]> git.proxmox.com Git - rustc.git/blame - library/alloc/src/rc.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / library / alloc / src / rc.rs
CommitLineData
041b39d2
XL
1//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
2//! Counted'.
1a4d82fc 3//!
476ff2be 4//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
cc61c64b 5//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
e74abb32
XL
6//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
7//! given allocation is destroyed, the value stored in that allocation (often
8//! referred to as "inner value") is also dropped.
1a4d82fc 9//!
8bb4bdeb 10//! Shared references in Rust disallow mutation by default, and [`Rc`]
ea8adc8c 11//! is no exception: you cannot generally obtain a mutable reference to
8bb4bdeb
XL
12//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
13//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
14//! inside an Rc][mutability].
1a4d82fc 15//!
476ff2be
SL
16//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
17//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
9e0c209e 18//! does not implement [`Send`][send]. As a result, the Rust compiler
476ff2be 19//! will check *at compile time* that you are not sending [`Rc`]s between
9e0c209e
SL
20//! threads. If you need multi-threaded, atomic reference counting, use
21//! [`sync::Arc`][arc].
22//!
cc61c64b 23//! The [`downgrade`][downgrade] method can be used to create a non-owning
476ff2be 24//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
e74abb32
XL
25//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
26//! already been dropped. In other words, `Weak` pointers do not keep the value
27//! inside the allocation alive; however, they *do* keep the allocation
28//! (the backing store for the inner value) alive.
9e0c209e 29//!
476ff2be
SL
30//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
31//! [`Weak`] is used to break cycles. For example, a tree could have strong
32//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
9e0c209e
SL
33//! children back to their parents.
34//!
476ff2be
SL
35//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
36//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
13cf67c4
XL
37//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
38//! functions, called using function-like syntax:
9e0c209e
SL
39//!
40//! ```
c30ab7b3
SL
41//! use std::rc::Rc;
42//! let my_rc = Rc::new(());
43//!
9e0c209e
SL
44//! Rc::downgrade(&my_rc);
45//! ```
46//!
e74abb32
XL
47//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
48//! already been dropped.
9e0c209e 49//!
7cac9316
XL
50//! # Cloning references
51//!
e74abb32
XL
52//! Creating a new reference to the same allocation as an existing reference counted pointer
53//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
7cac9316
XL
54//!
55//! ```
56//! use std::rc::Rc;
57//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
58//! // The two syntaxes below are equivalent.
59//! let a = foo.clone();
60//! let b = Rc::clone(&foo);
61//! // a and b both point to the same memory location as foo.
62//! ```
63//!
64//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
65//! the meaning of the code. In the example above, this syntax makes it easier to see that
66//! this code is creating a new reference rather than copying the whole content of foo.
67//!
1a4d82fc
JJ
68//! # Examples
69//!
70//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
71//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
72//! unique ownership, because more than one gadget may belong to the same
476ff2be 73//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
1a4d82fc
JJ
74//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
75//!
9e0c209e 76//! ```
1a4d82fc
JJ
77//! use std::rc::Rc;
78//!
79//! struct Owner {
9e0c209e 80//! name: String,
1a4d82fc
JJ
81//! // ...other fields
82//! }
83//!
84//! struct Gadget {
85aaf69f 85//! id: i32,
9e0c209e 86//! owner: Rc<Owner>,
1a4d82fc
JJ
87//! // ...other fields
88//! }
89//!
90//! fn main() {
9e0c209e
SL
91//! // Create a reference-counted `Owner`.
92//! let gadget_owner: Rc<Owner> = Rc::new(
93//! Owner {
94//! name: "Gadget Man".to_string(),
95//! }
1a4d82fc
JJ
96//! );
97//!
9e0c209e 98//! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
e74abb32 99//! // gives us a new pointer to the same `Owner` allocation, incrementing
9e0c209e
SL
100//! // the reference count in the process.
101//! let gadget1 = Gadget {
102//! id: 1,
7cac9316 103//! owner: Rc::clone(&gadget_owner),
9e0c209e
SL
104//! };
105//! let gadget2 = Gadget {
106//! id: 2,
7cac9316 107//! owner: Rc::clone(&gadget_owner),
9e0c209e 108//! };
1a4d82fc 109//!
9e0c209e 110//! // Dispose of our local variable `gadget_owner`.
1a4d82fc
JJ
111//! drop(gadget_owner);
112//!
9e0c209e
SL
113//! // Despite dropping `gadget_owner`, we're still able to print out the name
114//! // of the `Owner` of the `Gadget`s. This is because we've only dropped a
115//! // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
e74abb32
XL
116//! // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
117//! // live. The field projection `gadget1.owner.name` works because
9e0c209e 118//! // `Rc<Owner>` automatically dereferences to `Owner`.
1a4d82fc
JJ
119//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
120//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
121//!
9e0c209e
SL
122//! // At the end of the function, `gadget1` and `gadget2` are destroyed, and
123//! // with them the last counted references to our `Owner`. Gadget Man now
124//! // gets destroyed as well.
1a4d82fc
JJ
125//! }
126//! ```
127//!
c34b1796 128//! If our requirements change, and we also need to be able to traverse from
476ff2be 129//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
e74abb32
XL
130//! to `Gadget` introduces a cycle. This means that their
131//! reference counts can never reach 0, and the allocation will never be destroyed:
132//! a memory leak. In order to get around this, we can use [`Weak`]
9e0c209e 133//! pointers.
1a4d82fc 134//!
c34b1796 135//! Rust actually makes it somewhat difficult to produce this loop in the first
9e0c209e 136//! place. In order to end up with two values that point at each other, one of
476ff2be 137//! them needs to be mutable. This is difficult because [`Rc`] enforces
9e0c209e 138//! memory safety by only giving out shared references to the value it wraps,
c34b1796 139//! and these don't allow direct mutation. We need to wrap the part of the
476ff2be 140//! value we wish to mutate in a [`RefCell`], which provides *interior
c34b1796 141//! mutability*: a method to achieve mutability through a shared reference.
476ff2be 142//! [`RefCell`] enforces Rust's borrowing rules at runtime.
1a4d82fc 143//!
9e0c209e 144//! ```
1a4d82fc
JJ
145//! use std::rc::Rc;
146//! use std::rc::Weak;
147//! use std::cell::RefCell;
148//!
149//! struct Owner {
150//! name: String,
e9174d1e 151//! gadgets: RefCell<Vec<Weak<Gadget>>>,
1a4d82fc
JJ
152//! // ...other fields
153//! }
154//!
155//! struct Gadget {
85aaf69f 156//! id: i32,
e9174d1e 157//! owner: Rc<Owner>,
1a4d82fc
JJ
158//! // ...other fields
159//! }
160//!
161//! fn main() {
9e0c209e
SL
162//! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
163//! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
164//! // a shared reference.
165//! let gadget_owner: Rc<Owner> = Rc::new(
e9174d1e
SL
166//! Owner {
167//! name: "Gadget Man".to_string(),
9e0c209e 168//! gadgets: RefCell::new(vec![]),
e9174d1e 169//! }
1a4d82fc
JJ
170//! );
171//!
9e0c209e
SL
172//! // Create `Gadget`s belonging to `gadget_owner`, as before.
173//! let gadget1 = Rc::new(
174//! Gadget {
175//! id: 1,
7cac9316 176//! owner: Rc::clone(&gadget_owner),
9e0c209e
SL
177//! }
178//! );
179//! let gadget2 = Rc::new(
180//! Gadget {
181//! id: 2,
7cac9316 182//! owner: Rc::clone(&gadget_owner),
9e0c209e
SL
183//! }
184//! );
185//!
186//! // Add the `Gadget`s to their `Owner`.
187//! {
188//! let mut gadgets = gadget_owner.gadgets.borrow_mut();
189//! gadgets.push(Rc::downgrade(&gadget1));
190//! gadgets.push(Rc::downgrade(&gadget2));
1a4d82fc 191//!
9e0c209e
SL
192//! // `RefCell` dynamic borrow ends here.
193//! }
1a4d82fc 194//!
9e0c209e
SL
195//! // Iterate over our `Gadget`s, printing their details out.
196//! for gadget_weak in gadget_owner.gadgets.borrow().iter() {
1a4d82fc 197//!
9e0c209e 198//! // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
e74abb32 199//! // guarantee the allocation still exists, we need to call
9e0c209e
SL
200//! // `upgrade`, which returns an `Option<Rc<Gadget>>`.
201//! //
e74abb32 202//! // In this case we know the allocation still exists, so we simply
9e0c209e
SL
203//! // `unwrap` the `Option`. In a more complicated program, you might
204//! // need graceful error handling for a `None` result.
205//!
206//! let gadget = gadget_weak.upgrade().unwrap();
1a4d82fc
JJ
207//! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
208//! }
209//!
9e0c209e
SL
210//! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
211//! // are destroyed. There are now no strong (`Rc`) pointers to the
212//! // gadgets, so they are destroyed. This zeroes the reference count on
213//! // Gadget Man, so he gets destroyed as well.
1a4d82fc
JJ
214//! }
215//! ```
476ff2be 216//!
3dfed10e
XL
217//! [clone]: Clone::clone
218//! [`Cell`]: core::cell::Cell
219//! [`RefCell`]: core::cell::RefCell
220//! [send]: core::marker::Send
476ff2be 221//! [arc]: ../../std/sync/struct.Arc.html
3dfed10e
XL
222//! [`Deref`]: core::ops::Deref
223//! [downgrade]: Rc::downgrade
224//! [upgrade]: Weak::upgrade
225//! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable
1a4d82fc 226
85aaf69f 227#![stable(feature = "rust1", since = "1.0.0")]
62682a34 228
c34b1796 229#[cfg(not(test))]
9fa01778 230use crate::boxed::Box;
c34b1796 231#[cfg(test)]
62682a34
SL
232use std::boxed::Box;
233
ea8adc8c 234use core::any::Any;
e9174d1e 235use core::borrow;
1a4d82fc 236use core::cell::Cell;
62682a34 237use core::cmp::Ordering;
dfeec247 238use core::convert::{From, TryFrom};
1a4d82fc 239use core::fmt;
3157f602 240use core::hash::{Hash, Hasher};
7cac9316 241use core::intrinsics::abort;
416331ca 242use core::iter;
dfeec247 243use core::marker::{self, PhantomData, Unpin, Unsize};
f035d41b 244use core::mem::{self, align_of_val_raw, forget, size_of_val};
dfeec247 245use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver};
0bf4aa26 246use core::pin::Pin;
2c00a5a8 247use core::ptr::{self, NonNull};
f9f354fc 248use core::slice::from_raw_parts_mut;
d9579d0f 249
1b1a35ee 250use crate::alloc::{box_free, handle_alloc_error, AllocError, AllocRef, Global, Layout};
f9f354fc 251use crate::borrow::{Cow, ToOwned};
9fa01778
XL
252use crate::string::String;
253use crate::vec::Vec;
1a4d82fc 254
416331ca
XL
255#[cfg(test)]
256mod tests;
257
ba9703b0
XL
258// This is repr(C) to future-proof against possible field-reordering, which
259// would interfere with otherwise safe [into|from]_raw() of transmutable
260// inner types.
261#[repr(C)]
d9579d0f 262struct RcBox<T: ?Sized> {
85aaf69f 263 strong: Cell<usize>,
d9579d0f
AL
264 weak: Cell<usize>,
265 value: T,
1a4d82fc
JJ
266}
267
041b39d2
XL
268/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
269/// Counted'.
9e0c209e
SL
270///
271/// See the [module-level documentation](./index.html) for more details.
1a4d82fc 272///
9e0c209e 273/// The inherent methods of `Rc` are all associated functions, which means
0731742a 274/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
476ff2be 275/// `value.get_mut()`. This avoids conflicts with methods of the inner
9e0c209e 276/// type `T`.
476ff2be
SL
277///
278/// [get_mut]: #method.get_mut
ba9703b0 279#[cfg_attr(not(test), rustc_diagnostic_item = "Rc")]
d9579d0f
AL
280#[stable(feature = "rust1", since = "1.0.0")]
281pub struct Rc<T: ?Sized> {
2c00a5a8 282 ptr: NonNull<RcBox<T>>,
60c5eb7d 283 phantom: PhantomData<RcBox<T>>,
d9579d0f 284}
1a4d82fc 285
92a42be0 286#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 287impl<T: ?Sized> !marker::Send for Rc<T> {}
92a42be0 288#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f
AL
289impl<T: ?Sized> !marker::Sync for Rc<T> {}
290
92a42be0
SL
291#[unstable(feature = "coerce_unsized", issue = "27732")]
292impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}
d9579d0f 293
dfeec247 294#[unstable(feature = "dispatch_from_dyn", issue = "none")]
a1dfa0c6
XL
295impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
296
416331ca 297impl<T: ?Sized> Rc<T> {
1b1a35ee
XL
298 #[inline(always)]
299 fn inner(&self) -> &RcBox<T> {
300 // This unsafety is ok because while this Rc is alive we're guaranteed
301 // that the inner pointer is valid.
302 unsafe { self.ptr.as_ref() }
303 }
304
416331ca 305 fn from_inner(ptr: NonNull<RcBox<T>>) -> Self {
dfeec247 306 Self { ptr, phantom: PhantomData }
416331ca
XL
307 }
308
309 unsafe fn from_ptr(ptr: *mut RcBox<T>) -> Self {
f035d41b 310 Self::from_inner(unsafe { NonNull::new_unchecked(ptr) })
416331ca
XL
311 }
312}
313
1a4d82fc
JJ
314impl<T> Rc<T> {
315 /// Constructs a new `Rc<T>`.
316 ///
317 /// # Examples
318 ///
319 /// ```
320 /// use std::rc::Rc;
321 ///
85aaf69f 322 /// let five = Rc::new(5);
1a4d82fc 323 /// ```
85aaf69f 324 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 325 pub fn new(value: T) -> Rc<T> {
416331ca
XL
326 // There is an implicit weak pointer owned by all the strong
327 // pointers, which ensures that the weak destructor never frees
328 // the allocation while the strong destructor is running, even
329 // if the weak pointer is stored inside the strong one.
f9f354fc
XL
330 Self::from_inner(
331 Box::leak(box RcBox { strong: Cell::new(1), weak: Cell::new(1), value }).into(),
332 )
1a4d82fc 333 }
62682a34 334
1b1a35ee
XL
335 /// Constructs a new `Rc<T>` using a weak reference to itself. Attempting
336 /// to upgrade the weak reference before this function returns will result
337 /// in a `None` value. However, the weak reference may be cloned freely and
338 /// stored for use at a later time.
339 #[unstable(feature = "arc_new_cyclic", issue = "75861")]
340 pub fn new_cyclic(data_fn: impl FnOnce(&Weak<T>) -> T) -> Rc<T> {
341 // Construct the inner in the "uninitialized" state with a single
342 // weak reference.
343 let uninit_ptr: NonNull<_> = Box::leak(box RcBox {
344 strong: Cell::new(0),
345 weak: Cell::new(1),
346 value: mem::MaybeUninit::<T>::uninit(),
347 })
348 .into();
349
350 let init_ptr: NonNull<RcBox<T>> = uninit_ptr.cast();
351
352 let weak = Weak { ptr: init_ptr };
353
354 // It's important we don't give up ownership of the weak pointer, or
355 // else the memory might be freed by the time `data_fn` returns. If
356 // we really wanted to pass ownership, we could create an additional
357 // weak pointer for ourselves, but this would result in additional
358 // updates to the weak reference count which might not be necessary
359 // otherwise.
360 let data = data_fn(&weak);
361
362 unsafe {
363 let inner = init_ptr.as_ptr();
364 ptr::write(&raw mut (*inner).value, data);
365
366 let prev_value = (*inner).strong.get();
367 debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
368 (*inner).strong.set(1);
369 }
370
371 let strong = Rc::from_inner(init_ptr);
372
373 // Strong references should collectively own a shared weak reference,
374 // so don't run the destructor for our old weak reference.
375 mem::forget(weak);
376 strong
377 }
378
e1599b0c
XL
379 /// Constructs a new `Rc` with uninitialized contents.
380 ///
381 /// # Examples
382 ///
383 /// ```
384 /// #![feature(new_uninit)]
385 /// #![feature(get_mut_unchecked)]
386 ///
387 /// use std::rc::Rc;
388 ///
389 /// let mut five = Rc::<u32>::new_uninit();
390 ///
391 /// let five = unsafe {
392 /// // Deferred initialization:
393 /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
394 ///
395 /// five.assume_init()
396 /// };
397 ///
398 /// assert_eq!(*five, 5)
399 /// ```
400 #[unstable(feature = "new_uninit", issue = "63291")]
401 pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
402 unsafe {
3dfed10e
XL
403 Rc::from_ptr(Rc::allocate_for_layout(
404 Layout::new::<T>(),
405 |layout| Global.alloc(layout),
406 |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
407 ))
e1599b0c
XL
408 }
409 }
410
60c5eb7d
XL
411 /// Constructs a new `Rc` with uninitialized contents, with the memory
412 /// being filled with `0` bytes.
413 ///
414 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
415 /// incorrect usage of this method.
416 ///
417 /// # Examples
418 ///
419 /// ```
420 /// #![feature(new_uninit)]
421 ///
422 /// use std::rc::Rc;
423 ///
424 /// let zero = Rc::<u32>::new_zeroed();
425 /// let zero = unsafe { zero.assume_init() };
426 ///
427 /// assert_eq!(*zero, 0)
428 /// ```
429 ///
1b1a35ee 430 /// [zeroed]: mem::MaybeUninit::zeroed
60c5eb7d
XL
431 #[unstable(feature = "new_uninit", issue = "63291")]
432 pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
433 unsafe {
3dfed10e
XL
434 Rc::from_ptr(Rc::allocate_for_layout(
435 Layout::new::<T>(),
436 |layout| Global.alloc_zeroed(layout),
437 |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
438 ))
60c5eb7d
XL
439 }
440 }
441
0731742a
XL
442 /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
443 /// `value` will be pinned in memory and unable to be moved.
444 #[stable(feature = "pin", since = "1.33.0")]
445 pub fn pin(value: T) -> Pin<Rc<T>> {
0bf4aa26
XL
446 unsafe { Pin::new_unchecked(Rc::new(value)) }
447 }
448
e74abb32 449 /// Returns the inner value, if the `Rc` has exactly one strong reference.
62682a34 450 ///
3dfed10e 451 /// Otherwise, an [`Err`] is returned with the same `Rc` that was
c30ab7b3 452 /// passed in.
62682a34 453 ///
54a0048b
SL
454 /// This will succeed even if there are outstanding weak references.
455 ///
62682a34
SL
456 /// # Examples
457 ///
458 /// ```
62682a34
SL
459 /// use std::rc::Rc;
460 ///
461 /// let x = Rc::new(3);
462 /// assert_eq!(Rc::try_unwrap(x), Ok(3));
463 ///
464 /// let x = Rc::new(4);
7cac9316 465 /// let _y = Rc::clone(&x);
9e0c209e 466 /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
62682a34
SL
467 /// ```
468 #[inline]
e9174d1e
SL
469 #[stable(feature = "rc_unique", since = "1.4.0")]
470 pub fn try_unwrap(this: Self) -> Result<T, Self> {
476ff2be 471 if Rc::strong_count(&this) == 1 {
62682a34 472 unsafe {
e9174d1e
SL
473 let val = ptr::read(&*this); // copy the contained object
474
ff7c6d11 475 // Indicate to Weaks that they can't be promoted by decrementing
e9174d1e
SL
476 // the strong count, and then remove the implicit "strong weak"
477 // pointer while also handling drop logic by just crafting a
478 // fake Weak.
1b1a35ee 479 this.inner().dec_strong();
54a0048b 480 let _weak = Weak { ptr: this.ptr };
e9174d1e 481 forget(this);
62682a34
SL
482 Ok(val)
483 }
484 } else {
e9174d1e 485 Err(this)
62682a34
SL
486 }
487 }
ea8adc8c 488}
e9174d1e 489
e1599b0c
XL
490impl<T> Rc<[T]> {
491 /// Constructs a new reference-counted slice with uninitialized contents.
492 ///
493 /// # Examples
494 ///
495 /// ```
496 /// #![feature(new_uninit)]
497 /// #![feature(get_mut_unchecked)]
498 ///
499 /// use std::rc::Rc;
500 ///
501 /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
502 ///
503 /// let values = unsafe {
504 /// // Deferred initialization:
505 /// Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
506 /// Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
507 /// Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
508 ///
509 /// values.assume_init()
510 /// };
511 ///
512 /// assert_eq!(*values, [1, 2, 3])
513 /// ```
514 #[unstable(feature = "new_uninit", issue = "63291")]
515 pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
dfeec247 516 unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
e1599b0c 517 }
3dfed10e
XL
518
519 /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
520 /// filled with `0` bytes.
521 ///
522 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
523 /// incorrect usage of this method.
524 ///
525 /// # Examples
526 ///
527 /// ```
528 /// #![feature(new_uninit)]
529 ///
530 /// use std::rc::Rc;
531 ///
532 /// let values = Rc::<[u32]>::new_zeroed_slice(3);
533 /// let values = unsafe { values.assume_init() };
534 ///
535 /// assert_eq!(*values, [0, 0, 0])
536 /// ```
537 ///
1b1a35ee 538 /// [zeroed]: mem::MaybeUninit::zeroed
3dfed10e
XL
539 #[unstable(feature = "new_uninit", issue = "63291")]
540 pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
541 unsafe {
542 Rc::from_ptr(Rc::allocate_for_layout(
543 Layout::array::<T>(len).unwrap(),
544 |layout| Global.alloc_zeroed(layout),
545 |mem| {
546 ptr::slice_from_raw_parts_mut(mem as *mut T, len)
547 as *mut RcBox<[mem::MaybeUninit<T>]>
548 },
549 ))
550 }
551 }
e1599b0c
XL
552}
553
554impl<T> Rc<mem::MaybeUninit<T>> {
555 /// Converts to `Rc<T>`.
556 ///
557 /// # Safety
558 ///
559 /// As with [`MaybeUninit::assume_init`],
e74abb32 560 /// it is up to the caller to guarantee that the inner value
e1599b0c
XL
561 /// really is in an initialized state.
562 /// Calling this when the content is not yet fully initialized
563 /// causes immediate undefined behavior.
564 ///
1b1a35ee 565 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
e1599b0c
XL
566 ///
567 /// # Examples
568 ///
569 /// ```
570 /// #![feature(new_uninit)]
571 /// #![feature(get_mut_unchecked)]
572 ///
573 /// use std::rc::Rc;
574 ///
575 /// let mut five = Rc::<u32>::new_uninit();
576 ///
577 /// let five = unsafe {
578 /// // Deferred initialization:
579 /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
580 ///
581 /// five.assume_init()
582 /// };
583 ///
584 /// assert_eq!(*five, 5)
585 /// ```
586 #[unstable(feature = "new_uninit", issue = "63291")]
587 #[inline]
588 pub unsafe fn assume_init(self) -> Rc<T> {
589 Rc::from_inner(mem::ManuallyDrop::new(self).ptr.cast())
590 }
591}
592
593impl<T> Rc<[mem::MaybeUninit<T>]> {
594 /// Converts to `Rc<[T]>`.
595 ///
596 /// # Safety
597 ///
598 /// As with [`MaybeUninit::assume_init`],
e74abb32 599 /// it is up to the caller to guarantee that the inner value
e1599b0c
XL
600 /// really is in an initialized state.
601 /// Calling this when the content is not yet fully initialized
602 /// causes immediate undefined behavior.
603 ///
1b1a35ee 604 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
e1599b0c
XL
605 ///
606 /// # Examples
607 ///
608 /// ```
609 /// #![feature(new_uninit)]
610 /// #![feature(get_mut_unchecked)]
611 ///
612 /// use std::rc::Rc;
613 ///
614 /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
615 ///
616 /// let values = unsafe {
617 /// // Deferred initialization:
618 /// Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
619 /// Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
620 /// Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
621 ///
622 /// values.assume_init()
623 /// };
624 ///
625 /// assert_eq!(*values, [1, 2, 3])
626 /// ```
627 #[unstable(feature = "new_uninit", issue = "63291")]
628 #[inline]
629 pub unsafe fn assume_init(self) -> Rc<[T]> {
f035d41b 630 unsafe { Rc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _) }
e1599b0c
XL
631 }
632}
633
ea8adc8c 634impl<T: ?Sized> Rc<T> {
476ff2be
SL
635 /// Consumes the `Rc`, returning the wrapped pointer.
636 ///
637 /// To avoid a memory leak the pointer must be converted back to an `Rc` using
638 /// [`Rc::from_raw`][from_raw].
639 ///
3dfed10e 640 /// [from_raw]: Rc::from_raw
9e0c209e
SL
641 ///
642 /// # Examples
643 ///
644 /// ```
9e0c209e
SL
645 /// use std::rc::Rc;
646 ///
dc9dc135 647 /// let x = Rc::new("hello".to_owned());
476ff2be 648 /// let x_ptr = Rc::into_raw(x);
dc9dc135 649 /// assert_eq!(unsafe { &*x_ptr }, "hello");
476ff2be 650 /// ```
8bb4bdeb
XL
651 #[stable(feature = "rc_raw", since = "1.17.0")]
652 pub fn into_raw(this: Self) -> *const T {
ba9703b0
XL
653 let ptr = Self::as_ptr(&this);
654 mem::forget(this);
655 ptr
656 }
657
658 /// Provides a raw pointer to the data.
659 ///
660 /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
661 /// for as long there are strong counts in the `Rc`.
662 ///
663 /// # Examples
664 ///
665 /// ```
ba9703b0
XL
666 /// use std::rc::Rc;
667 ///
668 /// let x = Rc::new("hello".to_owned());
669 /// let y = Rc::clone(&x);
670 /// let x_ptr = Rc::as_ptr(&x);
671 /// assert_eq!(x_ptr, Rc::as_ptr(&y));
672 /// assert_eq!(unsafe { &*x_ptr }, "hello");
673 /// ```
f9f354fc 674 #[stable(feature = "weak_into_raw", since = "1.45.0")]
ba9703b0 675 pub fn as_ptr(this: &Self) -> *const T {
dfeec247 676 let ptr: *mut RcBox<T> = NonNull::as_ptr(this.ptr);
dfeec247 677
f035d41b
XL
678 // SAFETY: This cannot go through Deref::deref or Rc::inner because
679 // this is required to retain raw/mut provenance such that e.g. `get_mut` can
680 // write through the pointer after the Rc is recovered through `from_raw`.
681 unsafe { &raw const (*ptr).value }
476ff2be
SL
682 }
683
ba9703b0
XL
684 /// Constructs an `Rc<T>` from a raw pointer.
685 ///
686 /// The raw pointer must have been previously returned by a call to
687 /// [`Rc<U>::into_raw`][into_raw] where `U` must have the same size
688 /// and alignment as `T`. This is trivially true if `U` is `T`.
689 /// Note that if `U` is not `T` but has the same size and alignment, this is
690 /// basically like transmuting references of different types. See
691 /// [`mem::transmute`][transmute] for more information on what
692 /// restrictions apply in this case.
476ff2be 693 ///
ba9703b0
XL
694 /// The user of `from_raw` has to make sure a specific value of `T` is only
695 /// dropped once.
476ff2be 696 ///
ba9703b0
XL
697 /// This function is unsafe because improper use may lead to memory unsafety,
698 /// even if the returned `Rc<T>` is never accessed.
476ff2be 699 ///
3dfed10e
XL
700 /// [into_raw]: Rc::into_raw
701 /// [transmute]: core::mem::transmute
476ff2be
SL
702 ///
703 /// # Examples
9e0c209e 704 ///
9e0c209e 705 /// ```
476ff2be
SL
706 /// use std::rc::Rc;
707 ///
dc9dc135 708 /// let x = Rc::new("hello".to_owned());
476ff2be
SL
709 /// let x_ptr = Rc::into_raw(x);
710 ///
711 /// unsafe {
712 /// // Convert back to an `Rc` to prevent leak.
713 /// let x = Rc::from_raw(x_ptr);
dc9dc135 714 /// assert_eq!(&*x, "hello");
476ff2be 715 ///
e1599b0c 716 /// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
476ff2be
SL
717 /// }
718 ///
719 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
720 /// ```
8bb4bdeb
XL
721 #[stable(feature = "rc_raw", since = "1.17.0")]
722 pub unsafe fn from_raw(ptr: *const T) -> Self {
f035d41b 723 let offset = unsafe { data_offset(ptr) };
ea8adc8c
XL
724
725 // Reverse the offset to find the original RcBox.
726 let fake_ptr = ptr as *mut RcBox<T>;
f035d41b 727 let rc_ptr = unsafe { set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset)) };
7cac9316 728
f035d41b 729 unsafe { Self::from_ptr(rc_ptr) }
cc61c64b 730 }
cc61c64b 731
3dfed10e 732 /// Creates a new [`Weak`] pointer to this allocation.
d9579d0f
AL
733 ///
734 /// # Examples
735 ///
736 /// ```
d9579d0f
AL
737 /// use std::rc::Rc;
738 ///
739 /// let five = Rc::new(5);
740 ///
e9174d1e 741 /// let weak_five = Rc::downgrade(&five);
d9579d0f 742 /// ```
e9174d1e
SL
743 #[stable(feature = "rc_weak", since = "1.4.0")]
744 pub fn downgrade(this: &Self) -> Weak<T> {
1b1a35ee 745 this.inner().inc_weak();
8faf50e0
XL
746 // Make sure we do not create a dangling Weak
747 debug_assert!(!is_dangling(this.ptr));
54a0048b 748 Weak { ptr: this.ptr }
d9579d0f 749 }
d9579d0f 750
3dfed10e 751 /// Gets the number of [`Weak`] pointers to this allocation.
9e0c209e
SL
752 ///
753 /// # Examples
754 ///
755 /// ```
9e0c209e
SL
756 /// use std::rc::Rc;
757 ///
758 /// let five = Rc::new(5);
759 /// let _weak_five = Rc::downgrade(&five);
760 ///
761 /// assert_eq!(1, Rc::weak_count(&five));
762 /// ```
62682a34 763 #[inline]
476ff2be 764 #[stable(feature = "rc_counts", since = "1.15.0")]
b039eaaf 765 pub fn weak_count(this: &Self) -> usize {
1b1a35ee 766 this.inner().weak() - 1
b039eaaf 767 }
62682a34 768
e74abb32 769 /// Gets the number of strong (`Rc`) pointers to this allocation.
9e0c209e
SL
770 ///
771 /// # Examples
772 ///
773 /// ```
9e0c209e
SL
774 /// use std::rc::Rc;
775 ///
776 /// let five = Rc::new(5);
7cac9316 777 /// let _also_five = Rc::clone(&five);
9e0c209e
SL
778 ///
779 /// assert_eq!(2, Rc::strong_count(&five));
780 /// ```
62682a34 781 #[inline]
476ff2be 782 #[stable(feature = "rc_counts", since = "1.15.0")]
b039eaaf 783 pub fn strong_count(this: &Self) -> usize {
1b1a35ee 784 this.inner().strong()
b039eaaf 785 }
62682a34 786
3dfed10e 787 /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to
e74abb32 788 /// this allocation.
62682a34 789 #[inline]
cc61c64b 790 fn is_unique(this: &Self) -> bool {
e9174d1e 791 Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
62682a34
SL
792 }
793
e74abb32 794 /// Returns a mutable reference into the given `Rc`, if there are
3dfed10e 795 /// no other `Rc` or [`Weak`] pointers to the same allocation.
62682a34 796 ///
476ff2be 797 /// Returns [`None`] otherwise, because it is not safe to
9e0c209e
SL
798 /// mutate a shared value.
799 ///
800 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
e74abb32 801 /// the inner value when there are other pointers.
9e0c209e 802 ///
3dfed10e
XL
803 /// [make_mut]: Rc::make_mut
804 /// [clone]: Clone::clone
62682a34
SL
805 ///
806 /// # Examples
807 ///
808 /// ```
62682a34
SL
809 /// use std::rc::Rc;
810 ///
811 /// let mut x = Rc::new(3);
812 /// *Rc::get_mut(&mut x).unwrap() = 4;
813 /// assert_eq!(*x, 4);
814 ///
7cac9316 815 /// let _y = Rc::clone(&x);
62682a34
SL
816 /// assert!(Rc::get_mut(&mut x).is_none());
817 /// ```
818 #[inline]
e9174d1e
SL
819 #[stable(feature = "rc_unique", since = "1.4.0")]
820 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
dfeec247 821 if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
1a4d82fc 822 }
9e0c209e 823
e74abb32 824 /// Returns a mutable reference into the given `Rc`,
e1599b0c
XL
825 /// without any check.
826 ///
827 /// See also [`get_mut`], which is safe and does appropriate checks.
828 ///
3dfed10e 829 /// [`get_mut`]: Rc::get_mut
e1599b0c
XL
830 ///
831 /// # Safety
832 ///
e74abb32 833 /// Any other `Rc` or [`Weak`] pointers to the same allocation must not be dereferenced
e1599b0c
XL
834 /// for the duration of the returned borrow.
835 /// This is trivially the case if no such pointers exist,
836 /// for example immediately after `Rc::new`.
837 ///
838 /// # Examples
839 ///
840 /// ```
841 /// #![feature(get_mut_unchecked)]
842 ///
843 /// use std::rc::Rc;
844 ///
845 /// let mut x = Rc::new(String::new());
846 /// unsafe {
847 /// Rc::get_mut_unchecked(&mut x).push_str("foo")
848 /// }
849 /// assert_eq!(*x, "foo");
850 /// ```
851 #[inline]
852 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
853 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
1b1a35ee
XL
854 // We are careful to *not* create a reference covering the "count" fields, as
855 // this would conflict with accesses to the reference counts (e.g. by `Weak`).
856 unsafe { &mut (*this.ptr.as_ptr()).value }
e1599b0c
XL
857 }
858
9e0c209e 859 #[inline]
8bb4bdeb 860 #[stable(feature = "ptr_eq", since = "1.17.0")]
e74abb32
XL
861 /// Returns `true` if the two `Rc`s point to the same allocation
862 /// (in a vein similar to [`ptr::eq`]).
9e0c209e
SL
863 ///
864 /// # Examples
865 ///
866 /// ```
9e0c209e
SL
867 /// use std::rc::Rc;
868 ///
869 /// let five = Rc::new(5);
7cac9316 870 /// let same_five = Rc::clone(&five);
9e0c209e
SL
871 /// let other_five = Rc::new(5);
872 ///
873 /// assert!(Rc::ptr_eq(&five, &same_five));
874 /// assert!(!Rc::ptr_eq(&five, &other_five));
875 /// ```
e74abb32 876 ///
3dfed10e 877 /// [`ptr::eq`]: core::ptr::eq
9e0c209e 878 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
7cac9316 879 this.ptr.as_ptr() == other.ptr.as_ptr()
9e0c209e 880 }
1a4d82fc
JJ
881}
882
1a4d82fc 883impl<T: Clone> Rc<T> {
9e0c209e
SL
884 /// Makes a mutable reference into the given `Rc`.
885 ///
e74abb32
XL
886 /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
887 /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
dc9dc135 888 /// referred to as clone-on-write.
9e0c209e 889 ///
e74abb32
XL
890 /// If there are no other `Rc` pointers to this allocation, then [`Weak`]
891 /// pointers to this allocation will be disassociated.
1a4d82fc 892 ///
dc9dc135
XL
893 /// See also [`get_mut`], which will fail rather than cloning.
894 ///
3dfed10e
XL
895 /// [`clone`]: Clone::clone
896 /// [`get_mut`]: Rc::get_mut
1a4d82fc
JJ
897 ///
898 /// # Examples
899 ///
900 /// ```
901 /// use std::rc::Rc;
902 ///
e9174d1e
SL
903 /// let mut data = Rc::new(5);
904 ///
9e0c209e 905 /// *Rc::make_mut(&mut data) += 1; // Won't clone anything
7cac9316 906 /// let mut other_data = Rc::clone(&data); // Won't clone inner data
9e0c209e
SL
907 /// *Rc::make_mut(&mut data) += 1; // Clones inner data
908 /// *Rc::make_mut(&mut data) += 1; // Won't clone anything
909 /// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything
e9174d1e 910 ///
e74abb32 911 /// // Now `data` and `other_data` point to different allocations.
e9174d1e
SL
912 /// assert_eq!(*data, 8);
913 /// assert_eq!(*other_data, 12);
1a4d82fc 914 /// ```
dc9dc135 915 ///
e74abb32 916 /// [`Weak`] pointers will be disassociated:
dc9dc135
XL
917 ///
918 /// ```
919 /// use std::rc::Rc;
920 ///
921 /// let mut data = Rc::new(75);
922 /// let weak = Rc::downgrade(&data);
923 ///
924 /// assert!(75 == *data);
925 /// assert!(75 == *weak.upgrade().unwrap());
926 ///
927 /// *Rc::make_mut(&mut data) += 1;
928 ///
929 /// assert!(76 == *data);
930 /// assert!(weak.upgrade().is_none());
931 /// ```
1a4d82fc 932 #[inline]
e9174d1e
SL
933 #[stable(feature = "rc_unique", since = "1.4.0")]
934 pub fn make_mut(this: &mut Self) -> &mut T {
935 if Rc::strong_count(this) != 1 {
936 // Gotta clone the data, there are other Rcs
937 *this = Rc::new((**this).clone())
938 } else if Rc::weak_count(this) != 0 {
939 // Can just steal the data, all that's left is Weaks
940 unsafe {
7cac9316 941 let mut swap = Rc::new(ptr::read(&this.ptr.as_ref().value));
e9174d1e 942 mem::swap(this, &mut swap);
1b1a35ee 943 swap.inner().dec_strong();
e9174d1e
SL
944 // Remove implicit strong-weak ref (no need to craft a fake
945 // Weak here -- we know other Weaks can clean up for us)
1b1a35ee 946 swap.inner().dec_weak();
e9174d1e
SL
947 forget(swap);
948 }
1a4d82fc 949 }
c34b1796
AL
950 // This unsafety is ok because we're guaranteed that the pointer
951 // returned is the *only* pointer that will ever be returned to T. Our
952 // reference count is guaranteed to be 1 at this point, and we required
953 // the `Rc<T>` itself to be `mut`, so we're returning the only possible
e74abb32 954 // reference to the allocation.
dfeec247 955 unsafe { &mut this.ptr.as_mut().value }
1a4d82fc
JJ
956 }
957}
958
8faf50e0 959impl Rc<dyn Any> {
ea8adc8c 960 #[inline]
8faf50e0 961 #[stable(feature = "rc_downcast", since = "1.29.0")]
a1dfa0c6 962 /// Attempt to downcast the `Rc<dyn Any>` to a concrete type.
ea8adc8c
XL
963 ///
964 /// # Examples
965 ///
966 /// ```
ea8adc8c
XL
967 /// use std::any::Any;
968 /// use std::rc::Rc;
969 ///
a1dfa0c6 970 /// fn print_if_string(value: Rc<dyn Any>) {
ea8adc8c
XL
971 /// if let Ok(string) = value.downcast::<String>() {
972 /// println!("String ({}): {}", string.len(), string);
973 /// }
974 /// }
975 ///
e74abb32
XL
976 /// let my_string = "Hello World".to_string();
977 /// print_if_string(Rc::new(my_string));
978 /// print_if_string(Rc::new(0i8));
ea8adc8c 979 /// ```
8faf50e0 980 pub fn downcast<T: Any>(self) -> Result<Rc<T>, Rc<dyn Any>> {
ea8adc8c 981 if (*self).is::<T>() {
94b46f34
XL
982 let ptr = self.ptr.cast::<RcBox<T>>();
983 forget(self);
416331ca 984 Ok(Rc::from_inner(ptr))
ea8adc8c
XL
985 } else {
986 Err(self)
987 }
988 }
989}
990
3b2f2976 991impl<T: ?Sized> Rc<T> {
416331ca 992 /// Allocates an `RcBox<T>` with sufficient space for
e74abb32 993 /// a possibly-unsized inner value where the value has the layout provided.
416331ca
XL
994 ///
995 /// The function `mem_to_rcbox` is called with the data pointer
996 /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
e1599b0c 997 unsafe fn allocate_for_layout(
416331ca 998 value_layout: Layout,
1b1a35ee 999 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
dfeec247 1000 mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>,
416331ca
XL
1001 ) -> *mut RcBox<T> {
1002 // Calculate layout using the given value layout.
a1dfa0c6
XL
1003 // Previously, layout was calculated on the expression
1004 // `&*(ptr as *const RcBox<T>)`, but this created a misaligned
1005 // reference (see #54908).
dfeec247 1006 let layout = Layout::new::<RcBox<()>>().extend(value_layout).unwrap().0.pad_to_align();
3b2f2976 1007
416331ca 1008 // Allocate for the layout.
3dfed10e 1009 let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout));
3b2f2976 1010
a1dfa0c6 1011 // Initialize the RcBox
3dfed10e 1012 let inner = mem_to_rcbox(ptr.as_non_null_ptr().as_ptr());
f035d41b
XL
1013 unsafe {
1014 debug_assert_eq!(Layout::for_value(&*inner), layout);
3b2f2976 1015
f035d41b
XL
1016 ptr::write(&mut (*inner).strong, Cell::new(1));
1017 ptr::write(&mut (*inner).weak, Cell::new(1));
1018 }
3b2f2976
XL
1019
1020 inner
1021 }
1022
e74abb32 1023 /// Allocates an `RcBox<T>` with sufficient space for an unsized inner value
416331ca
XL
1024 unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> {
1025 // Allocate for the `RcBox<T>` using the given value.
f035d41b 1026 unsafe {
3dfed10e
XL
1027 Self::allocate_for_layout(
1028 Layout::for_value(&*ptr),
1029 |layout| Global.alloc(layout),
1030 |mem| set_data_ptr(ptr as *mut T, mem) as *mut RcBox<T>,
1031 )
f035d41b 1032 }
416331ca
XL
1033 }
1034
3b2f2976
XL
1035 fn from_box(v: Box<T>) -> Rc<T> {
1036 unsafe {
83c7162d
XL
1037 let box_unique = Box::into_unique(v);
1038 let bptr = box_unique.as_ptr();
3b2f2976
XL
1039
1040 let value_size = size_of_val(&*bptr);
1041 let ptr = Self::allocate_for_ptr(bptr);
1042
1043 // Copy value as bytes
1044 ptr::copy_nonoverlapping(
1045 bptr as *const T as *const u8,
1046 &mut (*ptr).value as *mut _ as *mut u8,
dfeec247
XL
1047 value_size,
1048 );
3b2f2976
XL
1049
1050 // Free the allocation without dropping its contents
83c7162d 1051 box_free(box_unique);
3b2f2976 1052
416331ca 1053 Self::from_ptr(ptr)
3b2f2976
XL
1054 }
1055 }
1056}
1057
416331ca
XL
1058impl<T> Rc<[T]> {
1059 /// Allocates an `RcBox<[T]>` with the given length.
1060 unsafe fn allocate_for_slice(len: usize) -> *mut RcBox<[T]> {
f035d41b 1061 unsafe {
3dfed10e
XL
1062 Self::allocate_for_layout(
1063 Layout::array::<T>(len).unwrap(),
1064 |layout| Global.alloc(layout),
1065 |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut RcBox<[T]>,
1066 )
f035d41b 1067 }
416331ca
XL
1068 }
1069}
1070
1071/// Sets the data pointer of a `?Sized` raw pointer.
1072///
1073/// For a slice/trait object, this sets the `data` field and leaves the rest
1074/// unchanged. For a sized raw pointer, this simply sets the pointer.
3b2f2976 1075unsafe fn set_data_ptr<T: ?Sized, U>(mut ptr: *mut T, data: *mut U) -> *mut T {
f035d41b
XL
1076 unsafe {
1077 ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8);
1078 }
3b2f2976
XL
1079 ptr
1080}
1081
1082impl<T> Rc<[T]> {
f9f354fc 1083 /// Copy elements from slice into newly allocated Rc<\[T\]>
416331ca
XL
1084 ///
1085 /// Unsafe because the caller must either take ownership or bind `T: Copy`
3b2f2976 1086 unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
f035d41b
XL
1087 unsafe {
1088 let ptr = Self::allocate_for_slice(v.len());
1089 ptr::copy_nonoverlapping(v.as_ptr(), &mut (*ptr).value as *mut [T] as *mut T, v.len());
1090 Self::from_ptr(ptr)
1091 }
3b2f2976 1092 }
3b2f2976 1093
416331ca
XL
1094 /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
1095 ///
1096 /// Behavior is undefined should the size be wrong.
1097 unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Rc<[T]> {
3b2f2976
XL
1098 // Panic guard while cloning T elements.
1099 // In the event of a panic, elements that have been written
1100 // into the new RcBox will be dropped, then the memory freed.
1101 struct Guard<T> {
94b46f34 1102 mem: NonNull<u8>,
3b2f2976
XL
1103 elems: *mut T,
1104 layout: Layout,
1105 n_elems: usize,
1106 }
1107
1108 impl<T> Drop for Guard<T> {
1109 fn drop(&mut self) {
3b2f2976
XL
1110 unsafe {
1111 let slice = from_raw_parts_mut(self.elems, self.n_elems);
1112 ptr::drop_in_place(slice);
1113
416331ca 1114 Global.dealloc(self.mem, self.layout);
3b2f2976
XL
1115 }
1116 }
1117 }
1118
f035d41b
XL
1119 unsafe {
1120 let ptr = Self::allocate_for_slice(len);
3b2f2976 1121
f035d41b
XL
1122 let mem = ptr as *mut _ as *mut u8;
1123 let layout = Layout::for_value(&*ptr);
3b2f2976 1124
f035d41b
XL
1125 // Pointer to first element
1126 let elems = &mut (*ptr).value as *mut [T] as *mut T;
3b2f2976 1127
f035d41b 1128 let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
3b2f2976 1129
f035d41b
XL
1130 for (i, item) in iter.enumerate() {
1131 ptr::write(elems.add(i), item);
1132 guard.n_elems += 1;
1133 }
416331ca 1134
f035d41b
XL
1135 // All clear. Forget the guard so it doesn't free the new RcBox.
1136 forget(guard);
416331ca 1137
f035d41b
XL
1138 Self::from_ptr(ptr)
1139 }
416331ca
XL
1140 }
1141}
3b2f2976 1142
416331ca
XL
1143/// Specialization trait used for `From<&[T]>`.
1144trait RcFromSlice<T> {
1145 fn from_slice(slice: &[T]) -> Self;
1146}
3b2f2976 1147
416331ca
XL
1148impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
1149 #[inline]
1150 default fn from_slice(v: &[T]) -> Self {
dfeec247 1151 unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
3b2f2976
XL
1152 }
1153}
1154
1155impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
1156 #[inline]
1157 fn from_slice(v: &[T]) -> Self {
1158 unsafe { Rc::copy_from_slice(v) }
1159 }
1160}
1161
d9579d0f
AL
1162#[stable(feature = "rust1", since = "1.0.0")]
1163impl<T: ?Sized> Deref for Rc<T> {
1164 type Target = T;
1165
1166 #[inline(always)]
1167 fn deref(&self) -> &T {
1168 &self.inner().value
1169 }
1170}
1a4d82fc 1171
dfeec247 1172#[unstable(feature = "receiver_trait", issue = "none")]
0731742a
XL
1173impl<T: ?Sized> Receiver for Rc<T> {}
1174
d9579d0f 1175#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 1176unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {
9e0c209e 1177 /// Drops the `Rc`.
d9579d0f
AL
1178 ///
1179 /// This will decrement the strong reference count. If the strong reference
c30ab7b3 1180 /// count reaches zero then the only other references (if any) are
b7449926 1181 /// [`Weak`], so we `drop` the inner value.
d9579d0f
AL
1182 ///
1183 /// # Examples
1184 ///
1185 /// ```
d9579d0f
AL
1186 /// use std::rc::Rc;
1187 ///
9e0c209e 1188 /// struct Foo;
d9579d0f 1189 ///
9e0c209e
SL
1190 /// impl Drop for Foo {
1191 /// fn drop(&mut self) {
1192 /// println!("dropped!");
1193 /// }
d9579d0f 1194 /// }
d9579d0f 1195 ///
9e0c209e 1196 /// let foo = Rc::new(Foo);
7cac9316 1197 /// let foo2 = Rc::clone(&foo);
d9579d0f 1198 ///
9e0c209e
SL
1199 /// drop(foo); // Doesn't print anything
1200 /// drop(foo2); // Prints "dropped!"
d9579d0f
AL
1201 /// ```
1202 fn drop(&mut self) {
1203 unsafe {
1b1a35ee
XL
1204 self.inner().dec_strong();
1205 if self.inner().strong() == 0 {
9e0c209e 1206 // destroy the contained object
1b1a35ee 1207 ptr::drop_in_place(Self::get_mut_unchecked(self));
d9579d0f 1208
9e0c209e
SL
1209 // remove the implicit "strong weak" pointer now that we've
1210 // destroyed the contents.
1b1a35ee 1211 self.inner().dec_weak();
d9579d0f 1212
1b1a35ee 1213 if self.inner().weak() == 0 {
94b46f34 1214 Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
d9579d0f
AL
1215 }
1216 }
1217 }
1218 }
1219}
1220
d9579d0f
AL
1221#[stable(feature = "rust1", since = "1.0.0")]
1222impl<T: ?Sized> Clone for Rc<T> {
9e0c209e 1223 /// Makes a clone of the `Rc` pointer.
d9579d0f 1224 ///
e74abb32 1225 /// This creates another pointer to the same allocation, increasing the
9e0c209e 1226 /// strong reference count.
d9579d0f
AL
1227 ///
1228 /// # Examples
1229 ///
1230 /// ```
d9579d0f
AL
1231 /// use std::rc::Rc;
1232 ///
1233 /// let five = Rc::new(5);
1234 ///
0bf4aa26 1235 /// let _ = Rc::clone(&five);
d9579d0f
AL
1236 /// ```
1237 #[inline]
1238 fn clone(&self) -> Rc<T> {
1b1a35ee 1239 self.inner().inc_strong();
416331ca 1240 Self::from_inner(self.ptr)
d9579d0f
AL
1241 }
1242}
1a4d82fc 1243
85aaf69f 1244#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1245impl<T: Default> Default for Rc<T> {
1246 /// Creates a new `Rc<T>`, with the `Default` value for `T`.
1247 ///
1248 /// # Examples
1249 ///
1250 /// ```
1251 /// use std::rc::Rc;
1a4d82fc 1252 ///
85aaf69f 1253 /// let x: Rc<i32> = Default::default();
9e0c209e 1254 /// assert_eq!(*x, 0);
1a4d82fc
JJ
1255 /// ```
1256 #[inline]
1a4d82fc
JJ
1257 fn default() -> Rc<T> {
1258 Rc::new(Default::default())
1259 }
1260}
1261
0731742a
XL
1262#[stable(feature = "rust1", since = "1.0.0")]
1263trait RcEqIdent<T: ?Sized + PartialEq> {
1264 fn eq(&self, other: &Rc<T>) -> bool;
1265 fn ne(&self, other: &Rc<T>) -> bool;
1266}
1267
1268#[stable(feature = "rust1", since = "1.0.0")]
1269impl<T: ?Sized + PartialEq> RcEqIdent<T> for Rc<T> {
1270 #[inline]
1271 default fn eq(&self, other: &Rc<T>) -> bool {
1272 **self == **other
1273 }
1274
1275 #[inline]
1276 default fn ne(&self, other: &Rc<T>) -> bool {
1277 **self != **other
1278 }
1279}
1280
f9f354fc
XL
1281// Hack to allow specializing on `Eq` even though `Eq` has a method.
1282#[rustc_unsafe_specialization_marker]
1283pub(crate) trait MarkerEq: PartialEq<Self> {}
1284
1285impl<T: Eq> MarkerEq for T {}
1286
48663c56
XL
1287/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
1288/// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
1289/// store large values, that are slow to clone, but also heavy to check for equality, causing this
1290/// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
1291/// the same value, than two `&T`s.
e74abb32
XL
1292///
1293/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
0731742a 1294#[stable(feature = "rust1", since = "1.0.0")]
f9f354fc 1295impl<T: ?Sized + MarkerEq> RcEqIdent<T> for Rc<T> {
0731742a
XL
1296 #[inline]
1297 fn eq(&self, other: &Rc<T>) -> bool {
1298 Rc::ptr_eq(self, other) || **self == **other
1299 }
1300
1301 #[inline]
1302 fn ne(&self, other: &Rc<T>) -> bool {
1303 !Rc::ptr_eq(self, other) && **self != **other
1304 }
1305}
1306
85aaf69f 1307#[stable(feature = "rust1", since = "1.0.0")]
62682a34 1308impl<T: ?Sized + PartialEq> PartialEq for Rc<T> {
9e0c209e 1309 /// Equality for two `Rc`s.
1a4d82fc 1310 ///
e74abb32
XL
1311 /// Two `Rc`s are equal if their inner values are equal, even if they are
1312 /// stored in different allocation.
1a4d82fc 1313 ///
e74abb32
XL
1314 /// If `T` also implements `Eq` (implying reflexivity of equality),
1315 /// two `Rc`s that point to the same allocation are
0731742a
XL
1316 /// always equal.
1317 ///
1a4d82fc
JJ
1318 /// # Examples
1319 ///
1320 /// ```
1321 /// use std::rc::Rc;
1322 ///
85aaf69f 1323 /// let five = Rc::new(5);
1a4d82fc 1324 ///
9e0c209e 1325 /// assert!(five == Rc::new(5));
1a4d82fc 1326 /// ```
0731742a 1327 #[inline]
b039eaaf 1328 fn eq(&self, other: &Rc<T>) -> bool {
0731742a 1329 RcEqIdent::eq(self, other)
b039eaaf 1330 }
1a4d82fc 1331
9e0c209e 1332 /// Inequality for two `Rc`s.
1a4d82fc 1333 ///
9e0c209e 1334 /// Two `Rc`s are unequal if their inner values are unequal.
1a4d82fc 1335 ///
e74abb32
XL
1336 /// If `T` also implements `Eq` (implying reflexivity of equality),
1337 /// two `Rc`s that point to the same allocation are
0731742a
XL
1338 /// never unequal.
1339 ///
1a4d82fc
JJ
1340 /// # Examples
1341 ///
1342 /// ```
1343 /// use std::rc::Rc;
1344 ///
85aaf69f 1345 /// let five = Rc::new(5);
1a4d82fc 1346 ///
9e0c209e 1347 /// assert!(five != Rc::new(6));
1a4d82fc 1348 /// ```
0731742a 1349 #[inline]
b039eaaf 1350 fn ne(&self, other: &Rc<T>) -> bool {
0731742a 1351 RcEqIdent::ne(self, other)
b039eaaf 1352 }
1a4d82fc
JJ
1353}
1354
85aaf69f 1355#[stable(feature = "rust1", since = "1.0.0")]
62682a34 1356impl<T: ?Sized + Eq> Eq for Rc<T> {}
1a4d82fc 1357
85aaf69f 1358#[stable(feature = "rust1", since = "1.0.0")]
62682a34 1359impl<T: ?Sized + PartialOrd> PartialOrd for Rc<T> {
9e0c209e 1360 /// Partial comparison for two `Rc`s.
1a4d82fc
JJ
1361 ///
1362 /// The two are compared by calling `partial_cmp()` on their inner values.
1363 ///
1364 /// # Examples
1365 ///
1366 /// ```
1367 /// use std::rc::Rc;
9e0c209e 1368 /// use std::cmp::Ordering;
1a4d82fc 1369 ///
85aaf69f 1370 /// let five = Rc::new(5);
1a4d82fc 1371 ///
9e0c209e 1372 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
1a4d82fc
JJ
1373 /// ```
1374 #[inline(always)]
1375 fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
1376 (**self).partial_cmp(&**other)
1377 }
1378
9e0c209e 1379 /// Less-than comparison for two `Rc`s.
1a4d82fc
JJ
1380 ///
1381 /// The two are compared by calling `<` on their inner values.
1382 ///
1383 /// # Examples
1384 ///
1385 /// ```
1386 /// use std::rc::Rc;
1387 ///
85aaf69f 1388 /// let five = Rc::new(5);
1a4d82fc 1389 ///
9e0c209e 1390 /// assert!(five < Rc::new(6));
1a4d82fc
JJ
1391 /// ```
1392 #[inline(always)]
b039eaaf
SL
1393 fn lt(&self, other: &Rc<T>) -> bool {
1394 **self < **other
1395 }
1a4d82fc 1396
9e0c209e 1397 /// 'Less than or equal to' comparison for two `Rc`s.
1a4d82fc
JJ
1398 ///
1399 /// The two are compared by calling `<=` on their inner values.
1400 ///
1401 /// # Examples
1402 ///
1403 /// ```
1404 /// use std::rc::Rc;
1405 ///
85aaf69f 1406 /// let five = Rc::new(5);
1a4d82fc 1407 ///
9e0c209e 1408 /// assert!(five <= Rc::new(5));
1a4d82fc
JJ
1409 /// ```
1410 #[inline(always)]
b039eaaf
SL
1411 fn le(&self, other: &Rc<T>) -> bool {
1412 **self <= **other
1413 }
1a4d82fc 1414
9e0c209e 1415 /// Greater-than comparison for two `Rc`s.
1a4d82fc
JJ
1416 ///
1417 /// The two are compared by calling `>` on their inner values.
1418 ///
1419 /// # Examples
1420 ///
1421 /// ```
1422 /// use std::rc::Rc;
1423 ///
85aaf69f 1424 /// let five = Rc::new(5);
1a4d82fc 1425 ///
9e0c209e 1426 /// assert!(five > Rc::new(4));
1a4d82fc
JJ
1427 /// ```
1428 #[inline(always)]
b039eaaf
SL
1429 fn gt(&self, other: &Rc<T>) -> bool {
1430 **self > **other
1431 }
1a4d82fc 1432
9e0c209e 1433 /// 'Greater than or equal to' comparison for two `Rc`s.
1a4d82fc
JJ
1434 ///
1435 /// The two are compared by calling `>=` on their inner values.
1436 ///
1437 /// # Examples
1438 ///
1439 /// ```
1440 /// use std::rc::Rc;
1441 ///
85aaf69f 1442 /// let five = Rc::new(5);
1a4d82fc 1443 ///
9e0c209e 1444 /// assert!(five >= Rc::new(5));
1a4d82fc
JJ
1445 /// ```
1446 #[inline(always)]
b039eaaf
SL
1447 fn ge(&self, other: &Rc<T>) -> bool {
1448 **self >= **other
1449 }
1a4d82fc
JJ
1450}
1451
85aaf69f 1452#[stable(feature = "rust1", since = "1.0.0")]
62682a34 1453impl<T: ?Sized + Ord> Ord for Rc<T> {
9e0c209e 1454 /// Comparison for two `Rc`s.
1a4d82fc
JJ
1455 ///
1456 /// The two are compared by calling `cmp()` on their inner values.
1457 ///
1458 /// # Examples
1459 ///
1460 /// ```
1461 /// use std::rc::Rc;
9e0c209e 1462 /// use std::cmp::Ordering;
1a4d82fc 1463 ///
85aaf69f 1464 /// let five = Rc::new(5);
1a4d82fc 1465 ///
9e0c209e 1466 /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
1a4d82fc
JJ
1467 /// ```
1468 #[inline]
b039eaaf
SL
1469 fn cmp(&self, other: &Rc<T>) -> Ordering {
1470 (**self).cmp(&**other)
1471 }
1a4d82fc
JJ
1472}
1473
d9579d0f 1474#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 1475impl<T: ?Sized + Hash> Hash for Rc<T> {
d9579d0f
AL
1476 fn hash<H: Hasher>(&self, state: &mut H) {
1477 (**self).hash(state);
1478 }
1479}
1a4d82fc 1480
d9579d0f 1481#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 1482impl<T: ?Sized + fmt::Display> fmt::Display for Rc<T> {
9fa01778 1483 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
d9579d0f
AL
1484 fmt::Display::fmt(&**self, f)
1485 }
1486}
1a4d82fc 1487
d9579d0f 1488#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 1489impl<T: ?Sized + fmt::Debug> fmt::Debug for Rc<T> {
9fa01778 1490 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
d9579d0f
AL
1491 fmt::Debug::fmt(&**self, f)
1492 }
1493}
1a4d82fc 1494
9346a6ac 1495#[stable(feature = "rust1", since = "1.0.0")]
7453a54e 1496impl<T: ?Sized> fmt::Pointer for Rc<T> {
9fa01778 1497 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
ff7c6d11 1498 fmt::Pointer::fmt(&(&**self as *const T), f)
9346a6ac
AL
1499 }
1500}
1501
92a42be0
SL
1502#[stable(feature = "from_for_ptrs", since = "1.6.0")]
1503impl<T> From<T> for Rc<T> {
1504 fn from(t: T) -> Self {
1505 Rc::new(t)
1506 }
1507}
1508
3b2f2976 1509#[stable(feature = "shared_from_slice", since = "1.21.0")]
532ac7d7 1510impl<T: Clone> From<&[T]> for Rc<[T]> {
3b2f2976
XL
1511 #[inline]
1512 fn from(v: &[T]) -> Rc<[T]> {
1513 <Self as RcFromSlice<T>>::from_slice(v)
1514 }
1515}
1516
1517#[stable(feature = "shared_from_slice", since = "1.21.0")]
532ac7d7 1518impl From<&str> for Rc<str> {
3b2f2976
XL
1519 #[inline]
1520 fn from(v: &str) -> Rc<str> {
ff7c6d11
XL
1521 let rc = Rc::<[u8]>::from(v.as_bytes());
1522 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
3b2f2976
XL
1523 }
1524}
1525
1526#[stable(feature = "shared_from_slice", since = "1.21.0")]
1527impl From<String> for Rc<str> {
1528 #[inline]
1529 fn from(v: String) -> Rc<str> {
1530 Rc::from(&v[..])
1531 }
1532}
1533
1534#[stable(feature = "shared_from_slice", since = "1.21.0")]
1535impl<T: ?Sized> From<Box<T>> for Rc<T> {
1536 #[inline]
1537 fn from(v: Box<T>) -> Rc<T> {
1538 Rc::from_box(v)
1539 }
1540}
1541
1542#[stable(feature = "shared_from_slice", since = "1.21.0")]
1543impl<T> From<Vec<T>> for Rc<[T]> {
1544 #[inline]
1545 fn from(mut v: Vec<T>) -> Rc<[T]> {
1546 unsafe {
1547 let rc = Rc::copy_from_slice(&v);
1548
1549 // Allow the Vec to free its memory, but not destroy its contents
1550 v.set_len(0);
1551
1552 rc
1553 }
1554 }
1555}
1556
f9f354fc
XL
1557#[stable(feature = "shared_from_cow", since = "1.45.0")]
1558impl<'a, B> From<Cow<'a, B>> for Rc<B>
1559where
1560 B: ToOwned + ?Sized,
1561 Rc<B>: From<&'a B> + From<B::Owned>,
1562{
1563 #[inline]
1564 fn from(cow: Cow<'a, B>) -> Rc<B> {
1565 match cow {
1566 Cow::Borrowed(s) => Rc::from(s),
1567 Cow::Owned(s) => Rc::from(s),
1568 }
1569 }
1570}
1571
74b04a01 1572#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
3dfed10e 1573impl<T, const N: usize> TryFrom<Rc<[T]>> for Rc<[T; N]> {
416331ca
XL
1574 type Error = Rc<[T]>;
1575
1576 fn try_from(boxed_slice: Rc<[T]>) -> Result<Self, Self::Error> {
1577 if boxed_slice.len() == N {
1578 Ok(unsafe { Rc::from_raw(Rc::into_raw(boxed_slice) as *mut [T; N]) })
1579 } else {
1580 Err(boxed_slice)
1581 }
1582 }
1583}
1584
1585#[stable(feature = "shared_from_iter", since = "1.37.0")]
1586impl<T> iter::FromIterator<T> for Rc<[T]> {
1587 /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
1588 ///
1589 /// # Performance characteristics
1590 ///
1591 /// ## The general case
1592 ///
1593 /// In the general case, collecting into `Rc<[T]>` is done by first
1594 /// collecting into a `Vec<T>`. That is, when writing the following:
1595 ///
1596 /// ```rust
1597 /// # use std::rc::Rc;
1598 /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
1599 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
1600 /// ```
1601 ///
1602 /// this behaves as if we wrote:
1603 ///
1604 /// ```rust
1605 /// # use std::rc::Rc;
1606 /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
1607 /// .collect::<Vec<_>>() // The first set of allocations happens here.
1608 /// .into(); // A second allocation for `Rc<[T]>` happens here.
1609 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
1610 /// ```
1611 ///
1612 /// This will allocate as many times as needed for constructing the `Vec<T>`
1613 /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
1614 ///
1615 /// ## Iterators of known length
1616 ///
1617 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
1618 /// a single allocation will be made for the `Rc<[T]>`. For example:
1619 ///
1620 /// ```rust
1621 /// # use std::rc::Rc;
1622 /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
1623 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
1624 /// ```
1625 fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
f9f354fc 1626 ToRcSlice::to_rc_slice(iter.into_iter())
416331ca
XL
1627 }
1628}
1629
1630/// Specialization trait used for collecting into `Rc<[T]>`.
f9f354fc
XL
1631trait ToRcSlice<T>: Iterator<Item = T> + Sized {
1632 fn to_rc_slice(self) -> Rc<[T]>;
416331ca
XL
1633}
1634
f9f354fc
XL
1635impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I {
1636 default fn to_rc_slice(self) -> Rc<[T]> {
1637 self.collect::<Vec<T>>().into()
416331ca
XL
1638 }
1639}
1640
f9f354fc
XL
1641impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I {
1642 fn to_rc_slice(self) -> Rc<[T]> {
416331ca 1643 // This is the case for a `TrustedLen` iterator.
f9f354fc 1644 let (low, high) = self.size_hint();
416331ca
XL
1645 if let Some(high) = high {
1646 debug_assert_eq!(
dfeec247
XL
1647 low,
1648 high,
416331ca
XL
1649 "TrustedLen iterator's size hint is not exact: {:?}",
1650 (low, high)
1651 );
1652
1653 unsafe {
1654 // SAFETY: We need to ensure that the iterator has an exact length and we have.
f9f354fc 1655 Rc::from_iter_exact(self, low)
416331ca
XL
1656 }
1657 } else {
1658 // Fall back to normal implementation.
f9f354fc 1659 self.collect::<Vec<T>>().into()
416331ca
XL
1660 }
1661 }
1662}
1663
cc61c64b 1664/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
e74abb32 1665/// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
cc61c64b 1666/// pointer, which returns an [`Option`]`<`[`Rc`]`<T>>`.
9e0c209e 1667///
cc61c64b 1668/// Since a `Weak` reference does not count towards ownership, it will not
e74abb32
XL
1669/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
1670/// guarantees about the value still being present. Thus it may return [`None`]
1671/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
1672/// itself (the backing store) from being deallocated.
9e0c209e 1673///
e74abb32
XL
1674/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
1675/// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
1676/// prevent circular references between [`Rc`] pointers, since mutual owning references
3b2f2976 1677/// would never allow either [`Rc`] to be dropped. For example, a tree could
cc61c64b
XL
1678/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
1679/// pointers from children back to their parents.
1a4d82fc 1680///
cc61c64b 1681/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
1a4d82fc 1682///
3dfed10e 1683/// [`upgrade`]: Weak::upgrade
e9174d1e 1684#[stable(feature = "rc_weak", since = "1.4.0")]
d9579d0f 1685pub struct Weak<T: ?Sized> {
8faf50e0
XL
1686 // This is a `NonNull` to allow optimizing the size of this type in enums,
1687 // but it is not necessarily a valid pointer.
1688 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
1689 // to allocate space on the heap. That's not a value a real pointer
1690 // will ever have because RcBox has alignment at least 2.
f035d41b 1691 // This is only possible when `T: Sized`; unsized `T` never dangle.
2c00a5a8 1692 ptr: NonNull<RcBox<T>>,
d9579d0f 1693}
1a4d82fc 1694
7453a54e 1695#[stable(feature = "rc_weak", since = "1.4.0")]
d9579d0f 1696impl<T: ?Sized> !marker::Send for Weak<T> {}
7453a54e 1697#[stable(feature = "rc_weak", since = "1.4.0")]
d9579d0f 1698impl<T: ?Sized> !marker::Sync for Weak<T> {}
85aaf69f 1699
92a42be0
SL
1700#[unstable(feature = "coerce_unsized", issue = "27732")]
1701impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
c1a9b12d 1702
dfeec247 1703#[unstable(feature = "dispatch_from_dyn", issue = "none")]
a1dfa0c6
XL
1704impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
1705
a7813a04 1706impl<T> Weak<T> {
8faf50e0 1707 /// Constructs a new `Weak<T>`, without allocating any memory.
0731742a 1708 /// Calling [`upgrade`] on the return value always gives [`None`].
a7813a04 1709 ///
3dfed10e 1710 /// [`upgrade`]: Weak::upgrade
a7813a04
XL
1711 ///
1712 /// # Examples
1713 ///
1714 /// ```
1715 /// use std::rc::Weak;
1716 ///
1717 /// let empty: Weak<i64> = Weak::new();
9e0c209e 1718 /// assert!(empty.upgrade().is_none());
a7813a04
XL
1719 /// ```
1720 #[stable(feature = "downgraded_weak", since = "1.10.0")]
1721 pub fn new() -> Weak<T> {
dfeec247 1722 Weak { ptr: NonNull::new(usize::MAX as *mut RcBox<T>).expect("MAX is not 0") }
a7813a04 1723 }
dc9dc135
XL
1724
1725 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
1726 ///
ba9703b0
XL
1727 /// The pointer is valid only if there are some strong references. The pointer may be dangling,
1728 /// unaligned or even [`null`] otherwise.
dc9dc135
XL
1729 ///
1730 /// # Examples
1731 ///
1732 /// ```
416331ca 1733 /// use std::rc::Rc;
dc9dc135
XL
1734 /// use std::ptr;
1735 ///
1736 /// let strong = Rc::new("hello".to_owned());
1737 /// let weak = Rc::downgrade(&strong);
1738 /// // Both point to the same object
ba9703b0 1739 /// assert!(ptr::eq(&*strong, weak.as_ptr()));
dc9dc135 1740 /// // The strong here keeps it alive, so we can still access the object.
ba9703b0 1741 /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
dc9dc135
XL
1742 ///
1743 /// drop(strong);
ba9703b0 1744 /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
dc9dc135 1745 /// // undefined behaviour.
ba9703b0 1746 /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
dc9dc135
XL
1747 /// ```
1748 ///
3dfed10e 1749 /// [`null`]: core::ptr::null
f035d41b 1750 #[stable(feature = "rc_as_ptr", since = "1.45.0")]
ba9703b0 1751 pub fn as_ptr(&self) -> *const T {
f035d41b
XL
1752 let ptr: *mut RcBox<T> = NonNull::as_ptr(self.ptr);
1753
1754 // SAFETY: we must offset the pointer manually, and said pointer may be
1755 // a dangling weak (usize::MAX) if T is sized. data_offset is safe to call,
1756 // because we know that a pointer to unsized T was derived from a real
1757 // unsized T, as dangling weaks are only created for sized T. wrapping_offset
1758 // is used so that we can use the same code path for the non-dangling
1759 // unsized case and the potentially dangling sized case.
1760 unsafe {
1761 let offset = data_offset(ptr as *mut T);
1762 set_data_ptr(ptr as *mut T, (ptr as *mut u8).wrapping_offset(offset))
1763 }
dc9dc135
XL
1764 }
1765
1766 /// Consumes the `Weak<T>` and turns it into a raw pointer.
1767 ///
3dfed10e
XL
1768 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
1769 /// one weak reference (the weak count is not modified by this operation). It can be turned
1770 /// back into the `Weak<T>` with [`from_raw`].
dc9dc135
XL
1771 ///
1772 /// The same restrictions of accessing the target of the pointer as with
ba9703b0 1773 /// [`as_ptr`] apply.
dc9dc135
XL
1774 ///
1775 /// # Examples
1776 ///
1777 /// ```
dc9dc135
XL
1778 /// use std::rc::{Rc, Weak};
1779 ///
1780 /// let strong = Rc::new("hello".to_owned());
1781 /// let weak = Rc::downgrade(&strong);
416331ca 1782 /// let raw = weak.into_raw();
dc9dc135
XL
1783 ///
1784 /// assert_eq!(1, Rc::weak_count(&strong));
1785 /// assert_eq!("hello", unsafe { &*raw });
1786 ///
1787 /// drop(unsafe { Weak::from_raw(raw) });
1788 /// assert_eq!(0, Rc::weak_count(&strong));
1789 /// ```
1790 ///
3dfed10e
XL
1791 /// [`from_raw`]: Weak::from_raw
1792 /// [`as_ptr`]: Weak::as_ptr
f9f354fc 1793 #[stable(feature = "weak_into_raw", since = "1.45.0")]
416331ca 1794 pub fn into_raw(self) -> *const T {
ba9703b0 1795 let result = self.as_ptr();
416331ca 1796 mem::forget(self);
dc9dc135
XL
1797 result
1798 }
1799
1800 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
1801 ///
1802 /// This can be used to safely get a strong reference (by calling [`upgrade`]
1803 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
1804 ///
3dfed10e
XL
1805 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
1806 /// as these don't own anything; the method still works on them).
dc9dc135
XL
1807 ///
1808 /// # Safety
1809 ///
3dfed10e
XL
1810 /// The pointer must have originated from the [`into_raw`] and must still own its potential
1811 /// weak reference.
60c5eb7d 1812 ///
3dfed10e
XL
1813 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
1814 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
1815 /// count is not modified by this operation) and therefore it must be paired with a previous
1816 /// call to [`into_raw`].
dc9dc135
XL
1817 ///
1818 /// # Examples
1819 ///
1820 /// ```
dc9dc135
XL
1821 /// use std::rc::{Rc, Weak};
1822 ///
1823 /// let strong = Rc::new("hello".to_owned());
1824 ///
416331ca
XL
1825 /// let raw_1 = Rc::downgrade(&strong).into_raw();
1826 /// let raw_2 = Rc::downgrade(&strong).into_raw();
dc9dc135
XL
1827 ///
1828 /// assert_eq!(2, Rc::weak_count(&strong));
1829 ///
416331ca 1830 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
dc9dc135
XL
1831 /// assert_eq!(1, Rc::weak_count(&strong));
1832 ///
1833 /// drop(strong);
1834 ///
1835 /// // Decrement the last weak count.
416331ca 1836 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
dc9dc135
XL
1837 /// ```
1838 ///
3dfed10e
XL
1839 /// [`into_raw`]: Weak::into_raw
1840 /// [`upgrade`]: Weak::upgrade
1841 /// [`new`]: Weak::new
f9f354fc 1842 #[stable(feature = "weak_into_raw", since = "1.45.0")]
dc9dc135
XL
1843 pub unsafe fn from_raw(ptr: *const T) -> Self {
1844 if ptr.is_null() {
1845 Self::new()
1846 } else {
1847 // See Rc::from_raw for details
f035d41b
XL
1848 unsafe {
1849 let offset = data_offset(ptr);
1850 let fake_ptr = ptr as *mut RcBox<T>;
1851 let ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));
1852 Weak { ptr: NonNull::new(ptr).expect("Invalid pointer passed to from_raw") }
1853 }
dc9dc135
XL
1854 }
1855 }
a7813a04
XL
1856}
1857
8faf50e0
XL
1858pub(crate) fn is_dangling<T: ?Sized>(ptr: NonNull<T>) -> bool {
1859 let address = ptr.as_ptr() as *mut () as usize;
1860 address == usize::MAX
1861}
1862
1b1a35ee
XL
1863/// Helper type to allow accessing the reference counts without
1864/// making any assertions about the data field.
1865struct WeakInner<'a> {
1866 weak: &'a Cell<usize>,
1867 strong: &'a Cell<usize>,
1868}
1869
d9579d0f 1870impl<T: ?Sized> Weak<T> {
e74abb32
XL
1871 /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
1872 /// dropping of the inner value if successful.
d9579d0f 1873 ///
e74abb32 1874 /// Returns [`None`] if the inner value has since been dropped.
d9579d0f 1875 ///
d9579d0f
AL
1876 /// # Examples
1877 ///
1878 /// ```
d9579d0f
AL
1879 /// use std::rc::Rc;
1880 ///
1881 /// let five = Rc::new(5);
1882 ///
e9174d1e 1883 /// let weak_five = Rc::downgrade(&five);
d9579d0f
AL
1884 ///
1885 /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
9e0c209e
SL
1886 /// assert!(strong_five.is_some());
1887 ///
1888 /// // Destroy all strong pointers.
1889 /// drop(strong_five);
1890 /// drop(five);
1891 ///
1892 /// assert!(weak_five.upgrade().is_none());
d9579d0f 1893 /// ```
e9174d1e 1894 #[stable(feature = "rc_weak", since = "1.4.0")]
d9579d0f 1895 pub fn upgrade(&self) -> Option<Rc<T>> {
8faf50e0
XL
1896 let inner = self.inner()?;
1897 if inner.strong() == 0 {
d9579d0f
AL
1898 None
1899 } else {
8faf50e0 1900 inner.inc_strong();
416331ca 1901 Some(Rc::from_inner(self.ptr))
d9579d0f
AL
1902 }
1903 }
8faf50e0 1904
e74abb32 1905 /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
9fa01778
XL
1906 ///
1907 /// If `self` was created using [`Weak::new`], this will return 0.
60c5eb7d 1908 #[stable(feature = "weak_counts", since = "1.41.0")]
9fa01778 1909 pub fn strong_count(&self) -> usize {
dfeec247 1910 if let Some(inner) = self.inner() { inner.strong() } else { 0 }
9fa01778
XL
1911 }
1912
e74abb32 1913 /// Gets the number of `Weak` pointers pointing to this allocation.
9fa01778 1914 ///
60c5eb7d
XL
1915 /// If no strong pointers remain, this will return zero.
1916 #[stable(feature = "weak_counts", since = "1.41.0")]
1917 pub fn weak_count(&self) -> usize {
dfeec247
XL
1918 self.inner()
1919 .map(|inner| {
1920 if inner.strong() > 0 {
1921 inner.weak() - 1 // subtract the implicit weak ptr
1922 } else {
1923 0
1924 }
1925 })
1926 .unwrap_or(0)
9fa01778
XL
1927 }
1928
1b1a35ee 1929 /// Returns `None` when the pointer is dangling and there is no allocated `RcBox`,
9fa01778 1930 /// (i.e., when this `Weak` was created by `Weak::new`).
8faf50e0 1931 #[inline]
1b1a35ee
XL
1932 fn inner(&self) -> Option<WeakInner<'_>> {
1933 if is_dangling(self.ptr) {
1934 None
1935 } else {
1936 // We are careful to *not* create a reference covering the "data" field, as
1937 // the field may be mutated concurrently (for example, if the last `Rc`
1938 // is dropped, the data field will be dropped in-place).
1939 Some(unsafe {
1940 let ptr = self.ptr.as_ptr();
1941 WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
1942 })
1943 }
8faf50e0 1944 }
0731742a 1945
e74abb32
XL
1946 /// Returns `true` if the two `Weak`s point to the same allocation (similar to
1947 /// [`ptr::eq`]), or if both don't point to any allocation
e1599b0c 1948 /// (because they were created with `Weak::new()`).
0731742a
XL
1949 ///
1950 /// # Notes
1951 ///
1952 /// Since this compares pointers it means that `Weak::new()` will equal each
e74abb32 1953 /// other, even though they don't point to any allocation.
0731742a
XL
1954 ///
1955 /// # Examples
1956 ///
1957 /// ```
dc9dc135 1958 /// use std::rc::Rc;
0731742a
XL
1959 ///
1960 /// let first_rc = Rc::new(5);
1961 /// let first = Rc::downgrade(&first_rc);
1962 /// let second = Rc::downgrade(&first_rc);
1963 ///
dc9dc135 1964 /// assert!(first.ptr_eq(&second));
0731742a
XL
1965 ///
1966 /// let third_rc = Rc::new(5);
1967 /// let third = Rc::downgrade(&third_rc);
1968 ///
dc9dc135 1969 /// assert!(!first.ptr_eq(&third));
0731742a
XL
1970 /// ```
1971 ///
1972 /// Comparing `Weak::new`.
1973 ///
1974 /// ```
0731742a
XL
1975 /// use std::rc::{Rc, Weak};
1976 ///
1977 /// let first = Weak::new();
1978 /// let second = Weak::new();
dc9dc135 1979 /// assert!(first.ptr_eq(&second));
0731742a
XL
1980 ///
1981 /// let third_rc = Rc::new(());
1982 /// let third = Rc::downgrade(&third_rc);
dc9dc135 1983 /// assert!(!first.ptr_eq(&third));
0731742a 1984 /// ```
e74abb32 1985 ///
3dfed10e 1986 /// [`ptr::eq`]: core::ptr::eq
0731742a 1987 #[inline]
e1599b0c 1988 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
dc9dc135
XL
1989 pub fn ptr_eq(&self, other: &Self) -> bool {
1990 self.ptr.as_ptr() == other.ptr.as_ptr()
0731742a 1991 }
d9579d0f
AL
1992}
1993
7453a54e 1994#[stable(feature = "rc_weak", since = "1.4.0")]
d9579d0f 1995impl<T: ?Sized> Drop for Weak<T> {
9e0c209e 1996 /// Drops the `Weak` pointer.
d9579d0f 1997 ///
d9579d0f
AL
1998 /// # Examples
1999 ///
2000 /// ```
7cac9316 2001 /// use std::rc::{Rc, Weak};
d9579d0f 2002 ///
9e0c209e 2003 /// struct Foo;
d9579d0f 2004 ///
9e0c209e
SL
2005 /// impl Drop for Foo {
2006 /// fn drop(&mut self) {
2007 /// println!("dropped!");
2008 /// }
d9579d0f 2009 /// }
d9579d0f 2010 ///
9e0c209e
SL
2011 /// let foo = Rc::new(Foo);
2012 /// let weak_foo = Rc::downgrade(&foo);
7cac9316 2013 /// let other_weak_foo = Weak::clone(&weak_foo);
9e0c209e
SL
2014 ///
2015 /// drop(weak_foo); // Doesn't print anything
2016 /// drop(foo); // Prints "dropped!"
d9579d0f 2017 ///
9e0c209e 2018 /// assert!(other_weak_foo.upgrade().is_none());
d9579d0f
AL
2019 /// ```
2020 fn drop(&mut self) {
1b1a35ee
XL
2021 let inner = if let Some(inner) = self.inner() { inner } else { return };
2022
2023 inner.dec_weak();
2024 // the weak count starts at 1, and will only go to zero if all
2025 // the strong pointers have disappeared.
2026 if inner.weak() == 0 {
2027 unsafe {
2028 Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
d9579d0f
AL
2029 }
2030 }
2031 }
2032}
2033
e9174d1e 2034#[stable(feature = "rc_weak", since = "1.4.0")]
d9579d0f 2035impl<T: ?Sized> Clone for Weak<T> {
e74abb32 2036 /// Makes a clone of the `Weak` pointer that points to the same allocation.
d9579d0f
AL
2037 ///
2038 /// # Examples
2039 ///
2040 /// ```
7cac9316 2041 /// use std::rc::{Rc, Weak};
d9579d0f 2042 ///
e9174d1e 2043 /// let weak_five = Rc::downgrade(&Rc::new(5));
d9579d0f 2044 ///
0bf4aa26 2045 /// let _ = Weak::clone(&weak_five);
d9579d0f
AL
2046 /// ```
2047 #[inline]
2048 fn clone(&self) -> Weak<T> {
8faf50e0
XL
2049 if let Some(inner) = self.inner() {
2050 inner.inc_weak()
2051 }
54a0048b 2052 Weak { ptr: self.ptr }
d9579d0f
AL
2053 }
2054}
1a4d82fc 2055
7453a54e 2056#[stable(feature = "rc_weak", since = "1.4.0")]
92a42be0 2057impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
9fa01778 2058 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
d9579d0f
AL
2059 write!(f, "(Weak)")
2060 }
2061}
1a4d82fc 2062
a7813a04
XL
2063#[stable(feature = "downgraded_weak", since = "1.10.0")]
2064impl<T> Default for Weak<T> {
cc61c64b 2065 /// Constructs a new `Weak<T>`, allocating memory for `T` without initializing
0731742a 2066 /// it. Calling [`upgrade`] on the return value always gives [`None`].
9e0c209e 2067 ///
3dfed10e
XL
2068 /// [`None`]: Option
2069 /// [`upgrade`]: Weak::upgrade
9e0c209e
SL
2070 ///
2071 /// # Examples
2072 ///
2073 /// ```
2074 /// use std::rc::Weak;
2075 ///
2076 /// let empty: Weak<i64> = Default::default();
2077 /// assert!(empty.upgrade().is_none());
2078 /// ```
a7813a04
XL
2079 fn default() -> Weak<T> {
2080 Weak::new()
9cc50fc6
SL
2081 }
2082}
2083
8faf50e0 2084// NOTE: We checked_add here to deal with mem::forget safely. In particular
c1a9b12d
SL
2085// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
2086// you can free the allocation while outstanding Rcs (or Weaks) exist.
2087// We abort because this is such a degenerate scenario that we don't care about
2088// what happens -- no real program should ever experience this.
2089//
2090// This should have negligible overhead since you don't actually need to
2091// clone these much in Rust thanks to ownership and move-semantics.
2092
d9579d0f 2093#[doc(hidden)]
1b1a35ee
XL
2094trait RcInnerPtr {
2095 fn weak_ref(&self) -> &Cell<usize>;
2096 fn strong_ref(&self) -> &Cell<usize>;
d9579d0f
AL
2097
2098 #[inline]
b039eaaf 2099 fn strong(&self) -> usize {
1b1a35ee 2100 self.strong_ref().get()
b039eaaf 2101 }
d9579d0f
AL
2102
2103 #[inline]
c1a9b12d 2104 fn inc_strong(&self) {
416331ca
XL
2105 let strong = self.strong();
2106
b7449926
XL
2107 // We want to abort on overflow instead of dropping the value.
2108 // The reference count will never be zero when this is called;
2109 // nevertheless, we insert an abort here to hint LLVM at
2110 // an otherwise missed optimization.
f035d41b
XL
2111 if strong == 0 || strong == usize::MAX {
2112 abort();
b7449926 2113 }
1b1a35ee 2114 self.strong_ref().set(strong + 1);
c1a9b12d 2115 }
d9579d0f
AL
2116
2117 #[inline]
b039eaaf 2118 fn dec_strong(&self) {
1b1a35ee 2119 self.strong_ref().set(self.strong() - 1);
b039eaaf 2120 }
d9579d0f
AL
2121
2122 #[inline]
b039eaaf 2123 fn weak(&self) -> usize {
1b1a35ee 2124 self.weak_ref().get()
b039eaaf 2125 }
d9579d0f
AL
2126
2127 #[inline]
c1a9b12d 2128 fn inc_weak(&self) {
416331ca
XL
2129 let weak = self.weak();
2130
b7449926
XL
2131 // We want to abort on overflow instead of dropping the value.
2132 // The reference count will never be zero when this is called;
2133 // nevertheless, we insert an abort here to hint LLVM at
2134 // an otherwise missed optimization.
f035d41b
XL
2135 if weak == 0 || weak == usize::MAX {
2136 abort();
b7449926 2137 }
1b1a35ee 2138 self.weak_ref().set(weak + 1);
c1a9b12d 2139 }
d9579d0f
AL
2140
2141 #[inline]
b039eaaf 2142 fn dec_weak(&self) {
1b1a35ee 2143 self.weak_ref().set(self.weak() - 1);
b039eaaf 2144 }
d9579d0f 2145}
1a4d82fc 2146
1b1a35ee 2147impl<T: ?Sized> RcInnerPtr for RcBox<T> {
d9579d0f 2148 #[inline(always)]
1b1a35ee
XL
2149 fn weak_ref(&self) -> &Cell<usize> {
2150 &self.weak
2151 }
2152
2153 #[inline(always)]
2154 fn strong_ref(&self) -> &Cell<usize> {
2155 &self.strong
85aaf69f 2156 }
1a4d82fc
JJ
2157}
2158
1b1a35ee 2159impl<'a> RcInnerPtr for WeakInner<'a> {
d9579d0f 2160 #[inline(always)]
1b1a35ee
XL
2161 fn weak_ref(&self) -> &Cell<usize> {
2162 self.weak
2163 }
2164
2165 #[inline(always)]
2166 fn strong_ref(&self) -> &Cell<usize> {
2167 self.strong
85aaf69f 2168 }
1a4d82fc
JJ
2169}
2170
92a42be0 2171#[stable(feature = "rust1", since = "1.0.0")]
e9174d1e 2172impl<T: ?Sized> borrow::Borrow<T> for Rc<T> {
b039eaaf
SL
2173 fn borrow(&self) -> &T {
2174 &**self
2175 }
2176}
2177
2178#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2179impl<T: ?Sized> AsRef<T> for Rc<T> {
2180 fn as_ref(&self) -> &T {
2181 &**self
2182 }
e9174d1e 2183}
b7449926 2184
0731742a 2185#[stable(feature = "pin", since = "1.33.0")]
dfeec247 2186impl<T: ?Sized> Unpin for Rc<T> {}
dc9dc135 2187
3dfed10e 2188/// Get the offset within an `RcBox` for
f035d41b
XL
2189/// a payload of type described by a pointer.
2190///
2191/// # Safety
2192///
2193/// This has the same safety requirements as `align_of_val_raw`. In effect:
2194///
2195/// - This function is safe for any argument if `T` is sized, and
2196/// - if `T` is unsized, the pointer must have appropriate pointer metadata
3dfed10e 2197/// acquired from the real instance that you are getting this offset for.
dc9dc135 2198unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> isize {
416331ca 2199 // Align the unsized value to the end of the `RcBox`.
dc9dc135 2200 // Because it is ?Sized, it will always be the last field in memory.
dfeec247
XL
2201 // Note: This is a detail of the current implementation of the compiler,
2202 // and is not a guaranteed language detail. Do not rely on it outside of std.
f035d41b 2203 unsafe { data_offset_align(align_of_val_raw(ptr)) }
416331ca
XL
2204}
2205
2206#[inline]
2207fn data_offset_align(align: usize) -> isize {
dc9dc135
XL
2208 let layout = Layout::new::<RcBox<()>>();
2209 (layout.size() + layout.padding_needed_for(align)) as isize
2210}