]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - lib/rbtree.c
rbtree: cache leftmost node internally
[mirror_ubuntu-jammy-kernel.git] / lib / rbtree.c
CommitLineData
1da177e4
LT
1/*
2 Red Black Trees
3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
46b6135a
ML
5 (C) 2012 Michel Lespinasse <walken@google.com>
6
1da177e4
LT
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20
21 linux/lib/rbtree.c
22*/
23
9c079add 24#include <linux/rbtree_augmented.h>
8bc3bcc9 25#include <linux/export.h>
1da177e4 26
5bc9188a
ML
27/*
28 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
29 *
30 * 1) A node is either red or black
31 * 2) The root is black
32 * 3) All leaves (NULL) are black
33 * 4) Both children of every red node are black
34 * 5) Every simple path from root to leaves contains the same number
35 * of black nodes.
36 *
37 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38 * consecutive red nodes in a path and every red node is therefore followed by
39 * a black. So if B is the number of black nodes on every simple path (as per
40 * 5), then the longest possible path due to 4 is 2B.
41 *
42 * We shall indicate color with case, where black nodes are uppercase and red
6280d235
ML
43 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
44 * parentheses and have some accompanying text comment.
5bc9188a
ML
45 */
46
d72da4a4
PZ
47/*
48 * Notes on lockless lookups:
49 *
50 * All stores to the tree structure (rb_left and rb_right) must be done using
51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52 * tree structure as seen in program order.
53 *
54 * These two requirements will allow lockless iteration of the tree -- not
55 * correct iteration mind you, tree rotations are not atomic so a lookup might
56 * miss entire subtrees.
57 *
58 * But they do guarantee that any such traversal will only see valid elements
59 * and that it will indeed complete -- does not get stuck in a loop.
60 *
61 * It also guarantees that if the lookup returns an element it is the 'correct'
62 * one. But not returning an element does _NOT_ mean it's not present.
63 *
64 * NOTE:
65 *
66 * Stores to __rb_parent_color are not important for simple lookups so those
67 * are left undone as of now. Nor did I check for loops involving parent
68 * pointers.
69 */
70
46b6135a
ML
71static inline void rb_set_black(struct rb_node *rb)
72{
73 rb->__rb_parent_color |= RB_BLACK;
74}
75
5bc9188a
ML
76static inline struct rb_node *rb_red_parent(struct rb_node *red)
77{
78 return (struct rb_node *)red->__rb_parent_color;
79}
80
5bc9188a
ML
81/*
82 * Helper function for rotations:
83 * - old's parent and color get assigned to new
84 * - old gets assigned new as a parent and 'color' as a color.
85 */
86static inline void
87__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
88 struct rb_root *root, int color)
89{
90 struct rb_node *parent = rb_parent(old);
91 new->__rb_parent_color = old->__rb_parent_color;
92 rb_set_parent_color(old, new, color);
7abc704a 93 __rb_change_child(old, new, parent, root);
5bc9188a
ML
94}
95
14b94af0
ML
96static __always_inline void
97__rb_insert(struct rb_node *node, struct rb_root *root,
cd9e61ed 98 bool newleft, struct rb_node **leftmost,
14b94af0 99 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
1da177e4 100{
5bc9188a 101 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
1da177e4 102
cd9e61ed
DB
103 if (newleft)
104 *leftmost = node;
105
6d58452d
ML
106 while (true) {
107 /*
108 * Loop invariant: node is red
109 *
110 * If there is a black parent, we are done.
111 * Otherwise, take some corrective action as we don't
112 * want a red root or two consecutive red nodes.
113 */
6d58452d 114 if (!parent) {
5bc9188a 115 rb_set_parent_color(node, NULL, RB_BLACK);
6d58452d
ML
116 break;
117 } else if (rb_is_black(parent))
118 break;
119
5bc9188a
ML
120 gparent = rb_red_parent(parent);
121
59633abf
ML
122 tmp = gparent->rb_right;
123 if (parent != tmp) { /* parent == gparent->rb_left */
5bc9188a
ML
124 if (tmp && rb_is_red(tmp)) {
125 /*
126 * Case 1 - color flips
127 *
128 * G g
129 * / \ / \
130 * p u --> P U
131 * / /
1b9c53e8 132 * n n
5bc9188a
ML
133 *
134 * However, since g's parent might be red, and
135 * 4) does not allow this, we need to recurse
136 * at g.
137 */
138 rb_set_parent_color(tmp, gparent, RB_BLACK);
139 rb_set_parent_color(parent, gparent, RB_BLACK);
140 node = gparent;
141 parent = rb_parent(node);
142 rb_set_parent_color(node, parent, RB_RED);
143 continue;
1da177e4
LT
144 }
145
59633abf
ML
146 tmp = parent->rb_right;
147 if (node == tmp) {
5bc9188a
ML
148 /*
149 * Case 2 - left rotate at parent
150 *
151 * G G
152 * / \ / \
153 * p U --> n U
154 * \ /
155 * n p
156 *
157 * This still leaves us in violation of 4), the
158 * continuation into Case 3 will fix that.
159 */
d72da4a4
PZ
160 tmp = node->rb_left;
161 WRITE_ONCE(parent->rb_right, tmp);
162 WRITE_ONCE(node->rb_left, parent);
5bc9188a
ML
163 if (tmp)
164 rb_set_parent_color(tmp, parent,
165 RB_BLACK);
166 rb_set_parent_color(parent, node, RB_RED);
14b94af0 167 augment_rotate(parent, node);
1da177e4 168 parent = node;
59633abf 169 tmp = node->rb_right;
1da177e4
LT
170 }
171
5bc9188a
ML
172 /*
173 * Case 3 - right rotate at gparent
174 *
175 * G P
176 * / \ / \
177 * p U --> n g
178 * / \
179 * n U
180 */
d72da4a4
PZ
181 WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
182 WRITE_ONCE(parent->rb_right, gparent);
5bc9188a
ML
183 if (tmp)
184 rb_set_parent_color(tmp, gparent, RB_BLACK);
185 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
14b94af0 186 augment_rotate(gparent, parent);
1f052865 187 break;
1da177e4 188 } else {
5bc9188a
ML
189 tmp = gparent->rb_left;
190 if (tmp && rb_is_red(tmp)) {
191 /* Case 1 - color flips */
192 rb_set_parent_color(tmp, gparent, RB_BLACK);
193 rb_set_parent_color(parent, gparent, RB_BLACK);
194 node = gparent;
195 parent = rb_parent(node);
196 rb_set_parent_color(node, parent, RB_RED);
197 continue;
1da177e4
LT
198 }
199
59633abf
ML
200 tmp = parent->rb_left;
201 if (node == tmp) {
5bc9188a 202 /* Case 2 - right rotate at parent */
d72da4a4
PZ
203 tmp = node->rb_right;
204 WRITE_ONCE(parent->rb_left, tmp);
205 WRITE_ONCE(node->rb_right, parent);
5bc9188a
ML
206 if (tmp)
207 rb_set_parent_color(tmp, parent,
208 RB_BLACK);
209 rb_set_parent_color(parent, node, RB_RED);
14b94af0 210 augment_rotate(parent, node);
1da177e4 211 parent = node;
59633abf 212 tmp = node->rb_left;
1da177e4
LT
213 }
214
5bc9188a 215 /* Case 3 - left rotate at gparent */
d72da4a4
PZ
216 WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
217 WRITE_ONCE(parent->rb_left, gparent);
5bc9188a
ML
218 if (tmp)
219 rb_set_parent_color(tmp, gparent, RB_BLACK);
220 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
14b94af0 221 augment_rotate(gparent, parent);
1f052865 222 break;
1da177e4
LT
223 }
224 }
1da177e4 225}
1da177e4 226
3cb7a563
ML
227/*
228 * Inline version for rb_erase() use - we want to be able to inline
229 * and eliminate the dummy_rotate callback there
230 */
231static __always_inline void
232____rb_erase_color(struct rb_node *parent, struct rb_root *root,
9c079add 233 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
1da177e4 234{
46b6135a 235 struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
1da177e4 236
d6ff1273
ML
237 while (true) {
238 /*
46b6135a
ML
239 * Loop invariants:
240 * - node is black (or NULL on first iteration)
241 * - node is not the root (parent is not NULL)
242 * - All leaf paths going through parent and node have a
243 * black node count that is 1 lower than other leaf paths.
d6ff1273 244 */
59633abf
ML
245 sibling = parent->rb_right;
246 if (node != sibling) { /* node == parent->rb_left */
6280d235
ML
247 if (rb_is_red(sibling)) {
248 /*
249 * Case 1 - left rotate at parent
250 *
251 * P S
252 * / \ / \
253 * N s --> p Sr
254 * / \ / \
255 * Sl Sr N Sl
256 */
d72da4a4
PZ
257 tmp1 = sibling->rb_left;
258 WRITE_ONCE(parent->rb_right, tmp1);
259 WRITE_ONCE(sibling->rb_left, parent);
6280d235
ML
260 rb_set_parent_color(tmp1, parent, RB_BLACK);
261 __rb_rotate_set_parents(parent, sibling, root,
262 RB_RED);
9c079add 263 augment_rotate(parent, sibling);
6280d235 264 sibling = tmp1;
1da177e4 265 }
6280d235
ML
266 tmp1 = sibling->rb_right;
267 if (!tmp1 || rb_is_black(tmp1)) {
268 tmp2 = sibling->rb_left;
269 if (!tmp2 || rb_is_black(tmp2)) {
270 /*
271 * Case 2 - sibling color flip
272 * (p could be either color here)
273 *
274 * (p) (p)
275 * / \ / \
276 * N S --> N s
277 * / \ / \
278 * Sl Sr Sl Sr
279 *
46b6135a
ML
280 * This leaves us violating 5) which
281 * can be fixed by flipping p to black
282 * if it was red, or by recursing at p.
283 * p is red when coming from Case 1.
6280d235
ML
284 */
285 rb_set_parent_color(sibling, parent,
286 RB_RED);
46b6135a
ML
287 if (rb_is_red(parent))
288 rb_set_black(parent);
289 else {
290 node = parent;
291 parent = rb_parent(node);
292 if (parent)
293 continue;
294 }
295 break;
1da177e4 296 }
6280d235
ML
297 /*
298 * Case 3 - right rotate at sibling
299 * (p could be either color here)
300 *
301 * (p) (p)
302 * / \ / \
ce093a04 303 * N S --> N sl
6280d235 304 * / \ \
ce093a04 305 * sl Sr S
6280d235
ML
306 * \
307 * Sr
ce093a04
JC
308 *
309 * Note: p might be red, and then both
310 * p and sl are red after rotation(which
311 * breaks property 4). This is fixed in
312 * Case 4 (in __rb_rotate_set_parents()
313 * which set sl the color of p
314 * and set p RB_BLACK)
315 *
316 * (p) (sl)
317 * / \ / \
318 * N sl --> P S
319 * \ / \
320 * S N Sr
321 * \
322 * Sr
6280d235 323 */
d72da4a4
PZ
324 tmp1 = tmp2->rb_right;
325 WRITE_ONCE(sibling->rb_left, tmp1);
326 WRITE_ONCE(tmp2->rb_right, sibling);
327 WRITE_ONCE(parent->rb_right, tmp2);
6280d235
ML
328 if (tmp1)
329 rb_set_parent_color(tmp1, sibling,
330 RB_BLACK);
9c079add 331 augment_rotate(sibling, tmp2);
6280d235
ML
332 tmp1 = sibling;
333 sibling = tmp2;
1da177e4 334 }
6280d235
ML
335 /*
336 * Case 4 - left rotate at parent + color flips
337 * (p and sl could be either color here.
338 * After rotation, p becomes black, s acquires
339 * p's color, and sl keeps its color)
340 *
341 * (p) (s)
342 * / \ / \
343 * N S --> P Sr
344 * / \ / \
345 * (sl) sr N (sl)
346 */
d72da4a4
PZ
347 tmp2 = sibling->rb_left;
348 WRITE_ONCE(parent->rb_right, tmp2);
349 WRITE_ONCE(sibling->rb_left, parent);
6280d235
ML
350 rb_set_parent_color(tmp1, sibling, RB_BLACK);
351 if (tmp2)
352 rb_set_parent(tmp2, parent);
353 __rb_rotate_set_parents(parent, sibling, root,
354 RB_BLACK);
9c079add 355 augment_rotate(parent, sibling);
e125d147 356 break;
d6ff1273 357 } else {
6280d235
ML
358 sibling = parent->rb_left;
359 if (rb_is_red(sibling)) {
360 /* Case 1 - right rotate at parent */
d72da4a4
PZ
361 tmp1 = sibling->rb_right;
362 WRITE_ONCE(parent->rb_left, tmp1);
363 WRITE_ONCE(sibling->rb_right, parent);
6280d235
ML
364 rb_set_parent_color(tmp1, parent, RB_BLACK);
365 __rb_rotate_set_parents(parent, sibling, root,
366 RB_RED);
9c079add 367 augment_rotate(parent, sibling);
6280d235 368 sibling = tmp1;
1da177e4 369 }
6280d235
ML
370 tmp1 = sibling->rb_left;
371 if (!tmp1 || rb_is_black(tmp1)) {
372 tmp2 = sibling->rb_right;
373 if (!tmp2 || rb_is_black(tmp2)) {
374 /* Case 2 - sibling color flip */
375 rb_set_parent_color(sibling, parent,
376 RB_RED);
46b6135a
ML
377 if (rb_is_red(parent))
378 rb_set_black(parent);
379 else {
380 node = parent;
381 parent = rb_parent(node);
382 if (parent)
383 continue;
384 }
385 break;
1da177e4 386 }
ce093a04 387 /* Case 3 - left rotate at sibling */
d72da4a4
PZ
388 tmp1 = tmp2->rb_left;
389 WRITE_ONCE(sibling->rb_right, tmp1);
390 WRITE_ONCE(tmp2->rb_left, sibling);
391 WRITE_ONCE(parent->rb_left, tmp2);
6280d235
ML
392 if (tmp1)
393 rb_set_parent_color(tmp1, sibling,
394 RB_BLACK);
9c079add 395 augment_rotate(sibling, tmp2);
6280d235
ML
396 tmp1 = sibling;
397 sibling = tmp2;
1da177e4 398 }
ce093a04 399 /* Case 4 - right rotate at parent + color flips */
d72da4a4
PZ
400 tmp2 = sibling->rb_right;
401 WRITE_ONCE(parent->rb_left, tmp2);
402 WRITE_ONCE(sibling->rb_right, parent);
6280d235
ML
403 rb_set_parent_color(tmp1, sibling, RB_BLACK);
404 if (tmp2)
405 rb_set_parent(tmp2, parent);
406 __rb_rotate_set_parents(parent, sibling, root,
407 RB_BLACK);
9c079add 408 augment_rotate(parent, sibling);
e125d147 409 break;
1da177e4
LT
410 }
411 }
1da177e4 412}
3cb7a563
ML
413
414/* Non-inline version for rb_erase_augmented() use */
415void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
416 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
417{
418 ____rb_erase_color(parent, root, augment_rotate);
419}
9c079add 420EXPORT_SYMBOL(__rb_erase_color);
14b94af0
ML
421
422/*
423 * Non-augmented rbtree manipulation functions.
424 *
425 * We use dummy augmented callbacks here, and have the compiler optimize them
426 * out of the rb_insert_color() and rb_erase() function definitions.
427 */
428
429static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
430static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
431static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
432
433static const struct rb_augment_callbacks dummy_callbacks = {
f231aebf
KC
434 .propagate = dummy_propagate,
435 .copy = dummy_copy,
436 .rotate = dummy_rotate
14b94af0
ML
437};
438
439void rb_insert_color(struct rb_node *node, struct rb_root *root)
440{
cd9e61ed 441 __rb_insert(node, root, false, NULL, dummy_rotate);
14b94af0
ML
442}
443EXPORT_SYMBOL(rb_insert_color);
444
445void rb_erase(struct rb_node *node, struct rb_root *root)
446{
3cb7a563 447 struct rb_node *rebalance;
cd9e61ed
DB
448 rebalance = __rb_erase_augmented(node, root,
449 NULL, &dummy_callbacks);
3cb7a563
ML
450 if (rebalance)
451 ____rb_erase_color(rebalance, root, dummy_rotate);
1da177e4
LT
452}
453EXPORT_SYMBOL(rb_erase);
454
cd9e61ed
DB
455void rb_insert_color_cached(struct rb_node *node,
456 struct rb_root_cached *root, bool leftmost)
457{
458 __rb_insert(node, &root->rb_root, leftmost,
459 &root->rb_leftmost, dummy_rotate);
460}
461EXPORT_SYMBOL(rb_insert_color_cached);
462
463void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
464{
465 struct rb_node *rebalance;
466 rebalance = __rb_erase_augmented(node, &root->rb_root,
467 &root->rb_leftmost, &dummy_callbacks);
468 if (rebalance)
469 ____rb_erase_color(rebalance, &root->rb_root, dummy_rotate);
470}
471EXPORT_SYMBOL(rb_erase_cached);
472
14b94af0
ML
473/*
474 * Augmented rbtree manipulation functions.
475 *
476 * This instantiates the same __always_inline functions as in the non-augmented
477 * case, but this time with user-defined callbacks.
478 */
479
480void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
cd9e61ed 481 bool newleft, struct rb_node **leftmost,
14b94af0
ML
482 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
483{
cd9e61ed 484 __rb_insert(node, root, newleft, leftmost, augment_rotate);
14b94af0
ML
485}
486EXPORT_SYMBOL(__rb_insert_augmented);
487
1da177e4
LT
488/*
489 * This function returns the first node (in sort order) of the tree.
490 */
f4b477c4 491struct rb_node *rb_first(const struct rb_root *root)
1da177e4
LT
492{
493 struct rb_node *n;
494
495 n = root->rb_node;
496 if (!n)
497 return NULL;
498 while (n->rb_left)
499 n = n->rb_left;
500 return n;
501}
502EXPORT_SYMBOL(rb_first);
503
f4b477c4 504struct rb_node *rb_last(const struct rb_root *root)
1da177e4
LT
505{
506 struct rb_node *n;
507
508 n = root->rb_node;
509 if (!n)
510 return NULL;
511 while (n->rb_right)
512 n = n->rb_right;
513 return n;
514}
515EXPORT_SYMBOL(rb_last);
516
f4b477c4 517struct rb_node *rb_next(const struct rb_node *node)
1da177e4 518{
55a98102
DW
519 struct rb_node *parent;
520
4c199a93 521 if (RB_EMPTY_NODE(node))
10fd48f2
JA
522 return NULL;
523
7ce6ff9e
ML
524 /*
525 * If we have a right-hand child, go down and then left as far
526 * as we can.
527 */
1da177e4 528 if (node->rb_right) {
cd9e61ed 529 node = node->rb_right;
1da177e4
LT
530 while (node->rb_left)
531 node=node->rb_left;
f4b477c4 532 return (struct rb_node *)node;
1da177e4
LT
533 }
534
7ce6ff9e
ML
535 /*
536 * No right-hand children. Everything down and left is smaller than us,
537 * so any 'next' node must be in the general direction of our parent.
538 * Go up the tree; any time the ancestor is a right-hand child of its
539 * parent, keep going up. First time it's a left-hand child of its
540 * parent, said parent is our 'next' node.
541 */
55a98102
DW
542 while ((parent = rb_parent(node)) && node == parent->rb_right)
543 node = parent;
1da177e4 544
55a98102 545 return parent;
1da177e4
LT
546}
547EXPORT_SYMBOL(rb_next);
548
f4b477c4 549struct rb_node *rb_prev(const struct rb_node *node)
1da177e4 550{
55a98102
DW
551 struct rb_node *parent;
552
4c199a93 553 if (RB_EMPTY_NODE(node))
10fd48f2
JA
554 return NULL;
555
7ce6ff9e
ML
556 /*
557 * If we have a left-hand child, go down and then right as far
558 * as we can.
559 */
1da177e4 560 if (node->rb_left) {
cd9e61ed 561 node = node->rb_left;
1da177e4
LT
562 while (node->rb_right)
563 node=node->rb_right;
f4b477c4 564 return (struct rb_node *)node;
1da177e4
LT
565 }
566
7ce6ff9e
ML
567 /*
568 * No left-hand children. Go up till we find an ancestor which
569 * is a right-hand child of its parent.
570 */
55a98102
DW
571 while ((parent = rb_parent(node)) && node == parent->rb_left)
572 node = parent;
1da177e4 573
55a98102 574 return parent;
1da177e4
LT
575}
576EXPORT_SYMBOL(rb_prev);
577
578void rb_replace_node(struct rb_node *victim, struct rb_node *new,
579 struct rb_root *root)
580{
55a98102 581 struct rb_node *parent = rb_parent(victim);
1da177e4 582
c1adf200
DH
583 /* Copy the pointers/colour from the victim to the replacement */
584 *new = *victim;
585
1da177e4 586 /* Set the surrounding nodes to point to the replacement */
1da177e4 587 if (victim->rb_left)
55a98102 588 rb_set_parent(victim->rb_left, new);
1da177e4 589 if (victim->rb_right)
55a98102 590 rb_set_parent(victim->rb_right, new);
c1adf200
DH
591 __rb_change_child(victim, new, parent, root);
592}
593EXPORT_SYMBOL(rb_replace_node);
594
595void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
596 struct rb_root *root)
597{
598 struct rb_node *parent = rb_parent(victim);
1da177e4
LT
599
600 /* Copy the pointers/colour from the victim to the replacement */
601 *new = *victim;
c1adf200
DH
602
603 /* Set the surrounding nodes to point to the replacement */
604 if (victim->rb_left)
605 rb_set_parent(victim->rb_left, new);
606 if (victim->rb_right)
607 rb_set_parent(victim->rb_right, new);
608
609 /* Set the parent's pointer to the new node last after an RCU barrier
610 * so that the pointers onwards are seen to be set correctly when doing
611 * an RCU walk over the tree.
612 */
613 __rb_change_child_rcu(victim, new, parent, root);
1da177e4 614}
c1adf200 615EXPORT_SYMBOL(rb_replace_node_rcu);
9dee5c51
CS
616
617static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
618{
619 for (;;) {
620 if (node->rb_left)
621 node = node->rb_left;
622 else if (node->rb_right)
623 node = node->rb_right;
624 else
625 return (struct rb_node *)node;
626 }
627}
628
629struct rb_node *rb_next_postorder(const struct rb_node *node)
630{
631 const struct rb_node *parent;
632 if (!node)
633 return NULL;
634 parent = rb_parent(node);
635
636 /* If we're sitting on node, we've already seen our children */
637 if (parent && node == parent->rb_left && parent->rb_right) {
638 /* If we are the parent's left node, go to the parent's right
639 * node then all the way down to the left */
640 return rb_left_deepest_node(parent->rb_right);
641 } else
642 /* Otherwise we are the parent's right node, and the parent
643 * should be next */
644 return (struct rb_node *)parent;
645}
646EXPORT_SYMBOL(rb_next_postorder);
647
648struct rb_node *rb_first_postorder(const struct rb_root *root)
649{
650 if (!root->rb_node)
651 return NULL;
652
653 return rb_left_deepest_node(root->rb_node);
654}
655EXPORT_SYMBOL(rb_first_postorder);