254 * / \ / \
255 * N S --> N s
256 * / \ / \
257 * Sl Sr Sl Sr
258 *
259 * This leaves us violating 5), so
260 * recurse at p. If p is red, the
261 * recursion will just flip it to black
262 * and exit. If coming from Case 1,
263 * p is known to be red.
264 */
265 rb_set_parent_color(sibling, parent,
266 RB_RED);
e125d147
ML
267 node = parent;
268 parent = rb_parent(node);
269 continue;
1da177e4 270 }
6280d235
ML
271 /*
272 * Case 3 - right rotate at sibling
273 * (p could be either color here)
274 *
275 * (p) (p)
276 * / \ / \
277 * N S --> N Sl
278 * / \ \
279 * sl Sr s
280 * \
281 * Sr
282 */
283 sibling->rb_left = tmp1 = tmp2->rb_right;
284 tmp2->rb_right = sibling;
285 parent->rb_right = tmp2;
286 if (tmp1)
287 rb_set_parent_color(tmp1, sibling,
288 RB_BLACK);
289 tmp1 = sibling;
290 sibling = tmp2;
1da177e4 291 }
6280d235
ML
292 /*
293 * Case 4 - left rotate at parent + color flips
294 * (p and sl could be either color here.
295 * After rotation, p becomes black, s acquires
296 * p's color, and sl keeps its color)
297 *
298 * (p) (s)
299 * / \ / \
300 * N S --> P Sr
301 * / \ / \
302 * (sl) sr N (sl)
303 */
304 parent->rb_right = tmp2 = sibling->rb_left;
305 sibling->rb_left = parent;
306 rb_set_parent_color(tmp1, sibling, RB_BLACK);
307 if (tmp2)
308 rb_set_parent(tmp2, parent);
309 __rb_rotate_set_parents(parent, sibling, root,
310 RB_BLACK);
e125d147 311 break;
d6ff1273 312 } else {
6280d235
ML
313 sibling = parent->rb_left;
314 if (rb_is_red(sibling)) {
315 /* Case 1 - right rotate at parent */
316 parent->rb_left = tmp1 = sibling->rb_right;
317 sibling->rb_right = parent;
318 rb_set_parent_color(tmp1, parent, RB_BLACK);
319 __rb_rotate_set_parents(parent, sibling, root,
320 RB_RED);
321 sibling = tmp1;
1da177e4 322 }
6280d235
ML
323 tmp1 = sibling->rb_left;
324 if (!tmp1 || rb_is_black(tmp1)) {
325 tmp2 = sibling->rb_right;
326 if (!tmp2 || rb_is_black(tmp2)) {
327 /* Case 2 - sibling color flip */
328 rb_set_parent_color(sibling, parent,
329 RB_RED);
e125d147
ML
330 node = parent;
331 parent = rb_parent(node);
332 continue;
1da177e4 333 }
6280d235
ML
334 /* Case 3 - right rotate at sibling */
335 sibling->rb_right = tmp1 = tmp2->rb_left;
336 tmp2->rb_left = sibling;
337 parent->rb_left = tmp2;
338 if (tmp1)
339 rb_set_parent_color(tmp1, sibling,
340 RB_BLACK);
341 tmp1 = sibling;
342 sibling = tmp2;
1da177e4 343 }
6280d235
ML
344 /* Case 4 - left rotate at parent + color flips */
345 parent->rb_left = tmp2 = sibling->rb_right;
346 sibling->rb_right = parent;
347 rb_set_parent_color(tmp1, sibling, RB_BLACK);
348 if (tmp2)
349 rb_set_parent(tmp2, parent);
350 __rb_rotate_set_parents(parent, sibling, root,
351 RB_BLACK);
e125d147 352 break;
1da177e4
LT
353 }
354 }
1da177e4
LT
355}
356
357void rb_erase(struct rb_node *node, struct rb_root *root)
358{
359 struct rb_node *child, *parent;
360 int color;
361
362 if (!node->rb_left)
363 child = node->rb_right;
364 else if (!node->rb_right)
365 child = node->rb_left;
7ce6ff9e 366 else {
1da177e4
LT
367 struct rb_node *old = node, *left;
368
369 node = node->rb_right;
370 while ((left = node->rb_left) != NULL)
371 node = left;
16c047ad
WS
372
373 if (rb_parent(old)) {
374 if (rb_parent(old)->rb_left == old)
375 rb_parent(old)->rb_left = node;
376 else
377 rb_parent(old)->rb_right = node;
378 } else
379 root->rb_node = node;
380
1da177e4 381 child = node->rb_right;
55a98102 382 parent = rb_parent(node);
2f3243ae 383 color = rb_color(node);
1da177e4 384
55a98102 385 if (parent == old) {
1da177e4 386 parent = node;
4c601178
WS
387 } else {
388 if (child)
389 rb_set_parent(child, parent);
1975e593 390 parent->rb_left = child;
4b324126
WS
391
392 node->rb_right = old->rb_right;
393 rb_set_parent(old->rb_right, node);
4c601178 394 }
1975e593 395
bf7ad8ee 396 node->__rb_parent_color = old->__rb_parent_color;
1da177e4 397 node->rb_left = old->rb_left;
55a98102 398 rb_set_parent(old->rb_left, node);
4b324126 399
1da177e4
LT
400 goto color;
401 }
402
55a98102 403 parent = rb_parent(node);
2f3243ae 404 color = rb_color(node);
1da177e4
LT
405
406 if (child)
55a98102 407 rb_set_parent(child, parent);
7ce6ff9e 408 if (parent) {
1da177e4
LT
409 if (parent->rb_left == node)
410 parent->rb_left = child;
411 else
412 parent->rb_right = child;
7ce6ff9e 413 } else
b945d6b2 414 root->rb_node = child;
1da177e4 415
7ce6ff9e 416color:
1da177e4
LT
417 if (color == RB_BLACK)
418 __rb_erase_color(child, parent, root);
419}
420EXPORT_SYMBOL(rb_erase);
421
b945d6b2
PZ
422static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
423{
424 struct rb_node *parent;
425
426up:
427 func(node, data);
428 parent = rb_parent(node);
429 if (!parent)
430 return;
431
432 if (node == parent->rb_left && parent->rb_right)
433 func(parent->rb_right, data);
434 else if (parent->rb_left)
435 func(parent->rb_left, data);
436
437 node = parent;
438 goto up;
439}
440
441/*
442 * after inserting @node into the tree, update the tree to account for
443 * both the new entry and any damage done by rebalance
444 */
445void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
446{
447 if (node->rb_left)
448 node = node->rb_left;
449 else if (node->rb_right)
450 node = node->rb_right;
451
452 rb_augment_path(node, func, data);
453}
0b6bb66d 454EXPORT_SYMBOL(rb_augment_insert);
b945d6b2
PZ
455
456/*
457 * before removing the node, find the deepest node on the rebalance path
458 * that will still be there after @node gets removed
459 */
460struct rb_node *rb_augment_erase_begin(struct rb_node *node)
461{
462 struct rb_node *deepest;
463
464 if (!node->rb_right && !node->rb_left)
465 deepest = rb_parent(node);
466 else if (!node->rb_right)
467 deepest = node->rb_left;
468 else if (!node->rb_left)
469 deepest = node->rb_right;
470 else {
471 deepest = rb_next(node);
472 if (deepest->rb_right)
473 deepest = deepest->rb_right;
474 else if (rb_parent(deepest) != node)
475 deepest = rb_parent(deepest);
476 }
477
478 return deepest;
479}
0b6bb66d 480EXPORT_SYMBOL(rb_augment_erase_begin);
b945d6b2
PZ
481
482/*
483 * after removal, update the tree to account for the removed entry
484 * and any rebalance damage.
485 */
486void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
487{
488 if (node)
489 rb_augment_path(node, func, data);
490}
0b6bb66d 491EXPORT_SYMBOL(rb_augment_erase_end);
b945d6b2 492
1da177e4
LT
493/*
494 * This function returns the first node (in sort order) of the tree.
495 */
f4b477c4 496struct rb_node *rb_first(const struct rb_root *root)
1da177e4
LT
497{
498 struct rb_node *n;
499
500 n = root->rb_node;
501 if (!n)
502 return NULL;
503 while (n->rb_left)
504 n = n->rb_left;
505 return n;
506}
507EXPORT_SYMBOL(rb_first);
508
f4b477c4 509struct rb_node *rb_last(const struct rb_root *root)
1da177e4
LT
510{
511 struct rb_node *n;
512
513 n = root->rb_node;
514 if (!n)
515 return NULL;
516 while (n->rb_right)
517 n = n->rb_right;
518 return n;
519}
520EXPORT_SYMBOL(rb_last);
521
f4b477c4 522struct rb_node *rb_next(const struct rb_node *node)
1da177e4 523{
55a98102
DW
524 struct rb_node *parent;
525
4c199a93 526 if (RB_EMPTY_NODE(node))
10fd48f2
JA
527 return NULL;
528
7ce6ff9e
ML
529 /*
530 * If we have a right-hand child, go down and then left as far
531 * as we can.
532 */
1da177e4
LT
533 if (node->rb_right) {
534 node = node->rb_right;
535 while (node->rb_left)
536 node=node->rb_left;
f4b477c4 537 return (struct rb_node *)node;
1da177e4
LT
538 }
539
7ce6ff9e
ML
540 /*
541 * No right-hand children. Everything down and left is smaller than us,
542 * so any 'next' node must be in the general direction of our parent.
543 * Go up the tree; any time the ancestor is a right-hand child of its
544 * parent, keep going up. First time it's a left-hand child of its
545 * parent, said parent is our 'next' node.
546 */
55a98102
DW
547 while ((parent = rb_parent(node)) && node == parent->rb_right)
548 node = parent;
1da177e4 549
55a98102 550 return parent;
1da177e4
LT
551}
552EXPORT_SYMBOL(rb_next);
553
f4b477c4 554struct rb_node *rb_prev(const struct rb_node *node)
1da177e4 555{
55a98102
DW
556 struct rb_node *parent;
557
4c199a93 558 if (RB_EMPTY_NODE(node))
10fd48f2
JA
559 return NULL;
560
7ce6ff9e
ML
561 /*
562 * If we have a left-hand child, go down and then right as far
563 * as we can.
564 */
1da177e4
LT
565 if (node->rb_left) {
566 node = node->rb_left;
567 while (node->rb_right)
568 node=node->rb_right;
f4b477c4 569 return (struct rb_node *)node;
1da177e4
LT
570 }
571
7ce6ff9e
ML
572 /*
573 * No left-hand children. Go up till we find an ancestor which
574 * is a right-hand child of its parent.
575 */
55a98102
DW
576 while ((parent = rb_parent(node)) && node == parent->rb_left)
577 node = parent;
1da177e4 578
55a98102 579 return parent;
1da177e4
LT
580}
581EXPORT_SYMBOL(rb_prev);
582
583void rb_replace_node(struct rb_node *victim, struct rb_node *new,
584 struct rb_root *root)
585{
55a98102 586 struct rb_node *parent = rb_parent(victim);
1da177e4
LT
587
588 /* Set the surrounding nodes to point to the replacement */
589 if (parent) {
590 if (victim == parent->rb_left)
591 parent->rb_left = new;
592 else
593 parent->rb_right = new;
594 } else {
595 root->rb_node = new;
596 }
597 if (victim->rb_left)
55a98102 598 rb_set_parent(victim->rb_left, new);
1da177e4 599 if (victim->rb_right)
55a98102 600 rb_set_parent(victim->rb_right, new);
1da177e4
LT
601
602 /* Copy the pointers/colour from the victim to the replacement */
603 *new = *victim;
604}
605EXPORT_SYMBOL(rb_replace_node);