]> git.proxmox.com Git - rustc.git/blame - library/alloc/src/raw_vec.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / library / alloc / src / raw_vec.rs
CommitLineData
dfeec247 1#![unstable(feature = "raw_vec_internals", reason = "implementation detail", issue = "none")]
8faf50e0
XL
2#![doc(hidden)]
3
3dfed10e 4use core::alloc::LayoutErr;
3b2f2976 5use core::cmp;
1b1a35ee 6use core::intrinsics;
ba9703b0 7use core::mem::{self, ManuallyDrop, MaybeUninit};
3b2f2976 8use core::ops::Drop;
ba9703b0 9use core::ptr::{NonNull, Unique};
92a42be0 10use core::slice;
83c7162d 11
3dfed10e 12use crate::alloc::{handle_alloc_error, AllocRef, Global, Layout};
9fa01778 13use crate::boxed::Box;
dfeec247 14use crate::collections::TryReserveError::{self, *};
c1a9b12d 15
416331ca
XL
16#[cfg(test)]
17mod tests;
18
3dfed10e
XL
19enum AllocInit {
20 /// The contents of the new memory are uninitialized.
21 Uninitialized,
22 /// The new memory is guaranteed to be zeroed.
23 Zeroed,
24}
25
5bcae85e 26/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
c1a9b12d
SL
27/// a buffer of memory on the heap without having to worry about all the corner cases
28/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
29/// In particular:
30///
f9f354fc
XL
31/// * Produces `Unique::dangling()` on zero-sized types.
32/// * Produces `Unique::dangling()` on zero-length allocations.
33/// * Avoids freeing `Unique::dangling()`.
e1599b0c
XL
34/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
35/// * Guards against 32-bit systems allocating more than isize::MAX bytes.
36/// * Guards against overflowing your length.
ba9703b0 37/// * Calls `handle_alloc_error` for fallible allocations.
e1599b0c 38/// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
ba9703b0 39/// * Uses the excess returned from the allocator to use the largest available capacity.
c1a9b12d
SL
40///
41/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
e1599b0c
XL
42/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
43/// to handle the actual things *stored* inside of a `RawVec`.
c1a9b12d 44///
ba9703b0
XL
45/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
46/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
47/// `Box<[T]>`, since `capacity()` won't yield the length.
041b39d2 48#[allow(missing_debug_implementations)]
74b04a01 49pub struct RawVec<T, A: AllocRef = Global> {
c1a9b12d
SL
50 ptr: Unique<T>,
51 cap: usize,
ba9703b0 52 alloc: A,
041b39d2
XL
53}
54
83c7162d 55impl<T> RawVec<T, Global> {
e1599b0c
XL
56 /// HACK(Centril): This exists because `#[unstable]` `const fn`s needn't conform
57 /// to `min_const_fn` and so they cannot be called in `min_const_fn`s either.
58 ///
59 /// If you change `RawVec<T>::new` or dependencies, please take care to not
60 /// introduce anything that would truly violate `min_const_fn`.
61 ///
62 /// NOTE: We could avoid this hack and check conformance with some
63 /// `#[rustc_force_min_const_fn]` attribute which requires conformance
64 /// with `min_const_fn` but does not necessarily allow calling it in
65 /// `stable(...) const fn` / user code not enabling `foo` when
f035d41b 66 /// `#[rustc_const_unstable(feature = "foo", issue = "01234")]` is present.
e1599b0c
XL
67 pub const NEW: Self = Self::new();
68
69 /// Creates the biggest possible `RawVec` (on the system heap)
70 /// without allocating. If `T` has positive size, then this makes a
71 /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
72 /// `RawVec` with capacity `usize::MAX`. Useful for implementing
041b39d2 73 /// delayed allocation.
83c7162d 74 pub const fn new() -> Self {
dfeec247 75 Self::new_in(Global)
041b39d2
XL
76 }
77
e1599b0c 78 /// Creates a `RawVec` (on the system heap) with exactly the
416331ca 79 /// capacity and alignment requirements for a `[T; capacity]`. This is
e1599b0c 80 /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
041b39d2 81 /// zero-sized. Note that if `T` is zero-sized this means you will
e1599b0c 82 /// *not* get a `RawVec` with the requested capacity.
041b39d2
XL
83 ///
84 /// # Panics
85 ///
f035d41b 86 /// Panics if the requested capacity exceeds `isize::MAX` bytes.
041b39d2
XL
87 ///
88 /// # Aborts
89 ///
e1599b0c 90 /// Aborts on OOM.
041b39d2 91 #[inline]
416331ca 92 pub fn with_capacity(capacity: usize) -> Self {
ba9703b0 93 Self::with_capacity_in(capacity, Global)
041b39d2 94 }
c1a9b12d 95
e1599b0c 96 /// Like `with_capacity`, but guarantees the buffer is zeroed.
041b39d2 97 #[inline]
416331ca 98 pub fn with_capacity_zeroed(capacity: usize) -> Self {
ba9703b0 99 Self::with_capacity_zeroed_in(capacity, Global)
041b39d2 100 }
041b39d2 101
e1599b0c 102 /// Reconstitutes a `RawVec` from a pointer and capacity.
041b39d2 103 ///
ba9703b0 104 /// # Safety
041b39d2 105 ///
e1599b0c 106 /// The `ptr` must be allocated (on the system heap), and with the given `capacity`.
ba9703b0
XL
107 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
108 /// systems). ZST vectors may have a capacity up to `usize::MAX`.
e1599b0c 109 /// If the `ptr` and `capacity` come from a `RawVec`, then this is guaranteed.
ba9703b0 110 #[inline]
416331ca 111 pub unsafe fn from_raw_parts(ptr: *mut T, capacity: usize) -> Self {
f035d41b 112 unsafe { Self::from_raw_parts_in(ptr, capacity, Global) }
c1a9b12d
SL
113 }
114
115 /// Converts a `Box<[T]>` into a `RawVec<T>`.
ba9703b0 116 pub fn from_box(slice: Box<[T]>) -> Self {
c1a9b12d 117 unsafe {
ba9703b0
XL
118 let mut slice = ManuallyDrop::new(slice);
119 RawVec::from_raw_parts(slice.as_mut_ptr(), slice.len())
c1a9b12d
SL
120 }
121 }
f035d41b
XL
122
123 /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
124 ///
125 /// Note that this will correctly reconstitute any `cap` changes
126 /// that may have been performed. (See description of type for details.)
127 ///
128 /// # Safety
129 ///
130 /// * `len` must be greater than or equal to the most recently requested capacity, and
131 /// * `len` must be less than or equal to `self.capacity()`.
132 ///
133 /// Note, that the requested capacity and `self.capacity()` could differ, as
134 /// an allocator could overallocate and return a greater memory block than requested.
135 pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>]> {
136 // Sanity-check one half of the safety requirement (we cannot check the other half).
137 debug_assert!(
138 len <= self.capacity(),
139 "`len` must be smaller than or equal to `self.capacity()`"
140 );
141
142 let me = ManuallyDrop::new(self);
143 unsafe {
144 let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
145 Box::from_raw(slice)
146 }
147 }
c1a9b12d
SL
148}
149
74b04a01 150impl<T, A: AllocRef> RawVec<T, A> {
ba9703b0
XL
151 /// Like `new`, but parameterized over the choice of allocator for
152 /// the returned `RawVec`.
1b1a35ee 153 #[allow_internal_unstable(const_fn)]
ba9703b0
XL
154 pub const fn new_in(alloc: A) -> Self {
155 // `cap: 0` means "unallocated". zero-sized types are ignored.
f9f354fc 156 Self { ptr: Unique::dangling(), cap: 0, alloc }
ba9703b0
XL
157 }
158
159 /// Like `with_capacity`, but parameterized over the choice of
160 /// allocator for the returned `RawVec`.
161 #[inline]
162 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
3dfed10e 163 Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
ba9703b0
XL
164 }
165
166 /// Like `with_capacity_zeroed`, but parameterized over the choice
167 /// of allocator for the returned `RawVec`.
168 #[inline]
169 pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
3dfed10e 170 Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
ba9703b0
XL
171 }
172
1b1a35ee 173 fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
ba9703b0
XL
174 if mem::size_of::<T>() == 0 {
175 Self::new_in(alloc)
176 } else {
f035d41b
XL
177 // We avoid `unwrap_or_else` here because it bloats the amount of
178 // LLVM IR generated.
179 let layout = match Layout::array::<T>(capacity) {
180 Ok(layout) => layout,
181 Err(_) => capacity_overflow(),
182 };
183 match alloc_guard(layout.size()) {
184 Ok(_) => {}
185 Err(_) => capacity_overflow(),
186 }
3dfed10e
XL
187 let result = match init {
188 AllocInit::Uninitialized => alloc.alloc(layout),
189 AllocInit::Zeroed => alloc.alloc_zeroed(layout),
190 };
191 let ptr = match result {
192 Ok(ptr) => ptr,
f035d41b
XL
193 Err(_) => handle_alloc_error(layout),
194 };
ba9703b0 195
ba9703b0 196 Self {
3dfed10e
XL
197 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
198 cap: Self::capacity_from_bytes(ptr.len()),
ba9703b0
XL
199 alloc,
200 }
201 }
202 }
203
204 /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
205 ///
206 /// # Safety
207 ///
3dfed10e
XL
208 /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
209 /// `capacity`.
ba9703b0
XL
210 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
211 /// systems). ZST vectors may have a capacity up to `usize::MAX`.
3dfed10e
XL
212 /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
213 /// guaranteed.
ba9703b0 214 #[inline]
3dfed10e
XL
215 pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
216 Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
ba9703b0
XL
217 }
218
c1a9b12d 219 /// Gets a raw pointer to the start of the allocation. Note that this is
f9f354fc 220 /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
c1a9b12d
SL
221 /// be careful.
222 pub fn ptr(&self) -> *mut T {
7cac9316 223 self.ptr.as_ptr()
c1a9b12d
SL
224 }
225
226 /// Gets the capacity of the allocation.
227 ///
228 /// This will always be `usize::MAX` if `T` is zero-sized.
a7813a04 229 #[inline(always)]
416331ca 230 pub fn capacity(&self) -> usize {
ba9703b0 231 if mem::size_of::<T>() == 0 { usize::MAX } else { self.cap }
c1a9b12d
SL
232 }
233
e1599b0c 234 /// Returns a shared reference to the allocator backing this `RawVec`.
041b39d2 235 pub fn alloc(&self) -> &A {
ba9703b0 236 &self.alloc
041b39d2
XL
237 }
238
e1599b0c 239 /// Returns a mutable reference to the allocator backing this `RawVec`.
041b39d2 240 pub fn alloc_mut(&mut self) -> &mut A {
ba9703b0 241 &mut self.alloc
041b39d2
XL
242 }
243
ba9703b0
XL
244 fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
245 if mem::size_of::<T>() == 0 || self.cap == 0 {
3b2f2976
XL
246 None
247 } else {
248 // We have an allocated chunk of memory, so we can bypass runtime
249 // checks to get our current layout.
250 unsafe {
251 let align = mem::align_of::<T>();
252 let size = mem::size_of::<T>() * self.cap;
ba9703b0
XL
253 let layout = Layout::from_size_align_unchecked(size, align);
254 Some((self.ptr.cast().into(), layout))
3b2f2976
XL
255 }
256 }
257 }
258
f035d41b
XL
259 /// Ensures that the buffer contains at least enough space to hold `len +
260 /// additional` elements. If it doesn't already have enough capacity, will
261 /// reallocate enough space plus comfortable slack space to get amortized
262 /// `O(1)` behavior. Will limit this behavior if it would needlessly cause
263 /// itself to panic.
c1a9b12d 264 ///
f035d41b 265 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
c1a9b12d 266 /// the requested space. This is not really unsafe, but the unsafe
b039eaaf 267 /// code *you* write that relies on the behavior of this function may break.
c1a9b12d
SL
268 ///
269 /// This is ideal for implementing a bulk-push operation like `extend`.
270 ///
271 /// # Panics
272 ///
f035d41b 273 /// Panics if the new capacity exceeds `isize::MAX` bytes.
c1a9b12d
SL
274 ///
275 /// # Aborts
276 ///
e1599b0c 277 /// Aborts on OOM.
c1a9b12d
SL
278 ///
279 /// # Examples
280 ///
041b39d2 281 /// ```
48663c56 282 /// # #![feature(raw_vec_internals)]
041b39d2
XL
283 /// # extern crate alloc;
284 /// # use std::ptr;
285 /// # use alloc::raw_vec::RawVec;
c1a9b12d
SL
286 /// struct MyVec<T> {
287 /// buf: RawVec<T>,
288 /// len: usize,
289 /// }
290 ///
041b39d2 291 /// impl<T: Clone> MyVec<T> {
c1a9b12d
SL
292 /// pub fn push_all(&mut self, elems: &[T]) {
293 /// self.buf.reserve(self.len, elems.len());
294 /// // reserve would have aborted or panicked if the len exceeded
295 /// // `isize::MAX` so this is safe to do unchecked now.
296 /// for x in elems {
297 /// unsafe {
b7449926 298 /// ptr::write(self.buf.ptr().add(self.len), x.clone());
c1a9b12d
SL
299 /// }
300 /// self.len += 1;
301 /// }
302 /// }
303 /// }
041b39d2
XL
304 /// # fn main() {
305 /// # let mut vector = MyVec { buf: RawVec::new(), len: 0 };
306 /// # vector.push_all(&[1, 3, 5, 7, 9]);
307 /// # }
c1a9b12d 308 /// ```
f035d41b 309 pub fn reserve(&mut self, len: usize, additional: usize) {
1b1a35ee 310 handle_reserve(self.try_reserve(len, additional));
94b46f34 311 }
ba9703b0
XL
312
313 /// The same as `reserve`, but returns on errors instead of panicking or aborting.
f035d41b
XL
314 pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
315 if self.needs_to_grow(len, additional) {
316 self.grow_amortized(len, additional)
ba9703b0
XL
317 } else {
318 Ok(())
319 }
320 }
321
f035d41b
XL
322 /// Ensures that the buffer contains at least enough space to hold `len +
323 /// additional` elements. If it doesn't already, will reallocate the
324 /// minimum possible amount of memory necessary. Generally this will be
325 /// exactly the amount of memory necessary, but in principle the allocator
326 /// is free to give back more than we asked for.
9cc50fc6 327 ///
f035d41b
XL
328 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
329 /// the requested space. This is not really unsafe, but the unsafe code
330 /// *you* write that relies on the behavior of this function may break.
9cc50fc6
SL
331 ///
332 /// # Panics
333 ///
f035d41b 334 /// Panics if the new capacity exceeds `isize::MAX` bytes.
ba9703b0
XL
335 ///
336 /// # Aborts
337 ///
338 /// Aborts on OOM.
f035d41b 339 pub fn reserve_exact(&mut self, len: usize, additional: usize) {
1b1a35ee 340 handle_reserve(self.try_reserve_exact(len, additional));
ba9703b0
XL
341 }
342
343 /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
344 pub fn try_reserve_exact(
345 &mut self,
f035d41b
XL
346 len: usize,
347 additional: usize,
ba9703b0 348 ) -> Result<(), TryReserveError> {
f035d41b 349 if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
9cc50fc6
SL
350 }
351
c1a9b12d
SL
352 /// Shrinks the allocation down to the specified amount. If the given amount
353 /// is 0, actually completely deallocates.
354 ///
355 /// # Panics
356 ///
357 /// Panics if the given amount is *larger* than the current capacity.
358 ///
359 /// # Aborts
360 ///
361 /// Aborts on OOM.
362 pub fn shrink_to_fit(&mut self, amount: usize) {
1b1a35ee 363 handle_reserve(self.shrink(amount));
c1a9b12d 364 }
041b39d2 365}
c1a9b12d 366
ba9703b0
XL
367impl<T, A: AllocRef> RawVec<T, A> {
368 /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
369 /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
f035d41b
XL
370 fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
371 additional > self.capacity().wrapping_sub(len)
ba9703b0 372 }
94b46f34 373
ba9703b0
XL
374 fn capacity_from_bytes(excess: usize) -> usize {
375 debug_assert_ne!(mem::size_of::<T>(), 0);
376 excess / mem::size_of::<T>()
377 }
94b46f34 378
3dfed10e
XL
379 fn set_ptr(&mut self, ptr: NonNull<[u8]>) {
380 self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
381 self.cap = Self::capacity_from_bytes(ptr.len());
ba9703b0 382 }
94b46f34 383
f9f354fc
XL
384 // This method is usually instantiated many times. So we want it to be as
385 // small as possible, to improve compile times. But we also want as much of
386 // its contents to be statically computable as possible, to make the
387 // generated code run faster. Therefore, this method is carefully written
388 // so that all of the code that depends on `T` is within it, while as much
389 // of the code that doesn't depend on `T` as possible is in functions that
390 // are non-generic over `T`.
f035d41b 391 fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
f9f354fc 392 // This is ensured by the calling contexts.
f035d41b 393 debug_assert!(additional > 0);
f9f354fc
XL
394
395 if mem::size_of::<T>() == 0 {
ba9703b0
XL
396 // Since we return a capacity of `usize::MAX` when `elem_size` is
397 // 0, getting to here necessarily means the `RawVec` is overfull.
398 return Err(CapacityOverflow);
399 }
74b04a01 400
f9f354fc 401 // Nothing we can really do about these checks, sadly.
f035d41b 402 let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
f9f354fc
XL
403
404 // This guarantees exponential growth. The doubling cannot overflow
405 // because `cap <= isize::MAX` and the type of `cap` is `usize`.
406 let cap = cmp::max(self.cap * 2, required_cap);
407
408 // Tiny Vecs are dumb. Skip to:
409 // - 8 if the element size is 1, because any heap allocators is likely
410 // to round up a request of less than 8 bytes to at least 8 bytes.
411 // - 4 if elements are moderate-sized (<= 1 KiB).
412 // - 1 otherwise, to avoid wasting too much space for very short Vecs.
413 // Note that `min_non_zero_cap` is computed statically.
414 let elem_size = mem::size_of::<T>();
415 let min_non_zero_cap = if elem_size == 1 {
416 8
417 } else if elem_size <= 1024 {
418 4
ba9703b0 419 } else {
f9f354fc 420 1
ba9703b0 421 };
f9f354fc
XL
422 let cap = cmp::max(min_non_zero_cap, cap);
423
424 let new_layout = Layout::array::<T>(cap);
425
426 // `finish_grow` is non-generic over `T`.
3dfed10e
XL
427 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
428 self.set_ptr(ptr);
f9f354fc
XL
429 Ok(())
430 }
431
432 // The constraints on this method are much the same as those on
433 // `grow_amortized`, but this method is usually instantiated less often so
434 // it's less critical.
f035d41b 435 fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
f9f354fc
XL
436 if mem::size_of::<T>() == 0 {
437 // Since we return a capacity of `usize::MAX` when the type size is
438 // 0, getting to here necessarily means the `RawVec` is overfull.
439 return Err(CapacityOverflow);
440 }
441
f035d41b 442 let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
f9f354fc
XL
443 let new_layout = Layout::array::<T>(cap);
444
445 // `finish_grow` is non-generic over `T`.
3dfed10e
XL
446 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
447 self.set_ptr(ptr);
ba9703b0
XL
448 Ok(())
449 }
94b46f34 450
3dfed10e 451 fn shrink(&mut self, amount: usize) -> Result<(), TryReserveError> {
ba9703b0 452 assert!(amount <= self.capacity(), "Tried to shrink to a larger capacity");
94b46f34 453
ba9703b0
XL
454 let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
455 let new_size = amount * mem::size_of::<T>();
94b46f34 456
3dfed10e 457 let ptr = unsafe {
1b1a35ee
XL
458 let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
459 self.alloc.shrink(ptr, layout, new_layout).map_err(|_| TryReserveError::AllocError {
460 layout: new_layout,
3dfed10e 461 non_exhaustive: (),
ba9703b0
XL
462 })?
463 };
3dfed10e 464 self.set_ptr(ptr);
ba9703b0 465 Ok(())
94b46f34 466 }
94b46f34
XL
467}
468
f9f354fc
XL
469// This function is outside `RawVec` to minimize compile times. See the comment
470// above `RawVec::grow_amortized` for details. (The `A` parameter isn't
471// significant, because the number of different `A` types seen in practice is
472// much smaller than the number of `T` types.)
473fn finish_grow<A>(
474 new_layout: Result<Layout, LayoutErr>,
f9f354fc
XL
475 current_memory: Option<(NonNull<u8>, Layout)>,
476 alloc: &mut A,
3dfed10e 477) -> Result<NonNull<[u8]>, TryReserveError>
f9f354fc
XL
478where
479 A: AllocRef,
480{
481 // Check for the error here to minimize the size of `RawVec::grow_*`.
482 let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
483
484 alloc_guard(new_layout.size())?;
485
486 let memory = if let Some((ptr, old_layout)) = current_memory {
487 debug_assert_eq!(old_layout.align(), new_layout.align());
1b1a35ee
XL
488 unsafe {
489 // The allocator checks for alignment equality
490 intrinsics::assume(old_layout.align() == new_layout.align());
491 alloc.grow(ptr, old_layout, new_layout)
492 }
f9f354fc 493 } else {
3dfed10e 494 alloc.alloc(new_layout)
1b1a35ee 495 };
f9f354fc 496
1b1a35ee 497 memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })
f9f354fc
XL
498}
499
74b04a01 500unsafe impl<#[may_dangle] T, A: AllocRef> Drop for RawVec<T, A> {
e1599b0c 501 /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
041b39d2 502 fn drop(&mut self) {
ba9703b0
XL
503 if let Some((ptr, layout)) = self.current_memory() {
504 unsafe { self.alloc.dealloc(ptr, layout) }
dfeec247 505 }
041b39d2
XL
506 }
507}
508
1b1a35ee
XL
509// Central function for reserve error handling.
510#[inline]
511fn handle_reserve(result: Result<(), TryReserveError>) {
512 match result {
513 Err(CapacityOverflow) => capacity_overflow(),
514 Err(AllocError { layout, .. }) => handle_alloc_error(layout),
515 Ok(()) => { /* yay */ }
516 }
517}
518
c1a9b12d 519// We need to guarantee the following:
e1599b0c
XL
520// * We don't ever allocate `> isize::MAX` byte-size objects.
521// * We don't overflow `usize::MAX` and actually allocate too little.
c1a9b12d
SL
522//
523// On 64-bit we just need to check for overflow since trying to allocate
3157f602
XL
524// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
525// an extra guard for this in case we're running on a platform which can use
e1599b0c 526// all 4GB in user-space, e.g., PAE or x32.
c1a9b12d
SL
527
528#[inline]
e1599b0c 529fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
1b1a35ee 530 if usize::BITS < 64 && alloc_size > isize::MAX as usize {
0531ce1d
XL
531 Err(CapacityOverflow)
532 } else {
533 Ok(())
e9174d1e 534 }
c1a9b12d 535}
92a42be0 536
83c7162d
XL
537// One central function responsible for reporting capacity overflows. This'll
538// ensure that the code generation related to these panics is minimal as there's
539// only one location which panics rather than a bunch throughout the module.
540fn capacity_overflow() -> ! {
e1599b0c 541 panic!("capacity overflow");
83c7162d 542}