]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Dynamic DMA mapping support. | |
3 | * | |
563aaf06 | 4 | * This implementation is a fallback for platforms that do not support |
1da177e4 LT |
5 | * I/O TLBs (aka DMA address translation hardware). |
6 | * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> | |
7 | * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> | |
8 | * Copyright (C) 2000, 2003 Hewlett-Packard Co | |
9 | * David Mosberger-Tang <davidm@hpl.hp.com> | |
10 | * | |
11 | * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. | |
12 | * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid | |
13 | * unnecessary i-cache flushing. | |
569c8bf5 JL |
14 | * 04/07/.. ak Better overflow handling. Assorted fixes. |
15 | * 05/09/10 linville Add support for syncing ranges, support syncing for | |
16 | * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | |
fb05a379 | 17 | * 08/12/11 beckyb Add highmem support |
1da177e4 LT |
18 | */ |
19 | ||
20 | #include <linux/cache.h> | |
17e5ad6c | 21 | #include <linux/dma-mapping.h> |
1da177e4 | 22 | #include <linux/mm.h> |
8bc3bcc9 | 23 | #include <linux/export.h> |
1da177e4 LT |
24 | #include <linux/spinlock.h> |
25 | #include <linux/string.h> | |
0016fdee | 26 | #include <linux/swiotlb.h> |
fb05a379 | 27 | #include <linux/pfn.h> |
1da177e4 LT |
28 | #include <linux/types.h> |
29 | #include <linux/ctype.h> | |
ef9b1893 | 30 | #include <linux/highmem.h> |
5a0e3ad6 | 31 | #include <linux/gfp.h> |
84be456f | 32 | #include <linux/scatterlist.h> |
1da177e4 LT |
33 | |
34 | #include <asm/io.h> | |
1da177e4 LT |
35 | #include <asm/dma.h> |
36 | ||
37 | #include <linux/init.h> | |
38 | #include <linux/bootmem.h> | |
a8522509 | 39 | #include <linux/iommu-helper.h> |
1da177e4 | 40 | |
ce5be5a1 | 41 | #define CREATE_TRACE_POINTS |
2b2b614d ZK |
42 | #include <trace/events/swiotlb.h> |
43 | ||
1da177e4 LT |
44 | #define OFFSET(val,align) ((unsigned long) \ |
45 | ( (val) & ( (align) - 1))) | |
46 | ||
0b9afede AW |
47 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) |
48 | ||
49 | /* | |
50 | * Minimum IO TLB size to bother booting with. Systems with mainly | |
51 | * 64bit capable cards will only lightly use the swiotlb. If we can't | |
52 | * allocate a contiguous 1MB, we're probably in trouble anyway. | |
53 | */ | |
54 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | |
55 | ||
ae7871be | 56 | enum swiotlb_force swiotlb_force; |
1da177e4 LT |
57 | |
58 | /* | |
bfc5501f KRW |
59 | * Used to do a quick range check in swiotlb_tbl_unmap_single and |
60 | * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | |
1da177e4 LT |
61 | * API. |
62 | */ | |
ff7204a7 | 63 | static phys_addr_t io_tlb_start, io_tlb_end; |
1da177e4 LT |
64 | |
65 | /* | |
b595076a | 66 | * The number of IO TLB blocks (in groups of 64) between io_tlb_start and |
1da177e4 LT |
67 | * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. |
68 | */ | |
69 | static unsigned long io_tlb_nslabs; | |
70 | ||
71 | /* | |
72 | * When the IOMMU overflows we return a fallback buffer. This sets the size. | |
73 | */ | |
74 | static unsigned long io_tlb_overflow = 32*1024; | |
75 | ||
ee3f6ba8 | 76 | static phys_addr_t io_tlb_overflow_buffer; |
1da177e4 LT |
77 | |
78 | /* | |
79 | * This is a free list describing the number of free entries available from | |
80 | * each index | |
81 | */ | |
82 | static unsigned int *io_tlb_list; | |
83 | static unsigned int io_tlb_index; | |
84 | ||
7453c549 KRW |
85 | /* |
86 | * Max segment that we can provide which (if pages are contingous) will | |
87 | * not be bounced (unless SWIOTLB_FORCE is set). | |
88 | */ | |
89 | unsigned int max_segment; | |
90 | ||
1da177e4 LT |
91 | /* |
92 | * We need to save away the original address corresponding to a mapped entry | |
93 | * for the sync operations. | |
94 | */ | |
8e0629c1 | 95 | #define INVALID_PHYS_ADDR (~(phys_addr_t)0) |
bc40ac66 | 96 | static phys_addr_t *io_tlb_orig_addr; |
1da177e4 LT |
97 | |
98 | /* | |
99 | * Protect the above data structures in the map and unmap calls | |
100 | */ | |
101 | static DEFINE_SPINLOCK(io_tlb_lock); | |
102 | ||
5740afdb FT |
103 | static int late_alloc; |
104 | ||
1da177e4 LT |
105 | static int __init |
106 | setup_io_tlb_npages(char *str) | |
107 | { | |
108 | if (isdigit(*str)) { | |
e8579e72 | 109 | io_tlb_nslabs = simple_strtoul(str, &str, 0); |
1da177e4 LT |
110 | /* avoid tail segment of size < IO_TLB_SEGSIZE */ |
111 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
112 | } | |
113 | if (*str == ',') | |
114 | ++str; | |
fff5d992 | 115 | if (!strcmp(str, "force")) { |
ae7871be | 116 | swiotlb_force = SWIOTLB_FORCE; |
fff5d992 GU |
117 | } else if (!strcmp(str, "noforce")) { |
118 | swiotlb_force = SWIOTLB_NO_FORCE; | |
119 | io_tlb_nslabs = 1; | |
120 | } | |
b18485e7 | 121 | |
c729de8f | 122 | return 0; |
1da177e4 | 123 | } |
c729de8f | 124 | early_param("swiotlb", setup_io_tlb_npages); |
1da177e4 LT |
125 | /* make io_tlb_overflow tunable too? */ |
126 | ||
f21ffe9f | 127 | unsigned long swiotlb_nr_tbl(void) |
5f98ecdb FT |
128 | { |
129 | return io_tlb_nslabs; | |
130 | } | |
f21ffe9f | 131 | EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); |
c729de8f | 132 | |
7453c549 KRW |
133 | unsigned int swiotlb_max_segment(void) |
134 | { | |
135 | return max_segment; | |
136 | } | |
137 | EXPORT_SYMBOL_GPL(swiotlb_max_segment); | |
138 | ||
139 | void swiotlb_set_max_segment(unsigned int val) | |
140 | { | |
141 | if (swiotlb_force == SWIOTLB_FORCE) | |
142 | max_segment = 1; | |
143 | else | |
144 | max_segment = rounddown(val, PAGE_SIZE); | |
145 | } | |
146 | ||
c729de8f YL |
147 | /* default to 64MB */ |
148 | #define IO_TLB_DEFAULT_SIZE (64UL<<20) | |
149 | unsigned long swiotlb_size_or_default(void) | |
150 | { | |
151 | unsigned long size; | |
152 | ||
153 | size = io_tlb_nslabs << IO_TLB_SHIFT; | |
154 | ||
155 | return size ? size : (IO_TLB_DEFAULT_SIZE); | |
156 | } | |
157 | ||
02ca646e | 158 | /* Note that this doesn't work with highmem page */ |
70a7d3cc JF |
159 | static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev, |
160 | volatile void *address) | |
e08e1f7a | 161 | { |
862d196b | 162 | return phys_to_dma(hwdev, virt_to_phys(address)); |
e08e1f7a IC |
163 | } |
164 | ||
ac2cbab2 YL |
165 | static bool no_iotlb_memory; |
166 | ||
ad32e8cb | 167 | void swiotlb_print_info(void) |
2e5b2b86 | 168 | { |
ad32e8cb | 169 | unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
ff7204a7 | 170 | unsigned char *vstart, *vend; |
2e5b2b86 | 171 | |
ac2cbab2 YL |
172 | if (no_iotlb_memory) { |
173 | pr_warn("software IO TLB: No low mem\n"); | |
174 | return; | |
175 | } | |
176 | ||
ff7204a7 | 177 | vstart = phys_to_virt(io_tlb_start); |
c40dba06 | 178 | vend = phys_to_virt(io_tlb_end); |
2e5b2b86 | 179 | |
3af684c7 | 180 | printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n", |
ff7204a7 | 181 | (unsigned long long)io_tlb_start, |
c40dba06 | 182 | (unsigned long long)io_tlb_end, |
ff7204a7 | 183 | bytes >> 20, vstart, vend - 1); |
2e5b2b86 IC |
184 | } |
185 | ||
ac2cbab2 | 186 | int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) |
1da177e4 | 187 | { |
ee3f6ba8 | 188 | void *v_overflow_buffer; |
563aaf06 | 189 | unsigned long i, bytes; |
1da177e4 | 190 | |
abbceff7 | 191 | bytes = nslabs << IO_TLB_SHIFT; |
1da177e4 | 192 | |
abbceff7 | 193 | io_tlb_nslabs = nslabs; |
ff7204a7 AD |
194 | io_tlb_start = __pa(tlb); |
195 | io_tlb_end = io_tlb_start + bytes; | |
1da177e4 | 196 | |
ee3f6ba8 AD |
197 | /* |
198 | * Get the overflow emergency buffer | |
199 | */ | |
ad6492b8 | 200 | v_overflow_buffer = memblock_virt_alloc_low_nopanic( |
457ff1de SS |
201 | PAGE_ALIGN(io_tlb_overflow), |
202 | PAGE_SIZE); | |
ee3f6ba8 | 203 | if (!v_overflow_buffer) |
ac2cbab2 | 204 | return -ENOMEM; |
ee3f6ba8 AD |
205 | |
206 | io_tlb_overflow_buffer = __pa(v_overflow_buffer); | |
207 | ||
1da177e4 LT |
208 | /* |
209 | * Allocate and initialize the free list array. This array is used | |
210 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
211 | * between io_tlb_start and io_tlb_end. | |
212 | */ | |
457ff1de SS |
213 | io_tlb_list = memblock_virt_alloc( |
214 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), | |
215 | PAGE_SIZE); | |
457ff1de SS |
216 | io_tlb_orig_addr = memblock_virt_alloc( |
217 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), | |
218 | PAGE_SIZE); | |
8e0629c1 JB |
219 | for (i = 0; i < io_tlb_nslabs; i++) { |
220 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | |
221 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | |
222 | } | |
223 | io_tlb_index = 0; | |
1da177e4 | 224 | |
ad32e8cb FT |
225 | if (verbose) |
226 | swiotlb_print_info(); | |
ac2cbab2 | 227 | |
7453c549 | 228 | swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); |
ac2cbab2 | 229 | return 0; |
1da177e4 LT |
230 | } |
231 | ||
abbceff7 FT |
232 | /* |
233 | * Statically reserve bounce buffer space and initialize bounce buffer data | |
234 | * structures for the software IO TLB used to implement the DMA API. | |
235 | */ | |
ac2cbab2 YL |
236 | void __init |
237 | swiotlb_init(int verbose) | |
abbceff7 | 238 | { |
c729de8f | 239 | size_t default_size = IO_TLB_DEFAULT_SIZE; |
ff7204a7 | 240 | unsigned char *vstart; |
abbceff7 FT |
241 | unsigned long bytes; |
242 | ||
243 | if (!io_tlb_nslabs) { | |
244 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
245 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
246 | } | |
247 | ||
248 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; | |
249 | ||
ac2cbab2 | 250 | /* Get IO TLB memory from the low pages */ |
ad6492b8 | 251 | vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); |
ac2cbab2 YL |
252 | if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) |
253 | return; | |
abbceff7 | 254 | |
ac2cbab2 | 255 | if (io_tlb_start) |
457ff1de SS |
256 | memblock_free_early(io_tlb_start, |
257 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | |
ac2cbab2 YL |
258 | pr_warn("Cannot allocate SWIOTLB buffer"); |
259 | no_iotlb_memory = true; | |
1da177e4 LT |
260 | } |
261 | ||
0b9afede AW |
262 | /* |
263 | * Systems with larger DMA zones (those that don't support ISA) can | |
264 | * initialize the swiotlb later using the slab allocator if needed. | |
265 | * This should be just like above, but with some error catching. | |
266 | */ | |
267 | int | |
563aaf06 | 268 | swiotlb_late_init_with_default_size(size_t default_size) |
0b9afede | 269 | { |
74838b75 | 270 | unsigned long bytes, req_nslabs = io_tlb_nslabs; |
ff7204a7 | 271 | unsigned char *vstart = NULL; |
0b9afede | 272 | unsigned int order; |
74838b75 | 273 | int rc = 0; |
0b9afede AW |
274 | |
275 | if (!io_tlb_nslabs) { | |
276 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
277 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
278 | } | |
279 | ||
280 | /* | |
281 | * Get IO TLB memory from the low pages | |
282 | */ | |
563aaf06 | 283 | order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); |
0b9afede | 284 | io_tlb_nslabs = SLABS_PER_PAGE << order; |
563aaf06 | 285 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
0b9afede AW |
286 | |
287 | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | |
ff7204a7 AD |
288 | vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, |
289 | order); | |
290 | if (vstart) | |
0b9afede AW |
291 | break; |
292 | order--; | |
293 | } | |
294 | ||
ff7204a7 | 295 | if (!vstart) { |
74838b75 KRW |
296 | io_tlb_nslabs = req_nslabs; |
297 | return -ENOMEM; | |
298 | } | |
563aaf06 | 299 | if (order != get_order(bytes)) { |
0b9afede AW |
300 | printk(KERN_WARNING "Warning: only able to allocate %ld MB " |
301 | "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | |
302 | io_tlb_nslabs = SLABS_PER_PAGE << order; | |
303 | } | |
ff7204a7 | 304 | rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); |
74838b75 | 305 | if (rc) |
ff7204a7 | 306 | free_pages((unsigned long)vstart, order); |
7453c549 | 307 | |
74838b75 KRW |
308 | return rc; |
309 | } | |
310 | ||
311 | int | |
312 | swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) | |
313 | { | |
314 | unsigned long i, bytes; | |
ee3f6ba8 | 315 | unsigned char *v_overflow_buffer; |
74838b75 KRW |
316 | |
317 | bytes = nslabs << IO_TLB_SHIFT; | |
318 | ||
319 | io_tlb_nslabs = nslabs; | |
ff7204a7 AD |
320 | io_tlb_start = virt_to_phys(tlb); |
321 | io_tlb_end = io_tlb_start + bytes; | |
74838b75 | 322 | |
ff7204a7 | 323 | memset(tlb, 0, bytes); |
0b9afede | 324 | |
ee3f6ba8 AD |
325 | /* |
326 | * Get the overflow emergency buffer | |
327 | */ | |
328 | v_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | |
329 | get_order(io_tlb_overflow)); | |
330 | if (!v_overflow_buffer) | |
331 | goto cleanup2; | |
332 | ||
333 | io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer); | |
334 | ||
0b9afede AW |
335 | /* |
336 | * Allocate and initialize the free list array. This array is used | |
337 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
338 | * between io_tlb_start and io_tlb_end. | |
339 | */ | |
340 | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | |
341 | get_order(io_tlb_nslabs * sizeof(int))); | |
342 | if (!io_tlb_list) | |
ee3f6ba8 | 343 | goto cleanup3; |
0b9afede | 344 | |
bc40ac66 BB |
345 | io_tlb_orig_addr = (phys_addr_t *) |
346 | __get_free_pages(GFP_KERNEL, | |
347 | get_order(io_tlb_nslabs * | |
348 | sizeof(phys_addr_t))); | |
0b9afede | 349 | if (!io_tlb_orig_addr) |
ee3f6ba8 | 350 | goto cleanup4; |
0b9afede | 351 | |
8e0629c1 JB |
352 | for (i = 0; i < io_tlb_nslabs; i++) { |
353 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | |
354 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | |
355 | } | |
356 | io_tlb_index = 0; | |
0b9afede | 357 | |
ad32e8cb | 358 | swiotlb_print_info(); |
0b9afede | 359 | |
5740afdb FT |
360 | late_alloc = 1; |
361 | ||
7453c549 KRW |
362 | swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); |
363 | ||
0b9afede AW |
364 | return 0; |
365 | ||
366 | cleanup4: | |
25667d67 TL |
367 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * |
368 | sizeof(int))); | |
0b9afede | 369 | io_tlb_list = NULL; |
ee3f6ba8 AD |
370 | cleanup3: |
371 | free_pages((unsigned long)v_overflow_buffer, | |
372 | get_order(io_tlb_overflow)); | |
373 | io_tlb_overflow_buffer = 0; | |
0b9afede | 374 | cleanup2: |
c40dba06 | 375 | io_tlb_end = 0; |
ff7204a7 | 376 | io_tlb_start = 0; |
74838b75 | 377 | io_tlb_nslabs = 0; |
7453c549 | 378 | max_segment = 0; |
0b9afede AW |
379 | return -ENOMEM; |
380 | } | |
381 | ||
5740afdb FT |
382 | void __init swiotlb_free(void) |
383 | { | |
ee3f6ba8 | 384 | if (!io_tlb_orig_addr) |
5740afdb FT |
385 | return; |
386 | ||
387 | if (late_alloc) { | |
ee3f6ba8 | 388 | free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer), |
5740afdb FT |
389 | get_order(io_tlb_overflow)); |
390 | free_pages((unsigned long)io_tlb_orig_addr, | |
391 | get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | |
392 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | |
393 | sizeof(int))); | |
ff7204a7 | 394 | free_pages((unsigned long)phys_to_virt(io_tlb_start), |
5740afdb FT |
395 | get_order(io_tlb_nslabs << IO_TLB_SHIFT)); |
396 | } else { | |
457ff1de SS |
397 | memblock_free_late(io_tlb_overflow_buffer, |
398 | PAGE_ALIGN(io_tlb_overflow)); | |
399 | memblock_free_late(__pa(io_tlb_orig_addr), | |
400 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); | |
401 | memblock_free_late(__pa(io_tlb_list), | |
402 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); | |
403 | memblock_free_late(io_tlb_start, | |
404 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | |
5740afdb | 405 | } |
f21ffe9f | 406 | io_tlb_nslabs = 0; |
7453c549 | 407 | max_segment = 0; |
5740afdb FT |
408 | } |
409 | ||
9c5a3621 | 410 | int is_swiotlb_buffer(phys_addr_t paddr) |
640aebfe | 411 | { |
ff7204a7 | 412 | return paddr >= io_tlb_start && paddr < io_tlb_end; |
640aebfe FT |
413 | } |
414 | ||
fb05a379 BB |
415 | /* |
416 | * Bounce: copy the swiotlb buffer back to the original dma location | |
417 | */ | |
af51a9f1 AD |
418 | static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, |
419 | size_t size, enum dma_data_direction dir) | |
fb05a379 | 420 | { |
af51a9f1 AD |
421 | unsigned long pfn = PFN_DOWN(orig_addr); |
422 | unsigned char *vaddr = phys_to_virt(tlb_addr); | |
fb05a379 BB |
423 | |
424 | if (PageHighMem(pfn_to_page(pfn))) { | |
425 | /* The buffer does not have a mapping. Map it in and copy */ | |
af51a9f1 | 426 | unsigned int offset = orig_addr & ~PAGE_MASK; |
fb05a379 BB |
427 | char *buffer; |
428 | unsigned int sz = 0; | |
429 | unsigned long flags; | |
430 | ||
431 | while (size) { | |
67131ad0 | 432 | sz = min_t(size_t, PAGE_SIZE - offset, size); |
fb05a379 BB |
433 | |
434 | local_irq_save(flags); | |
c3eede8e | 435 | buffer = kmap_atomic(pfn_to_page(pfn)); |
fb05a379 | 436 | if (dir == DMA_TO_DEVICE) |
af51a9f1 | 437 | memcpy(vaddr, buffer + offset, sz); |
ef9b1893 | 438 | else |
af51a9f1 | 439 | memcpy(buffer + offset, vaddr, sz); |
c3eede8e | 440 | kunmap_atomic(buffer); |
ef9b1893 | 441 | local_irq_restore(flags); |
fb05a379 BB |
442 | |
443 | size -= sz; | |
444 | pfn++; | |
af51a9f1 | 445 | vaddr += sz; |
fb05a379 | 446 | offset = 0; |
ef9b1893 | 447 | } |
af51a9f1 AD |
448 | } else if (dir == DMA_TO_DEVICE) { |
449 | memcpy(vaddr, phys_to_virt(orig_addr), size); | |
ef9b1893 | 450 | } else { |
af51a9f1 | 451 | memcpy(phys_to_virt(orig_addr), vaddr, size); |
ef9b1893 | 452 | } |
1b548f66 JF |
453 | } |
454 | ||
e05ed4d1 AD |
455 | phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, |
456 | dma_addr_t tbl_dma_addr, | |
457 | phys_addr_t orig_addr, size_t size, | |
0443fa00 AD |
458 | enum dma_data_direction dir, |
459 | unsigned long attrs) | |
1da177e4 LT |
460 | { |
461 | unsigned long flags; | |
e05ed4d1 | 462 | phys_addr_t tlb_addr; |
1da177e4 LT |
463 | unsigned int nslots, stride, index, wrap; |
464 | int i; | |
681cc5cd FT |
465 | unsigned long mask; |
466 | unsigned long offset_slots; | |
467 | unsigned long max_slots; | |
468 | ||
ac2cbab2 YL |
469 | if (no_iotlb_memory) |
470 | panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); | |
471 | ||
681cc5cd | 472 | mask = dma_get_seg_boundary(hwdev); |
681cc5cd | 473 | |
eb605a57 FT |
474 | tbl_dma_addr &= mask; |
475 | ||
476 | offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
a5ddde4a IC |
477 | |
478 | /* | |
479 | * Carefully handle integer overflow which can occur when mask == ~0UL. | |
480 | */ | |
b15a3891 JB |
481 | max_slots = mask + 1 |
482 | ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT | |
483 | : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); | |
1da177e4 LT |
484 | |
485 | /* | |
602d9858 NY |
486 | * For mappings greater than or equal to a page, we limit the stride |
487 | * (and hence alignment) to a page size. | |
1da177e4 LT |
488 | */ |
489 | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
602d9858 | 490 | if (size >= PAGE_SIZE) |
1da177e4 LT |
491 | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); |
492 | else | |
493 | stride = 1; | |
494 | ||
34814545 | 495 | BUG_ON(!nslots); |
1da177e4 LT |
496 | |
497 | /* | |
498 | * Find suitable number of IO TLB entries size that will fit this | |
499 | * request and allocate a buffer from that IO TLB pool. | |
500 | */ | |
501 | spin_lock_irqsave(&io_tlb_lock, flags); | |
a7133a15 AM |
502 | index = ALIGN(io_tlb_index, stride); |
503 | if (index >= io_tlb_nslabs) | |
504 | index = 0; | |
505 | wrap = index; | |
506 | ||
507 | do { | |
a8522509 FT |
508 | while (iommu_is_span_boundary(index, nslots, offset_slots, |
509 | max_slots)) { | |
b15a3891 JB |
510 | index += stride; |
511 | if (index >= io_tlb_nslabs) | |
512 | index = 0; | |
a7133a15 AM |
513 | if (index == wrap) |
514 | goto not_found; | |
515 | } | |
516 | ||
517 | /* | |
518 | * If we find a slot that indicates we have 'nslots' number of | |
519 | * contiguous buffers, we allocate the buffers from that slot | |
520 | * and mark the entries as '0' indicating unavailable. | |
521 | */ | |
522 | if (io_tlb_list[index] >= nslots) { | |
523 | int count = 0; | |
524 | ||
525 | for (i = index; i < (int) (index + nslots); i++) | |
526 | io_tlb_list[i] = 0; | |
527 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) | |
528 | io_tlb_list[i] = ++count; | |
e05ed4d1 | 529 | tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); |
1da177e4 | 530 | |
a7133a15 AM |
531 | /* |
532 | * Update the indices to avoid searching in the next | |
533 | * round. | |
534 | */ | |
535 | io_tlb_index = ((index + nslots) < io_tlb_nslabs | |
536 | ? (index + nslots) : 0); | |
537 | ||
538 | goto found; | |
539 | } | |
540 | index += stride; | |
541 | if (index >= io_tlb_nslabs) | |
542 | index = 0; | |
543 | } while (index != wrap); | |
544 | ||
545 | not_found: | |
546 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
0cb637bf KRW |
547 | if (printk_ratelimit()) |
548 | dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); | |
e05ed4d1 | 549 | return SWIOTLB_MAP_ERROR; |
a7133a15 | 550 | found: |
1da177e4 LT |
551 | spin_unlock_irqrestore(&io_tlb_lock, flags); |
552 | ||
553 | /* | |
554 | * Save away the mapping from the original address to the DMA address. | |
555 | * This is needed when we sync the memory. Then we sync the buffer if | |
556 | * needed. | |
557 | */ | |
bc40ac66 | 558 | for (i = 0; i < nslots; i++) |
e05ed4d1 | 559 | io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); |
0443fa00 AD |
560 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
561 | (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
af51a9f1 | 562 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); |
1da177e4 | 563 | |
e05ed4d1 | 564 | return tlb_addr; |
1da177e4 | 565 | } |
d7ef1533 | 566 | EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single); |
1da177e4 | 567 | |
eb605a57 FT |
568 | /* |
569 | * Allocates bounce buffer and returns its kernel virtual address. | |
570 | */ | |
571 | ||
023600f1 AC |
572 | static phys_addr_t |
573 | map_single(struct device *hwdev, phys_addr_t phys, size_t size, | |
0443fa00 | 574 | enum dma_data_direction dir, unsigned long attrs) |
eb605a57 | 575 | { |
fff5d992 GU |
576 | dma_addr_t start_dma_addr; |
577 | ||
578 | if (swiotlb_force == SWIOTLB_NO_FORCE) { | |
579 | dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n", | |
580 | &phys); | |
581 | return SWIOTLB_MAP_ERROR; | |
582 | } | |
eb605a57 | 583 | |
fff5d992 | 584 | start_dma_addr = phys_to_dma(hwdev, io_tlb_start); |
0443fa00 AD |
585 | return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, |
586 | dir, attrs); | |
eb605a57 FT |
587 | } |
588 | ||
1da177e4 LT |
589 | /* |
590 | * dma_addr is the kernel virtual address of the bounce buffer to unmap. | |
591 | */ | |
61ca08c3 | 592 | void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, |
0443fa00 AD |
593 | size_t size, enum dma_data_direction dir, |
594 | unsigned long attrs) | |
1da177e4 LT |
595 | { |
596 | unsigned long flags; | |
597 | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
61ca08c3 AD |
598 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; |
599 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | |
1da177e4 LT |
600 | |
601 | /* | |
602 | * First, sync the memory before unmapping the entry | |
603 | */ | |
8e0629c1 | 604 | if (orig_addr != INVALID_PHYS_ADDR && |
0443fa00 | 605 | !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
8e0629c1 | 606 | ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) |
af51a9f1 | 607 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); |
1da177e4 LT |
608 | |
609 | /* | |
610 | * Return the buffer to the free list by setting the corresponding | |
af901ca1 | 611 | * entries to indicate the number of contiguous entries available. |
1da177e4 LT |
612 | * While returning the entries to the free list, we merge the entries |
613 | * with slots below and above the pool being returned. | |
614 | */ | |
615 | spin_lock_irqsave(&io_tlb_lock, flags); | |
616 | { | |
617 | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | |
618 | io_tlb_list[index + nslots] : 0); | |
619 | /* | |
620 | * Step 1: return the slots to the free list, merging the | |
621 | * slots with superceeding slots | |
622 | */ | |
8e0629c1 | 623 | for (i = index + nslots - 1; i >= index; i--) { |
1da177e4 | 624 | io_tlb_list[i] = ++count; |
8e0629c1 JB |
625 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; |
626 | } | |
1da177e4 LT |
627 | /* |
628 | * Step 2: merge the returned slots with the preceding slots, | |
629 | * if available (non zero) | |
630 | */ | |
631 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | |
632 | io_tlb_list[i] = ++count; | |
633 | } | |
634 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
635 | } | |
d7ef1533 | 636 | EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single); |
1da177e4 | 637 | |
fbfda893 AD |
638 | void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, |
639 | size_t size, enum dma_data_direction dir, | |
640 | enum dma_sync_target target) | |
1da177e4 | 641 | { |
fbfda893 AD |
642 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; |
643 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | |
bc40ac66 | 644 | |
8e0629c1 JB |
645 | if (orig_addr == INVALID_PHYS_ADDR) |
646 | return; | |
fbfda893 | 647 | orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); |
df336d1c | 648 | |
de69e0f0 JL |
649 | switch (target) { |
650 | case SYNC_FOR_CPU: | |
651 | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
af51a9f1 | 652 | swiotlb_bounce(orig_addr, tlb_addr, |
fbfda893 | 653 | size, DMA_FROM_DEVICE); |
34814545 ES |
654 | else |
655 | BUG_ON(dir != DMA_TO_DEVICE); | |
de69e0f0 JL |
656 | break; |
657 | case SYNC_FOR_DEVICE: | |
658 | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
af51a9f1 | 659 | swiotlb_bounce(orig_addr, tlb_addr, |
fbfda893 | 660 | size, DMA_TO_DEVICE); |
34814545 ES |
661 | else |
662 | BUG_ON(dir != DMA_FROM_DEVICE); | |
de69e0f0 JL |
663 | break; |
664 | default: | |
1da177e4 | 665 | BUG(); |
de69e0f0 | 666 | } |
1da177e4 | 667 | } |
d7ef1533 | 668 | EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single); |
1da177e4 LT |
669 | |
670 | void * | |
671 | swiotlb_alloc_coherent(struct device *hwdev, size_t size, | |
06a54497 | 672 | dma_addr_t *dma_handle, gfp_t flags) |
1da177e4 | 673 | { |
563aaf06 | 674 | dma_addr_t dev_addr; |
1da177e4 LT |
675 | void *ret; |
676 | int order = get_order(size); | |
284901a9 | 677 | u64 dma_mask = DMA_BIT_MASK(32); |
1e74f300 FT |
678 | |
679 | if (hwdev && hwdev->coherent_dma_mask) | |
680 | dma_mask = hwdev->coherent_dma_mask; | |
1da177e4 | 681 | |
25667d67 | 682 | ret = (void *)__get_free_pages(flags, order); |
e05ed4d1 AD |
683 | if (ret) { |
684 | dev_addr = swiotlb_virt_to_bus(hwdev, ret); | |
685 | if (dev_addr + size - 1 > dma_mask) { | |
686 | /* | |
687 | * The allocated memory isn't reachable by the device. | |
688 | */ | |
689 | free_pages((unsigned long) ret, order); | |
690 | ret = NULL; | |
691 | } | |
1da177e4 LT |
692 | } |
693 | if (!ret) { | |
694 | /* | |
bfc5501f KRW |
695 | * We are either out of memory or the device can't DMA to |
696 | * GFP_DMA memory; fall back on map_single(), which | |
ceb5ac32 | 697 | * will grab memory from the lowest available address range. |
1da177e4 | 698 | */ |
0443fa00 AD |
699 | phys_addr_t paddr = map_single(hwdev, 0, size, |
700 | DMA_FROM_DEVICE, 0); | |
e05ed4d1 | 701 | if (paddr == SWIOTLB_MAP_ERROR) |
94cc81f9 | 702 | goto err_warn; |
1da177e4 | 703 | |
e05ed4d1 AD |
704 | ret = phys_to_virt(paddr); |
705 | dev_addr = phys_to_dma(hwdev, paddr); | |
1da177e4 | 706 | |
61ca08c3 AD |
707 | /* Confirm address can be DMA'd by device */ |
708 | if (dev_addr + size - 1 > dma_mask) { | |
709 | printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", | |
710 | (unsigned long long)dma_mask, | |
711 | (unsigned long long)dev_addr); | |
a2b89b59 | 712 | |
0443fa00 AD |
713 | /* |
714 | * DMA_TO_DEVICE to avoid memcpy in unmap_single. | |
715 | * The DMA_ATTR_SKIP_CPU_SYNC is optional. | |
716 | */ | |
61ca08c3 | 717 | swiotlb_tbl_unmap_single(hwdev, paddr, |
0443fa00 AD |
718 | size, DMA_TO_DEVICE, |
719 | DMA_ATTR_SKIP_CPU_SYNC); | |
94cc81f9 | 720 | goto err_warn; |
61ca08c3 | 721 | } |
1da177e4 | 722 | } |
e05ed4d1 | 723 | |
1da177e4 | 724 | *dma_handle = dev_addr; |
e05ed4d1 AD |
725 | memset(ret, 0, size); |
726 | ||
1da177e4 | 727 | return ret; |
94cc81f9 JR |
728 | |
729 | err_warn: | |
730 | pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n", | |
731 | dev_name(hwdev), size); | |
732 | dump_stack(); | |
733 | ||
734 | return NULL; | |
1da177e4 | 735 | } |
874d6a95 | 736 | EXPORT_SYMBOL(swiotlb_alloc_coherent); |
1da177e4 LT |
737 | |
738 | void | |
739 | swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | |
02ca646e | 740 | dma_addr_t dev_addr) |
1da177e4 | 741 | { |
862d196b | 742 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
02ca646e | 743 | |
aa24886e | 744 | WARN_ON(irqs_disabled()); |
02ca646e FT |
745 | if (!is_swiotlb_buffer(paddr)) |
746 | free_pages((unsigned long)vaddr, get_order(size)); | |
1da177e4 | 747 | else |
0443fa00 AD |
748 | /* |
749 | * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single. | |
750 | * DMA_ATTR_SKIP_CPU_SYNC is optional. | |
751 | */ | |
752 | swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE, | |
753 | DMA_ATTR_SKIP_CPU_SYNC); | |
1da177e4 | 754 | } |
874d6a95 | 755 | EXPORT_SYMBOL(swiotlb_free_coherent); |
1da177e4 LT |
756 | |
757 | static void | |
22d48269 KRW |
758 | swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, |
759 | int do_panic) | |
1da177e4 | 760 | { |
fff5d992 GU |
761 | if (swiotlb_force == SWIOTLB_NO_FORCE) |
762 | return; | |
763 | ||
1da177e4 LT |
764 | /* |
765 | * Ran out of IOMMU space for this operation. This is very bad. | |
766 | * Unfortunately the drivers cannot handle this operation properly. | |
17e5ad6c | 767 | * unless they check for dma_mapping_error (most don't) |
1da177e4 LT |
768 | * When the mapping is small enough return a static buffer to limit |
769 | * the damage, or panic when the transfer is too big. | |
770 | */ | |
0d2e1898 GU |
771 | dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n", |
772 | size); | |
1da177e4 | 773 | |
c7084b35 CD |
774 | if (size <= io_tlb_overflow || !do_panic) |
775 | return; | |
776 | ||
777 | if (dir == DMA_BIDIRECTIONAL) | |
778 | panic("DMA: Random memory could be DMA accessed\n"); | |
779 | if (dir == DMA_FROM_DEVICE) | |
780 | panic("DMA: Random memory could be DMA written\n"); | |
781 | if (dir == DMA_TO_DEVICE) | |
782 | panic("DMA: Random memory could be DMA read\n"); | |
1da177e4 LT |
783 | } |
784 | ||
785 | /* | |
786 | * Map a single buffer of the indicated size for DMA in streaming mode. The | |
17e5ad6c | 787 | * physical address to use is returned. |
1da177e4 LT |
788 | * |
789 | * Once the device is given the dma address, the device owns this memory until | |
ceb5ac32 | 790 | * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. |
1da177e4 | 791 | */ |
f98eee8e FT |
792 | dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, |
793 | unsigned long offset, size_t size, | |
794 | enum dma_data_direction dir, | |
00085f1e | 795 | unsigned long attrs) |
1da177e4 | 796 | { |
e05ed4d1 | 797 | phys_addr_t map, phys = page_to_phys(page) + offset; |
862d196b | 798 | dma_addr_t dev_addr = phys_to_dma(dev, phys); |
1da177e4 | 799 | |
34814545 | 800 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 801 | /* |
ceb5ac32 | 802 | * If the address happens to be in the device's DMA window, |
1da177e4 LT |
803 | * we can safely return the device addr and not worry about bounce |
804 | * buffering it. | |
805 | */ | |
ae7871be | 806 | if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE) |
1da177e4 LT |
807 | return dev_addr; |
808 | ||
2b2b614d ZK |
809 | trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); |
810 | ||
e05ed4d1 | 811 | /* Oh well, have to allocate and map a bounce buffer. */ |
0443fa00 | 812 | map = map_single(dev, phys, size, dir, attrs); |
e05ed4d1 | 813 | if (map == SWIOTLB_MAP_ERROR) { |
f98eee8e | 814 | swiotlb_full(dev, size, dir, 1); |
ee3f6ba8 | 815 | return phys_to_dma(dev, io_tlb_overflow_buffer); |
1da177e4 LT |
816 | } |
817 | ||
e05ed4d1 | 818 | dev_addr = phys_to_dma(dev, map); |
1da177e4 | 819 | |
e05ed4d1 | 820 | /* Ensure that the address returned is DMA'ble */ |
0443fa00 AD |
821 | if (dma_capable(dev, dev_addr, size)) |
822 | return dev_addr; | |
823 | ||
d29fa0cb AD |
824 | attrs |= DMA_ATTR_SKIP_CPU_SYNC; |
825 | swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); | |
1da177e4 | 826 | |
0443fa00 | 827 | return phys_to_dma(dev, io_tlb_overflow_buffer); |
1da177e4 | 828 | } |
f98eee8e | 829 | EXPORT_SYMBOL_GPL(swiotlb_map_page); |
1da177e4 | 830 | |
1da177e4 LT |
831 | /* |
832 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | |
ceb5ac32 | 833 | * match what was provided for in a previous swiotlb_map_page call. All |
1da177e4 LT |
834 | * other usages are undefined. |
835 | * | |
836 | * After this call, reads by the cpu to the buffer are guaranteed to see | |
837 | * whatever the device wrote there. | |
838 | */ | |
7fcebbd2 | 839 | static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, |
0443fa00 AD |
840 | size_t size, enum dma_data_direction dir, |
841 | unsigned long attrs) | |
1da177e4 | 842 | { |
862d196b | 843 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
1da177e4 | 844 | |
34814545 | 845 | BUG_ON(dir == DMA_NONE); |
7fcebbd2 | 846 | |
02ca646e | 847 | if (is_swiotlb_buffer(paddr)) { |
0443fa00 | 848 | swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); |
7fcebbd2 BB |
849 | return; |
850 | } | |
851 | ||
852 | if (dir != DMA_FROM_DEVICE) | |
853 | return; | |
854 | ||
02ca646e FT |
855 | /* |
856 | * phys_to_virt doesn't work with hihgmem page but we could | |
857 | * call dma_mark_clean() with hihgmem page here. However, we | |
858 | * are fine since dma_mark_clean() is null on POWERPC. We can | |
859 | * make dma_mark_clean() take a physical address if necessary. | |
860 | */ | |
861 | dma_mark_clean(phys_to_virt(paddr), size); | |
7fcebbd2 BB |
862 | } |
863 | ||
864 | void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | |
865 | size_t size, enum dma_data_direction dir, | |
00085f1e | 866 | unsigned long attrs) |
7fcebbd2 | 867 | { |
0443fa00 | 868 | unmap_single(hwdev, dev_addr, size, dir, attrs); |
1da177e4 | 869 | } |
f98eee8e | 870 | EXPORT_SYMBOL_GPL(swiotlb_unmap_page); |
874d6a95 | 871 | |
1da177e4 LT |
872 | /* |
873 | * Make physical memory consistent for a single streaming mode DMA translation | |
874 | * after a transfer. | |
875 | * | |
ceb5ac32 | 876 | * If you perform a swiotlb_map_page() but wish to interrogate the buffer |
17e5ad6c TL |
877 | * using the cpu, yet do not wish to teardown the dma mapping, you must |
878 | * call this function before doing so. At the next point you give the dma | |
1da177e4 LT |
879 | * address back to the card, you must first perform a |
880 | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | |
881 | */ | |
be6b0267 | 882 | static void |
8270f3f1 | 883 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, |
d7ef1533 KRW |
884 | size_t size, enum dma_data_direction dir, |
885 | enum dma_sync_target target) | |
1da177e4 | 886 | { |
862d196b | 887 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
1da177e4 | 888 | |
34814545 | 889 | BUG_ON(dir == DMA_NONE); |
380d6878 | 890 | |
02ca646e | 891 | if (is_swiotlb_buffer(paddr)) { |
fbfda893 | 892 | swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); |
380d6878 BB |
893 | return; |
894 | } | |
895 | ||
896 | if (dir != DMA_FROM_DEVICE) | |
897 | return; | |
898 | ||
02ca646e | 899 | dma_mark_clean(phys_to_virt(paddr), size); |
1da177e4 LT |
900 | } |
901 | ||
8270f3f1 JL |
902 | void |
903 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 904 | size_t size, enum dma_data_direction dir) |
8270f3f1 | 905 | { |
de69e0f0 | 906 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); |
8270f3f1 | 907 | } |
874d6a95 | 908 | EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); |
8270f3f1 | 909 | |
1da177e4 LT |
910 | void |
911 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 912 | size_t size, enum dma_data_direction dir) |
1da177e4 | 913 | { |
de69e0f0 | 914 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); |
1da177e4 | 915 | } |
874d6a95 | 916 | EXPORT_SYMBOL(swiotlb_sync_single_for_device); |
1da177e4 LT |
917 | |
918 | /* | |
919 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | |
ceb5ac32 | 920 | * This is the scatter-gather version of the above swiotlb_map_page |
1da177e4 LT |
921 | * interface. Here the scatter gather list elements are each tagged with the |
922 | * appropriate dma address and length. They are obtained via | |
923 | * sg_dma_{address,length}(SG). | |
924 | * | |
925 | * NOTE: An implementation may be able to use a smaller number of | |
926 | * DMA address/length pairs than there are SG table elements. | |
927 | * (for example via virtual mapping capabilities) | |
928 | * The routine returns the number of addr/length pairs actually | |
929 | * used, at most nents. | |
930 | * | |
ceb5ac32 | 931 | * Device ownership issues as mentioned above for swiotlb_map_page are the |
1da177e4 LT |
932 | * same here. |
933 | */ | |
934 | int | |
309df0c5 | 935 | swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, |
00085f1e | 936 | enum dma_data_direction dir, unsigned long attrs) |
1da177e4 | 937 | { |
dbfd49fe | 938 | struct scatterlist *sg; |
1da177e4 LT |
939 | int i; |
940 | ||
34814545 | 941 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 942 | |
dbfd49fe | 943 | for_each_sg(sgl, sg, nelems, i) { |
961d7d0e | 944 | phys_addr_t paddr = sg_phys(sg); |
862d196b | 945 | dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); |
bc40ac66 | 946 | |
ae7871be | 947 | if (swiotlb_force == SWIOTLB_FORCE || |
b9394647 | 948 | !dma_capable(hwdev, dev_addr, sg->length)) { |
e05ed4d1 | 949 | phys_addr_t map = map_single(hwdev, sg_phys(sg), |
0443fa00 | 950 | sg->length, dir, attrs); |
e05ed4d1 | 951 | if (map == SWIOTLB_MAP_ERROR) { |
1da177e4 LT |
952 | /* Don't panic here, we expect map_sg users |
953 | to do proper error handling. */ | |
954 | swiotlb_full(hwdev, sg->length, dir, 0); | |
d29fa0cb | 955 | attrs |= DMA_ATTR_SKIP_CPU_SYNC; |
309df0c5 AK |
956 | swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, |
957 | attrs); | |
4d86ec7a | 958 | sg_dma_len(sgl) = 0; |
1da177e4 LT |
959 | return 0; |
960 | } | |
e05ed4d1 | 961 | sg->dma_address = phys_to_dma(hwdev, map); |
1da177e4 LT |
962 | } else |
963 | sg->dma_address = dev_addr; | |
4d86ec7a | 964 | sg_dma_len(sg) = sg->length; |
1da177e4 LT |
965 | } |
966 | return nelems; | |
967 | } | |
309df0c5 AK |
968 | EXPORT_SYMBOL(swiotlb_map_sg_attrs); |
969 | ||
1da177e4 LT |
970 | /* |
971 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | |
ceb5ac32 | 972 | * concerning calls here are the same as for swiotlb_unmap_page() above. |
1da177e4 LT |
973 | */ |
974 | void | |
309df0c5 | 975 | swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, |
00085f1e KK |
976 | int nelems, enum dma_data_direction dir, |
977 | unsigned long attrs) | |
1da177e4 | 978 | { |
dbfd49fe | 979 | struct scatterlist *sg; |
1da177e4 LT |
980 | int i; |
981 | ||
34814545 | 982 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 983 | |
7fcebbd2 | 984 | for_each_sg(sgl, sg, nelems, i) |
0443fa00 AD |
985 | unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, |
986 | attrs); | |
1da177e4 | 987 | } |
309df0c5 AK |
988 | EXPORT_SYMBOL(swiotlb_unmap_sg_attrs); |
989 | ||
1da177e4 LT |
990 | /* |
991 | * Make physical memory consistent for a set of streaming mode DMA translations | |
992 | * after a transfer. | |
993 | * | |
994 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | |
995 | * and usage. | |
996 | */ | |
be6b0267 | 997 | static void |
dbfd49fe | 998 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, |
d7ef1533 KRW |
999 | int nelems, enum dma_data_direction dir, |
1000 | enum dma_sync_target target) | |
1da177e4 | 1001 | { |
dbfd49fe | 1002 | struct scatterlist *sg; |
1da177e4 LT |
1003 | int i; |
1004 | ||
380d6878 BB |
1005 | for_each_sg(sgl, sg, nelems, i) |
1006 | swiotlb_sync_single(hwdev, sg->dma_address, | |
4d86ec7a | 1007 | sg_dma_len(sg), dir, target); |
1da177e4 LT |
1008 | } |
1009 | ||
8270f3f1 JL |
1010 | void |
1011 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 1012 | int nelems, enum dma_data_direction dir) |
8270f3f1 | 1013 | { |
de69e0f0 | 1014 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); |
8270f3f1 | 1015 | } |
874d6a95 | 1016 | EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); |
8270f3f1 | 1017 | |
1da177e4 LT |
1018 | void |
1019 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 1020 | int nelems, enum dma_data_direction dir) |
1da177e4 | 1021 | { |
de69e0f0 | 1022 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); |
1da177e4 | 1023 | } |
874d6a95 | 1024 | EXPORT_SYMBOL(swiotlb_sync_sg_for_device); |
1da177e4 LT |
1025 | |
1026 | int | |
8d8bb39b | 1027 | swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) |
1da177e4 | 1028 | { |
ee3f6ba8 | 1029 | return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer)); |
1da177e4 | 1030 | } |
874d6a95 | 1031 | EXPORT_SYMBOL(swiotlb_dma_mapping_error); |
1da177e4 LT |
1032 | |
1033 | /* | |
17e5ad6c | 1034 | * Return whether the given device DMA address mask can be supported |
1da177e4 | 1035 | * properly. For example, if your device can only drive the low 24-bits |
17e5ad6c | 1036 | * during bus mastering, then you would pass 0x00ffffff as the mask to |
1da177e4 LT |
1037 | * this function. |
1038 | */ | |
1039 | int | |
563aaf06 | 1040 | swiotlb_dma_supported(struct device *hwdev, u64 mask) |
1da177e4 | 1041 | { |
c40dba06 | 1042 | return phys_to_dma(hwdev, io_tlb_end - 1) <= mask; |
1da177e4 | 1043 | } |
1da177e4 | 1044 | EXPORT_SYMBOL(swiotlb_dma_supported); |