]> git.proxmox.com Git - rustc.git/blame - library/alloc/src/collections/binary_heap.rs
New upstream version 1.49.0~beta.4+dfsg1
[rustc.git] / library / alloc / src / collections / binary_heap.rs
CommitLineData
1a4d82fc
JJ
1//! A priority queue implemented with a binary heap.
2//!
3dfed10e
XL
3//! Insertion and popping the largest element have *O*(log(*n*)) time complexity.
4//! Checking the largest element is *O*(1). Converting a vector to a binary heap
5//! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be
6//! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* \* log(*n*))
ba9703b0 7//! in-place heapsort.
1a4d82fc
JJ
8//!
9//! # Examples
10//!
11//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
12//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
cc61c64b 13//! It shows how to use [`BinaryHeap`] with custom types.
1a4d82fc 14//!
3dfed10e
XL
15//! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
16//! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem
17//! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph
1a4d82fc
JJ
18//!
19//! ```
20//! use std::cmp::Ordering;
21//! use std::collections::BinaryHeap;
1a4d82fc 22//!
c34b1796 23//! #[derive(Copy, Clone, Eq, PartialEq)]
1a4d82fc 24//! struct State {
85aaf69f
SL
25//! cost: usize,
26//! position: usize,
1a4d82fc
JJ
27//! }
28//!
29//! // The priority queue depends on `Ord`.
30//! // Explicitly implement the trait so the queue becomes a min-heap
31//! // instead of a max-heap.
32//! impl Ord for State {
1b1a35ee 33//! fn cmp(&self, other: &Self) -> Ordering {
7cac9316
XL
34//! // Notice that the we flip the ordering on costs.
35//! // In case of a tie we compare positions - this step is necessary
36//! // to make implementations of `PartialEq` and `Ord` consistent.
1a4d82fc 37//! other.cost.cmp(&self.cost)
7cac9316 38//! .then_with(|| self.position.cmp(&other.position))
1a4d82fc
JJ
39//! }
40//! }
41//!
42//! // `PartialOrd` needs to be implemented as well.
43//! impl PartialOrd for State {
1b1a35ee 44//! fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1a4d82fc
JJ
45//! Some(self.cmp(other))
46//! }
47//! }
48//!
85aaf69f 49//! // Each node is represented as an `usize`, for a shorter implementation.
1a4d82fc 50//! struct Edge {
85aaf69f
SL
51//! node: usize,
52//! cost: usize,
1a4d82fc
JJ
53//! }
54//!
55//! // Dijkstra's shortest path algorithm.
56//!
57//! // Start at `start` and use `dist` to track the current shortest distance
58//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
85aaf69f 59//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
1a4d82fc 60//! // for a simpler implementation.
9cc50fc6 61//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
1a4d82fc 62//! // dist[node] = current shortest distance from `start` to `node`
85aaf69f 63//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
1a4d82fc
JJ
64//!
65//! let mut heap = BinaryHeap::new();
66//!
67//! // We're at `start`, with a zero cost
68//! dist[start] = 0;
69//! heap.push(State { cost: 0, position: start });
70//!
71//! // Examine the frontier with lower cost nodes first (min-heap)
72//! while let Some(State { cost, position }) = heap.pop() {
73//! // Alternatively we could have continued to find all shortest paths
9cc50fc6 74//! if position == goal { return Some(cost); }
1a4d82fc
JJ
75//!
76//! // Important as we may have already found a better way
77//! if cost > dist[position] { continue; }
78//!
79//! // For each node we can reach, see if we can find a way with
80//! // a lower cost going through this node
62682a34 81//! for edge in &adj_list[position] {
1a4d82fc
JJ
82//! let next = State { cost: cost + edge.cost, position: edge.node };
83//!
84//! // If so, add it to the frontier and continue
85//! if next.cost < dist[next.position] {
86//! heap.push(next);
87//! // Relaxation, we have now found a better way
88//! dist[next.position] = next.cost;
89//! }
90//! }
91//! }
92//!
93//! // Goal not reachable
9cc50fc6 94//! None
1a4d82fc
JJ
95//! }
96//!
97//! fn main() {
98//! // This is the directed graph we're going to use.
99//! // The node numbers correspond to the different states,
100//! // and the edge weights symbolize the cost of moving
101//! // from one node to another.
102//! // Note that the edges are one-way.
103//! //
104//! // 7
105//! // +-----------------+
106//! // | |
e9174d1e 107//! // v 1 2 | 2
1a4d82fc
JJ
108//! // 0 -----> 1 -----> 3 ---> 4
109//! // | ^ ^ ^
110//! // | | 1 | |
111//! // | | | 3 | 1
112//! // +------> 2 -------+ |
113//! // 10 | |
114//! // +---------------+
115//! //
116//! // The graph is represented as an adjacency list where each index,
117//! // corresponding to a node value, has a list of outgoing edges.
118//! // Chosen for its efficiency.
119//! let graph = vec![
120//! // Node 0
121//! vec![Edge { node: 2, cost: 10 },
122//! Edge { node: 1, cost: 1 }],
123//! // Node 1
124//! vec![Edge { node: 3, cost: 2 }],
125//! // Node 2
126//! vec![Edge { node: 1, cost: 1 },
127//! Edge { node: 3, cost: 3 },
128//! Edge { node: 4, cost: 1 }],
129//! // Node 3
130//! vec![Edge { node: 0, cost: 7 },
131//! Edge { node: 4, cost: 2 }],
132//! // Node 4
133//! vec![]];
134//!
9cc50fc6
SL
135//! assert_eq!(shortest_path(&graph, 0, 1), Some(1));
136//! assert_eq!(shortest_path(&graph, 0, 3), Some(3));
137//! assert_eq!(shortest_path(&graph, 3, 0), Some(7));
138//! assert_eq!(shortest_path(&graph, 0, 4), Some(5));
139//! assert_eq!(shortest_path(&graph, 4, 0), None);
1a4d82fc
JJ
140//! }
141//! ```
142
143#![allow(missing_docs)]
85aaf69f 144#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 145
dfeec247 146use core::fmt;
1b1a35ee
XL
147use core::iter::{FromIterator, FusedIterator, InPlaceIterable, SourceIter, TrustedLen};
148use core::mem::{self, swap, ManuallyDrop};
dfeec247 149use core::ops::{Deref, DerefMut};
1a4d82fc
JJ
150use core::ptr;
151
9fa01778 152use crate::slice;
1b1a35ee 153use crate::vec::{self, AsIntoIter, Vec};
1a4d82fc 154
a7813a04
XL
155use super::SpecExtend;
156
1a4d82fc
JJ
157/// A priority queue implemented with a binary heap.
158///
159/// This will be a max-heap.
c34b1796
AL
160///
161/// It is a logic error for an item to be modified in such a way that the
162/// item's ordering relative to any other item, as determined by the `Ord`
163/// trait, changes while it is in the heap. This is normally only possible
164/// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
54a0048b
SL
165///
166/// # Examples
167///
168/// ```
169/// use std::collections::BinaryHeap;
170///
171/// // Type inference lets us omit an explicit type signature (which
172/// // would be `BinaryHeap<i32>` in this example).
173/// let mut heap = BinaryHeap::new();
174///
175/// // We can use peek to look at the next item in the heap. In this case,
176/// // there's no items in there yet so we get None.
177/// assert_eq!(heap.peek(), None);
178///
179/// // Let's add some scores...
180/// heap.push(1);
181/// heap.push(5);
182/// heap.push(2);
183///
184/// // Now peek shows the most important item in the heap.
185/// assert_eq!(heap.peek(), Some(&5));
186///
187/// // We can check the length of a heap.
188/// assert_eq!(heap.len(), 3);
189///
190/// // We can iterate over the items in the heap, although they are returned in
191/// // a random order.
192/// for x in &heap {
193/// println!("{}", x);
194/// }
195///
196/// // If we instead pop these scores, they should come back in order.
197/// assert_eq!(heap.pop(), Some(5));
198/// assert_eq!(heap.pop(), Some(2));
199/// assert_eq!(heap.pop(), Some(1));
200/// assert_eq!(heap.pop(), None);
201///
202/// // We can clear the heap of any remaining items.
203/// heap.clear();
204///
205/// // The heap should now be empty.
206/// assert!(heap.is_empty())
207/// ```
48663c56
XL
208///
209/// ## Min-heap
210///
211/// Either `std::cmp::Reverse` or a custom `Ord` implementation can be used to
212/// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest
213/// value instead of the greatest one.
214///
215/// ```
216/// use std::collections::BinaryHeap;
217/// use std::cmp::Reverse;
218///
219/// let mut heap = BinaryHeap::new();
220///
221/// // Wrap values in `Reverse`
222/// heap.push(Reverse(1));
223/// heap.push(Reverse(5));
224/// heap.push(Reverse(2));
225///
226/// // If we pop these scores now, they should come back in the reverse order.
227/// assert_eq!(heap.pop(), Some(Reverse(1)));
228/// assert_eq!(heap.pop(), Some(Reverse(2)));
229/// assert_eq!(heap.pop(), Some(Reverse(5)));
230/// assert_eq!(heap.pop(), None);
231/// ```
232///
233/// # Time complexity
234///
ba9703b0
XL
235/// | [push] | [pop] | [peek]/[peek\_mut] |
236/// |--------|-----------|--------------------|
3dfed10e 237/// | O(1)~ | *O*(log(*n*)) | *O*(1) |
48663c56
XL
238///
239/// The value for `push` is an expected cost; the method documentation gives a
240/// more detailed analysis.
241///
1b1a35ee
XL
242/// [push]: BinaryHeap::push
243/// [pop]: BinaryHeap::pop
244/// [peek]: BinaryHeap::peek
245/// [peek\_mut]: BinaryHeap::peek_mut
85aaf69f 246#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
247pub struct BinaryHeap<T> {
248 data: Vec<T>,
249}
250
cc61c64b
XL
251/// Structure wrapping a mutable reference to the greatest item on a
252/// `BinaryHeap`.
3157f602 253///
cc61c64b
XL
254/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See
255/// its documentation for more.
256///
1b1a35ee 257/// [`peek_mut`]: BinaryHeap::peek_mut
5bcae85e 258#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
3157f602 259pub struct PeekMut<'a, T: 'a + Ord> {
32a655c1
SL
260 heap: &'a mut BinaryHeap<T>,
261 sift: bool,
3157f602
XL
262}
263
8bb4bdeb 264#[stable(feature = "collection_debug", since = "1.17.0")]
9fa01778
XL
265impl<T: Ord + fmt::Debug> fmt::Debug for PeekMut<'_, T> {
266 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
dfeec247 267 f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish()
8bb4bdeb
XL
268 }
269}
270
5bcae85e 271#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
9fa01778 272impl<T: Ord> Drop for PeekMut<'_, T> {
3157f602 273 fn drop(&mut self) {
32a655c1
SL
274 if self.sift {
275 self.heap.sift_down(0);
276 }
3157f602
XL
277 }
278}
279
5bcae85e 280#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
9fa01778 281impl<T: Ord> Deref for PeekMut<'_, T> {
3157f602
XL
282 type Target = T;
283 fn deref(&self) -> &T {
9fa01778
XL
284 debug_assert!(!self.heap.is_empty());
285 // SAFE: PeekMut is only instantiated for non-empty heaps
286 unsafe { self.heap.data.get_unchecked(0) }
3157f602
XL
287 }
288}
289
5bcae85e 290#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
9fa01778 291impl<T: Ord> DerefMut for PeekMut<'_, T> {
3157f602 292 fn deref_mut(&mut self) -> &mut T {
9fa01778 293 debug_assert!(!self.heap.is_empty());
1b1a35ee 294 self.sift = true;
9fa01778
XL
295 // SAFE: PeekMut is only instantiated for non-empty heaps
296 unsafe { self.heap.data.get_unchecked_mut(0) }
3157f602
XL
297 }
298}
299
32a655c1
SL
300impl<'a, T: Ord> PeekMut<'a, T> {
301 /// Removes the peeked value from the heap and returns it.
cc61c64b 302 #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")]
32a655c1
SL
303 pub fn pop(mut this: PeekMut<'a, T>) -> T {
304 let value = this.heap.pop().unwrap();
305 this.sift = false;
306 value
307 }
308}
309
b039eaaf
SL
310#[stable(feature = "rust1", since = "1.0.0")]
311impl<T: Clone> Clone for BinaryHeap<T> {
312 fn clone(&self) -> Self {
313 BinaryHeap { data: self.data.clone() }
314 }
315
316 fn clone_from(&mut self, source: &Self) {
317 self.data.clone_from(&source.data);
318 }
319}
320
85aaf69f 321#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 322impl<T: Ord> Default for BinaryHeap<T> {
9e0c209e 323 /// Creates an empty `BinaryHeap<T>`.
1a4d82fc 324 #[inline]
92a42be0
SL
325 fn default() -> BinaryHeap<T> {
326 BinaryHeap::new()
327 }
1a4d82fc
JJ
328}
329
e9174d1e 330#[stable(feature = "binaryheap_debug", since = "1.4.0")]
9fa01778
XL
331impl<T: fmt::Debug> fmt::Debug for BinaryHeap<T> {
332 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
e9174d1e
SL
333 f.debug_list().entries(self.iter()).finish()
334 }
335}
336
1a4d82fc
JJ
337impl<T: Ord> BinaryHeap<T> {
338 /// Creates an empty `BinaryHeap` as a max-heap.
339 ///
340 /// # Examples
341 ///
54a0048b
SL
342 /// Basic usage:
343 ///
1a4d82fc
JJ
344 /// ```
345 /// use std::collections::BinaryHeap;
346 /// let mut heap = BinaryHeap::new();
85aaf69f 347 /// heap.push(4);
1a4d82fc 348 /// ```
85aaf69f 349 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
350 pub fn new() -> BinaryHeap<T> {
351 BinaryHeap { data: vec![] }
352 }
1a4d82fc
JJ
353
354 /// Creates an empty `BinaryHeap` with a specific capacity.
355 /// This preallocates enough memory for `capacity` elements,
356 /// so that the `BinaryHeap` does not have to be reallocated
357 /// until it contains at least that many values.
358 ///
359 /// # Examples
360 ///
54a0048b
SL
361 /// Basic usage:
362 ///
1a4d82fc
JJ
363 /// ```
364 /// use std::collections::BinaryHeap;
365 /// let mut heap = BinaryHeap::with_capacity(10);
85aaf69f 366 /// heap.push(4);
1a4d82fc 367 /// ```
85aaf69f
SL
368 #[stable(feature = "rust1", since = "1.0.0")]
369 pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
1a4d82fc
JJ
370 BinaryHeap { data: Vec::with_capacity(capacity) }
371 }
372
3157f602
XL
373 /// Returns a mutable reference to the greatest item in the binary heap, or
374 /// `None` if it is empty.
375 ///
376 /// Note: If the `PeekMut` value is leaked, the heap may be in an
377 /// inconsistent state.
378 ///
379 /// # Examples
380 ///
381 /// Basic usage:
382 ///
383 /// ```
3157f602
XL
384 /// use std::collections::BinaryHeap;
385 /// let mut heap = BinaryHeap::new();
386 /// assert!(heap.peek_mut().is_none());
387 ///
388 /// heap.push(1);
389 /// heap.push(5);
390 /// heap.push(2);
391 /// {
392 /// let mut val = heap.peek_mut().unwrap();
393 /// *val = 0;
394 /// }
395 /// assert_eq!(heap.peek(), Some(&2));
396 /// ```
48663c56
XL
397 ///
398 /// # Time complexity
399 ///
1b1a35ee
XL
400 /// If the item is modified then the worst case time complexity is *O*(log(*n*)),
401 /// otherwise it's *O*(1).
5bcae85e 402 #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
9fa01778 403 pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>> {
1b1a35ee 404 if self.is_empty() { None } else { Some(PeekMut { heap: self, sift: false }) }
3157f602
XL
405 }
406
1a4d82fc
JJ
407 /// Removes the greatest item from the binary heap and returns it, or `None` if it
408 /// is empty.
409 ///
410 /// # Examples
411 ///
54a0048b
SL
412 /// Basic usage:
413 ///
1a4d82fc
JJ
414 /// ```
415 /// use std::collections::BinaryHeap;
b039eaaf 416 /// let mut heap = BinaryHeap::from(vec![1, 3]);
1a4d82fc
JJ
417 ///
418 /// assert_eq!(heap.pop(), Some(3));
419 /// assert_eq!(heap.pop(), Some(1));
420 /// assert_eq!(heap.pop(), None);
421 /// ```
48663c56
XL
422 ///
423 /// # Time complexity
424 ///
3dfed10e 425 /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)).
85aaf69f 426 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
427 pub fn pop(&mut self) -> Option<T> {
428 self.data.pop().map(|mut item| {
429 if !self.is_empty() {
430 swap(&mut item, &mut self.data[0]);
9cc50fc6 431 self.sift_down_to_bottom(0);
1a4d82fc
JJ
432 }
433 item
434 })
435 }
436
437 /// Pushes an item onto the binary heap.
438 ///
439 /// # Examples
440 ///
54a0048b
SL
441 /// Basic usage:
442 ///
1a4d82fc
JJ
443 /// ```
444 /// use std::collections::BinaryHeap;
445 /// let mut heap = BinaryHeap::new();
85aaf69f 446 /// heap.push(3);
1a4d82fc
JJ
447 /// heap.push(5);
448 /// heap.push(1);
449 ///
450 /// assert_eq!(heap.len(), 3);
451 /// assert_eq!(heap.peek(), Some(&5));
452 /// ```
48663c56
XL
453 ///
454 /// # Time complexity
455 ///
456 /// The expected cost of `push`, averaged over every possible ordering of
457 /// the elements being pushed, and over a sufficiently large number of
3dfed10e 458 /// pushes, is *O*(1). This is the most meaningful cost metric when pushing
48663c56
XL
459 /// elements that are *not* already in any sorted pattern.
460 ///
461 /// The time complexity degrades if elements are pushed in predominantly
462 /// ascending order. In the worst case, elements are pushed in ascending
3dfed10e 463 /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap
48663c56
XL
464 /// containing *n* elements.
465 ///
3dfed10e 466 /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case
48663c56
XL
467 /// occurs when capacity is exhausted and needs a resize. The resize cost
468 /// has been amortized in the previous figures.
85aaf69f 469 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
470 pub fn push(&mut self, item: T) {
471 let old_len = self.len();
472 self.data.push(item);
473 self.sift_up(0, old_len);
474 }
475
1a4d82fc
JJ
476 /// Consumes the `BinaryHeap` and returns a vector in sorted
477 /// (ascending) order.
478 ///
479 /// # Examples
480 ///
54a0048b
SL
481 /// Basic usage:
482 ///
1a4d82fc
JJ
483 /// ```
484 /// use std::collections::BinaryHeap;
485 ///
b039eaaf 486 /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]);
1a4d82fc
JJ
487 /// heap.push(6);
488 /// heap.push(3);
489 ///
490 /// let vec = heap.into_sorted_vec();
c34b1796 491 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
1a4d82fc 492 /// ```
b039eaaf 493 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1a4d82fc
JJ
494 pub fn into_sorted_vec(mut self) -> Vec<T> {
495 let mut end = self.len();
496 while end > 1 {
497 end -= 1;
29967ef6
XL
498 // SAFETY: `end` goes from `self.len() - 1` to 1 (both included),
499 // so it's always a valid index to access.
500 // It is safe to access index 0 (i.e. `ptr`), because
501 // 1 <= end < self.len(), which means self.len() >= 2.
502 unsafe {
503 let ptr = self.data.as_mut_ptr();
504 ptr::swap(ptr, ptr.add(end));
505 }
1a4d82fc
JJ
506 self.sift_down_range(0, end);
507 }
508 self.into_vec()
509 }
510
511 // The implementations of sift_up and sift_down use unsafe blocks in
512 // order to move an element out of the vector (leaving behind a
d9579d0f
AL
513 // hole), shift along the others and move the removed element back into the
514 // vector at the final location of the hole.
515 // The `Hole` type is used to represent this, and make sure
516 // the hole is filled back at the end of its scope, even on panic.
517 // Using a hole reduces the constant factor compared to using swaps,
518 // which involves twice as many moves.
32a655c1 519 fn sift_up(&mut self, start: usize, pos: usize) -> usize {
1a4d82fc 520 unsafe {
d9579d0f
AL
521 // Take out the value at `pos` and create a hole.
522 let mut hole = Hole::new(&mut self.data, pos);
1a4d82fc 523
d9579d0f
AL
524 while hole.pos() > start {
525 let parent = (hole.pos() - 1) / 2;
92a42be0
SL
526 if hole.element() <= hole.get(parent) {
527 break;
528 }
d9579d0f 529 hole.move_to(parent);
1a4d82fc 530 }
32a655c1 531 hole.pos()
1a4d82fc
JJ
532 }
533 }
534
92a42be0
SL
535 /// Take an element at `pos` and move it down the heap,
536 /// while its children are larger.
537 fn sift_down_range(&mut self, pos: usize, end: usize) {
1a4d82fc 538 unsafe {
d9579d0f 539 let mut hole = Hole::new(&mut self.data, pos);
1a4d82fc 540 let mut child = 2 * pos + 1;
29967ef6 541 while child < end - 1 {
92a42be0 542 // compare with the greater of the two children
29967ef6 543 child += (hole.get(child) <= hole.get(child + 1)) as usize;
92a42be0
SL
544 // if we are already in order, stop.
545 if hole.element() >= hole.get(child) {
29967ef6 546 return;
92a42be0 547 }
d9579d0f
AL
548 hole.move_to(child);
549 child = 2 * hole.pos() + 1;
1a4d82fc 550 }
29967ef6
XL
551 if child == end - 1 && hole.element() < hole.get(child) {
552 hole.move_to(child);
553 }
1a4d82fc
JJ
554 }
555 }
556
85aaf69f 557 fn sift_down(&mut self, pos: usize) {
1a4d82fc
JJ
558 let len = self.len();
559 self.sift_down_range(pos, len);
560 }
561
9cc50fc6
SL
562 /// Take an element at `pos` and move it all the way down the heap,
563 /// then sift it up to its position.
564 ///
565 /// Note: This is faster when the element is known to be large / should
566 /// be closer to the bottom.
567 fn sift_down_to_bottom(&mut self, mut pos: usize) {
568 let end = self.len();
569 let start = pos;
570 unsafe {
571 let mut hole = Hole::new(&mut self.data, pos);
572 let mut child = 2 * pos + 1;
29967ef6
XL
573 while child < end - 1 {
574 child += (hole.get(child) <= hole.get(child + 1)) as usize;
9cc50fc6
SL
575 hole.move_to(child);
576 child = 2 * hole.pos() + 1;
577 }
29967ef6
XL
578 if child == end - 1 {
579 hole.move_to(child);
580 }
9cc50fc6
SL
581 pos = hole.pos;
582 }
583 self.sift_up(start, pos);
584 }
585
9fa01778
XL
586 fn rebuild(&mut self) {
587 let mut n = self.len() / 2;
588 while n > 0 {
589 n -= 1;
590 self.sift_down(n);
591 }
592 }
593
594 /// Moves all the elements of `other` into `self`, leaving `other` empty.
595 ///
596 /// # Examples
597 ///
598 /// Basic usage:
599 ///
600 /// ```
601 /// use std::collections::BinaryHeap;
602 ///
603 /// let v = vec![-10, 1, 2, 3, 3];
604 /// let mut a = BinaryHeap::from(v);
605 ///
606 /// let v = vec![-20, 5, 43];
607 /// let mut b = BinaryHeap::from(v);
608 ///
609 /// a.append(&mut b);
610 ///
611 /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
612 /// assert!(b.is_empty());
613 /// ```
614 #[stable(feature = "binary_heap_append", since = "1.11.0")]
615 pub fn append(&mut self, other: &mut Self) {
616 if self.len() < other.len() {
617 swap(self, other);
618 }
619
620 if other.is_empty() {
621 return;
622 }
623
624 #[inline(always)]
625 fn log2_fast(x: usize) -> usize {
1b1a35ee 626 (usize::BITS - x.leading_zeros() - 1) as usize
9fa01778
XL
627 }
628
629 // `rebuild` takes O(len1 + len2) operations
630 // and about 2 * (len1 + len2) comparisons in the worst case
ba9703b0 631 // while `extend` takes O(len2 * log(len1)) operations
9fa01778
XL
632 // and about 1 * len2 * log_2(len1) comparisons in the worst case,
633 // assuming len1 >= len2.
634 #[inline]
635 fn better_to_rebuild(len1: usize, len2: usize) -> bool {
636 2 * (len1 + len2) < len2 * log2_fast(len1)
637 }
638
639 if better_to_rebuild(self.len(), other.len()) {
640 self.data.append(&mut other.data);
641 self.rebuild();
642 } else {
643 self.extend(other.drain());
644 }
645 }
e74abb32
XL
646
647 /// Returns an iterator which retrieves elements in heap order.
648 /// The retrieved elements are removed from the original heap.
649 /// The remaining elements will be removed on drop in heap order.
650 ///
651 /// Note:
3dfed10e 652 /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`.
e74abb32
XL
653 /// You should use the latter for most cases.
654 ///
655 /// # Examples
656 ///
657 /// Basic usage:
658 ///
659 /// ```
660 /// #![feature(binary_heap_drain_sorted)]
661 /// use std::collections::BinaryHeap;
662 ///
663 /// let mut heap = BinaryHeap::from(vec![1, 2, 3, 4, 5]);
664 /// assert_eq!(heap.len(), 5);
665 ///
666 /// drop(heap.drain_sorted()); // removes all elements in heap order
667 /// assert_eq!(heap.len(), 0);
668 /// ```
669 #[inline]
670 #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
671 pub fn drain_sorted(&mut self) -> DrainSorted<'_, T> {
dfeec247 672 DrainSorted { inner: self }
e74abb32 673 }
f9f354fc
XL
674
675 /// Retains only the elements specified by the predicate.
676 ///
677 /// In other words, remove all elements `e` such that `f(&e)` returns
678 /// `false`. The elements are visited in unsorted (and unspecified) order.
679 ///
680 /// # Examples
681 ///
682 /// Basic usage:
683 ///
684 /// ```
685 /// #![feature(binary_heap_retain)]
686 /// use std::collections::BinaryHeap;
687 ///
688 /// let mut heap = BinaryHeap::from(vec![-10, -5, 1, 2, 4, 13]);
689 ///
690 /// heap.retain(|x| x % 2 == 0); // only keep even numbers
691 ///
692 /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
693 /// ```
694 #[unstable(feature = "binary_heap_retain", issue = "71503")]
695 pub fn retain<F>(&mut self, f: F)
696 where
697 F: FnMut(&T) -> bool,
698 {
699 self.data.retain(f);
700 self.rebuild();
701 }
9fa01778
XL
702}
703
704impl<T> BinaryHeap<T> {
705 /// Returns an iterator visiting all values in the underlying vector, in
706 /// arbitrary order.
707 ///
708 /// # Examples
709 ///
710 /// Basic usage:
711 ///
712 /// ```
713 /// use std::collections::BinaryHeap;
714 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
715 ///
716 /// // Print 1, 2, 3, 4 in arbitrary order
717 /// for x in heap.iter() {
718 /// println!("{}", x);
719 /// }
720 /// ```
721 #[stable(feature = "rust1", since = "1.0.0")]
722 pub fn iter(&self) -> Iter<'_, T> {
723 Iter { iter: self.data.iter() }
724 }
725
e74abb32
XL
726 /// Returns an iterator which retrieves elements in heap order.
727 /// This method consumes the original heap.
728 ///
729 /// # Examples
730 ///
731 /// Basic usage:
732 ///
733 /// ```
734 /// #![feature(binary_heap_into_iter_sorted)]
735 /// use std::collections::BinaryHeap;
736 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5]);
737 ///
738 /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), vec![5, 4]);
739 /// ```
740 #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
741 pub fn into_iter_sorted(self) -> IntoIterSorted<T> {
dfeec247 742 IntoIterSorted { inner: self }
e74abb32
XL
743 }
744
9fa01778
XL
745 /// Returns the greatest item in the binary heap, or `None` if it is empty.
746 ///
747 /// # Examples
748 ///
749 /// Basic usage:
750 ///
751 /// ```
752 /// use std::collections::BinaryHeap;
753 /// let mut heap = BinaryHeap::new();
754 /// assert_eq!(heap.peek(), None);
755 ///
756 /// heap.push(1);
757 /// heap.push(5);
758 /// heap.push(2);
759 /// assert_eq!(heap.peek(), Some(&5));
760 ///
761 /// ```
48663c56
XL
762 ///
763 /// # Time complexity
764 ///
3dfed10e 765 /// Cost is *O*(1) in the worst case.
9fa01778
XL
766 #[stable(feature = "rust1", since = "1.0.0")]
767 pub fn peek(&self) -> Option<&T> {
768 self.data.get(0)
769 }
770
771 /// Returns the number of elements the binary heap can hold without reallocating.
772 ///
773 /// # Examples
774 ///
775 /// Basic usage:
776 ///
777 /// ```
778 /// use std::collections::BinaryHeap;
779 /// let mut heap = BinaryHeap::with_capacity(100);
780 /// assert!(heap.capacity() >= 100);
781 /// heap.push(4);
782 /// ```
783 #[stable(feature = "rust1", since = "1.0.0")]
784 pub fn capacity(&self) -> usize {
785 self.data.capacity()
786 }
787
788 /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
789 /// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
790 ///
791 /// Note that the allocator may give the collection more space than it requests. Therefore
792 /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future
793 /// insertions are expected.
794 ///
795 /// # Panics
796 ///
797 /// Panics if the new capacity overflows `usize`.
798 ///
799 /// # Examples
800 ///
801 /// Basic usage:
802 ///
803 /// ```
804 /// use std::collections::BinaryHeap;
805 /// let mut heap = BinaryHeap::new();
806 /// heap.reserve_exact(100);
807 /// assert!(heap.capacity() >= 100);
808 /// heap.push(4);
809 /// ```
810 ///
1b1a35ee 811 /// [`reserve`]: BinaryHeap::reserve
9fa01778
XL
812 #[stable(feature = "rust1", since = "1.0.0")]
813 pub fn reserve_exact(&mut self, additional: usize) {
814 self.data.reserve_exact(additional);
815 }
816
817 /// Reserves capacity for at least `additional` more elements to be inserted in the
818 /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
819 ///
820 /// # Panics
821 ///
822 /// Panics if the new capacity overflows `usize`.
823 ///
824 /// # Examples
825 ///
826 /// Basic usage:
827 ///
828 /// ```
829 /// use std::collections::BinaryHeap;
830 /// let mut heap = BinaryHeap::new();
831 /// heap.reserve(100);
832 /// assert!(heap.capacity() >= 100);
833 /// heap.push(4);
834 /// ```
835 #[stable(feature = "rust1", since = "1.0.0")]
836 pub fn reserve(&mut self, additional: usize) {
837 self.data.reserve(additional);
838 }
839
840 /// Discards as much additional capacity as possible.
841 ///
842 /// # Examples
843 ///
844 /// Basic usage:
845 ///
846 /// ```
847 /// use std::collections::BinaryHeap;
848 /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
849 ///
850 /// assert!(heap.capacity() >= 100);
851 /// heap.shrink_to_fit();
852 /// assert!(heap.capacity() == 0);
853 /// ```
854 #[stable(feature = "rust1", since = "1.0.0")]
855 pub fn shrink_to_fit(&mut self) {
856 self.data.shrink_to_fit();
857 }
858
859 /// Discards capacity with a lower bound.
860 ///
861 /// The capacity will remain at least as large as both the length
862 /// and the supplied value.
863 ///
864 /// Panics if the current capacity is smaller than the supplied
865 /// minimum capacity.
866 ///
867 /// # Examples
868 ///
869 /// ```
870 /// #![feature(shrink_to)]
871 /// use std::collections::BinaryHeap;
872 /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
873 ///
874 /// assert!(heap.capacity() >= 100);
875 /// heap.shrink_to(10);
876 /// assert!(heap.capacity() >= 10);
877 /// ```
878 #[inline]
dfeec247 879 #[unstable(feature = "shrink_to", reason = "new API", issue = "56431")]
9fa01778
XL
880 pub fn shrink_to(&mut self, min_capacity: usize) {
881 self.data.shrink_to(min_capacity)
882 }
883
884 /// Consumes the `BinaryHeap` and returns the underlying vector
885 /// in arbitrary order.
886 ///
887 /// # Examples
888 ///
889 /// Basic usage:
890 ///
891 /// ```
892 /// use std::collections::BinaryHeap;
893 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
894 /// let vec = heap.into_vec();
895 ///
896 /// // Will print in some order
897 /// for x in vec {
898 /// println!("{}", x);
899 /// }
900 /// ```
901 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
902 pub fn into_vec(self) -> Vec<T> {
903 self.into()
904 }
905
1a4d82fc 906 /// Returns the length of the binary heap.
54a0048b
SL
907 ///
908 /// # Examples
909 ///
910 /// Basic usage:
911 ///
912 /// ```
913 /// use std::collections::BinaryHeap;
914 /// let heap = BinaryHeap::from(vec![1, 3]);
915 ///
916 /// assert_eq!(heap.len(), 2);
917 /// ```
85aaf69f 918 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
919 pub fn len(&self) -> usize {
920 self.data.len()
921 }
1a4d82fc
JJ
922
923 /// Checks if the binary heap is empty.
54a0048b
SL
924 ///
925 /// # Examples
926 ///
927 /// Basic usage:
928 ///
929 /// ```
930 /// use std::collections::BinaryHeap;
931 /// let mut heap = BinaryHeap::new();
932 ///
933 /// assert!(heap.is_empty());
934 ///
935 /// heap.push(3);
936 /// heap.push(5);
937 /// heap.push(1);
938 ///
939 /// assert!(!heap.is_empty());
940 /// ```
85aaf69f 941 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
942 pub fn is_empty(&self) -> bool {
943 self.len() == 0
944 }
1a4d82fc
JJ
945
946 /// Clears the binary heap, returning an iterator over the removed elements.
c34b1796
AL
947 ///
948 /// The elements are removed in arbitrary order.
54a0048b
SL
949 ///
950 /// # Examples
951 ///
952 /// Basic usage:
953 ///
954 /// ```
955 /// use std::collections::BinaryHeap;
956 /// let mut heap = BinaryHeap::from(vec![1, 3]);
957 ///
958 /// assert!(!heap.is_empty());
959 ///
960 /// for x in heap.drain() {
961 /// println!("{}", x);
962 /// }
963 ///
964 /// assert!(heap.is_empty());
965 /// ```
1a4d82fc 966 #[inline]
92a42be0 967 #[stable(feature = "drain", since = "1.6.0")]
9fa01778 968 pub fn drain(&mut self) -> Drain<'_, T> {
d9579d0f 969 Drain { iter: self.data.drain(..) }
1a4d82fc
JJ
970 }
971
972 /// Drops all items from the binary heap.
54a0048b
SL
973 ///
974 /// # Examples
975 ///
976 /// Basic usage:
977 ///
978 /// ```
979 /// use std::collections::BinaryHeap;
980 /// let mut heap = BinaryHeap::from(vec![1, 3]);
981 ///
982 /// assert!(!heap.is_empty());
983 ///
984 /// heap.clear();
985 ///
986 /// assert!(heap.is_empty());
987 /// ```
85aaf69f 988 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
989 pub fn clear(&mut self) {
990 self.drain();
991 }
1a4d82fc
JJ
992}
993
0731742a 994/// Hole represents a hole in a slice i.e., an index without valid value
d9579d0f
AL
995/// (because it was moved from or duplicated).
996/// In drop, `Hole` will restore the slice by filling the hole
997/// position with the value that was originally removed.
998struct Hole<'a, T: 'a> {
999 data: &'a mut [T],
83c7162d 1000 elt: ManuallyDrop<T>,
d9579d0f
AL
1001 pos: usize,
1002}
1003
1004impl<'a, T> Hole<'a, T> {
9fa01778 1005 /// Create a new `Hole` at index `pos`.
9e0c209e
SL
1006 ///
1007 /// Unsafe because pos must be within the data slice.
1008 #[inline]
1009 unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
1010 debug_assert!(pos < data.len());
9fa01778 1011 // SAFE: pos should be inside the slice
f035d41b 1012 let elt = unsafe { ptr::read(data.get_unchecked(pos)) };
dfeec247 1013 Hole { data, elt: ManuallyDrop::new(elt), pos }
d9579d0f
AL
1014 }
1015
9e0c209e 1016 #[inline]
92a42be0
SL
1017 fn pos(&self) -> usize {
1018 self.pos
1019 }
d9579d0f 1020
cc61c64b 1021 /// Returns a reference to the element removed.
9e0c209e 1022 #[inline]
92a42be0 1023 fn element(&self) -> &T {
83c7162d 1024 &self.elt
d9579d0f
AL
1025 }
1026
cc61c64b 1027 /// Returns a reference to the element at `index`.
d9579d0f 1028 ///
9e0c209e
SL
1029 /// Unsafe because index must be within the data slice and not equal to pos.
1030 #[inline]
d9579d0f
AL
1031 unsafe fn get(&self, index: usize) -> &T {
1032 debug_assert!(index != self.pos);
9e0c209e 1033 debug_assert!(index < self.data.len());
f035d41b 1034 unsafe { self.data.get_unchecked(index) }
d9579d0f
AL
1035 }
1036
1037 /// Move hole to new location
1038 ///
9e0c209e
SL
1039 /// Unsafe because index must be within the data slice and not equal to pos.
1040 #[inline]
d9579d0f
AL
1041 unsafe fn move_to(&mut self, index: usize) {
1042 debug_assert!(index != self.pos);
9e0c209e 1043 debug_assert!(index < self.data.len());
f035d41b 1044 unsafe {
29967ef6
XL
1045 let ptr = self.data.as_mut_ptr();
1046 let index_ptr: *const _ = ptr.add(index);
1047 let hole_ptr = ptr.add(self.pos);
f035d41b
XL
1048 ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
1049 }
d9579d0f
AL
1050 self.pos = index;
1051 }
1052}
1053
9fa01778 1054impl<T> Drop for Hole<'_, T> {
9e0c209e 1055 #[inline]
d9579d0f
AL
1056 fn drop(&mut self) {
1057 // fill the hole again
1058 unsafe {
1059 let pos = self.pos;
83c7162d 1060 ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1);
d9579d0f
AL
1061 }
1062 }
1063}
1064
cc61c64b
XL
1065/// An iterator over the elements of a `BinaryHeap`.
1066///
1b1a35ee 1067/// This `struct` is created by [`BinaryHeap::iter()`]. See its
cc61c64b
XL
1068/// documentation for more.
1069///
1b1a35ee 1070/// [`iter`]: BinaryHeap::iter
85aaf69f 1071#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 1072pub struct Iter<'a, T: 'a> {
1a4d82fc
JJ
1073 iter: slice::Iter<'a, T>,
1074}
1075
8bb4bdeb 1076#[stable(feature = "collection_debug", since = "1.17.0")]
9fa01778
XL
1077impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
1078 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
dfeec247 1079 f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
8bb4bdeb
XL
1080 }
1081}
1082
ea8adc8c 1083// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
85aaf69f 1084#[stable(feature = "rust1", since = "1.0.0")]
9fa01778
XL
1085impl<T> Clone for Iter<'_, T> {
1086 fn clone(&self) -> Self {
1a4d82fc
JJ
1087 Iter { iter: self.iter.clone() }
1088 }
1089}
1090
85aaf69f 1091#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1092impl<'a, T> Iterator for Iter<'a, T> {
1093 type Item = &'a T;
1094
1095 #[inline]
92a42be0
SL
1096 fn next(&mut self) -> Option<&'a T> {
1097 self.iter.next()
1098 }
1a4d82fc
JJ
1099
1100 #[inline]
92a42be0
SL
1101 fn size_hint(&self) -> (usize, Option<usize>) {
1102 self.iter.size_hint()
1103 }
416331ca
XL
1104
1105 #[inline]
1106 fn last(self) -> Option<&'a T> {
1107 self.iter.last()
1108 }
1a4d82fc
JJ
1109}
1110
85aaf69f 1111#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1112impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1113 #[inline]
92a42be0
SL
1114 fn next_back(&mut self) -> Option<&'a T> {
1115 self.iter.next_back()
1116 }
1a4d82fc
JJ
1117}
1118
85aaf69f 1119#[stable(feature = "rust1", since = "1.0.0")]
9fa01778 1120impl<T> ExactSizeIterator for Iter<'_, T> {
476ff2be
SL
1121 fn is_empty(&self) -> bool {
1122 self.iter.is_empty()
1123 }
1124}
1a4d82fc 1125
0531ce1d 1126#[stable(feature = "fused", since = "1.26.0")]
9fa01778 1127impl<T> FusedIterator for Iter<'_, T> {}
9e0c209e 1128
cc61c64b
XL
1129/// An owning iterator over the elements of a `BinaryHeap`.
1130///
1b1a35ee 1131/// This `struct` is created by [`BinaryHeap::into_iter()`]
cc61c64b
XL
1132/// (provided by the `IntoIterator` trait). See its documentation for more.
1133///
1b1a35ee 1134/// [`into_iter`]: BinaryHeap::into_iter
85aaf69f 1135#[stable(feature = "rust1", since = "1.0.0")]
a7813a04 1136#[derive(Clone)]
1a4d82fc
JJ
1137pub struct IntoIter<T> {
1138 iter: vec::IntoIter<T>,
1139}
1140
8bb4bdeb
XL
1141#[stable(feature = "collection_debug", since = "1.17.0")]
1142impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
9fa01778 1143 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
dfeec247 1144 f.debug_tuple("IntoIter").field(&self.iter.as_slice()).finish()
8bb4bdeb
XL
1145 }
1146}
1147
85aaf69f 1148#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1149impl<T> Iterator for IntoIter<T> {
1150 type Item = T;
1151
1152 #[inline]
92a42be0
SL
1153 fn next(&mut self) -> Option<T> {
1154 self.iter.next()
1155 }
1a4d82fc
JJ
1156
1157 #[inline]
92a42be0
SL
1158 fn size_hint(&self) -> (usize, Option<usize>) {
1159 self.iter.size_hint()
1160 }
1a4d82fc
JJ
1161}
1162
85aaf69f 1163#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1164impl<T> DoubleEndedIterator for IntoIter<T> {
1165 #[inline]
92a42be0
SL
1166 fn next_back(&mut self) -> Option<T> {
1167 self.iter.next_back()
1168 }
1a4d82fc
JJ
1169}
1170
85aaf69f 1171#[stable(feature = "rust1", since = "1.0.0")]
476ff2be
SL
1172impl<T> ExactSizeIterator for IntoIter<T> {
1173 fn is_empty(&self) -> bool {
1174 self.iter.is_empty()
1175 }
1176}
1a4d82fc 1177
0531ce1d 1178#[stable(feature = "fused", since = "1.26.0")]
9e0c209e
SL
1179impl<T> FusedIterator for IntoIter<T> {}
1180
1b1a35ee
XL
1181#[unstable(issue = "none", feature = "inplace_iteration")]
1182unsafe impl<T> SourceIter for IntoIter<T> {
1183 type Source = IntoIter<T>;
1184
1185 #[inline]
1186 unsafe fn as_inner(&mut self) -> &mut Self::Source {
1187 self
1188 }
1189}
1190
1191#[unstable(issue = "none", feature = "inplace_iteration")]
1192unsafe impl<I> InPlaceIterable for IntoIter<I> {}
1193
1194impl<I> AsIntoIter for IntoIter<I> {
1195 type Item = I;
1196
1197 fn as_into_iter(&mut self) -> &mut vec::IntoIter<Self::Item> {
1198 &mut self.iter
1199 }
1200}
1201
e74abb32
XL
1202#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1203#[derive(Clone, Debug)]
1204pub struct IntoIterSorted<T> {
1205 inner: BinaryHeap<T>,
1206}
1207
1208#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1209impl<T: Ord> Iterator for IntoIterSorted<T> {
1210 type Item = T;
1211
1212 #[inline]
1213 fn next(&mut self) -> Option<T> {
1214 self.inner.pop()
1215 }
1216
1217 #[inline]
1218 fn size_hint(&self) -> (usize, Option<usize>) {
1219 let exact = self.inner.len();
1220 (exact, Some(exact))
1221 }
1222}
1223
1224#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1225impl<T: Ord> ExactSizeIterator for IntoIterSorted<T> {}
1226
1227#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1228impl<T: Ord> FusedIterator for IntoIterSorted<T> {}
1229
1230#[unstable(feature = "trusted_len", issue = "37572")]
1231unsafe impl<T: Ord> TrustedLen for IntoIterSorted<T> {}
1232
cc61c64b
XL
1233/// A draining iterator over the elements of a `BinaryHeap`.
1234///
1b1a35ee 1235/// This `struct` is created by [`BinaryHeap::drain()`]. See its
cc61c64b
XL
1236/// documentation for more.
1237///
1b1a35ee 1238/// [`drain`]: BinaryHeap::drain
92a42be0 1239#[stable(feature = "drain", since = "1.6.0")]
8bb4bdeb 1240#[derive(Debug)]
1a4d82fc
JJ
1241pub struct Drain<'a, T: 'a> {
1242 iter: vec::Drain<'a, T>,
1243}
1244
c30ab7b3 1245#[stable(feature = "drain", since = "1.6.0")]
9fa01778 1246impl<T> Iterator for Drain<'_, T> {
1a4d82fc
JJ
1247 type Item = T;
1248
1249 #[inline]
92a42be0
SL
1250 fn next(&mut self) -> Option<T> {
1251 self.iter.next()
1252 }
1a4d82fc
JJ
1253
1254 #[inline]
92a42be0
SL
1255 fn size_hint(&self) -> (usize, Option<usize>) {
1256 self.iter.size_hint()
1257 }
1a4d82fc
JJ
1258}
1259
c30ab7b3 1260#[stable(feature = "drain", since = "1.6.0")]
9fa01778 1261impl<T> DoubleEndedIterator for Drain<'_, T> {
1a4d82fc 1262 #[inline]
92a42be0
SL
1263 fn next_back(&mut self) -> Option<T> {
1264 self.iter.next_back()
1265 }
1a4d82fc
JJ
1266}
1267
c30ab7b3 1268#[stable(feature = "drain", since = "1.6.0")]
9fa01778 1269impl<T> ExactSizeIterator for Drain<'_, T> {
476ff2be
SL
1270 fn is_empty(&self) -> bool {
1271 self.iter.is_empty()
1272 }
1273}
1a4d82fc 1274
0531ce1d 1275#[stable(feature = "fused", since = "1.26.0")]
9fa01778 1276impl<T> FusedIterator for Drain<'_, T> {}
9e0c209e 1277
e74abb32
XL
1278/// A draining iterator over the elements of a `BinaryHeap`.
1279///
1b1a35ee 1280/// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its
e74abb32
XL
1281/// documentation for more.
1282///
1b1a35ee 1283/// [`drain_sorted`]: BinaryHeap::drain_sorted
e74abb32
XL
1284#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1285#[derive(Debug)]
1286pub struct DrainSorted<'a, T: Ord> {
1287 inner: &'a mut BinaryHeap<T>,
1288}
1289
1290#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1291impl<'a, T: Ord> Drop for DrainSorted<'a, T> {
1292 /// Removes heap elements in heap order.
1293 fn drop(&mut self) {
74b04a01
XL
1294 struct DropGuard<'r, 'a, T: Ord>(&'r mut DrainSorted<'a, T>);
1295
1296 impl<'r, 'a, T: Ord> Drop for DropGuard<'r, 'a, T> {
1297 fn drop(&mut self) {
f9f354fc 1298 while self.0.inner.pop().is_some() {}
74b04a01
XL
1299 }
1300 }
1301
1302 while let Some(item) = self.inner.pop() {
1303 let guard = DropGuard(self);
1304 drop(item);
1305 mem::forget(guard);
1306 }
e74abb32
XL
1307 }
1308}
1309
1310#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1311impl<T: Ord> Iterator for DrainSorted<'_, T> {
1312 type Item = T;
1313
1314 #[inline]
1315 fn next(&mut self) -> Option<T> {
1316 self.inner.pop()
1317 }
1318
1319 #[inline]
1320 fn size_hint(&self) -> (usize, Option<usize>) {
1321 let exact = self.inner.len();
1322 (exact, Some(exact))
1323 }
1324}
1325
1326#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
dfeec247 1327impl<T: Ord> ExactSizeIterator for DrainSorted<'_, T> {}
e74abb32
XL
1328
1329#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1330impl<T: Ord> FusedIterator for DrainSorted<'_, T> {}
1331
1332#[unstable(feature = "trusted_len", issue = "37572")]
1333unsafe impl<T: Ord> TrustedLen for DrainSorted<'_, T> {}
1334
8bb4bdeb 1335#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
b039eaaf 1336impl<T: Ord> From<Vec<T>> for BinaryHeap<T> {
e1599b0c
XL
1337 /// Converts a `Vec<T>` into a `BinaryHeap<T>`.
1338 ///
3dfed10e 1339 /// This conversion happens in-place, and has *O*(*n*) time complexity.
b039eaaf
SL
1340 fn from(vec: Vec<T>) -> BinaryHeap<T> {
1341 let mut heap = BinaryHeap { data: vec };
a7813a04 1342 heap.rebuild();
b039eaaf
SL
1343 heap
1344 }
1345}
1346
8bb4bdeb 1347#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
b039eaaf 1348impl<T> From<BinaryHeap<T>> for Vec<T> {
1b1a35ee
XL
1349 /// Converts a `BinaryHeap<T>` into a `Vec<T>`.
1350 ///
1351 /// This conversion requires no data movement or allocation, and has
1352 /// constant time complexity.
b039eaaf
SL
1353 fn from(heap: BinaryHeap<T>) -> Vec<T> {
1354 heap.data
1355 }
1356}
1357
85aaf69f 1358#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1359impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
92a42be0 1360 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
b039eaaf 1361 BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
85aaf69f
SL
1362 }
1363}
1364
1365#[stable(feature = "rust1", since = "1.0.0")]
9fa01778 1366impl<T> IntoIterator for BinaryHeap<T> {
85aaf69f
SL
1367 type Item = T;
1368 type IntoIter = IntoIter<T>;
1369
9346a6ac
AL
1370 /// Creates a consuming iterator, that is, one that moves each value out of
1371 /// the binary heap in arbitrary order. The binary heap cannot be used
1372 /// after calling this.
1373 ///
1374 /// # Examples
1375 ///
54a0048b
SL
1376 /// Basic usage:
1377 ///
9346a6ac 1378 /// ```
9346a6ac 1379 /// use std::collections::BinaryHeap;
b039eaaf 1380 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
9346a6ac
AL
1381 ///
1382 /// // Print 1, 2, 3, 4 in arbitrary order
1383 /// for x in heap.into_iter() {
1384 /// // x has type i32, not &i32
1385 /// println!("{}", x);
1386 /// }
1387 /// ```
85aaf69f 1388 fn into_iter(self) -> IntoIter<T> {
9346a6ac 1389 IntoIter { iter: self.data.into_iter() }
85aaf69f
SL
1390 }
1391}
1392
1393#[stable(feature = "rust1", since = "1.0.0")]
9fa01778 1394impl<'a, T> IntoIterator for &'a BinaryHeap<T> {
85aaf69f
SL
1395 type Item = &'a T;
1396 type IntoIter = Iter<'a, T>;
1397
1398 fn into_iter(self) -> Iter<'a, T> {
1399 self.iter()
1a4d82fc
JJ
1400 }
1401}
1402
85aaf69f 1403#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1404impl<T: Ord> Extend<T> for BinaryHeap<T> {
a7813a04 1405 #[inline]
54a0048b 1406 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
a7813a04
XL
1407 <Self as SpecExtend<I>>::spec_extend(self, iter);
1408 }
f9f354fc
XL
1409
1410 #[inline]
1411 fn extend_one(&mut self, item: T) {
1412 self.push(item);
1413 }
1414
1415 #[inline]
1416 fn extend_reserve(&mut self, additional: usize) {
1417 self.reserve(additional);
1418 }
a7813a04
XL
1419}
1420
1421impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> {
1422 default fn spec_extend(&mut self, iter: I) {
1423 self.extend_desugared(iter.into_iter());
1424 }
1425}
1426
1427impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> {
1428 fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) {
1429 self.append(other);
1430 }
1431}
1432
1433impl<T: Ord> BinaryHeap<T> {
1434 fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) {
54a0048b
SL
1435 let iterator = iter.into_iter();
1436 let (lower, _) = iterator.size_hint();
1a4d82fc
JJ
1437
1438 self.reserve(lower);
1439
532ac7d7 1440 iterator.for_each(move |elem| self.push(elem));
1a4d82fc
JJ
1441 }
1442}
62682a34
SL
1443
1444#[stable(feature = "extend_ref", since = "1.2.0")]
1445impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> {
92a42be0 1446 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
62682a34
SL
1447 self.extend(iter.into_iter().cloned());
1448 }
f9f354fc
XL
1449
1450 #[inline]
1451 fn extend_one(&mut self, &item: &'a T) {
1452 self.push(item);
1453 }
1454
1455 #[inline]
1456 fn extend_reserve(&mut self, additional: usize) {
1457 self.reserve(additional);
1458 }
62682a34 1459}