]> git.proxmox.com Git - rustc.git/blame - library/alloc/src/sync.rs
New upstream version 1.54.0+dfsg1
[rustc.git] / library / alloc / src / sync.rs
CommitLineData
85aaf69f 1#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 2
c30ab7b3 3//! Thread-safe reference-counting pointers.
1a4d82fc 4//!
3dfed10e 5//! See the [`Arc<T>`][Arc] documentation for more details.
1a4d82fc 6
94b46f34 7use core::any::Any;
e9174d1e 8use core::borrow;
60c5eb7d 9use core::cmp::Ordering;
dfeec247
XL
10use core::convert::{From, TryFrom};
11use core::fmt;
12use core::hash::{Hash, Hasher};
29967ef6 13use core::hint;
92a42be0 14use core::intrinsics::abort;
17df50a5 15#[cfg(not(no_global_oom_handling))]
dfeec247
XL
16use core::iter;
17use core::marker::{PhantomData, Unpin, Unsize};
17df50a5
XL
18#[cfg(not(no_global_oom_handling))]
19use core::mem::size_of_val;
20use core::mem::{self, align_of_val_raw};
dfeec247 21use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver};
0bf4aa26 22use core::pin::Pin;
2c00a5a8 23use core::ptr::{self, NonNull};
17df50a5 24#[cfg(not(no_global_oom_handling))]
f9f354fc 25use core::slice::from_raw_parts_mut;
dfeec247
XL
26use core::sync::atomic;
27use core::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};
041b39d2 28
17df50a5
XL
29#[cfg(not(no_global_oom_handling))]
30use crate::alloc::handle_alloc_error;
31#[cfg(not(no_global_oom_handling))]
32use crate::alloc::{box_free, WriteCloneIntoRaw};
33use crate::alloc::{AllocError, Allocator, Global, Layout};
f9f354fc 34use crate::borrow::{Cow, ToOwned};
9fa01778
XL
35use crate::boxed::Box;
36use crate::rc::is_dangling;
17df50a5 37#[cfg(not(no_global_oom_handling))]
9fa01778 38use crate::string::String;
17df50a5 39#[cfg(not(no_global_oom_handling))]
9fa01778 40use crate::vec::Vec;
1a4d82fc 41
416331ca
XL
42#[cfg(test)]
43mod tests;
44
c30ab7b3
SL
45/// A soft limit on the amount of references that may be made to an `Arc`.
46///
47/// Going above this limit will abort your program (although not
48/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
c1a9b12d
SL
49const MAX_REFCOUNT: usize = (isize::MAX) as usize;
50
ba9703b0
XL
51#[cfg(not(sanitize = "thread"))]
52macro_rules! acquire {
53 ($x:expr) => {
54 atomic::fence(Acquire)
55 };
56}
57
58// ThreadSanitizer does not support memory fences. To avoid false positive
59// reports in Arc / Weak implementation use atomic loads for synchronization
60// instead.
61#[cfg(sanitize = "thread")]
62macro_rules! acquire {
63 ($x:expr) => {
64 $x.load(Acquire)
65 };
66}
67
041b39d2
XL
68/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
69/// Reference Counted'.
1a4d82fc 70///
c30ab7b3
SL
71/// The type `Arc<T>` provides shared ownership of a value of type `T`,
72/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
e74abb32 73/// a new `Arc` instance, which points to the same allocation on the heap as the
b7449926 74/// source `Arc`, while increasing a reference count. When the last `Arc`
e74abb32
XL
75/// pointer to a given allocation is destroyed, the value stored in that allocation (often
76/// referred to as "inner value") is also dropped.
1a4d82fc 77///
c30ab7b3 78/// Shared references in Rust disallow mutation by default, and `Arc` is no
ea8adc8c
XL
79/// exception: you cannot generally obtain a mutable reference to something
80/// inside an `Arc`. If you need to mutate through an `Arc`, use
81/// [`Mutex`][mutex], [`RwLock`][rwlock], or one of the [`Atomic`][atomic]
82/// types.
9e0c209e 83///
7cac9316
XL
84/// ## Thread Safety
85///
86/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
83c7162d 87/// counting. This means that it is thread-safe. The disadvantage is that
7cac9316 88/// atomic operations are more expensive than ordinary memory accesses. If you
e74abb32 89/// are not sharing reference-counted allocations between threads, consider using
7cac9316
XL
90/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
91/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
92/// However, a library might choose `Arc<T>` in order to give library consumers
c30ab7b3 93/// more flexibility.
1a4d82fc 94///
7cac9316
XL
95/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
96/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
97/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
98/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
99/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
100/// data, but it doesn't add thread safety to its data. Consider
ea8adc8c
XL
101/// `Arc<`[`RefCell<T>`]`>`. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
102/// [`Send`], `Arc<`[`RefCell<T>`]`>` would be as well. But then we'd have a problem:
103/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
7cac9316
XL
104/// non-atomic operations.
105///
106/// In the end, this means that you may need to pair `Arc<T>` with some sort of
ea8adc8c 107/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
7cac9316
XL
108///
109/// ## Breaking cycles with `Weak`
110///
c30ab7b3 111/// The [`downgrade`][downgrade] method can be used to create a non-owning
3dfed10e 112/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
e74abb32
XL
113/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
114/// already been dropped. In other words, `Weak` pointers do not keep the value
115/// inside the allocation alive; however, they *do* keep the allocation
116/// (the backing store for the value) alive.
c30ab7b3
SL
117///
118/// A cycle between `Arc` pointers will never be deallocated. For this reason,
3dfed10e
XL
119/// [`Weak`] is used to break cycles. For example, a tree could have
120/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
32a655c1 121/// pointers from children back to their parents.
c30ab7b3 122///
7cac9316
XL
123/// # Cloning references
124///
1b1a35ee 125/// Creating a new reference from an existing reference-counted pointer is done using the
3dfed10e 126/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
7cac9316
XL
127///
128/// ```
129/// use std::sync::Arc;
130/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
131/// // The two syntaxes below are equivalent.
132/// let a = foo.clone();
133/// let b = Arc::clone(&foo);
b7449926 134/// // a, b, and foo are all Arcs that point to the same memory location
7cac9316
XL
135/// ```
136///
7cac9316
XL
137/// ## `Deref` behavior
138///
c30ab7b3
SL
139/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`][deref] trait),
140/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
13cf67c4 141/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
29967ef6 142/// functions, called using [fully qualified syntax]:
c34b1796
AL
143///
144/// ```
1a4d82fc 145/// use std::sync::Arc;
1a4d82fc 146///
29967ef6 147/// let my_arc = Arc::new(());
c30ab7b3
SL
148/// Arc::downgrade(&my_arc);
149/// ```
1a4d82fc 150///
29967ef6
XL
151/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
152/// fully qualified syntax. Some people prefer to use fully qualified syntax,
153/// while others prefer using method-call syntax.
154///
155/// ```
156/// use std::sync::Arc;
157///
158/// let arc = Arc::new(());
159/// // Method-call syntax
160/// let arc2 = arc.clone();
161/// // Fully qualified syntax
162/// let arc3 = Arc::clone(&arc);
163/// ```
164///
3dfed10e 165/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
e74abb32 166/// already been dropped.
1a4d82fc 167///
3dfed10e
XL
168/// [`Rc<T>`]: crate::rc::Rc
169/// [clone]: Clone::clone
c30ab7b3
SL
170/// [mutex]: ../../std/sync/struct.Mutex.html
171/// [rwlock]: ../../std/sync/struct.RwLock.html
3dfed10e
XL
172/// [atomic]: core::sync::atomic
173/// [`Send`]: core::marker::Send
174/// [`Sync`]: core::marker::Sync
175/// [deref]: core::ops::Deref
176/// [downgrade]: Arc::downgrade
177/// [upgrade]: Weak::upgrade
178/// [`RefCell<T>`]: core::cell::RefCell
ea8adc8c 179/// [`std::sync`]: ../../std/sync/index.html
1b1a35ee 180/// [`Arc::clone(&from)`]: Arc::clone
29967ef6 181/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
1a4d82fc 182///
c30ab7b3 183/// # Examples
5bcae85e 184///
c30ab7b3
SL
185/// Sharing some immutable data between threads:
186///
187// Note that we **do not** run these tests here. The windows builders get super
188// unhappy if a thread outlives the main thread and then exits at the same time
189// (something deadlocks) so we just avoid this entirely by not running these
190// tests.
5bcae85e 191/// ```no_run
c30ab7b3 192/// use std::sync::Arc;
5bcae85e
SL
193/// use std::thread;
194///
c30ab7b3 195/// let five = Arc::new(5);
5bcae85e
SL
196///
197/// for _ in 0..10 {
7cac9316 198/// let five = Arc::clone(&five);
5bcae85e
SL
199///
200/// thread::spawn(move || {
c30ab7b3
SL
201/// println!("{:?}", five);
202/// });
203/// }
204/// ```
5bcae85e 205///
32a655c1
SL
206/// Sharing a mutable [`AtomicUsize`]:
207///
3dfed10e 208/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize
5bcae85e 209///
c30ab7b3
SL
210/// ```no_run
211/// use std::sync::Arc;
212/// use std::sync::atomic::{AtomicUsize, Ordering};
213/// use std::thread;
214///
215/// let val = Arc::new(AtomicUsize::new(5));
216///
217/// for _ in 0..10 {
7cac9316 218/// let val = Arc::clone(&val);
c30ab7b3
SL
219///
220/// thread::spawn(move || {
221/// let v = val.fetch_add(1, Ordering::SeqCst);
222/// println!("{:?}", v);
5bcae85e
SL
223/// });
224/// }
225/// ```
c30ab7b3
SL
226///
227/// See the [`rc` documentation][rc_examples] for more examples of reference
228/// counting in general.
229///
1b1a35ee 230/// [rc_examples]: crate::rc#examples
ba9703b0 231#[cfg_attr(not(test), rustc_diagnostic_item = "Arc")]
85aaf69f 232#[stable(feature = "rust1", since = "1.0.0")]
62682a34 233pub struct Arc<T: ?Sized> {
2c00a5a8 234 ptr: NonNull<ArcInner<T>>,
60c5eb7d 235 phantom: PhantomData<ArcInner<T>>,
1a4d82fc
JJ
236}
237
92a42be0
SL
238#[stable(feature = "rust1", since = "1.0.0")]
239unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
240#[stable(feature = "rust1", since = "1.0.0")]
241unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
1a4d82fc 242
92a42be0 243#[unstable(feature = "coerce_unsized", issue = "27732")]
62682a34 244impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Arc<U>> for Arc<T> {}
1a4d82fc 245
dfeec247 246#[unstable(feature = "dispatch_from_dyn", issue = "none")]
a1dfa0c6
XL
247impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
248
416331ca
XL
249impl<T: ?Sized> Arc<T> {
250 fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
dfeec247 251 Self { ptr, phantom: PhantomData }
416331ca
XL
252 }
253
254 unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
f035d41b 255 unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
416331ca
XL
256 }
257}
258
cc61c64b 259/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
e74abb32 260/// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
cc61c64b 261/// pointer, which returns an [`Option`]`<`[`Arc`]`<T>>`.
1a4d82fc 262///
cc61c64b 263/// Since a `Weak` reference does not count towards ownership, it will not
e74abb32
XL
264/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
265/// guarantees about the value still being present. Thus it may return [`None`]
266/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
267/// itself (the backing store) from being deallocated.
5bcae85e 268///
e74abb32
XL
269/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
270/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
271/// prevent circular references between [`Arc`] pointers, since mutual owning references
cc61c64b
XL
272/// would never allow either [`Arc`] to be dropped. For example, a tree could
273/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
274/// pointers from children back to their parents.
5bcae85e 275///
cc61c64b 276/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
c30ab7b3 277///
3dfed10e 278/// [`upgrade`]: Weak::upgrade
e9174d1e 279#[stable(feature = "arc_weak", since = "1.4.0")]
62682a34 280pub struct Weak<T: ?Sized> {
8faf50e0
XL
281 // This is a `NonNull` to allow optimizing the size of this type in enums,
282 // but it is not necessarily a valid pointer.
283 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
284 // to allocate space on the heap. That's not a value a real pointer
285 // will ever have because RcBox has alignment at least 2.
f035d41b 286 // This is only possible when `T: Sized`; unsized `T` never dangle.
2c00a5a8 287 ptr: NonNull<ArcInner<T>>,
1a4d82fc
JJ
288}
289
7453a54e 290#[stable(feature = "arc_weak", since = "1.4.0")]
92a42be0 291unsafe impl<T: ?Sized + Sync + Send> Send for Weak<T> {}
7453a54e 292#[stable(feature = "arc_weak", since = "1.4.0")]
92a42be0 293unsafe impl<T: ?Sized + Sync + Send> Sync for Weak<T> {}
1a4d82fc 294
92a42be0 295#[unstable(feature = "coerce_unsized", issue = "27732")]
c1a9b12d 296impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
dfeec247 297#[unstable(feature = "dispatch_from_dyn", issue = "none")]
a1dfa0c6 298impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
c1a9b12d 299
7453a54e 300#[stable(feature = "arc_weak", since = "1.4.0")]
62682a34 301impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
9fa01778 302 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
c34b1796
AL
303 write!(f, "(Weak)")
304 }
305}
306
ba9703b0
XL
307// This is repr(C) to future-proof against possible field-reordering, which
308// would interfere with otherwise safe [into|from]_raw() of transmutable
309// inner types.
310#[repr(C)]
62682a34 311struct ArcInner<T: ?Sized> {
85aaf69f 312 strong: atomic::AtomicUsize,
c1a9b12d
SL
313
314 // the value usize::MAX acts as a sentinel for temporarily "locking" the
315 // ability to upgrade weak pointers or downgrade strong ones; this is used
e9174d1e 316 // to avoid races in `make_mut` and `get_mut`.
85aaf69f 317 weak: atomic::AtomicUsize,
c1a9b12d 318
1a4d82fc
JJ
319 data: T,
320}
321
62682a34
SL
322unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
323unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
1a4d82fc
JJ
324
325impl<T> Arc<T> {
326 /// Constructs a new `Arc<T>`.
327 ///
328 /// # Examples
329 ///
330 /// ```
331 /// use std::sync::Arc;
332 ///
85aaf69f 333 /// let five = Arc::new(5);
1a4d82fc
JJ
334 /// ```
335 #[inline]
85aaf69f 336 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
337 pub fn new(data: T) -> Arc<T> {
338 // Start the weak pointer count as 1 which is the weak pointer that's
339 // held by all the strong pointers (kinda), see std/rc.rs for more info
c34b1796 340 let x: Box<_> = box ArcInner {
85aaf69f
SL
341 strong: atomic::AtomicUsize::new(1),
342 weak: atomic::AtomicUsize::new(1),
3b2f2976 343 data,
1a4d82fc 344 };
f9f354fc 345 Self::from_inner(Box::leak(x).into())
e9174d1e
SL
346 }
347
3dfed10e
XL
348 /// Constructs a new `Arc<T>` using a weak reference to itself. Attempting
349 /// to upgrade the weak reference before this function returns will result
350 /// in a `None` value. However, the weak reference may be cloned freely and
351 /// stored for use at a later time.
352 ///
353 /// # Examples
354 /// ```
355 /// #![feature(arc_new_cyclic)]
356 /// #![allow(dead_code)]
357 ///
358 /// use std::sync::{Arc, Weak};
359 ///
360 /// struct Foo {
361 /// me: Weak<Foo>,
362 /// }
363 ///
364 /// let foo = Arc::new_cyclic(|me| Foo {
365 /// me: me.clone(),
366 /// });
367 /// ```
368 #[inline]
369 #[unstable(feature = "arc_new_cyclic", issue = "75861")]
370 pub fn new_cyclic(data_fn: impl FnOnce(&Weak<T>) -> T) -> Arc<T> {
371 // Construct the inner in the "uninitialized" state with a single
372 // weak reference.
373 let uninit_ptr: NonNull<_> = Box::leak(box ArcInner {
374 strong: atomic::AtomicUsize::new(0),
375 weak: atomic::AtomicUsize::new(1),
376 data: mem::MaybeUninit::<T>::uninit(),
377 })
378 .into();
379 let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
380
381 let weak = Weak { ptr: init_ptr };
382
383 // It's important we don't give up ownership of the weak pointer, or
384 // else the memory might be freed by the time `data_fn` returns. If
385 // we really wanted to pass ownership, we could create an additional
386 // weak pointer for ourselves, but this would result in additional
387 // updates to the weak reference count which might not be necessary
388 // otherwise.
389 let data = data_fn(&weak);
390
391 // Now we can properly initialize the inner value and turn our weak
392 // reference into a strong reference.
393 unsafe {
394 let inner = init_ptr.as_ptr();
5869c6ff 395 ptr::write(ptr::addr_of_mut!((*inner).data), data);
3dfed10e
XL
396
397 // The above write to the data field must be visible to any threads which
398 // observe a non-zero strong count. Therefore we need at least "Release" ordering
399 // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
400 //
401 // "Acquire" ordering is not required. When considering the possible behaviours
402 // of `data_fn` we only need to look at what it could do with a reference to a
403 // non-upgradeable `Weak`:
404 // - It can *clone* the `Weak`, increasing the weak reference count.
405 // - It can drop those clones, decreasing the weak reference count (but never to zero).
406 //
407 // These side effects do not impact us in any way, and no other side effects are
408 // possible with safe code alone.
409 let prev_value = (*inner).strong.fetch_add(1, Release);
410 debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
411 }
412
413 let strong = Arc::from_inner(init_ptr);
414
415 // Strong references should collectively own a shared weak reference,
416 // so don't run the destructor for our old weak reference.
417 mem::forget(weak);
418 strong
419 }
420
e1599b0c
XL
421 /// Constructs a new `Arc` with uninitialized contents.
422 ///
423 /// # Examples
424 ///
425 /// ```
426 /// #![feature(new_uninit)]
427 /// #![feature(get_mut_unchecked)]
428 ///
429 /// use std::sync::Arc;
430 ///
431 /// let mut five = Arc::<u32>::new_uninit();
432 ///
433 /// let five = unsafe {
434 /// // Deferred initialization:
435 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
436 ///
437 /// five.assume_init()
438 /// };
439 ///
440 /// assert_eq!(*five, 5)
441 /// ```
17df50a5 442 #[cfg(not(no_global_oom_handling))]
e1599b0c
XL
443 #[unstable(feature = "new_uninit", issue = "63291")]
444 pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
445 unsafe {
3dfed10e
XL
446 Arc::from_ptr(Arc::allocate_for_layout(
447 Layout::new::<T>(),
fc512014 448 |layout| Global.allocate(layout),
3dfed10e
XL
449 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
450 ))
e1599b0c
XL
451 }
452 }
453
60c5eb7d
XL
454 /// Constructs a new `Arc` with uninitialized contents, with the memory
455 /// being filled with `0` bytes.
456 ///
457 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
458 /// of this method.
459 ///
460 /// # Examples
461 ///
462 /// ```
463 /// #![feature(new_uninit)]
464 ///
465 /// use std::sync::Arc;
466 ///
467 /// let zero = Arc::<u32>::new_zeroed();
468 /// let zero = unsafe { zero.assume_init() };
469 ///
470 /// assert_eq!(*zero, 0)
471 /// ```
472 ///
473 /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
17df50a5 474 #[cfg(not(no_global_oom_handling))]
60c5eb7d
XL
475 #[unstable(feature = "new_uninit", issue = "63291")]
476 pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
477 unsafe {
3dfed10e
XL
478 Arc::from_ptr(Arc::allocate_for_layout(
479 Layout::new::<T>(),
fc512014 480 |layout| Global.allocate_zeroed(layout),
3dfed10e
XL
481 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
482 ))
60c5eb7d
XL
483 }
484 }
485
0731742a
XL
486 /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
487 /// `data` will be pinned in memory and unable to be moved.
488 #[stable(feature = "pin", since = "1.33.0")]
489 pub fn pin(data: T) -> Pin<Arc<T>> {
0bf4aa26
XL
490 unsafe { Pin::new_unchecked(Arc::new(data)) }
491 }
492
5869c6ff
XL
493 /// Constructs a new `Arc<T>`, returning an error if allocation fails.
494 ///
495 /// # Examples
496 ///
497 /// ```
498 /// #![feature(allocator_api)]
499 /// use std::sync::Arc;
500 ///
501 /// let five = Arc::try_new(5)?;
502 /// # Ok::<(), std::alloc::AllocError>(())
503 /// ```
504 #[unstable(feature = "allocator_api", issue = "32838")]
505 #[inline]
506 pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
507 // Start the weak pointer count as 1 which is the weak pointer that's
508 // held by all the strong pointers (kinda), see std/rc.rs for more info
509 let x: Box<_> = Box::try_new(ArcInner {
510 strong: atomic::AtomicUsize::new(1),
511 weak: atomic::AtomicUsize::new(1),
512 data,
513 })?;
514 Ok(Self::from_inner(Box::leak(x).into()))
515 }
516
517 /// Constructs a new `Arc` with uninitialized contents, returning an error
518 /// if allocation fails.
519 ///
520 /// # Examples
521 ///
522 /// ```
523 /// #![feature(new_uninit, allocator_api)]
524 /// #![feature(get_mut_unchecked)]
525 ///
526 /// use std::sync::Arc;
527 ///
528 /// let mut five = Arc::<u32>::try_new_uninit()?;
529 ///
530 /// let five = unsafe {
531 /// // Deferred initialization:
532 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
533 ///
534 /// five.assume_init()
535 /// };
536 ///
537 /// assert_eq!(*five, 5);
538 /// # Ok::<(), std::alloc::AllocError>(())
539 /// ```
540 #[unstable(feature = "allocator_api", issue = "32838")]
541 // #[unstable(feature = "new_uninit", issue = "63291")]
542 pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
543 unsafe {
544 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
545 Layout::new::<T>(),
546 |layout| Global.allocate(layout),
547 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
548 )?))
549 }
550 }
551
552 /// Constructs a new `Arc` with uninitialized contents, with the memory
553 /// being filled with `0` bytes, returning an error if allocation fails.
554 ///
555 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
556 /// of this method.
557 ///
558 /// # Examples
559 ///
560 /// ```
561 /// #![feature(new_uninit, allocator_api)]
562 ///
563 /// use std::sync::Arc;
564 ///
565 /// let zero = Arc::<u32>::try_new_zeroed()?;
566 /// let zero = unsafe { zero.assume_init() };
567 ///
568 /// assert_eq!(*zero, 0);
569 /// # Ok::<(), std::alloc::AllocError>(())
570 /// ```
571 ///
572 /// [zeroed]: mem::MaybeUninit::zeroed
573 #[unstable(feature = "allocator_api", issue = "32838")]
574 // #[unstable(feature = "new_uninit", issue = "63291")]
575 pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
576 unsafe {
577 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
578 Layout::new::<T>(),
579 |layout| Global.allocate_zeroed(layout),
580 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
581 )?))
582 }
583 }
e74abb32 584 /// Returns the inner value, if the `Arc` has exactly one strong reference.
e9174d1e 585 ///
3dfed10e 586 /// Otherwise, an [`Err`] is returned with the same `Arc` that was
c30ab7b3 587 /// passed in.
e9174d1e 588 ///
54a0048b
SL
589 /// This will succeed even if there are outstanding weak references.
590 ///
e9174d1e
SL
591 /// # Examples
592 ///
593 /// ```
594 /// use std::sync::Arc;
595 ///
596 /// let x = Arc::new(3);
597 /// assert_eq!(Arc::try_unwrap(x), Ok(3));
598 ///
599 /// let x = Arc::new(4);
7cac9316 600 /// let _y = Arc::clone(&x);
c30ab7b3 601 /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
e9174d1e
SL
602 /// ```
603 #[inline]
604 #[stable(feature = "arc_unique", since = "1.4.0")]
605 pub fn try_unwrap(this: Self) -> Result<T, Self> {
f035d41b 606 if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
92a42be0 607 return Err(this);
b039eaaf 608 }
e9174d1e 609
ba9703b0 610 acquire!(this.inner().strong);
e9174d1e
SL
611
612 unsafe {
7cac9316 613 let elem = ptr::read(&this.ptr.as_ref().data);
e9174d1e
SL
614
615 // Make a weak pointer to clean up the implicit strong-weak reference
54a0048b 616 let _weak = Weak { ptr: this.ptr };
e9174d1e
SL
617 mem::forget(this);
618
619 Ok(elem)
620 }
1a4d82fc 621 }
ea8adc8c 622}
476ff2be 623
e1599b0c 624impl<T> Arc<[T]> {
3dfed10e 625 /// Constructs a new atomically reference-counted slice with uninitialized contents.
e1599b0c
XL
626 ///
627 /// # Examples
628 ///
629 /// ```
630 /// #![feature(new_uninit)]
631 /// #![feature(get_mut_unchecked)]
632 ///
633 /// use std::sync::Arc;
634 ///
635 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
636 ///
637 /// let values = unsafe {
638 /// // Deferred initialization:
639 /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
640 /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
641 /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
642 ///
643 /// values.assume_init()
644 /// };
645 ///
646 /// assert_eq!(*values, [1, 2, 3])
647 /// ```
17df50a5 648 #[cfg(not(no_global_oom_handling))]
e1599b0c
XL
649 #[unstable(feature = "new_uninit", issue = "63291")]
650 pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
dfeec247 651 unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
e1599b0c 652 }
3dfed10e
XL
653
654 /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
655 /// filled with `0` bytes.
656 ///
657 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
658 /// incorrect usage of this method.
659 ///
660 /// # Examples
661 ///
662 /// ```
663 /// #![feature(new_uninit)]
664 ///
665 /// use std::sync::Arc;
666 ///
667 /// let values = Arc::<[u32]>::new_zeroed_slice(3);
668 /// let values = unsafe { values.assume_init() };
669 ///
670 /// assert_eq!(*values, [0, 0, 0])
671 /// ```
672 ///
673 /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
17df50a5 674 #[cfg(not(no_global_oom_handling))]
3dfed10e
XL
675 #[unstable(feature = "new_uninit", issue = "63291")]
676 pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
677 unsafe {
678 Arc::from_ptr(Arc::allocate_for_layout(
679 Layout::array::<T>(len).unwrap(),
fc512014 680 |layout| Global.allocate_zeroed(layout),
3dfed10e
XL
681 |mem| {
682 ptr::slice_from_raw_parts_mut(mem as *mut T, len)
683 as *mut ArcInner<[mem::MaybeUninit<T>]>
684 },
685 ))
686 }
687 }
e1599b0c
XL
688}
689
690impl<T> Arc<mem::MaybeUninit<T>> {
691 /// Converts to `Arc<T>`.
692 ///
693 /// # Safety
694 ///
695 /// As with [`MaybeUninit::assume_init`],
e74abb32 696 /// it is up to the caller to guarantee that the inner value
e1599b0c
XL
697 /// really is in an initialized state.
698 /// Calling this when the content is not yet fully initialized
699 /// causes immediate undefined behavior.
700 ///
701 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
702 ///
703 /// # Examples
704 ///
705 /// ```
706 /// #![feature(new_uninit)]
707 /// #![feature(get_mut_unchecked)]
708 ///
709 /// use std::sync::Arc;
710 ///
711 /// let mut five = Arc::<u32>::new_uninit();
712 ///
713 /// let five = unsafe {
714 /// // Deferred initialization:
715 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
716 ///
717 /// five.assume_init()
718 /// };
719 ///
720 /// assert_eq!(*five, 5)
721 /// ```
722 #[unstable(feature = "new_uninit", issue = "63291")]
723 #[inline]
724 pub unsafe fn assume_init(self) -> Arc<T> {
725 Arc::from_inner(mem::ManuallyDrop::new(self).ptr.cast())
726 }
727}
728
729impl<T> Arc<[mem::MaybeUninit<T>]> {
730 /// Converts to `Arc<[T]>`.
731 ///
732 /// # Safety
733 ///
734 /// As with [`MaybeUninit::assume_init`],
e74abb32 735 /// it is up to the caller to guarantee that the inner value
e1599b0c
XL
736 /// really is in an initialized state.
737 /// Calling this when the content is not yet fully initialized
738 /// causes immediate undefined behavior.
739 ///
740 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
741 ///
742 /// # Examples
743 ///
744 /// ```
745 /// #![feature(new_uninit)]
746 /// #![feature(get_mut_unchecked)]
747 ///
748 /// use std::sync::Arc;
749 ///
750 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
751 ///
752 /// let values = unsafe {
753 /// // Deferred initialization:
754 /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
755 /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
756 /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
757 ///
758 /// values.assume_init()
759 /// };
760 ///
761 /// assert_eq!(*values, [1, 2, 3])
762 /// ```
763 #[unstable(feature = "new_uninit", issue = "63291")]
764 #[inline]
765 pub unsafe fn assume_init(self) -> Arc<[T]> {
f035d41b 766 unsafe { Arc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _) }
e1599b0c
XL
767 }
768}
769
ea8adc8c 770impl<T: ?Sized> Arc<T> {
476ff2be
SL
771 /// Consumes the `Arc`, returning the wrapped pointer.
772 ///
773 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
3dfed10e 774 /// [`Arc::from_raw`].
476ff2be
SL
775 ///
776 /// # Examples
777 ///
778 /// ```
476ff2be
SL
779 /// use std::sync::Arc;
780 ///
dc9dc135 781 /// let x = Arc::new("hello".to_owned());
476ff2be 782 /// let x_ptr = Arc::into_raw(x);
dc9dc135 783 /// assert_eq!(unsafe { &*x_ptr }, "hello");
476ff2be 784 /// ```
8bb4bdeb
XL
785 #[stable(feature = "rc_raw", since = "1.17.0")]
786 pub fn into_raw(this: Self) -> *const T {
ba9703b0
XL
787 let ptr = Self::as_ptr(&this);
788 mem::forget(this);
789 ptr
790 }
791
792 /// Provides a raw pointer to the data.
793 ///
3dfed10e 794 /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
ba9703b0
XL
795 /// as long as there are strong counts in the `Arc`.
796 ///
797 /// # Examples
798 ///
799 /// ```
ba9703b0
XL
800 /// use std::sync::Arc;
801 ///
802 /// let x = Arc::new("hello".to_owned());
803 /// let y = Arc::clone(&x);
804 /// let x_ptr = Arc::as_ptr(&x);
805 /// assert_eq!(x_ptr, Arc::as_ptr(&y));
806 /// assert_eq!(unsafe { &*x_ptr }, "hello");
807 /// ```
f035d41b 808 #[stable(feature = "rc_as_ptr", since = "1.45.0")]
ba9703b0 809 pub fn as_ptr(this: &Self) -> *const T {
dfeec247 810 let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
dfeec247 811
f035d41b
XL
812 // SAFETY: This cannot go through Deref::deref or RcBoxPtr::inner because
813 // this is required to retain raw/mut provenance such that e.g. `get_mut` can
814 // write through the pointer after the Rc is recovered through `from_raw`.
5869c6ff 815 unsafe { ptr::addr_of_mut!((*ptr).data) }
476ff2be
SL
816 }
817
ba9703b0 818 /// Constructs an `Arc<T>` from a raw pointer.
476ff2be 819 ///
ba9703b0
XL
820 /// The raw pointer must have been previously returned by a call to
821 /// [`Arc<U>::into_raw`][into_raw] where `U` must have the same size and
822 /// alignment as `T`. This is trivially true if `U` is `T`.
823 /// Note that if `U` is not `T` but has the same size and alignment, this is
824 /// basically like transmuting references of different types. See
825 /// [`mem::transmute`][transmute] for more information on what
826 /// restrictions apply in this case.
476ff2be 827 ///
ba9703b0
XL
828 /// The user of `from_raw` has to make sure a specific value of `T` is only
829 /// dropped once.
830 ///
831 /// This function is unsafe because improper use may lead to memory unsafety,
832 /// even if the returned `Arc<T>` is never accessed.
476ff2be 833 ///
3dfed10e
XL
834 /// [into_raw]: Arc::into_raw
835 /// [transmute]: core::mem::transmute
476ff2be
SL
836 ///
837 /// # Examples
838 ///
839 /// ```
476ff2be
SL
840 /// use std::sync::Arc;
841 ///
dc9dc135 842 /// let x = Arc::new("hello".to_owned());
476ff2be
SL
843 /// let x_ptr = Arc::into_raw(x);
844 ///
845 /// unsafe {
846 /// // Convert back to an `Arc` to prevent leak.
847 /// let x = Arc::from_raw(x_ptr);
dc9dc135 848 /// assert_eq!(&*x, "hello");
476ff2be 849 ///
e1599b0c 850 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
476ff2be
SL
851 /// }
852 ///
853 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
854 /// ```
8bb4bdeb
XL
855 #[stable(feature = "rc_raw", since = "1.17.0")]
856 pub unsafe fn from_raw(ptr: *const T) -> Self {
f035d41b
XL
857 unsafe {
858 let offset = data_offset(ptr);
ea8adc8c 859
f035d41b 860 // Reverse the offset to find the original ArcInner.
5869c6ff 861 let arc_ptr = (ptr as *mut ArcInner<T>).set_ptr_value((ptr as *mut u8).offset(-offset));
ea8adc8c 862
f035d41b
XL
863 Self::from_ptr(arc_ptr)
864 }
476ff2be 865 }
1a4d82fc 866
3dfed10e 867 /// Creates a new [`Weak`] pointer to this allocation.
1a4d82fc
JJ
868 ///
869 /// # Examples
870 ///
871 /// ```
872 /// use std::sync::Arc;
873 ///
85aaf69f 874 /// let five = Arc::new(5);
1a4d82fc 875 ///
e9174d1e 876 /// let weak_five = Arc::downgrade(&five);
1a4d82fc 877 /// ```
e9174d1e
SL
878 #[stable(feature = "arc_weak", since = "1.4.0")]
879 pub fn downgrade(this: &Self) -> Weak<T> {
54a0048b
SL
880 // This Relaxed is OK because we're checking the value in the CAS
881 // below.
882 let mut cur = this.inner().weak.load(Relaxed);
c1a9b12d 883
54a0048b 884 loop {
c1a9b12d 885 // check if the weak counter is currently "locked"; if so, spin.
b039eaaf 886 if cur == usize::MAX {
29967ef6 887 hint::spin_loop();
54a0048b 888 cur = this.inner().weak.load(Relaxed);
92a42be0 889 continue;
b039eaaf 890 }
c1a9b12d
SL
891
892 // NOTE: this code currently ignores the possibility of overflow
893 // into usize::MAX; in general both Rc and Arc need to be adjusted
894 // to deal with overflow.
895
896 // Unlike with Clone(), we need this to be an Acquire read to
897 // synchronize with the write coming from `is_unique`, so that the
898 // events prior to that write happen before this read.
54a0048b 899 match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
8faf50e0
XL
900 Ok(_) => {
901 // Make sure we do not create a dangling Weak
5869c6ff 902 debug_assert!(!is_dangling(this.ptr.as_ptr()));
8faf50e0
XL
903 return Weak { ptr: this.ptr };
904 }
54a0048b 905 Err(old) => cur = old,
c1a9b12d
SL
906 }
907 }
1a4d82fc 908 }
1a4d82fc 909
3dfed10e 910 /// Gets the number of [`Weak`] pointers to this allocation.
c30ab7b3 911 ///
476ff2be
SL
912 /// # Safety
913 ///
914 /// This method by itself is safe, but using it correctly requires extra care.
915 /// Another thread can change the weak count at any time,
916 /// including potentially between calling this method and acting on the result.
917 ///
c30ab7b3
SL
918 /// # Examples
919 ///
920 /// ```
c30ab7b3
SL
921 /// use std::sync::Arc;
922 ///
923 /// let five = Arc::new(5);
924 /// let _weak_five = Arc::downgrade(&five);
925 ///
926 /// // This assertion is deterministic because we haven't shared
927 /// // the `Arc` or `Weak` between threads.
928 /// assert_eq!(1, Arc::weak_count(&five));
929 /// ```
62682a34 930 #[inline]
476ff2be 931 #[stable(feature = "arc_counts", since = "1.15.0")]
e9174d1e 932 pub fn weak_count(this: &Self) -> usize {
3b2f2976
XL
933 let cnt = this.inner().weak.load(SeqCst);
934 // If the weak count is currently locked, the value of the
935 // count was 0 just before taking the lock.
936 if cnt == usize::MAX { 0 } else { cnt - 1 }
62682a34
SL
937 }
938
e74abb32 939 /// Gets the number of strong (`Arc`) pointers to this allocation.
c30ab7b3 940 ///
476ff2be
SL
941 /// # Safety
942 ///
943 /// This method by itself is safe, but using it correctly requires extra care.
944 /// Another thread can change the strong count at any time,
945 /// including potentially between calling this method and acting on the result.
c30ab7b3
SL
946 ///
947 /// # Examples
948 ///
949 /// ```
c30ab7b3
SL
950 /// use std::sync::Arc;
951 ///
952 /// let five = Arc::new(5);
7cac9316 953 /// let _also_five = Arc::clone(&five);
c30ab7b3
SL
954 ///
955 /// // This assertion is deterministic because we haven't shared
956 /// // the `Arc` between threads.
957 /// assert_eq!(2, Arc::strong_count(&five));
958 /// ```
62682a34 959 #[inline]
476ff2be 960 #[stable(feature = "arc_counts", since = "1.15.0")]
e9174d1e 961 pub fn strong_count(this: &Self) -> usize {
62682a34
SL
962 this.inner().strong.load(SeqCst)
963 }
964
f9f354fc
XL
965 /// Increments the strong reference count on the `Arc<T>` associated with the
966 /// provided pointer by one.
967 ///
968 /// # Safety
969 ///
970 /// The pointer must have been obtained through `Arc::into_raw`, and the
971 /// associated `Arc` instance must be valid (i.e. the strong count must be at
972 /// least 1) for the duration of this method.
973 ///
974 /// # Examples
975 ///
976 /// ```
f9f354fc
XL
977 /// use std::sync::Arc;
978 ///
979 /// let five = Arc::new(5);
980 ///
981 /// unsafe {
982 /// let ptr = Arc::into_raw(five);
5869c6ff 983 /// Arc::increment_strong_count(ptr);
f9f354fc
XL
984 ///
985 /// // This assertion is deterministic because we haven't shared
986 /// // the `Arc` between threads.
987 /// let five = Arc::from_raw(ptr);
988 /// assert_eq!(2, Arc::strong_count(&five));
989 /// }
990 /// ```
991 #[inline]
5869c6ff
XL
992 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
993 pub unsafe fn increment_strong_count(ptr: *const T) {
f9f354fc 994 // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
f035d41b 995 let arc = unsafe { mem::ManuallyDrop::new(Arc::<T>::from_raw(ptr)) };
f9f354fc
XL
996 // Now increase refcount, but don't drop new refcount either
997 let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
998 }
999
1000 /// Decrements the strong reference count on the `Arc<T>` associated with the
1001 /// provided pointer by one.
1002 ///
1003 /// # Safety
1004 ///
1005 /// The pointer must have been obtained through `Arc::into_raw`, and the
1006 /// associated `Arc` instance must be valid (i.e. the strong count must be at
1007 /// least 1) when invoking this method. This method can be used to release the final
1008 /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1009 /// released.
1010 ///
1011 /// # Examples
1012 ///
1013 /// ```
f9f354fc
XL
1014 /// use std::sync::Arc;
1015 ///
1016 /// let five = Arc::new(5);
1017 ///
1018 /// unsafe {
1019 /// let ptr = Arc::into_raw(five);
5869c6ff 1020 /// Arc::increment_strong_count(ptr);
f9f354fc
XL
1021 ///
1022 /// // Those assertions are deterministic because we haven't shared
1023 /// // the `Arc` between threads.
1024 /// let five = Arc::from_raw(ptr);
1025 /// assert_eq!(2, Arc::strong_count(&five));
5869c6ff 1026 /// Arc::decrement_strong_count(ptr);
f9f354fc
XL
1027 /// assert_eq!(1, Arc::strong_count(&five));
1028 /// }
1029 /// ```
1030 #[inline]
5869c6ff
XL
1031 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1032 pub unsafe fn decrement_strong_count(ptr: *const T) {
f035d41b 1033 unsafe { mem::drop(Arc::from_raw(ptr)) };
f9f354fc
XL
1034 }
1035
1a4d82fc
JJ
1036 #[inline]
1037 fn inner(&self) -> &ArcInner<T> {
c34b1796
AL
1038 // This unsafety is ok because while this arc is alive we're guaranteed
1039 // that the inner pointer is valid. Furthermore, we know that the
1040 // `ArcInner` structure itself is `Sync` because the inner data is
1041 // `Sync` as well, so we're ok loaning out an immutable pointer to these
1042 // contents.
7cac9316 1043 unsafe { self.ptr.as_ref() }
1a4d82fc 1044 }
c34b1796
AL
1045
1046 // Non-inlined part of `drop`.
1047 #[inline(never)]
1048 unsafe fn drop_slow(&mut self) {
c34b1796
AL
1049 // Destroy the data at this time, even though we may not free the box
1050 // allocation itself (there may still be weak pointers lying around).
f035d41b 1051 unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
c34b1796 1052
f9f354fc
XL
1053 // Drop the weak ref collectively held by all strong references
1054 drop(Weak { ptr: self.ptr });
c34b1796 1055 }
9e0c209e
SL
1056
1057 #[inline]
8bb4bdeb 1058 #[stable(feature = "ptr_eq", since = "1.17.0")]
e74abb32
XL
1059 /// Returns `true` if the two `Arc`s point to the same allocation
1060 /// (in a vein similar to [`ptr::eq`]).
9e0c209e
SL
1061 ///
1062 /// # Examples
1063 ///
1064 /// ```
9e0c209e
SL
1065 /// use std::sync::Arc;
1066 ///
1067 /// let five = Arc::new(5);
7cac9316 1068 /// let same_five = Arc::clone(&five);
9e0c209e
SL
1069 /// let other_five = Arc::new(5);
1070 ///
1071 /// assert!(Arc::ptr_eq(&five, &same_five));
1072 /// assert!(!Arc::ptr_eq(&five, &other_five));
1073 /// ```
e74abb32 1074 ///
3dfed10e 1075 /// [`ptr::eq`]: core::ptr::eq
9e0c209e 1076 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
7cac9316 1077 this.ptr.as_ptr() == other.ptr.as_ptr()
9e0c209e 1078 }
1a4d82fc
JJ
1079}
1080
3b2f2976 1081impl<T: ?Sized> Arc<T> {
416331ca 1082 /// Allocates an `ArcInner<T>` with sufficient space for
e74abb32 1083 /// a possibly-unsized inner value where the value has the layout provided.
416331ca
XL
1084 ///
1085 /// The function `mem_to_arcinner` is called with the data pointer
1086 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
17df50a5 1087 #[cfg(not(no_global_oom_handling))]
e1599b0c 1088 unsafe fn allocate_for_layout(
416331ca 1089 value_layout: Layout,
1b1a35ee 1090 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
dfeec247 1091 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
416331ca
XL
1092 ) -> *mut ArcInner<T> {
1093 // Calculate layout using the given value layout.
a1dfa0c6
XL
1094 // Previously, layout was calculated on the expression
1095 // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
1096 // reference (see #54908).
dfeec247 1097 let layout = Layout::new::<ArcInner<()>>().extend(value_layout).unwrap().0.pad_to_align();
5869c6ff
XL
1098 unsafe {
1099 Arc::try_allocate_for_layout(value_layout, allocate, mem_to_arcinner)
1100 .unwrap_or_else(|_| handle_alloc_error(layout))
1101 }
1102 }
1103
1104 /// Allocates an `ArcInner<T>` with sufficient space for
1105 /// a possibly-unsized inner value where the value has the layout provided,
1106 /// returning an error if allocation fails.
1107 ///
1108 /// The function `mem_to_arcinner` is called with the data pointer
1109 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1110 unsafe fn try_allocate_for_layout(
1111 value_layout: Layout,
1112 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1113 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1114 ) -> Result<*mut ArcInner<T>, AllocError> {
1115 // Calculate layout using the given value layout.
1116 // Previously, layout was calculated on the expression
1117 // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
1118 // reference (see #54908).
1119 let layout = Layout::new::<ArcInner<()>>().extend(value_layout).unwrap().0.pad_to_align();
3b2f2976 1120
5869c6ff 1121 let ptr = allocate(layout)?;
3b2f2976 1122
a1dfa0c6 1123 // Initialize the ArcInner
3dfed10e 1124 let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
f035d41b 1125 debug_assert_eq!(unsafe { Layout::for_value(&*inner) }, layout);
3b2f2976 1126
f035d41b
XL
1127 unsafe {
1128 ptr::write(&mut (*inner).strong, atomic::AtomicUsize::new(1));
1129 ptr::write(&mut (*inner).weak, atomic::AtomicUsize::new(1));
1130 }
3b2f2976 1131
5869c6ff 1132 Ok(inner)
3b2f2976
XL
1133 }
1134
e74abb32 1135 /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
17df50a5 1136 #[cfg(not(no_global_oom_handling))]
416331ca
XL
1137 unsafe fn allocate_for_ptr(ptr: *const T) -> *mut ArcInner<T> {
1138 // Allocate for the `ArcInner<T>` using the given value.
f035d41b 1139 unsafe {
3dfed10e
XL
1140 Self::allocate_for_layout(
1141 Layout::for_value(&*ptr),
fc512014 1142 |layout| Global.allocate(layout),
5869c6ff 1143 |mem| (ptr as *mut ArcInner<T>).set_ptr_value(mem) as *mut ArcInner<T>,
3dfed10e 1144 )
f035d41b 1145 }
416331ca
XL
1146 }
1147
17df50a5 1148 #[cfg(not(no_global_oom_handling))]
3b2f2976
XL
1149 fn from_box(v: Box<T>) -> Arc<T> {
1150 unsafe {
29967ef6 1151 let (box_unique, alloc) = Box::into_unique(v);
83c7162d 1152 let bptr = box_unique.as_ptr();
3b2f2976
XL
1153
1154 let value_size = size_of_val(&*bptr);
1155 let ptr = Self::allocate_for_ptr(bptr);
1156
1157 // Copy value as bytes
1158 ptr::copy_nonoverlapping(
1159 bptr as *const T as *const u8,
1160 &mut (*ptr).data as *mut _ as *mut u8,
dfeec247
XL
1161 value_size,
1162 );
3b2f2976
XL
1163
1164 // Free the allocation without dropping its contents
29967ef6 1165 box_free(box_unique, alloc);
3b2f2976 1166
416331ca 1167 Self::from_ptr(ptr)
3b2f2976
XL
1168 }
1169 }
1170}
1171
416331ca
XL
1172impl<T> Arc<[T]> {
1173 /// Allocates an `ArcInner<[T]>` with the given length.
17df50a5 1174 #[cfg(not(no_global_oom_handling))]
416331ca 1175 unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
f035d41b 1176 unsafe {
3dfed10e
XL
1177 Self::allocate_for_layout(
1178 Layout::array::<T>(len).unwrap(),
fc512014 1179 |layout| Global.allocate(layout),
3dfed10e
XL
1180 |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut ArcInner<[T]>,
1181 )
f035d41b 1182 }
416331ca 1183 }
416331ca 1184
f9f354fc 1185 /// Copy elements from slice into newly allocated Arc<\[T\]>
416331ca
XL
1186 ///
1187 /// Unsafe because the caller must either take ownership or bind `T: Copy`.
17df50a5 1188 #[cfg(not(no_global_oom_handling))]
3b2f2976 1189 unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
f035d41b
XL
1190 unsafe {
1191 let ptr = Self::allocate_for_slice(v.len());
3b2f2976 1192
f035d41b 1193 ptr::copy_nonoverlapping(v.as_ptr(), &mut (*ptr).data as *mut [T] as *mut T, v.len());
3b2f2976 1194
f035d41b
XL
1195 Self::from_ptr(ptr)
1196 }
3b2f2976 1197 }
3b2f2976 1198
416331ca
XL
1199 /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
1200 ///
1201 /// Behavior is undefined should the size be wrong.
17df50a5 1202 #[cfg(not(no_global_oom_handling))]
416331ca 1203 unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Arc<[T]> {
3b2f2976
XL
1204 // Panic guard while cloning T elements.
1205 // In the event of a panic, elements that have been written
1206 // into the new ArcInner will be dropped, then the memory freed.
1207 struct Guard<T> {
83c7162d 1208 mem: NonNull<u8>,
3b2f2976
XL
1209 elems: *mut T,
1210 layout: Layout,
1211 n_elems: usize,
1212 }
1213
1214 impl<T> Drop for Guard<T> {
1215 fn drop(&mut self) {
3b2f2976
XL
1216 unsafe {
1217 let slice = from_raw_parts_mut(self.elems, self.n_elems);
1218 ptr::drop_in_place(slice);
1219
fc512014 1220 Global.deallocate(self.mem, self.layout);
3b2f2976
XL
1221 }
1222 }
1223 }
1224
f035d41b
XL
1225 unsafe {
1226 let ptr = Self::allocate_for_slice(len);
3b2f2976 1227
f035d41b
XL
1228 let mem = ptr as *mut _ as *mut u8;
1229 let layout = Layout::for_value(&*ptr);
3b2f2976 1230
f035d41b
XL
1231 // Pointer to first element
1232 let elems = &mut (*ptr).data as *mut [T] as *mut T;
3b2f2976 1233
f035d41b 1234 let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
3b2f2976 1235
f035d41b
XL
1236 for (i, item) in iter.enumerate() {
1237 ptr::write(elems.add(i), item);
1238 guard.n_elems += 1;
1239 }
416331ca 1240
f035d41b
XL
1241 // All clear. Forget the guard so it doesn't free the new ArcInner.
1242 mem::forget(guard);
416331ca 1243
f035d41b
XL
1244 Self::from_ptr(ptr)
1245 }
416331ca
XL
1246 }
1247}
3b2f2976 1248
416331ca 1249/// Specialization trait used for `From<&[T]>`.
17df50a5 1250#[cfg(not(no_global_oom_handling))]
416331ca
XL
1251trait ArcFromSlice<T> {
1252 fn from_slice(slice: &[T]) -> Self;
1253}
3b2f2976 1254
17df50a5 1255#[cfg(not(no_global_oom_handling))]
416331ca
XL
1256impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
1257 #[inline]
1258 default fn from_slice(v: &[T]) -> Self {
dfeec247 1259 unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
3b2f2976
XL
1260 }
1261}
1262
17df50a5 1263#[cfg(not(no_global_oom_handling))]
3b2f2976
XL
1264impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
1265 #[inline]
1266 fn from_slice(v: &[T]) -> Self {
1267 unsafe { Arc::copy_from_slice(v) }
1268 }
1269}
1270
85aaf69f 1271#[stable(feature = "rust1", since = "1.0.0")]
62682a34 1272impl<T: ?Sized> Clone for Arc<T> {
c30ab7b3 1273 /// Makes a clone of the `Arc` pointer.
1a4d82fc 1274 ///
e74abb32 1275 /// This creates another pointer to the same allocation, increasing the
c30ab7b3 1276 /// strong reference count.
1a4d82fc
JJ
1277 ///
1278 /// # Examples
1279 ///
1280 /// ```
1281 /// use std::sync::Arc;
1282 ///
85aaf69f 1283 /// let five = Arc::new(5);
1a4d82fc 1284 ///
0bf4aa26 1285 /// let _ = Arc::clone(&five);
1a4d82fc
JJ
1286 /// ```
1287 #[inline]
1288 fn clone(&self) -> Arc<T> {
c34b1796
AL
1289 // Using a relaxed ordering is alright here, as knowledge of the
1290 // original reference prevents other threads from erroneously deleting
1291 // the object.
1a4d82fc 1292 //
c34b1796
AL
1293 // As explained in the [Boost documentation][1], Increasing the
1294 // reference counter can always be done with memory_order_relaxed: New
1295 // references to an object can only be formed from an existing
1296 // reference, and passing an existing reference from one thread to
1297 // another must already provide any required synchronization.
1a4d82fc
JJ
1298 //
1299 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
c1a9b12d
SL
1300 let old_size = self.inner().strong.fetch_add(1, Relaxed);
1301
1302 // However we need to guard against massive refcounts in case someone
1303 // is `mem::forget`ing Arcs. If we don't do this the count can overflow
1304 // and users will use-after free. We racily saturate to `isize::MAX` on
1305 // the assumption that there aren't ~2 billion threads incrementing
1306 // the reference count at once. This branch will never be taken in
1307 // any realistic program.
1308 //
1309 // We abort because such a program is incredibly degenerate, and we
1310 // don't care to support it.
1311 if old_size > MAX_REFCOUNT {
f035d41b 1312 abort();
c1a9b12d
SL
1313 }
1314
416331ca 1315 Self::from_inner(self.ptr)
1a4d82fc
JJ
1316 }
1317}
1318
85aaf69f 1319#[stable(feature = "rust1", since = "1.0.0")]
62682a34 1320impl<T: ?Sized> Deref for Arc<T> {
1a4d82fc
JJ
1321 type Target = T;
1322
1323 #[inline]
1324 fn deref(&self) -> &T {
1325 &self.inner().data
1326 }
1327}
1328
dfeec247 1329#[unstable(feature = "receiver_trait", issue = "none")]
0731742a
XL
1330impl<T: ?Sized> Receiver for Arc<T> {}
1331
c34b1796 1332impl<T: Clone> Arc<T> {
c30ab7b3
SL
1333 /// Makes a mutable reference into the given `Arc`.
1334 ///
3dfed10e 1335 /// If there are other `Arc` or [`Weak`] pointers to the same allocation,
e74abb32
XL
1336 /// then `make_mut` will create a new allocation and invoke [`clone`][clone] on the inner value
1337 /// to ensure unique ownership. This is also referred to as clone-on-write.
1338 ///
1339 /// Note that this differs from the behavior of [`Rc::make_mut`] which disassociates
1340 /// any remaining `Weak` pointers.
1a4d82fc 1341 ///
c30ab7b3
SL
1342 /// See also [`get_mut`][get_mut], which will fail rather than cloning.
1343 ///
3dfed10e
XL
1344 /// [clone]: Clone::clone
1345 /// [get_mut]: Arc::get_mut
1346 /// [`Rc::make_mut`]: super::rc::Rc::make_mut
62682a34 1347 ///
1a4d82fc
JJ
1348 /// # Examples
1349 ///
1350 /// ```
1351 /// use std::sync::Arc;
1352 ///
e9174d1e
SL
1353 /// let mut data = Arc::new(5);
1354 ///
1355 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
7cac9316 1356 /// let mut other_data = Arc::clone(&data); // Won't clone inner data
e9174d1e
SL
1357 /// *Arc::make_mut(&mut data) += 1; // Clones inner data
1358 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
1359 /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
1360 ///
e74abb32 1361 /// // Now `data` and `other_data` point to different allocations.
e9174d1e
SL
1362 /// assert_eq!(*data, 8);
1363 /// assert_eq!(*other_data, 12);
1a4d82fc 1364 /// ```
17df50a5 1365 #[cfg(not(no_global_oom_handling))]
1a4d82fc 1366 #[inline]
e9174d1e
SL
1367 #[stable(feature = "arc_unique", since = "1.4.0")]
1368 pub fn make_mut(this: &mut Self) -> &mut T {
c1a9b12d
SL
1369 // Note that we hold both a strong reference and a weak reference.
1370 // Thus, releasing our strong reference only will not, by itself, cause
1371 // the memory to be deallocated.
62682a34 1372 //
c1a9b12d
SL
1373 // Use Acquire to ensure that we see any writes to `weak` that happen
1374 // before release writes (i.e., decrements) to `strong`. Since we hold a
1375 // weak count, there's no chance the ArcInner itself could be
1376 // deallocated.
54a0048b 1377 if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
5869c6ff
XL
1378 // Another strong pointer exists, so we must clone.
1379 // Pre-allocate memory to allow writing the cloned value directly.
1380 let mut arc = Self::new_uninit();
1381 unsafe {
1382 let data = Arc::get_mut_unchecked(&mut arc);
1383 (**this).write_clone_into_raw(data.as_mut_ptr());
1384 *this = arc.assume_init();
1385 }
c1a9b12d
SL
1386 } else if this.inner().weak.load(Relaxed) != 1 {
1387 // Relaxed suffices in the above because this is fundamentally an
1388 // optimization: we are always racing with weak pointers being
1389 // dropped. Worst case, we end up allocated a new Arc unnecessarily.
1390
1391 // We removed the last strong ref, but there are additional weak
1392 // refs remaining. We'll move the contents to a new Arc, and
1393 // invalidate the other weak refs.
1394
1395 // Note that it is not possible for the read of `weak` to yield
1396 // usize::MAX (i.e., locked), since the weak count can only be
1397 // locked by a thread with a strong reference.
1398
1399 // Materialize our own implicit weak pointer, so that it can clean
1400 // up the ArcInner as needed.
5869c6ff 1401 let _weak = Weak { ptr: this.ptr };
c1a9b12d 1402
5869c6ff
XL
1403 // Can just steal the data, all that's left is Weaks
1404 let mut arc = Self::new_uninit();
c1a9b12d 1405 unsafe {
5869c6ff
XL
1406 let data = Arc::get_mut_unchecked(&mut arc);
1407 data.as_mut_ptr().copy_from_nonoverlapping(&**this, 1);
1408 ptr::write(this, arc.assume_init());
c1a9b12d
SL
1409 }
1410 } else {
1411 // We were the sole reference of either kind; bump back up the
1412 // strong ref count.
1413 this.inner().strong.store(1, Release);
1a4d82fc 1414 }
c1a9b12d 1415
9346a6ac 1416 // As with `get_mut()`, the unsafety is ok because our reference was
c34b1796 1417 // either unique to begin with, or became one upon cloning the contents.
f9f354fc 1418 unsafe { Self::get_mut_unchecked(this) }
1a4d82fc
JJ
1419 }
1420}
1421
c1a9b12d 1422impl<T: ?Sized> Arc<T> {
e74abb32 1423 /// Returns a mutable reference into the given `Arc`, if there are
3dfed10e 1424 /// no other `Arc` or [`Weak`] pointers to the same allocation.
c30ab7b3 1425 ///
3dfed10e 1426 /// Returns [`None`] otherwise, because it is not safe to
c30ab7b3
SL
1427 /// mutate a shared value.
1428 ///
1429 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
e74abb32 1430 /// the inner value when there are other pointers.
c30ab7b3 1431 ///
3dfed10e
XL
1432 /// [make_mut]: Arc::make_mut
1433 /// [clone]: Clone::clone
c1a9b12d
SL
1434 ///
1435 /// # Examples
1436 ///
1437 /// ```
e9174d1e 1438 /// use std::sync::Arc;
c1a9b12d
SL
1439 ///
1440 /// let mut x = Arc::new(3);
1441 /// *Arc::get_mut(&mut x).unwrap() = 4;
1442 /// assert_eq!(*x, 4);
1443 ///
7cac9316 1444 /// let _y = Arc::clone(&x);
c1a9b12d 1445 /// assert!(Arc::get_mut(&mut x).is_none());
c1a9b12d
SL
1446 /// ```
1447 #[inline]
e9174d1e
SL
1448 #[stable(feature = "arc_unique", since = "1.4.0")]
1449 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
c1a9b12d
SL
1450 if this.is_unique() {
1451 // This unsafety is ok because we're guaranteed that the pointer
1452 // returned is the *only* pointer that will ever be returned to T. Our
1453 // reference count is guaranteed to be 1 at this point, and we required
1454 // the Arc itself to be `mut`, so we're returning the only possible
1455 // reference to the inner data.
dfeec247 1456 unsafe { Some(Arc::get_mut_unchecked(this)) }
c1a9b12d
SL
1457 } else {
1458 None
1459 }
1460 }
1461
e74abb32 1462 /// Returns a mutable reference into the given `Arc`,
e1599b0c
XL
1463 /// without any check.
1464 ///
1465 /// See also [`get_mut`], which is safe and does appropriate checks.
1466 ///
3dfed10e 1467 /// [`get_mut`]: Arc::get_mut
e1599b0c
XL
1468 ///
1469 /// # Safety
1470 ///
e74abb32 1471 /// Any other `Arc` or [`Weak`] pointers to the same allocation must not be dereferenced
e1599b0c
XL
1472 /// for the duration of the returned borrow.
1473 /// This is trivially the case if no such pointers exist,
1474 /// for example immediately after `Arc::new`.
1475 ///
1476 /// # Examples
1477 ///
1478 /// ```
1479 /// #![feature(get_mut_unchecked)]
1480 ///
1481 /// use std::sync::Arc;
1482 ///
1483 /// let mut x = Arc::new(String::new());
1484 /// unsafe {
1485 /// Arc::get_mut_unchecked(&mut x).push_str("foo")
1486 /// }
1487 /// assert_eq!(*x, "foo");
1488 /// ```
1489 #[inline]
1490 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
1491 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
f9f354fc
XL
1492 // We are careful to *not* create a reference covering the "count" fields, as
1493 // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
f035d41b 1494 unsafe { &mut (*this.ptr.as_ptr()).data }
e1599b0c
XL
1495 }
1496
c1a9b12d
SL
1497 /// Determine whether this is the unique reference (including weak refs) to
1498 /// the underlying data.
1499 ///
1500 /// Note that this requires locking the weak ref count.
1501 fn is_unique(&mut self) -> bool {
1502 // lock the weak pointer count if we appear to be the sole weak pointer
1503 // holder.
1504 //
1505 // The acquire label here ensures a happens-before relationship with any
8faf50e0
XL
1506 // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
1507 // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
1508 // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
54a0048b 1509 if self.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
8faf50e0
XL
1510 // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
1511 // counter in `drop` -- the only access that happens when any but the last reference
1512 // is being dropped.
1513 let unique = self.inner().strong.load(Acquire) == 1;
c1a9b12d
SL
1514
1515 // The release write here synchronizes with a read in `downgrade`,
1516 // effectively preventing the above read of `strong` from happening
1517 // after the write.
1518 self.inner().weak.store(1, Release); // release the lock
1519 unique
1520 } else {
1521 false
1522 }
1523 }
1524}
1525
85aaf69f 1526#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 1527unsafe impl<#[may_dangle] T: ?Sized> Drop for Arc<T> {
c30ab7b3 1528 /// Drops the `Arc`.
1a4d82fc 1529 ///
c34b1796 1530 /// This will decrement the strong reference count. If the strong reference
c30ab7b3 1531 /// count reaches zero then the only other references (if any) are
b7449926 1532 /// [`Weak`], so we `drop` the inner value.
1a4d82fc
JJ
1533 ///
1534 /// # Examples
1535 ///
1536 /// ```
1537 /// use std::sync::Arc;
1538 ///
c30ab7b3 1539 /// struct Foo;
1a4d82fc 1540 ///
c30ab7b3
SL
1541 /// impl Drop for Foo {
1542 /// fn drop(&mut self) {
1543 /// println!("dropped!");
1544 /// }
1a4d82fc 1545 /// }
1a4d82fc 1546 ///
c30ab7b3 1547 /// let foo = Arc::new(Foo);
7cac9316 1548 /// let foo2 = Arc::clone(&foo);
1a4d82fc 1549 ///
c30ab7b3
SL
1550 /// drop(foo); // Doesn't print anything
1551 /// drop(foo2); // Prints "dropped!"
1a4d82fc 1552 /// ```
c34b1796 1553 #[inline]
1a4d82fc 1554 fn drop(&mut self) {
c34b1796
AL
1555 // Because `fetch_sub` is already atomic, we do not need to synchronize
1556 // with other threads unless we are going to delete the object. This
1557 // same logic applies to the below `fetch_sub` to the `weak` count.
b039eaaf 1558 if self.inner().strong.fetch_sub(1, Release) != 1 {
92a42be0 1559 return;
b039eaaf 1560 }
1a4d82fc 1561
c34b1796
AL
1562 // This fence is needed to prevent reordering of use of the data and
1563 // deletion of the data. Because it is marked `Release`, the decreasing
1564 // of the reference count synchronizes with this `Acquire` fence. This
1565 // means that use of the data happens before decreasing the reference
1566 // count, which happens before this fence, which happens before the
1567 // deletion of the data.
1a4d82fc
JJ
1568 //
1569 // As explained in the [Boost documentation][1],
1570 //
c34b1796
AL
1571 // > It is important to enforce any possible access to the object in one
1572 // > thread (through an existing reference) to *happen before* deleting
1573 // > the object in a different thread. This is achieved by a "release"
1574 // > operation after dropping a reference (any access to the object
1575 // > through this reference must obviously happened before), and an
1576 // > "acquire" operation before deleting the object.
1a4d82fc 1577 //
7cac9316
XL
1578 // In particular, while the contents of an Arc are usually immutable, it's
1579 // possible to have interior writes to something like a Mutex<T>. Since a
1580 // Mutex is not acquired when it is deleted, we can't rely on its
1581 // synchronization logic to make writes in thread A visible to a destructor
1582 // running in thread B.
1583 //
1584 // Also note that the Acquire fence here could probably be replaced with an
1585 // Acquire load, which could improve performance in highly-contended
1586 // situations. See [2].
1587 //
1a4d82fc 1588 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
7cac9316 1589 // [2]: (https://github.com/rust-lang/rust/pull/41714)
ba9703b0 1590 acquire!(self.inner().strong);
1a4d82fc 1591
c34b1796 1592 unsafe {
b039eaaf 1593 self.drop_slow();
1a4d82fc
JJ
1594 }
1595 }
1596}
1597
8faf50e0 1598impl Arc<dyn Any + Send + Sync> {
94b46f34 1599 #[inline]
8faf50e0
XL
1600 #[stable(feature = "rc_downcast", since = "1.29.0")]
1601 /// Attempt to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
94b46f34
XL
1602 ///
1603 /// # Examples
1604 ///
1605 /// ```
94b46f34
XL
1606 /// use std::any::Any;
1607 /// use std::sync::Arc;
1608 ///
8faf50e0 1609 /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
94b46f34
XL
1610 /// if let Ok(string) = value.downcast::<String>() {
1611 /// println!("String ({}): {}", string.len(), string);
1612 /// }
1613 /// }
1614 ///
e74abb32
XL
1615 /// let my_string = "Hello World".to_string();
1616 /// print_if_string(Arc::new(my_string));
1617 /// print_if_string(Arc::new(0i8));
94b46f34
XL
1618 /// ```
1619 pub fn downcast<T>(self) -> Result<Arc<T>, Self>
1620 where
1621 T: Any + Send + Sync + 'static,
1622 {
1623 if (*self).is::<T>() {
1624 let ptr = self.ptr.cast::<ArcInner<T>>();
1625 mem::forget(self);
416331ca 1626 Ok(Arc::from_inner(ptr))
94b46f34
XL
1627 } else {
1628 Err(self)
1629 }
1630 }
1631}
1632
a7813a04 1633impl<T> Weak<T> {
8faf50e0
XL
1634 /// Constructs a new `Weak<T>`, without allocating any memory.
1635 /// Calling [`upgrade`] on the return value always gives [`None`].
c30ab7b3 1636 ///
3dfed10e 1637 /// [`upgrade`]: Weak::upgrade
a7813a04
XL
1638 ///
1639 /// # Examples
1640 ///
1641 /// ```
1642 /// use std::sync::Weak;
1643 ///
1644 /// let empty: Weak<i64> = Weak::new();
c30ab7b3 1645 /// assert!(empty.upgrade().is_none());
a7813a04
XL
1646 /// ```
1647 #[stable(feature = "downgraded_weak", since = "1.10.0")]
1648 pub fn new() -> Weak<T> {
dfeec247 1649 Weak { ptr: NonNull::new(usize::MAX as *mut ArcInner<T>).expect("MAX is not 0") }
a7813a04 1650 }
29967ef6
XL
1651}
1652
1653/// Helper type to allow accessing the reference counts without
1654/// making any assertions about the data field.
1655struct WeakInner<'a> {
1656 weak: &'a atomic::AtomicUsize,
1657 strong: &'a atomic::AtomicUsize,
1658}
dc9dc135 1659
5869c6ff 1660impl<T: ?Sized> Weak<T> {
dc9dc135
XL
1661 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
1662 ///
ba9703b0
XL
1663 /// The pointer is valid only if there are some strong references. The pointer may be dangling,
1664 /// unaligned or even [`null`] otherwise.
dc9dc135
XL
1665 ///
1666 /// # Examples
1667 ///
1668 /// ```
416331ca 1669 /// use std::sync::Arc;
dc9dc135
XL
1670 /// use std::ptr;
1671 ///
1672 /// let strong = Arc::new("hello".to_owned());
1673 /// let weak = Arc::downgrade(&strong);
1674 /// // Both point to the same object
ba9703b0 1675 /// assert!(ptr::eq(&*strong, weak.as_ptr()));
dc9dc135 1676 /// // The strong here keeps it alive, so we can still access the object.
ba9703b0 1677 /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
dc9dc135
XL
1678 ///
1679 /// drop(strong);
ba9703b0 1680 /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
dc9dc135 1681 /// // undefined behaviour.
ba9703b0 1682 /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
dc9dc135
XL
1683 /// ```
1684 ///
3dfed10e 1685 /// [`null`]: core::ptr::null
f9f354fc 1686 #[stable(feature = "weak_into_raw", since = "1.45.0")]
ba9703b0 1687 pub fn as_ptr(&self) -> *const T {
f035d41b
XL
1688 let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
1689
5869c6ff
XL
1690 if is_dangling(ptr) {
1691 // If the pointer is dangling, we return the sentinel directly. This cannot be
1692 // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
1693 ptr as *const T
1694 } else {
1695 // SAFETY: if is_dangling returns false, then the pointer is dereferencable.
1696 // The payload may be dropped at this point, and we have to maintain provenance,
1697 // so use raw pointer manipulation.
1698 unsafe { ptr::addr_of_mut!((*ptr).data) }
f035d41b 1699 }
dc9dc135
XL
1700 }
1701
1702 /// Consumes the `Weak<T>` and turns it into a raw pointer.
1703 ///
3dfed10e
XL
1704 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
1705 /// one weak reference (the weak count is not modified by this operation). It can be turned
1706 /// back into the `Weak<T>` with [`from_raw`].
dc9dc135
XL
1707 ///
1708 /// The same restrictions of accessing the target of the pointer as with
ba9703b0 1709 /// [`as_ptr`] apply.
dc9dc135
XL
1710 ///
1711 /// # Examples
1712 ///
1713 /// ```
dc9dc135
XL
1714 /// use std::sync::{Arc, Weak};
1715 ///
1716 /// let strong = Arc::new("hello".to_owned());
1717 /// let weak = Arc::downgrade(&strong);
416331ca 1718 /// let raw = weak.into_raw();
dc9dc135
XL
1719 ///
1720 /// assert_eq!(1, Arc::weak_count(&strong));
1721 /// assert_eq!("hello", unsafe { &*raw });
1722 ///
1723 /// drop(unsafe { Weak::from_raw(raw) });
1724 /// assert_eq!(0, Arc::weak_count(&strong));
1725 /// ```
1726 ///
3dfed10e
XL
1727 /// [`from_raw`]: Weak::from_raw
1728 /// [`as_ptr`]: Weak::as_ptr
f9f354fc 1729 #[stable(feature = "weak_into_raw", since = "1.45.0")]
416331ca 1730 pub fn into_raw(self) -> *const T {
ba9703b0 1731 let result = self.as_ptr();
416331ca 1732 mem::forget(self);
dc9dc135
XL
1733 result
1734 }
1735
3dfed10e 1736 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
dc9dc135
XL
1737 ///
1738 /// This can be used to safely get a strong reference (by calling [`upgrade`]
1739 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
1740 ///
3dfed10e
XL
1741 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
1742 /// as these don't own anything; the method still works on them).
dc9dc135
XL
1743 ///
1744 /// # Safety
1745 ///
ba9703b0 1746 /// The pointer must have originated from the [`into_raw`] and must still own its potential
3dfed10e 1747 /// weak reference.
dc9dc135 1748 ///
3dfed10e
XL
1749 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
1750 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
1751 /// count is not modified by this operation) and therefore it must be paired with a previous
1752 /// call to [`into_raw`].
dc9dc135
XL
1753 /// # Examples
1754 ///
1755 /// ```
dc9dc135
XL
1756 /// use std::sync::{Arc, Weak};
1757 ///
1758 /// let strong = Arc::new("hello".to_owned());
1759 ///
416331ca
XL
1760 /// let raw_1 = Arc::downgrade(&strong).into_raw();
1761 /// let raw_2 = Arc::downgrade(&strong).into_raw();
dc9dc135
XL
1762 ///
1763 /// assert_eq!(2, Arc::weak_count(&strong));
1764 ///
416331ca 1765 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
dc9dc135
XL
1766 /// assert_eq!(1, Arc::weak_count(&strong));
1767 ///
1768 /// drop(strong);
1769 ///
1770 /// // Decrement the last weak count.
416331ca 1771 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
dc9dc135
XL
1772 /// ```
1773 ///
3dfed10e
XL
1774 /// [`new`]: Weak::new
1775 /// [`into_raw`]: Weak::into_raw
1776 /// [`upgrade`]: Weak::upgrade
1777 /// [`forget`]: std::mem::forget
f9f354fc 1778 #[stable(feature = "weak_into_raw", since = "1.45.0")]
dc9dc135 1779 pub unsafe fn from_raw(ptr: *const T) -> Self {
29967ef6 1780 // See Weak::as_ptr for context on how the input pointer is derived.
29967ef6 1781
5869c6ff
XL
1782 let ptr = if is_dangling(ptr as *mut T) {
1783 // This is a dangling Weak.
1784 ptr as *mut ArcInner<T>
1785 } else {
1786 // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
1787 // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
1788 let offset = unsafe { data_offset(ptr) };
1789 // Thus, we reverse the offset to get the whole RcBox.
1790 // SAFETY: the pointer originated from a Weak, so this offset is safe.
1791 unsafe { (ptr as *mut ArcInner<T>).set_ptr_value((ptr as *mut u8).offset(-offset)) }
29967ef6 1792 };
a7813a04 1793
29967ef6 1794 // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
5869c6ff 1795 Weak { ptr: unsafe { NonNull::new_unchecked(ptr) } }
29967ef6 1796 }
b9856134 1797}
f9f354fc 1798
b9856134 1799impl<T: ?Sized> Weak<T> {
e74abb32
XL
1800 /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
1801 /// dropping of the inner value if successful.
1a4d82fc 1802 ///
e74abb32 1803 /// Returns [`None`] if the inner value has since been dropped.
1a4d82fc 1804 ///
1a4d82fc
JJ
1805 /// # Examples
1806 ///
1807 /// ```
1808 /// use std::sync::Arc;
1809 ///
85aaf69f 1810 /// let five = Arc::new(5);
1a4d82fc 1811 ///
e9174d1e 1812 /// let weak_five = Arc::downgrade(&five);
1a4d82fc
JJ
1813 ///
1814 /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
c30ab7b3
SL
1815 /// assert!(strong_five.is_some());
1816 ///
1817 /// // Destroy all strong pointers.
1818 /// drop(strong_five);
1819 /// drop(five);
1820 ///
1821 /// assert!(weak_five.upgrade().is_none());
1a4d82fc 1822 /// ```
e9174d1e 1823 #[stable(feature = "arc_weak", since = "1.4.0")]
1a4d82fc 1824 pub fn upgrade(&self) -> Option<Arc<T>> {
c34b1796 1825 // We use a CAS loop to increment the strong count instead of a
3dfed10e
XL
1826 // fetch_add as this function should never take the reference count
1827 // from zero to one.
8faf50e0 1828 let inner = self.inner()?;
54a0048b
SL
1829
1830 // Relaxed load because any write of 0 that we can observe
1831 // leaves the field in a permanently zero state (so a
1832 // "stale" read of 0 is fine), and any other value is
1833 // confirmed via the CAS below.
1834 let mut n = inner.strong.load(Relaxed);
1835
1a4d82fc 1836 loop {
b039eaaf 1837 if n == 0 {
92a42be0
SL
1838 return None;
1839 }
1840
1841 // See comments in `Arc::clone` for why we do this (for `mem::forget`).
1842 if n > MAX_REFCOUNT {
f035d41b 1843 abort();
b039eaaf 1844 }
c1a9b12d 1845
3dfed10e
XL
1846 // Relaxed is fine for the failure case because we don't have any expectations about the new state.
1847 // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
1848 // value can be initialized after `Weak` references have already been created. In that case, we
1849 // expect to observe the fully initialized value.
1850 match inner.strong.compare_exchange_weak(n, n + 1, Acquire, Relaxed) {
416331ca 1851 Ok(_) => return Some(Arc::from_inner(self.ptr)), // null checked above
54a0048b 1852 Err(old) => n = old,
b039eaaf 1853 }
1a4d82fc
JJ
1854 }
1855 }
1856
e74abb32 1857 /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
9fa01778
XL
1858 ///
1859 /// If `self` was created using [`Weak::new`], this will return 0.
60c5eb7d 1860 #[stable(feature = "weak_counts", since = "1.41.0")]
9fa01778 1861 pub fn strong_count(&self) -> usize {
dfeec247 1862 if let Some(inner) = self.inner() { inner.strong.load(SeqCst) } else { 0 }
9fa01778
XL
1863 }
1864
1865 /// Gets an approximation of the number of `Weak` pointers pointing to this
e74abb32 1866 /// allocation.
9fa01778 1867 ///
60c5eb7d
XL
1868 /// If `self` was created using [`Weak::new`], or if there are no remaining
1869 /// strong pointers, this will return 0.
9fa01778
XL
1870 ///
1871 /// # Accuracy
1872 ///
1873 /// Due to implementation details, the returned value can be off by 1 in
1874 /// either direction when other threads are manipulating any `Arc`s or
e74abb32 1875 /// `Weak`s pointing to the same allocation.
60c5eb7d
XL
1876 #[stable(feature = "weak_counts", since = "1.41.0")]
1877 pub fn weak_count(&self) -> usize {
dfeec247
XL
1878 self.inner()
1879 .map(|inner| {
1880 let weak = inner.weak.load(SeqCst);
1881 let strong = inner.strong.load(SeqCst);
1882 if strong == 0 {
1883 0
1884 } else {
1885 // Since we observed that there was at least one strong pointer
1886 // after reading the weak count, we know that the implicit weak
1887 // reference (present whenever any strong references are alive)
1888 // was still around when we observed the weak count, and can
1889 // therefore safely subtract it.
1890 weak - 1
1891 }
1892 })
1893 .unwrap_or(0)
9fa01778
XL
1894 }
1895
1896 /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
1897 /// (i.e., when this `Weak` was created by `Weak::new`).
1a4d82fc 1898 #[inline]
f9f354fc 1899 fn inner(&self) -> Option<WeakInner<'_>> {
5869c6ff 1900 if is_dangling(self.ptr.as_ptr()) {
f9f354fc
XL
1901 None
1902 } else {
1903 // We are careful to *not* create a reference covering the "data" field, as
1904 // the field may be mutated concurrently (for example, if the last `Arc`
1905 // is dropped, the data field will be dropped in-place).
1906 Some(unsafe {
1907 let ptr = self.ptr.as_ptr();
1908 WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
1909 })
1910 }
1a4d82fc 1911 }
0731742a 1912
e74abb32
XL
1913 /// Returns `true` if the two `Weak`s point to the same allocation (similar to
1914 /// [`ptr::eq`]), or if both don't point to any allocation
e1599b0c 1915 /// (because they were created with `Weak::new()`).
0731742a
XL
1916 ///
1917 /// # Notes
1918 ///
1919 /// Since this compares pointers it means that `Weak::new()` will equal each
e74abb32 1920 /// other, even though they don't point to any allocation.
0731742a 1921 ///
0731742a
XL
1922 /// # Examples
1923 ///
1924 /// ```
dc9dc135 1925 /// use std::sync::Arc;
0731742a
XL
1926 ///
1927 /// let first_rc = Arc::new(5);
1928 /// let first = Arc::downgrade(&first_rc);
1929 /// let second = Arc::downgrade(&first_rc);
1930 ///
dc9dc135 1931 /// assert!(first.ptr_eq(&second));
0731742a
XL
1932 ///
1933 /// let third_rc = Arc::new(5);
1934 /// let third = Arc::downgrade(&third_rc);
1935 ///
dc9dc135 1936 /// assert!(!first.ptr_eq(&third));
0731742a
XL
1937 /// ```
1938 ///
1939 /// Comparing `Weak::new`.
1940 ///
1941 /// ```
0731742a
XL
1942 /// use std::sync::{Arc, Weak};
1943 ///
1944 /// let first = Weak::new();
1945 /// let second = Weak::new();
dc9dc135 1946 /// assert!(first.ptr_eq(&second));
0731742a
XL
1947 ///
1948 /// let third_rc = Arc::new(());
1949 /// let third = Arc::downgrade(&third_rc);
dc9dc135 1950 /// assert!(!first.ptr_eq(&third));
0731742a 1951 /// ```
e74abb32 1952 ///
3dfed10e 1953 /// [`ptr::eq`]: core::ptr::eq
0731742a 1954 #[inline]
e1599b0c 1955 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
dc9dc135
XL
1956 pub fn ptr_eq(&self, other: &Self) -> bool {
1957 self.ptr.as_ptr() == other.ptr.as_ptr()
0731742a 1958 }
1a4d82fc
JJ
1959}
1960
e9174d1e 1961#[stable(feature = "arc_weak", since = "1.4.0")]
62682a34 1962impl<T: ?Sized> Clone for Weak<T> {
e74abb32 1963 /// Makes a clone of the `Weak` pointer that points to the same allocation.
1a4d82fc
JJ
1964 ///
1965 /// # Examples
1966 ///
1967 /// ```
7cac9316 1968 /// use std::sync::{Arc, Weak};
1a4d82fc 1969 ///
e9174d1e 1970 /// let weak_five = Arc::downgrade(&Arc::new(5));
1a4d82fc 1971 ///
0bf4aa26 1972 /// let _ = Weak::clone(&weak_five);
1a4d82fc
JJ
1973 /// ```
1974 #[inline]
1975 fn clone(&self) -> Weak<T> {
8faf50e0
XL
1976 let inner = if let Some(inner) = self.inner() {
1977 inner
1978 } else {
1979 return Weak { ptr: self.ptr };
1980 };
c1a9b12d
SL
1981 // See comments in Arc::clone() for why this is relaxed. This can use a
1982 // fetch_add (ignoring the lock) because the weak count is only locked
1983 // where are *no other* weak pointers in existence. (So we can't be
1984 // running this code in that case).
8faf50e0 1985 let old_size = inner.weak.fetch_add(1, Relaxed);
c1a9b12d
SL
1986
1987 // See comments in Arc::clone() for why we do this (for mem::forget).
1988 if old_size > MAX_REFCOUNT {
f035d41b 1989 abort();
c1a9b12d
SL
1990 }
1991
e74abb32 1992 Weak { ptr: self.ptr }
1a4d82fc
JJ
1993 }
1994}
1995
a7813a04
XL
1996#[stable(feature = "downgraded_weak", since = "1.10.0")]
1997impl<T> Default for Weak<T> {
8faf50e0 1998 /// Constructs a new `Weak<T>`, without allocating memory.
0731742a 1999 /// Calling [`upgrade`] on the return value always
b7449926 2000 /// gives [`None`].
c30ab7b3 2001 ///
3dfed10e 2002 /// [`upgrade`]: Weak::upgrade
c30ab7b3
SL
2003 ///
2004 /// # Examples
2005 ///
2006 /// ```
2007 /// use std::sync::Weak;
2008 ///
2009 /// let empty: Weak<i64> = Default::default();
2010 /// assert!(empty.upgrade().is_none());
2011 /// ```
a7813a04
XL
2012 fn default() -> Weak<T> {
2013 Weak::new()
2014 }
2015}
2016
7453a54e 2017#[stable(feature = "arc_weak", since = "1.4.0")]
17df50a5 2018unsafe impl<#[may_dangle] T: ?Sized> Drop for Weak<T> {
c30ab7b3 2019 /// Drops the `Weak` pointer.
1a4d82fc 2020 ///
1a4d82fc
JJ
2021 /// # Examples
2022 ///
2023 /// ```
7cac9316 2024 /// use std::sync::{Arc, Weak};
1a4d82fc 2025 ///
c30ab7b3 2026 /// struct Foo;
1a4d82fc 2027 ///
c30ab7b3
SL
2028 /// impl Drop for Foo {
2029 /// fn drop(&mut self) {
2030 /// println!("dropped!");
2031 /// }
1a4d82fc 2032 /// }
1a4d82fc 2033 ///
c30ab7b3
SL
2034 /// let foo = Arc::new(Foo);
2035 /// let weak_foo = Arc::downgrade(&foo);
7cac9316 2036 /// let other_weak_foo = Weak::clone(&weak_foo);
1a4d82fc 2037 ///
c30ab7b3
SL
2038 /// drop(weak_foo); // Doesn't print anything
2039 /// drop(foo); // Prints "dropped!"
2040 ///
2041 /// assert!(other_weak_foo.upgrade().is_none());
1a4d82fc
JJ
2042 /// ```
2043 fn drop(&mut self) {
c34b1796
AL
2044 // If we find out that we were the last weak pointer, then its time to
2045 // deallocate the data entirely. See the discussion in Arc::drop() about
2046 // the memory orderings
c1a9b12d
SL
2047 //
2048 // It's not necessary to check for the locked state here, because the
2049 // weak count can only be locked if there was precisely one weak ref,
2050 // meaning that drop could only subsequently run ON that remaining weak
2051 // ref, which can only happen after the lock is released.
dfeec247 2052 let inner = if let Some(inner) = self.inner() { inner } else { return };
8faf50e0
XL
2053
2054 if inner.weak.fetch_sub(1, Release) == 1 {
ba9703b0 2055 acquire!(inner.weak);
5869c6ff 2056 unsafe { Global.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())) }
1a4d82fc
JJ
2057 }
2058 }
2059}
2060
0731742a
XL
2061#[stable(feature = "rust1", since = "1.0.0")]
2062trait ArcEqIdent<T: ?Sized + PartialEq> {
2063 fn eq(&self, other: &Arc<T>) -> bool;
2064 fn ne(&self, other: &Arc<T>) -> bool;
2065}
2066
2067#[stable(feature = "rust1", since = "1.0.0")]
2068impl<T: ?Sized + PartialEq> ArcEqIdent<T> for Arc<T> {
2069 #[inline]
2070 default fn eq(&self, other: &Arc<T>) -> bool {
2071 **self == **other
2072 }
2073 #[inline]
2074 default fn ne(&self, other: &Arc<T>) -> bool {
2075 **self != **other
2076 }
2077}
2078
48663c56
XL
2079/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
2080/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
2081/// store large values, that are slow to clone, but also heavy to check for equality, causing this
2082/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
2083/// the same value, than two `&T`s.
e74abb32
XL
2084///
2085/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
0731742a 2086#[stable(feature = "rust1", since = "1.0.0")]
f9f354fc 2087impl<T: ?Sized + crate::rc::MarkerEq> ArcEqIdent<T> for Arc<T> {
0731742a
XL
2088 #[inline]
2089 fn eq(&self, other: &Arc<T>) -> bool {
2090 Arc::ptr_eq(self, other) || **self == **other
2091 }
2092
2093 #[inline]
2094 fn ne(&self, other: &Arc<T>) -> bool {
2095 !Arc::ptr_eq(self, other) && **self != **other
2096 }
2097}
2098
85aaf69f 2099#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2100impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
c30ab7b3 2101 /// Equality for two `Arc`s.
1a4d82fc 2102 ///
e74abb32
XL
2103 /// Two `Arc`s are equal if their inner values are equal, even if they are
2104 /// stored in different allocation.
1a4d82fc 2105 ///
e74abb32
XL
2106 /// If `T` also implements `Eq` (implying reflexivity of equality),
2107 /// two `Arc`s that point to the same allocation are always equal.
0731742a 2108 ///
1a4d82fc
JJ
2109 /// # Examples
2110 ///
2111 /// ```
2112 /// use std::sync::Arc;
2113 ///
85aaf69f 2114 /// let five = Arc::new(5);
1a4d82fc 2115 ///
c30ab7b3 2116 /// assert!(five == Arc::new(5));
1a4d82fc 2117 /// ```
0731742a 2118 #[inline]
b039eaaf 2119 fn eq(&self, other: &Arc<T>) -> bool {
0731742a 2120 ArcEqIdent::eq(self, other)
b039eaaf 2121 }
1a4d82fc 2122
c30ab7b3 2123 /// Inequality for two `Arc`s.
1a4d82fc 2124 ///
c30ab7b3 2125 /// Two `Arc`s are unequal if their inner values are unequal.
1a4d82fc 2126 ///
e74abb32
XL
2127 /// If `T` also implements `Eq` (implying reflexivity of equality),
2128 /// two `Arc`s that point to the same value are never unequal.
0731742a 2129 ///
1a4d82fc
JJ
2130 /// # Examples
2131 ///
2132 /// ```
2133 /// use std::sync::Arc;
2134 ///
85aaf69f 2135 /// let five = Arc::new(5);
1a4d82fc 2136 ///
c30ab7b3 2137 /// assert!(five != Arc::new(6));
1a4d82fc 2138 /// ```
0731742a 2139 #[inline]
b039eaaf 2140 fn ne(&self, other: &Arc<T>) -> bool {
0731742a 2141 ArcEqIdent::ne(self, other)
b039eaaf 2142 }
1a4d82fc 2143}
0731742a 2144
85aaf69f 2145#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2146impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
c30ab7b3 2147 /// Partial comparison for two `Arc`s.
1a4d82fc
JJ
2148 ///
2149 /// The two are compared by calling `partial_cmp()` on their inner values.
2150 ///
2151 /// # Examples
2152 ///
2153 /// ```
2154 /// use std::sync::Arc;
c30ab7b3 2155 /// use std::cmp::Ordering;
1a4d82fc 2156 ///
85aaf69f 2157 /// let five = Arc::new(5);
1a4d82fc 2158 ///
c30ab7b3 2159 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
1a4d82fc
JJ
2160 /// ```
2161 fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
2162 (**self).partial_cmp(&**other)
2163 }
2164
c30ab7b3 2165 /// Less-than comparison for two `Arc`s.
1a4d82fc
JJ
2166 ///
2167 /// The two are compared by calling `<` on their inner values.
2168 ///
2169 /// # Examples
2170 ///
2171 /// ```
2172 /// use std::sync::Arc;
2173 ///
85aaf69f 2174 /// let five = Arc::new(5);
1a4d82fc 2175 ///
c30ab7b3 2176 /// assert!(five < Arc::new(6));
1a4d82fc 2177 /// ```
b039eaaf
SL
2178 fn lt(&self, other: &Arc<T>) -> bool {
2179 *(*self) < *(*other)
2180 }
1a4d82fc 2181
c30ab7b3 2182 /// 'Less than or equal to' comparison for two `Arc`s.
1a4d82fc
JJ
2183 ///
2184 /// The two are compared by calling `<=` on their inner values.
2185 ///
2186 /// # Examples
2187 ///
2188 /// ```
2189 /// use std::sync::Arc;
2190 ///
85aaf69f 2191 /// let five = Arc::new(5);
1a4d82fc 2192 ///
c30ab7b3 2193 /// assert!(five <= Arc::new(5));
1a4d82fc 2194 /// ```
b039eaaf
SL
2195 fn le(&self, other: &Arc<T>) -> bool {
2196 *(*self) <= *(*other)
2197 }
1a4d82fc 2198
c30ab7b3 2199 /// Greater-than comparison for two `Arc`s.
1a4d82fc
JJ
2200 ///
2201 /// The two are compared by calling `>` on their inner values.
2202 ///
2203 /// # Examples
2204 ///
2205 /// ```
2206 /// use std::sync::Arc;
2207 ///
85aaf69f 2208 /// let five = Arc::new(5);
1a4d82fc 2209 ///
c30ab7b3 2210 /// assert!(five > Arc::new(4));
1a4d82fc 2211 /// ```
b039eaaf
SL
2212 fn gt(&self, other: &Arc<T>) -> bool {
2213 *(*self) > *(*other)
2214 }
1a4d82fc 2215
c30ab7b3 2216 /// 'Greater than or equal to' comparison for two `Arc`s.
1a4d82fc
JJ
2217 ///
2218 /// The two are compared by calling `>=` on their inner values.
2219 ///
2220 /// # Examples
2221 ///
2222 /// ```
2223 /// use std::sync::Arc;
2224 ///
85aaf69f 2225 /// let five = Arc::new(5);
1a4d82fc 2226 ///
c30ab7b3 2227 /// assert!(five >= Arc::new(5));
1a4d82fc 2228 /// ```
b039eaaf
SL
2229 fn ge(&self, other: &Arc<T>) -> bool {
2230 *(*self) >= *(*other)
2231 }
1a4d82fc 2232}
85aaf69f 2233#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2234impl<T: ?Sized + Ord> Ord for Arc<T> {
c30ab7b3
SL
2235 /// Comparison for two `Arc`s.
2236 ///
2237 /// The two are compared by calling `cmp()` on their inner values.
2238 ///
2239 /// # Examples
2240 ///
2241 /// ```
2242 /// use std::sync::Arc;
2243 /// use std::cmp::Ordering;
2244 ///
2245 /// let five = Arc::new(5);
2246 ///
2247 /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
2248 /// ```
b039eaaf
SL
2249 fn cmp(&self, other: &Arc<T>) -> Ordering {
2250 (**self).cmp(&**other)
2251 }
1a4d82fc 2252}
85aaf69f 2253#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2254impl<T: ?Sized + Eq> Eq for Arc<T> {}
1a4d82fc 2255
85aaf69f 2256#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2257impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
9fa01778 2258 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
85aaf69f 2259 fmt::Display::fmt(&**self, f)
1a4d82fc
JJ
2260 }
2261}
2262
85aaf69f 2263#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2264impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
9fa01778 2265 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
85aaf69f 2266 fmt::Debug::fmt(&**self, f)
1a4d82fc
JJ
2267 }
2268}
2269
9346a6ac 2270#[stable(feature = "rust1", since = "1.0.0")]
7453a54e 2271impl<T: ?Sized> fmt::Pointer for Arc<T> {
9fa01778 2272 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
ff7c6d11 2273 fmt::Pointer::fmt(&(&**self as *const T), f)
9346a6ac
AL
2274 }
2275}
2276
85aaf69f 2277#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 2278impl<T: Default> Default for Arc<T> {
c30ab7b3
SL
2279 /// Creates a new `Arc<T>`, with the `Default` value for `T`.
2280 ///
2281 /// # Examples
2282 ///
2283 /// ```
2284 /// use std::sync::Arc;
2285 ///
2286 /// let x: Arc<i32> = Default::default();
2287 /// assert_eq!(*x, 0);
2288 /// ```
b039eaaf
SL
2289 fn default() -> Arc<T> {
2290 Arc::new(Default::default())
2291 }
1a4d82fc
JJ
2292}
2293
85aaf69f 2294#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2295impl<T: ?Sized + Hash> Hash for Arc<T> {
85aaf69f
SL
2296 fn hash<H: Hasher>(&self, state: &mut H) {
2297 (**self).hash(state)
2298 }
2299}
1a4d82fc 2300
92a42be0
SL
2301#[stable(feature = "from_for_ptrs", since = "1.6.0")]
2302impl<T> From<T> for Arc<T> {
2303 fn from(t: T) -> Self {
2304 Arc::new(t)
2305 }
2306}
2307
17df50a5 2308#[cfg(not(no_global_oom_handling))]
3b2f2976 2309#[stable(feature = "shared_from_slice", since = "1.21.0")]
9fa01778 2310impl<T: Clone> From<&[T]> for Arc<[T]> {
6a06907d
XL
2311 /// Allocate a reference-counted slice and fill it by cloning `v`'s items.
2312 ///
2313 /// # Example
2314 ///
2315 /// ```
2316 /// # use std::sync::Arc;
2317 /// let original: &[i32] = &[1, 2, 3];
2318 /// let shared: Arc<[i32]> = Arc::from(original);
2319 /// assert_eq!(&[1, 2, 3], &shared[..]);
2320 /// ```
3b2f2976
XL
2321 #[inline]
2322 fn from(v: &[T]) -> Arc<[T]> {
2323 <Self as ArcFromSlice<T>>::from_slice(v)
2324 }
2325}
2326
17df50a5 2327#[cfg(not(no_global_oom_handling))]
3b2f2976 2328#[stable(feature = "shared_from_slice", since = "1.21.0")]
9fa01778 2329impl From<&str> for Arc<str> {
6a06907d
XL
2330 /// Allocate a reference-counted `str` and copy `v` into it.
2331 ///
2332 /// # Example
2333 ///
2334 /// ```
2335 /// # use std::sync::Arc;
2336 /// let shared: Arc<str> = Arc::from("eggplant");
2337 /// assert_eq!("eggplant", &shared[..]);
2338 /// ```
3b2f2976
XL
2339 #[inline]
2340 fn from(v: &str) -> Arc<str> {
ff7c6d11
XL
2341 let arc = Arc::<[u8]>::from(v.as_bytes());
2342 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
3b2f2976
XL
2343 }
2344}
2345
17df50a5 2346#[cfg(not(no_global_oom_handling))]
3b2f2976
XL
2347#[stable(feature = "shared_from_slice", since = "1.21.0")]
2348impl From<String> for Arc<str> {
6a06907d
XL
2349 /// Allocate a reference-counted `str` and copy `v` into it.
2350 ///
2351 /// # Example
2352 ///
2353 /// ```
2354 /// # use std::sync::Arc;
2355 /// let unique: String = "eggplant".to_owned();
2356 /// let shared: Arc<str> = Arc::from(unique);
2357 /// assert_eq!("eggplant", &shared[..]);
2358 /// ```
3b2f2976
XL
2359 #[inline]
2360 fn from(v: String) -> Arc<str> {
2361 Arc::from(&v[..])
2362 }
2363}
2364
17df50a5 2365#[cfg(not(no_global_oom_handling))]
3b2f2976
XL
2366#[stable(feature = "shared_from_slice", since = "1.21.0")]
2367impl<T: ?Sized> From<Box<T>> for Arc<T> {
6a06907d
XL
2368 /// Move a boxed object to a new, reference-counted allocation.
2369 ///
2370 /// # Example
2371 ///
2372 /// ```
2373 /// # use std::sync::Arc;
2374 /// let unique: Box<str> = Box::from("eggplant");
2375 /// let shared: Arc<str> = Arc::from(unique);
2376 /// assert_eq!("eggplant", &shared[..]);
2377 /// ```
3b2f2976
XL
2378 #[inline]
2379 fn from(v: Box<T>) -> Arc<T> {
2380 Arc::from_box(v)
2381 }
2382}
2383
17df50a5 2384#[cfg(not(no_global_oom_handling))]
3b2f2976
XL
2385#[stable(feature = "shared_from_slice", since = "1.21.0")]
2386impl<T> From<Vec<T>> for Arc<[T]> {
6a06907d
XL
2387 /// Allocate a reference-counted slice and move `v`'s items into it.
2388 ///
2389 /// # Example
2390 ///
2391 /// ```
2392 /// # use std::sync::Arc;
2393 /// let unique: Vec<i32> = vec![1, 2, 3];
2394 /// let shared: Arc<[i32]> = Arc::from(unique);
2395 /// assert_eq!(&[1, 2, 3], &shared[..]);
2396 /// ```
3b2f2976
XL
2397 #[inline]
2398 fn from(mut v: Vec<T>) -> Arc<[T]> {
2399 unsafe {
2400 let arc = Arc::copy_from_slice(&v);
2401
2402 // Allow the Vec to free its memory, but not destroy its contents
2403 v.set_len(0);
2404
2405 arc
2406 }
2407 }
2408}
2409
f9f354fc
XL
2410#[stable(feature = "shared_from_cow", since = "1.45.0")]
2411impl<'a, B> From<Cow<'a, B>> for Arc<B>
2412where
2413 B: ToOwned + ?Sized,
2414 Arc<B>: From<&'a B> + From<B::Owned>,
2415{
17df50a5
XL
2416 /// Create an atomically reference-counted pointer from
2417 /// a clone-on-write pointer by copying its content.
2418 ///
2419 /// # Example
2420 ///
2421 /// ```rust
2422 /// # use std::sync::Arc;
2423 /// # use std::borrow::Cow;
2424 /// let cow: Cow<str> = Cow::Borrowed("eggplant");
2425 /// let shared: Arc<str> = Arc::from(cow);
2426 /// assert_eq!("eggplant", &shared[..]);
2427 /// ```
f9f354fc
XL
2428 #[inline]
2429 fn from(cow: Cow<'a, B>) -> Arc<B> {
2430 match cow {
2431 Cow::Borrowed(s) => Arc::from(s),
2432 Cow::Owned(s) => Arc::from(s),
2433 }
2434 }
2435}
2436
74b04a01 2437#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
3dfed10e 2438impl<T, const N: usize> TryFrom<Arc<[T]>> for Arc<[T; N]> {
416331ca 2439 type Error = Arc<[T]>;
1a4d82fc 2440
416331ca
XL
2441 fn try_from(boxed_slice: Arc<[T]>) -> Result<Self, Self::Error> {
2442 if boxed_slice.len() == N {
2443 Ok(unsafe { Arc::from_raw(Arc::into_raw(boxed_slice) as *mut [T; N]) })
2444 } else {
2445 Err(boxed_slice)
3b2f2976 2446 }
3b2f2976 2447 }
416331ca 2448}
3b2f2976 2449
17df50a5 2450#[cfg(not(no_global_oom_handling))]
416331ca
XL
2451#[stable(feature = "shared_from_iter", since = "1.37.0")]
2452impl<T> iter::FromIterator<T> for Arc<[T]> {
2453 /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
2454 ///
2455 /// # Performance characteristics
2456 ///
2457 /// ## The general case
2458 ///
2459 /// In the general case, collecting into `Arc<[T]>` is done by first
2460 /// collecting into a `Vec<T>`. That is, when writing the following:
2461 ///
2462 /// ```rust
2463 /// # use std::sync::Arc;
2464 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
2465 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2466 /// ```
2467 ///
2468 /// this behaves as if we wrote:
2469 ///
2470 /// ```rust
2471 /// # use std::sync::Arc;
2472 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
2473 /// .collect::<Vec<_>>() // The first set of allocations happens here.
2474 /// .into(); // A second allocation for `Arc<[T]>` happens here.
2475 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2476 /// ```
2477 ///
2478 /// This will allocate as many times as needed for constructing the `Vec<T>`
2479 /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
2480 ///
2481 /// ## Iterators of known length
2482 ///
2483 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
2484 /// a single allocation will be made for the `Arc<[T]>`. For example:
2485 ///
2486 /// ```rust
2487 /// # use std::sync::Arc;
2488 /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
2489 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
2490 /// ```
2491 fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
f9f354fc 2492 ToArcSlice::to_arc_slice(iter.into_iter())
3b2f2976 2493 }
416331ca 2494}
3b2f2976 2495
416331ca 2496/// Specialization trait used for collecting into `Arc<[T]>`.
f9f354fc
XL
2497trait ToArcSlice<T>: Iterator<Item = T> + Sized {
2498 fn to_arc_slice(self) -> Arc<[T]>;
416331ca 2499}
3b2f2976 2500
17df50a5 2501#[cfg(not(no_global_oom_handling))]
f9f354fc
XL
2502impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
2503 default fn to_arc_slice(self) -> Arc<[T]> {
2504 self.collect::<Vec<T>>().into()
3b2f2976 2505 }
416331ca 2506}
3b2f2976 2507
17df50a5 2508#[cfg(not(no_global_oom_handling))]
f9f354fc
XL
2509impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
2510 fn to_arc_slice(self) -> Arc<[T]> {
416331ca 2511 // This is the case for a `TrustedLen` iterator.
f9f354fc 2512 let (low, high) = self.size_hint();
416331ca
XL
2513 if let Some(high) = high {
2514 debug_assert_eq!(
dfeec247
XL
2515 low,
2516 high,
416331ca
XL
2517 "TrustedLen iterator's size hint is not exact: {:?}",
2518 (low, high)
2519 );
3b2f2976 2520
416331ca
XL
2521 unsafe {
2522 // SAFETY: We need to ensure that the iterator has an exact length and we have.
f9f354fc 2523 Arc::from_iter_exact(self, low)
3b2f2976 2524 }
416331ca 2525 } else {
cdc7bbd5
XL
2526 // TrustedLen contract guarantees that `upper_bound == `None` implies an iterator
2527 // length exceeding `usize::MAX`.
2528 // The default implementation would collect into a vec which would panic.
2529 // Thus we panic here immediately without invoking `Vec` code.
2530 panic!("capacity overflow");
3b2f2976 2531 }
3b2f2976 2532 }
416331ca 2533}
3b2f2976 2534
92a42be0 2535#[stable(feature = "rust1", since = "1.0.0")]
e9174d1e 2536impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
b039eaaf
SL
2537 fn borrow(&self) -> &T {
2538 &**self
2539 }
2540}
2541
2542#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2543impl<T: ?Sized> AsRef<T> for Arc<T> {
2544 fn as_ref(&self) -> &T {
2545 &**self
2546 }
e9174d1e 2547}
b7449926 2548
0731742a 2549#[stable(feature = "pin", since = "1.33.0")]
dfeec247 2550impl<T: ?Sized> Unpin for Arc<T> {}
dc9dc135 2551
5869c6ff 2552/// Get the offset within an `ArcInner` for the payload behind a pointer.
f035d41b
XL
2553///
2554/// # Safety
2555///
5869c6ff
XL
2556/// The pointer must point to (and have valid metadata for) a previously
2557/// valid instance of T, but the T is allowed to be dropped.
dc9dc135 2558unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> isize {
5869c6ff
XL
2559 // Align the unsized value to the end of the ArcInner.
2560 // Because RcBox is repr(C), it will always be the last field in memory.
2561 // SAFETY: since the only unsized types possible are slices, trait objects,
2562 // and extern types, the input safety requirement is currently enough to
2563 // satisfy the requirements of align_of_val_raw; this is an implementation
2564 // detail of the language that may not be relied upon outside of std.
2565 unsafe { data_offset_align(align_of_val_raw(ptr)) }
416331ca
XL
2566}
2567
2568#[inline]
2569fn data_offset_align(align: usize) -> isize {
dc9dc135
XL
2570 let layout = Layout::new::<ArcInner<()>>();
2571 (layout.size() + layout.padding_needed_for(align)) as isize
2572}