]> git.proxmox.com Git - rustc.git/blame - library/alloc/src/sync.rs
New upstream version 1.52.0~beta.3+dfsg1
[rustc.git] / library / alloc / src / sync.rs
CommitLineData
85aaf69f 1#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 2
c30ab7b3 3//! Thread-safe reference-counting pointers.
1a4d82fc 4//!
3dfed10e 5//! See the [`Arc<T>`][Arc] documentation for more details.
1a4d82fc 6
94b46f34 7use core::any::Any;
e9174d1e 8use core::borrow;
60c5eb7d 9use core::cmp::Ordering;
dfeec247
XL
10use core::convert::{From, TryFrom};
11use core::fmt;
12use core::hash::{Hash, Hasher};
29967ef6 13use core::hint;
92a42be0 14use core::intrinsics::abort;
dfeec247
XL
15use core::iter;
16use core::marker::{PhantomData, Unpin, Unsize};
5869c6ff 17use core::mem::{self, align_of_val_raw, size_of_val};
dfeec247 18use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver};
0bf4aa26 19use core::pin::Pin;
2c00a5a8 20use core::ptr::{self, NonNull};
f9f354fc 21use core::slice::from_raw_parts_mut;
dfeec247
XL
22use core::sync::atomic;
23use core::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};
041b39d2 24
5869c6ff
XL
25use crate::alloc::{
26 box_free, handle_alloc_error, AllocError, Allocator, Global, Layout, WriteCloneIntoRaw,
27};
f9f354fc 28use crate::borrow::{Cow, ToOwned};
9fa01778
XL
29use crate::boxed::Box;
30use crate::rc::is_dangling;
31use crate::string::String;
32use crate::vec::Vec;
1a4d82fc 33
416331ca
XL
34#[cfg(test)]
35mod tests;
36
c30ab7b3
SL
37/// A soft limit on the amount of references that may be made to an `Arc`.
38///
39/// Going above this limit will abort your program (although not
40/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
c1a9b12d
SL
41const MAX_REFCOUNT: usize = (isize::MAX) as usize;
42
ba9703b0
XL
43#[cfg(not(sanitize = "thread"))]
44macro_rules! acquire {
45 ($x:expr) => {
46 atomic::fence(Acquire)
47 };
48}
49
50// ThreadSanitizer does not support memory fences. To avoid false positive
51// reports in Arc / Weak implementation use atomic loads for synchronization
52// instead.
53#[cfg(sanitize = "thread")]
54macro_rules! acquire {
55 ($x:expr) => {
56 $x.load(Acquire)
57 };
58}
59
041b39d2
XL
60/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
61/// Reference Counted'.
1a4d82fc 62///
c30ab7b3
SL
63/// The type `Arc<T>` provides shared ownership of a value of type `T`,
64/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
e74abb32 65/// a new `Arc` instance, which points to the same allocation on the heap as the
b7449926 66/// source `Arc`, while increasing a reference count. When the last `Arc`
e74abb32
XL
67/// pointer to a given allocation is destroyed, the value stored in that allocation (often
68/// referred to as "inner value") is also dropped.
1a4d82fc 69///
c30ab7b3 70/// Shared references in Rust disallow mutation by default, and `Arc` is no
ea8adc8c
XL
71/// exception: you cannot generally obtain a mutable reference to something
72/// inside an `Arc`. If you need to mutate through an `Arc`, use
73/// [`Mutex`][mutex], [`RwLock`][rwlock], or one of the [`Atomic`][atomic]
74/// types.
9e0c209e 75///
7cac9316
XL
76/// ## Thread Safety
77///
78/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
83c7162d 79/// counting. This means that it is thread-safe. The disadvantage is that
7cac9316 80/// atomic operations are more expensive than ordinary memory accesses. If you
e74abb32 81/// are not sharing reference-counted allocations between threads, consider using
7cac9316
XL
82/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
83/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
84/// However, a library might choose `Arc<T>` in order to give library consumers
c30ab7b3 85/// more flexibility.
1a4d82fc 86///
7cac9316
XL
87/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
88/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
89/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
90/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
91/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
92/// data, but it doesn't add thread safety to its data. Consider
ea8adc8c
XL
93/// `Arc<`[`RefCell<T>`]`>`. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
94/// [`Send`], `Arc<`[`RefCell<T>`]`>` would be as well. But then we'd have a problem:
95/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
7cac9316
XL
96/// non-atomic operations.
97///
98/// In the end, this means that you may need to pair `Arc<T>` with some sort of
ea8adc8c 99/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
7cac9316
XL
100///
101/// ## Breaking cycles with `Weak`
102///
c30ab7b3 103/// The [`downgrade`][downgrade] method can be used to create a non-owning
3dfed10e 104/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
e74abb32
XL
105/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
106/// already been dropped. In other words, `Weak` pointers do not keep the value
107/// inside the allocation alive; however, they *do* keep the allocation
108/// (the backing store for the value) alive.
c30ab7b3
SL
109///
110/// A cycle between `Arc` pointers will never be deallocated. For this reason,
3dfed10e
XL
111/// [`Weak`] is used to break cycles. For example, a tree could have
112/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
32a655c1 113/// pointers from children back to their parents.
c30ab7b3 114///
7cac9316
XL
115/// # Cloning references
116///
1b1a35ee 117/// Creating a new reference from an existing reference-counted pointer is done using the
3dfed10e 118/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
7cac9316
XL
119///
120/// ```
121/// use std::sync::Arc;
122/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
123/// // The two syntaxes below are equivalent.
124/// let a = foo.clone();
125/// let b = Arc::clone(&foo);
b7449926 126/// // a, b, and foo are all Arcs that point to the same memory location
7cac9316
XL
127/// ```
128///
7cac9316
XL
129/// ## `Deref` behavior
130///
c30ab7b3
SL
131/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`][deref] trait),
132/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
13cf67c4 133/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
29967ef6 134/// functions, called using [fully qualified syntax]:
c34b1796
AL
135///
136/// ```
1a4d82fc 137/// use std::sync::Arc;
1a4d82fc 138///
29967ef6 139/// let my_arc = Arc::new(());
c30ab7b3
SL
140/// Arc::downgrade(&my_arc);
141/// ```
1a4d82fc 142///
29967ef6
XL
143/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
144/// fully qualified syntax. Some people prefer to use fully qualified syntax,
145/// while others prefer using method-call syntax.
146///
147/// ```
148/// use std::sync::Arc;
149///
150/// let arc = Arc::new(());
151/// // Method-call syntax
152/// let arc2 = arc.clone();
153/// // Fully qualified syntax
154/// let arc3 = Arc::clone(&arc);
155/// ```
156///
3dfed10e 157/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
e74abb32 158/// already been dropped.
1a4d82fc 159///
3dfed10e
XL
160/// [`Rc<T>`]: crate::rc::Rc
161/// [clone]: Clone::clone
c30ab7b3
SL
162/// [mutex]: ../../std/sync/struct.Mutex.html
163/// [rwlock]: ../../std/sync/struct.RwLock.html
3dfed10e
XL
164/// [atomic]: core::sync::atomic
165/// [`Send`]: core::marker::Send
166/// [`Sync`]: core::marker::Sync
167/// [deref]: core::ops::Deref
168/// [downgrade]: Arc::downgrade
169/// [upgrade]: Weak::upgrade
170/// [`RefCell<T>`]: core::cell::RefCell
ea8adc8c 171/// [`std::sync`]: ../../std/sync/index.html
1b1a35ee 172/// [`Arc::clone(&from)`]: Arc::clone
29967ef6 173/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
1a4d82fc 174///
c30ab7b3 175/// # Examples
5bcae85e 176///
c30ab7b3
SL
177/// Sharing some immutable data between threads:
178///
179// Note that we **do not** run these tests here. The windows builders get super
180// unhappy if a thread outlives the main thread and then exits at the same time
181// (something deadlocks) so we just avoid this entirely by not running these
182// tests.
5bcae85e 183/// ```no_run
c30ab7b3 184/// use std::sync::Arc;
5bcae85e
SL
185/// use std::thread;
186///
c30ab7b3 187/// let five = Arc::new(5);
5bcae85e
SL
188///
189/// for _ in 0..10 {
7cac9316 190/// let five = Arc::clone(&five);
5bcae85e
SL
191///
192/// thread::spawn(move || {
c30ab7b3
SL
193/// println!("{:?}", five);
194/// });
195/// }
196/// ```
5bcae85e 197///
32a655c1
SL
198/// Sharing a mutable [`AtomicUsize`]:
199///
3dfed10e 200/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize
5bcae85e 201///
c30ab7b3
SL
202/// ```no_run
203/// use std::sync::Arc;
204/// use std::sync::atomic::{AtomicUsize, Ordering};
205/// use std::thread;
206///
207/// let val = Arc::new(AtomicUsize::new(5));
208///
209/// for _ in 0..10 {
7cac9316 210/// let val = Arc::clone(&val);
c30ab7b3
SL
211///
212/// thread::spawn(move || {
213/// let v = val.fetch_add(1, Ordering::SeqCst);
214/// println!("{:?}", v);
5bcae85e
SL
215/// });
216/// }
217/// ```
c30ab7b3
SL
218///
219/// See the [`rc` documentation][rc_examples] for more examples of reference
220/// counting in general.
221///
1b1a35ee 222/// [rc_examples]: crate::rc#examples
ba9703b0 223#[cfg_attr(not(test), rustc_diagnostic_item = "Arc")]
85aaf69f 224#[stable(feature = "rust1", since = "1.0.0")]
62682a34 225pub struct Arc<T: ?Sized> {
2c00a5a8 226 ptr: NonNull<ArcInner<T>>,
60c5eb7d 227 phantom: PhantomData<ArcInner<T>>,
1a4d82fc
JJ
228}
229
92a42be0
SL
230#[stable(feature = "rust1", since = "1.0.0")]
231unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
232#[stable(feature = "rust1", since = "1.0.0")]
233unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
1a4d82fc 234
92a42be0 235#[unstable(feature = "coerce_unsized", issue = "27732")]
62682a34 236impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Arc<U>> for Arc<T> {}
1a4d82fc 237
dfeec247 238#[unstable(feature = "dispatch_from_dyn", issue = "none")]
a1dfa0c6
XL
239impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
240
416331ca
XL
241impl<T: ?Sized> Arc<T> {
242 fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
dfeec247 243 Self { ptr, phantom: PhantomData }
416331ca
XL
244 }
245
246 unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
f035d41b 247 unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
416331ca
XL
248 }
249}
250
cc61c64b 251/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
e74abb32 252/// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
cc61c64b 253/// pointer, which returns an [`Option`]`<`[`Arc`]`<T>>`.
1a4d82fc 254///
cc61c64b 255/// Since a `Weak` reference does not count towards ownership, it will not
e74abb32
XL
256/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
257/// guarantees about the value still being present. Thus it may return [`None`]
258/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
259/// itself (the backing store) from being deallocated.
5bcae85e 260///
e74abb32
XL
261/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
262/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
263/// prevent circular references between [`Arc`] pointers, since mutual owning references
cc61c64b
XL
264/// would never allow either [`Arc`] to be dropped. For example, a tree could
265/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
266/// pointers from children back to their parents.
5bcae85e 267///
cc61c64b 268/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
c30ab7b3 269///
3dfed10e 270/// [`upgrade`]: Weak::upgrade
e9174d1e 271#[stable(feature = "arc_weak", since = "1.4.0")]
62682a34 272pub struct Weak<T: ?Sized> {
8faf50e0
XL
273 // This is a `NonNull` to allow optimizing the size of this type in enums,
274 // but it is not necessarily a valid pointer.
275 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
276 // to allocate space on the heap. That's not a value a real pointer
277 // will ever have because RcBox has alignment at least 2.
f035d41b 278 // This is only possible when `T: Sized`; unsized `T` never dangle.
2c00a5a8 279 ptr: NonNull<ArcInner<T>>,
1a4d82fc
JJ
280}
281
7453a54e 282#[stable(feature = "arc_weak", since = "1.4.0")]
92a42be0 283unsafe impl<T: ?Sized + Sync + Send> Send for Weak<T> {}
7453a54e 284#[stable(feature = "arc_weak", since = "1.4.0")]
92a42be0 285unsafe impl<T: ?Sized + Sync + Send> Sync for Weak<T> {}
1a4d82fc 286
92a42be0 287#[unstable(feature = "coerce_unsized", issue = "27732")]
c1a9b12d 288impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
dfeec247 289#[unstable(feature = "dispatch_from_dyn", issue = "none")]
a1dfa0c6 290impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
c1a9b12d 291
7453a54e 292#[stable(feature = "arc_weak", since = "1.4.0")]
62682a34 293impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
9fa01778 294 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
c34b1796
AL
295 write!(f, "(Weak)")
296 }
297}
298
ba9703b0
XL
299// This is repr(C) to future-proof against possible field-reordering, which
300// would interfere with otherwise safe [into|from]_raw() of transmutable
301// inner types.
302#[repr(C)]
62682a34 303struct ArcInner<T: ?Sized> {
85aaf69f 304 strong: atomic::AtomicUsize,
c1a9b12d
SL
305
306 // the value usize::MAX acts as a sentinel for temporarily "locking" the
307 // ability to upgrade weak pointers or downgrade strong ones; this is used
e9174d1e 308 // to avoid races in `make_mut` and `get_mut`.
85aaf69f 309 weak: atomic::AtomicUsize,
c1a9b12d 310
1a4d82fc
JJ
311 data: T,
312}
313
62682a34
SL
314unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
315unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
1a4d82fc
JJ
316
317impl<T> Arc<T> {
318 /// Constructs a new `Arc<T>`.
319 ///
320 /// # Examples
321 ///
322 /// ```
323 /// use std::sync::Arc;
324 ///
85aaf69f 325 /// let five = Arc::new(5);
1a4d82fc
JJ
326 /// ```
327 #[inline]
85aaf69f 328 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
329 pub fn new(data: T) -> Arc<T> {
330 // Start the weak pointer count as 1 which is the weak pointer that's
331 // held by all the strong pointers (kinda), see std/rc.rs for more info
c34b1796 332 let x: Box<_> = box ArcInner {
85aaf69f
SL
333 strong: atomic::AtomicUsize::new(1),
334 weak: atomic::AtomicUsize::new(1),
3b2f2976 335 data,
1a4d82fc 336 };
f9f354fc 337 Self::from_inner(Box::leak(x).into())
e9174d1e
SL
338 }
339
3dfed10e
XL
340 /// Constructs a new `Arc<T>` using a weak reference to itself. Attempting
341 /// to upgrade the weak reference before this function returns will result
342 /// in a `None` value. However, the weak reference may be cloned freely and
343 /// stored for use at a later time.
344 ///
345 /// # Examples
346 /// ```
347 /// #![feature(arc_new_cyclic)]
348 /// #![allow(dead_code)]
349 ///
350 /// use std::sync::{Arc, Weak};
351 ///
352 /// struct Foo {
353 /// me: Weak<Foo>,
354 /// }
355 ///
356 /// let foo = Arc::new_cyclic(|me| Foo {
357 /// me: me.clone(),
358 /// });
359 /// ```
360 #[inline]
361 #[unstable(feature = "arc_new_cyclic", issue = "75861")]
362 pub fn new_cyclic(data_fn: impl FnOnce(&Weak<T>) -> T) -> Arc<T> {
363 // Construct the inner in the "uninitialized" state with a single
364 // weak reference.
365 let uninit_ptr: NonNull<_> = Box::leak(box ArcInner {
366 strong: atomic::AtomicUsize::new(0),
367 weak: atomic::AtomicUsize::new(1),
368 data: mem::MaybeUninit::<T>::uninit(),
369 })
370 .into();
371 let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
372
373 let weak = Weak { ptr: init_ptr };
374
375 // It's important we don't give up ownership of the weak pointer, or
376 // else the memory might be freed by the time `data_fn` returns. If
377 // we really wanted to pass ownership, we could create an additional
378 // weak pointer for ourselves, but this would result in additional
379 // updates to the weak reference count which might not be necessary
380 // otherwise.
381 let data = data_fn(&weak);
382
383 // Now we can properly initialize the inner value and turn our weak
384 // reference into a strong reference.
385 unsafe {
386 let inner = init_ptr.as_ptr();
5869c6ff 387 ptr::write(ptr::addr_of_mut!((*inner).data), data);
3dfed10e
XL
388
389 // The above write to the data field must be visible to any threads which
390 // observe a non-zero strong count. Therefore we need at least "Release" ordering
391 // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
392 //
393 // "Acquire" ordering is not required. When considering the possible behaviours
394 // of `data_fn` we only need to look at what it could do with a reference to a
395 // non-upgradeable `Weak`:
396 // - It can *clone* the `Weak`, increasing the weak reference count.
397 // - It can drop those clones, decreasing the weak reference count (but never to zero).
398 //
399 // These side effects do not impact us in any way, and no other side effects are
400 // possible with safe code alone.
401 let prev_value = (*inner).strong.fetch_add(1, Release);
402 debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
403 }
404
405 let strong = Arc::from_inner(init_ptr);
406
407 // Strong references should collectively own a shared weak reference,
408 // so don't run the destructor for our old weak reference.
409 mem::forget(weak);
410 strong
411 }
412
e1599b0c
XL
413 /// Constructs a new `Arc` with uninitialized contents.
414 ///
415 /// # Examples
416 ///
417 /// ```
418 /// #![feature(new_uninit)]
419 /// #![feature(get_mut_unchecked)]
420 ///
421 /// use std::sync::Arc;
422 ///
423 /// let mut five = Arc::<u32>::new_uninit();
424 ///
425 /// let five = unsafe {
426 /// // Deferred initialization:
427 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
428 ///
429 /// five.assume_init()
430 /// };
431 ///
432 /// assert_eq!(*five, 5)
433 /// ```
434 #[unstable(feature = "new_uninit", issue = "63291")]
435 pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
436 unsafe {
3dfed10e
XL
437 Arc::from_ptr(Arc::allocate_for_layout(
438 Layout::new::<T>(),
fc512014 439 |layout| Global.allocate(layout),
3dfed10e
XL
440 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
441 ))
e1599b0c
XL
442 }
443 }
444
60c5eb7d
XL
445 /// Constructs a new `Arc` with uninitialized contents, with the memory
446 /// being filled with `0` bytes.
447 ///
448 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
449 /// of this method.
450 ///
451 /// # Examples
452 ///
453 /// ```
454 /// #![feature(new_uninit)]
455 ///
456 /// use std::sync::Arc;
457 ///
458 /// let zero = Arc::<u32>::new_zeroed();
459 /// let zero = unsafe { zero.assume_init() };
460 ///
461 /// assert_eq!(*zero, 0)
462 /// ```
463 ///
464 /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
465 #[unstable(feature = "new_uninit", issue = "63291")]
466 pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
467 unsafe {
3dfed10e
XL
468 Arc::from_ptr(Arc::allocate_for_layout(
469 Layout::new::<T>(),
fc512014 470 |layout| Global.allocate_zeroed(layout),
3dfed10e
XL
471 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
472 ))
60c5eb7d
XL
473 }
474 }
475
0731742a
XL
476 /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
477 /// `data` will be pinned in memory and unable to be moved.
478 #[stable(feature = "pin", since = "1.33.0")]
479 pub fn pin(data: T) -> Pin<Arc<T>> {
0bf4aa26
XL
480 unsafe { Pin::new_unchecked(Arc::new(data)) }
481 }
482
5869c6ff
XL
483 /// Constructs a new `Arc<T>`, returning an error if allocation fails.
484 ///
485 /// # Examples
486 ///
487 /// ```
488 /// #![feature(allocator_api)]
489 /// use std::sync::Arc;
490 ///
491 /// let five = Arc::try_new(5)?;
492 /// # Ok::<(), std::alloc::AllocError>(())
493 /// ```
494 #[unstable(feature = "allocator_api", issue = "32838")]
495 #[inline]
496 pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
497 // Start the weak pointer count as 1 which is the weak pointer that's
498 // held by all the strong pointers (kinda), see std/rc.rs for more info
499 let x: Box<_> = Box::try_new(ArcInner {
500 strong: atomic::AtomicUsize::new(1),
501 weak: atomic::AtomicUsize::new(1),
502 data,
503 })?;
504 Ok(Self::from_inner(Box::leak(x).into()))
505 }
506
507 /// Constructs a new `Arc` with uninitialized contents, returning an error
508 /// if allocation fails.
509 ///
510 /// # Examples
511 ///
512 /// ```
513 /// #![feature(new_uninit, allocator_api)]
514 /// #![feature(get_mut_unchecked)]
515 ///
516 /// use std::sync::Arc;
517 ///
518 /// let mut five = Arc::<u32>::try_new_uninit()?;
519 ///
520 /// let five = unsafe {
521 /// // Deferred initialization:
522 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
523 ///
524 /// five.assume_init()
525 /// };
526 ///
527 /// assert_eq!(*five, 5);
528 /// # Ok::<(), std::alloc::AllocError>(())
529 /// ```
530 #[unstable(feature = "allocator_api", issue = "32838")]
531 // #[unstable(feature = "new_uninit", issue = "63291")]
532 pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
533 unsafe {
534 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
535 Layout::new::<T>(),
536 |layout| Global.allocate(layout),
537 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
538 )?))
539 }
540 }
541
542 /// Constructs a new `Arc` with uninitialized contents, with the memory
543 /// being filled with `0` bytes, returning an error if allocation fails.
544 ///
545 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
546 /// of this method.
547 ///
548 /// # Examples
549 ///
550 /// ```
551 /// #![feature(new_uninit, allocator_api)]
552 ///
553 /// use std::sync::Arc;
554 ///
555 /// let zero = Arc::<u32>::try_new_zeroed()?;
556 /// let zero = unsafe { zero.assume_init() };
557 ///
558 /// assert_eq!(*zero, 0);
559 /// # Ok::<(), std::alloc::AllocError>(())
560 /// ```
561 ///
562 /// [zeroed]: mem::MaybeUninit::zeroed
563 #[unstable(feature = "allocator_api", issue = "32838")]
564 // #[unstable(feature = "new_uninit", issue = "63291")]
565 pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
566 unsafe {
567 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
568 Layout::new::<T>(),
569 |layout| Global.allocate_zeroed(layout),
570 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
571 )?))
572 }
573 }
e74abb32 574 /// Returns the inner value, if the `Arc` has exactly one strong reference.
e9174d1e 575 ///
3dfed10e 576 /// Otherwise, an [`Err`] is returned with the same `Arc` that was
c30ab7b3 577 /// passed in.
e9174d1e 578 ///
54a0048b
SL
579 /// This will succeed even if there are outstanding weak references.
580 ///
e9174d1e
SL
581 /// # Examples
582 ///
583 /// ```
584 /// use std::sync::Arc;
585 ///
586 /// let x = Arc::new(3);
587 /// assert_eq!(Arc::try_unwrap(x), Ok(3));
588 ///
589 /// let x = Arc::new(4);
7cac9316 590 /// let _y = Arc::clone(&x);
c30ab7b3 591 /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
e9174d1e
SL
592 /// ```
593 #[inline]
594 #[stable(feature = "arc_unique", since = "1.4.0")]
595 pub fn try_unwrap(this: Self) -> Result<T, Self> {
f035d41b 596 if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
92a42be0 597 return Err(this);
b039eaaf 598 }
e9174d1e 599
ba9703b0 600 acquire!(this.inner().strong);
e9174d1e
SL
601
602 unsafe {
7cac9316 603 let elem = ptr::read(&this.ptr.as_ref().data);
e9174d1e
SL
604
605 // Make a weak pointer to clean up the implicit strong-weak reference
54a0048b 606 let _weak = Weak { ptr: this.ptr };
e9174d1e
SL
607 mem::forget(this);
608
609 Ok(elem)
610 }
1a4d82fc 611 }
ea8adc8c 612}
476ff2be 613
e1599b0c 614impl<T> Arc<[T]> {
3dfed10e 615 /// Constructs a new atomically reference-counted slice with uninitialized contents.
e1599b0c
XL
616 ///
617 /// # Examples
618 ///
619 /// ```
620 /// #![feature(new_uninit)]
621 /// #![feature(get_mut_unchecked)]
622 ///
623 /// use std::sync::Arc;
624 ///
625 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
626 ///
627 /// let values = unsafe {
628 /// // Deferred initialization:
629 /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
630 /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
631 /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
632 ///
633 /// values.assume_init()
634 /// };
635 ///
636 /// assert_eq!(*values, [1, 2, 3])
637 /// ```
638 #[unstable(feature = "new_uninit", issue = "63291")]
639 pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
dfeec247 640 unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
e1599b0c 641 }
3dfed10e
XL
642
643 /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
644 /// filled with `0` bytes.
645 ///
646 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
647 /// incorrect usage of this method.
648 ///
649 /// # Examples
650 ///
651 /// ```
652 /// #![feature(new_uninit)]
653 ///
654 /// use std::sync::Arc;
655 ///
656 /// let values = Arc::<[u32]>::new_zeroed_slice(3);
657 /// let values = unsafe { values.assume_init() };
658 ///
659 /// assert_eq!(*values, [0, 0, 0])
660 /// ```
661 ///
662 /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
663 #[unstable(feature = "new_uninit", issue = "63291")]
664 pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
665 unsafe {
666 Arc::from_ptr(Arc::allocate_for_layout(
667 Layout::array::<T>(len).unwrap(),
fc512014 668 |layout| Global.allocate_zeroed(layout),
3dfed10e
XL
669 |mem| {
670 ptr::slice_from_raw_parts_mut(mem as *mut T, len)
671 as *mut ArcInner<[mem::MaybeUninit<T>]>
672 },
673 ))
674 }
675 }
e1599b0c
XL
676}
677
678impl<T> Arc<mem::MaybeUninit<T>> {
679 /// Converts to `Arc<T>`.
680 ///
681 /// # Safety
682 ///
683 /// As with [`MaybeUninit::assume_init`],
e74abb32 684 /// it is up to the caller to guarantee that the inner value
e1599b0c
XL
685 /// really is in an initialized state.
686 /// Calling this when the content is not yet fully initialized
687 /// causes immediate undefined behavior.
688 ///
689 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
690 ///
691 /// # Examples
692 ///
693 /// ```
694 /// #![feature(new_uninit)]
695 /// #![feature(get_mut_unchecked)]
696 ///
697 /// use std::sync::Arc;
698 ///
699 /// let mut five = Arc::<u32>::new_uninit();
700 ///
701 /// let five = unsafe {
702 /// // Deferred initialization:
703 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
704 ///
705 /// five.assume_init()
706 /// };
707 ///
708 /// assert_eq!(*five, 5)
709 /// ```
710 #[unstable(feature = "new_uninit", issue = "63291")]
711 #[inline]
712 pub unsafe fn assume_init(self) -> Arc<T> {
713 Arc::from_inner(mem::ManuallyDrop::new(self).ptr.cast())
714 }
715}
716
717impl<T> Arc<[mem::MaybeUninit<T>]> {
718 /// Converts to `Arc<[T]>`.
719 ///
720 /// # Safety
721 ///
722 /// As with [`MaybeUninit::assume_init`],
e74abb32 723 /// it is up to the caller to guarantee that the inner value
e1599b0c
XL
724 /// really is in an initialized state.
725 /// Calling this when the content is not yet fully initialized
726 /// causes immediate undefined behavior.
727 ///
728 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
729 ///
730 /// # Examples
731 ///
732 /// ```
733 /// #![feature(new_uninit)]
734 /// #![feature(get_mut_unchecked)]
735 ///
736 /// use std::sync::Arc;
737 ///
738 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
739 ///
740 /// let values = unsafe {
741 /// // Deferred initialization:
742 /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
743 /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
744 /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
745 ///
746 /// values.assume_init()
747 /// };
748 ///
749 /// assert_eq!(*values, [1, 2, 3])
750 /// ```
751 #[unstable(feature = "new_uninit", issue = "63291")]
752 #[inline]
753 pub unsafe fn assume_init(self) -> Arc<[T]> {
f035d41b 754 unsafe { Arc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _) }
e1599b0c
XL
755 }
756}
757
ea8adc8c 758impl<T: ?Sized> Arc<T> {
476ff2be
SL
759 /// Consumes the `Arc`, returning the wrapped pointer.
760 ///
761 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
3dfed10e 762 /// [`Arc::from_raw`].
476ff2be
SL
763 ///
764 /// # Examples
765 ///
766 /// ```
476ff2be
SL
767 /// use std::sync::Arc;
768 ///
dc9dc135 769 /// let x = Arc::new("hello".to_owned());
476ff2be 770 /// let x_ptr = Arc::into_raw(x);
dc9dc135 771 /// assert_eq!(unsafe { &*x_ptr }, "hello");
476ff2be 772 /// ```
8bb4bdeb
XL
773 #[stable(feature = "rc_raw", since = "1.17.0")]
774 pub fn into_raw(this: Self) -> *const T {
ba9703b0
XL
775 let ptr = Self::as_ptr(&this);
776 mem::forget(this);
777 ptr
778 }
779
780 /// Provides a raw pointer to the data.
781 ///
3dfed10e 782 /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
ba9703b0
XL
783 /// as long as there are strong counts in the `Arc`.
784 ///
785 /// # Examples
786 ///
787 /// ```
ba9703b0
XL
788 /// use std::sync::Arc;
789 ///
790 /// let x = Arc::new("hello".to_owned());
791 /// let y = Arc::clone(&x);
792 /// let x_ptr = Arc::as_ptr(&x);
793 /// assert_eq!(x_ptr, Arc::as_ptr(&y));
794 /// assert_eq!(unsafe { &*x_ptr }, "hello");
795 /// ```
f035d41b 796 #[stable(feature = "rc_as_ptr", since = "1.45.0")]
ba9703b0 797 pub fn as_ptr(this: &Self) -> *const T {
dfeec247 798 let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
dfeec247 799
f035d41b
XL
800 // SAFETY: This cannot go through Deref::deref or RcBoxPtr::inner because
801 // this is required to retain raw/mut provenance such that e.g. `get_mut` can
802 // write through the pointer after the Rc is recovered through `from_raw`.
5869c6ff 803 unsafe { ptr::addr_of_mut!((*ptr).data) }
476ff2be
SL
804 }
805
ba9703b0 806 /// Constructs an `Arc<T>` from a raw pointer.
476ff2be 807 ///
ba9703b0
XL
808 /// The raw pointer must have been previously returned by a call to
809 /// [`Arc<U>::into_raw`][into_raw] where `U` must have the same size and
810 /// alignment as `T`. This is trivially true if `U` is `T`.
811 /// Note that if `U` is not `T` but has the same size and alignment, this is
812 /// basically like transmuting references of different types. See
813 /// [`mem::transmute`][transmute] for more information on what
814 /// restrictions apply in this case.
476ff2be 815 ///
ba9703b0
XL
816 /// The user of `from_raw` has to make sure a specific value of `T` is only
817 /// dropped once.
818 ///
819 /// This function is unsafe because improper use may lead to memory unsafety,
820 /// even if the returned `Arc<T>` is never accessed.
476ff2be 821 ///
3dfed10e
XL
822 /// [into_raw]: Arc::into_raw
823 /// [transmute]: core::mem::transmute
476ff2be
SL
824 ///
825 /// # Examples
826 ///
827 /// ```
476ff2be
SL
828 /// use std::sync::Arc;
829 ///
dc9dc135 830 /// let x = Arc::new("hello".to_owned());
476ff2be
SL
831 /// let x_ptr = Arc::into_raw(x);
832 ///
833 /// unsafe {
834 /// // Convert back to an `Arc` to prevent leak.
835 /// let x = Arc::from_raw(x_ptr);
dc9dc135 836 /// assert_eq!(&*x, "hello");
476ff2be 837 ///
e1599b0c 838 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
476ff2be
SL
839 /// }
840 ///
841 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
842 /// ```
8bb4bdeb
XL
843 #[stable(feature = "rc_raw", since = "1.17.0")]
844 pub unsafe fn from_raw(ptr: *const T) -> Self {
f035d41b
XL
845 unsafe {
846 let offset = data_offset(ptr);
ea8adc8c 847
f035d41b 848 // Reverse the offset to find the original ArcInner.
5869c6ff 849 let arc_ptr = (ptr as *mut ArcInner<T>).set_ptr_value((ptr as *mut u8).offset(-offset));
ea8adc8c 850
f035d41b
XL
851 Self::from_ptr(arc_ptr)
852 }
476ff2be 853 }
1a4d82fc 854
3dfed10e 855 /// Creates a new [`Weak`] pointer to this allocation.
1a4d82fc
JJ
856 ///
857 /// # Examples
858 ///
859 /// ```
860 /// use std::sync::Arc;
861 ///
85aaf69f 862 /// let five = Arc::new(5);
1a4d82fc 863 ///
e9174d1e 864 /// let weak_five = Arc::downgrade(&five);
1a4d82fc 865 /// ```
e9174d1e
SL
866 #[stable(feature = "arc_weak", since = "1.4.0")]
867 pub fn downgrade(this: &Self) -> Weak<T> {
54a0048b
SL
868 // This Relaxed is OK because we're checking the value in the CAS
869 // below.
870 let mut cur = this.inner().weak.load(Relaxed);
c1a9b12d 871
54a0048b 872 loop {
c1a9b12d 873 // check if the weak counter is currently "locked"; if so, spin.
b039eaaf 874 if cur == usize::MAX {
29967ef6 875 hint::spin_loop();
54a0048b 876 cur = this.inner().weak.load(Relaxed);
92a42be0 877 continue;
b039eaaf 878 }
c1a9b12d
SL
879
880 // NOTE: this code currently ignores the possibility of overflow
881 // into usize::MAX; in general both Rc and Arc need to be adjusted
882 // to deal with overflow.
883
884 // Unlike with Clone(), we need this to be an Acquire read to
885 // synchronize with the write coming from `is_unique`, so that the
886 // events prior to that write happen before this read.
54a0048b 887 match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
8faf50e0
XL
888 Ok(_) => {
889 // Make sure we do not create a dangling Weak
5869c6ff 890 debug_assert!(!is_dangling(this.ptr.as_ptr()));
8faf50e0
XL
891 return Weak { ptr: this.ptr };
892 }
54a0048b 893 Err(old) => cur = old,
c1a9b12d
SL
894 }
895 }
1a4d82fc 896 }
1a4d82fc 897
3dfed10e 898 /// Gets the number of [`Weak`] pointers to this allocation.
c30ab7b3 899 ///
476ff2be
SL
900 /// # Safety
901 ///
902 /// This method by itself is safe, but using it correctly requires extra care.
903 /// Another thread can change the weak count at any time,
904 /// including potentially between calling this method and acting on the result.
905 ///
c30ab7b3
SL
906 /// # Examples
907 ///
908 /// ```
c30ab7b3
SL
909 /// use std::sync::Arc;
910 ///
911 /// let five = Arc::new(5);
912 /// let _weak_five = Arc::downgrade(&five);
913 ///
914 /// // This assertion is deterministic because we haven't shared
915 /// // the `Arc` or `Weak` between threads.
916 /// assert_eq!(1, Arc::weak_count(&five));
917 /// ```
62682a34 918 #[inline]
476ff2be 919 #[stable(feature = "arc_counts", since = "1.15.0")]
e9174d1e 920 pub fn weak_count(this: &Self) -> usize {
3b2f2976
XL
921 let cnt = this.inner().weak.load(SeqCst);
922 // If the weak count is currently locked, the value of the
923 // count was 0 just before taking the lock.
924 if cnt == usize::MAX { 0 } else { cnt - 1 }
62682a34
SL
925 }
926
e74abb32 927 /// Gets the number of strong (`Arc`) pointers to this allocation.
c30ab7b3 928 ///
476ff2be
SL
929 /// # Safety
930 ///
931 /// This method by itself is safe, but using it correctly requires extra care.
932 /// Another thread can change the strong count at any time,
933 /// including potentially between calling this method and acting on the result.
c30ab7b3
SL
934 ///
935 /// # Examples
936 ///
937 /// ```
c30ab7b3
SL
938 /// use std::sync::Arc;
939 ///
940 /// let five = Arc::new(5);
7cac9316 941 /// let _also_five = Arc::clone(&five);
c30ab7b3
SL
942 ///
943 /// // This assertion is deterministic because we haven't shared
944 /// // the `Arc` between threads.
945 /// assert_eq!(2, Arc::strong_count(&five));
946 /// ```
62682a34 947 #[inline]
476ff2be 948 #[stable(feature = "arc_counts", since = "1.15.0")]
e9174d1e 949 pub fn strong_count(this: &Self) -> usize {
62682a34
SL
950 this.inner().strong.load(SeqCst)
951 }
952
f9f354fc
XL
953 /// Increments the strong reference count on the `Arc<T>` associated with the
954 /// provided pointer by one.
955 ///
956 /// # Safety
957 ///
958 /// The pointer must have been obtained through `Arc::into_raw`, and the
959 /// associated `Arc` instance must be valid (i.e. the strong count must be at
960 /// least 1) for the duration of this method.
961 ///
962 /// # Examples
963 ///
964 /// ```
f9f354fc
XL
965 /// use std::sync::Arc;
966 ///
967 /// let five = Arc::new(5);
968 ///
969 /// unsafe {
970 /// let ptr = Arc::into_raw(five);
5869c6ff 971 /// Arc::increment_strong_count(ptr);
f9f354fc
XL
972 ///
973 /// // This assertion is deterministic because we haven't shared
974 /// // the `Arc` between threads.
975 /// let five = Arc::from_raw(ptr);
976 /// assert_eq!(2, Arc::strong_count(&five));
977 /// }
978 /// ```
979 #[inline]
5869c6ff
XL
980 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
981 pub unsafe fn increment_strong_count(ptr: *const T) {
f9f354fc 982 // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
f035d41b 983 let arc = unsafe { mem::ManuallyDrop::new(Arc::<T>::from_raw(ptr)) };
f9f354fc
XL
984 // Now increase refcount, but don't drop new refcount either
985 let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
986 }
987
988 /// Decrements the strong reference count on the `Arc<T>` associated with the
989 /// provided pointer by one.
990 ///
991 /// # Safety
992 ///
993 /// The pointer must have been obtained through `Arc::into_raw`, and the
994 /// associated `Arc` instance must be valid (i.e. the strong count must be at
995 /// least 1) when invoking this method. This method can be used to release the final
996 /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
997 /// released.
998 ///
999 /// # Examples
1000 ///
1001 /// ```
f9f354fc
XL
1002 /// use std::sync::Arc;
1003 ///
1004 /// let five = Arc::new(5);
1005 ///
1006 /// unsafe {
1007 /// let ptr = Arc::into_raw(five);
5869c6ff 1008 /// Arc::increment_strong_count(ptr);
f9f354fc
XL
1009 ///
1010 /// // Those assertions are deterministic because we haven't shared
1011 /// // the `Arc` between threads.
1012 /// let five = Arc::from_raw(ptr);
1013 /// assert_eq!(2, Arc::strong_count(&five));
5869c6ff 1014 /// Arc::decrement_strong_count(ptr);
f9f354fc
XL
1015 /// assert_eq!(1, Arc::strong_count(&five));
1016 /// }
1017 /// ```
1018 #[inline]
5869c6ff
XL
1019 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1020 pub unsafe fn decrement_strong_count(ptr: *const T) {
f035d41b 1021 unsafe { mem::drop(Arc::from_raw(ptr)) };
f9f354fc
XL
1022 }
1023
1a4d82fc
JJ
1024 #[inline]
1025 fn inner(&self) -> &ArcInner<T> {
c34b1796
AL
1026 // This unsafety is ok because while this arc is alive we're guaranteed
1027 // that the inner pointer is valid. Furthermore, we know that the
1028 // `ArcInner` structure itself is `Sync` because the inner data is
1029 // `Sync` as well, so we're ok loaning out an immutable pointer to these
1030 // contents.
7cac9316 1031 unsafe { self.ptr.as_ref() }
1a4d82fc 1032 }
c34b1796
AL
1033
1034 // Non-inlined part of `drop`.
1035 #[inline(never)]
1036 unsafe fn drop_slow(&mut self) {
c34b1796
AL
1037 // Destroy the data at this time, even though we may not free the box
1038 // allocation itself (there may still be weak pointers lying around).
f035d41b 1039 unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
c34b1796 1040
f9f354fc
XL
1041 // Drop the weak ref collectively held by all strong references
1042 drop(Weak { ptr: self.ptr });
c34b1796 1043 }
9e0c209e
SL
1044
1045 #[inline]
8bb4bdeb 1046 #[stable(feature = "ptr_eq", since = "1.17.0")]
e74abb32
XL
1047 /// Returns `true` if the two `Arc`s point to the same allocation
1048 /// (in a vein similar to [`ptr::eq`]).
9e0c209e
SL
1049 ///
1050 /// # Examples
1051 ///
1052 /// ```
9e0c209e
SL
1053 /// use std::sync::Arc;
1054 ///
1055 /// let five = Arc::new(5);
7cac9316 1056 /// let same_five = Arc::clone(&five);
9e0c209e
SL
1057 /// let other_five = Arc::new(5);
1058 ///
1059 /// assert!(Arc::ptr_eq(&five, &same_five));
1060 /// assert!(!Arc::ptr_eq(&five, &other_five));
1061 /// ```
e74abb32 1062 ///
3dfed10e 1063 /// [`ptr::eq`]: core::ptr::eq
9e0c209e 1064 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
7cac9316 1065 this.ptr.as_ptr() == other.ptr.as_ptr()
9e0c209e 1066 }
1a4d82fc
JJ
1067}
1068
3b2f2976 1069impl<T: ?Sized> Arc<T> {
416331ca 1070 /// Allocates an `ArcInner<T>` with sufficient space for
e74abb32 1071 /// a possibly-unsized inner value where the value has the layout provided.
416331ca
XL
1072 ///
1073 /// The function `mem_to_arcinner` is called with the data pointer
1074 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
e1599b0c 1075 unsafe fn allocate_for_layout(
416331ca 1076 value_layout: Layout,
1b1a35ee 1077 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
dfeec247 1078 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
416331ca
XL
1079 ) -> *mut ArcInner<T> {
1080 // Calculate layout using the given value layout.
a1dfa0c6
XL
1081 // Previously, layout was calculated on the expression
1082 // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
1083 // reference (see #54908).
dfeec247 1084 let layout = Layout::new::<ArcInner<()>>().extend(value_layout).unwrap().0.pad_to_align();
5869c6ff
XL
1085 unsafe {
1086 Arc::try_allocate_for_layout(value_layout, allocate, mem_to_arcinner)
1087 .unwrap_or_else(|_| handle_alloc_error(layout))
1088 }
1089 }
1090
1091 /// Allocates an `ArcInner<T>` with sufficient space for
1092 /// a possibly-unsized inner value where the value has the layout provided,
1093 /// returning an error if allocation fails.
1094 ///
1095 /// The function `mem_to_arcinner` is called with the data pointer
1096 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1097 unsafe fn try_allocate_for_layout(
1098 value_layout: Layout,
1099 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1100 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1101 ) -> Result<*mut ArcInner<T>, AllocError> {
1102 // Calculate layout using the given value layout.
1103 // Previously, layout was calculated on the expression
1104 // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
1105 // reference (see #54908).
1106 let layout = Layout::new::<ArcInner<()>>().extend(value_layout).unwrap().0.pad_to_align();
3b2f2976 1107
5869c6ff 1108 let ptr = allocate(layout)?;
3b2f2976 1109
a1dfa0c6 1110 // Initialize the ArcInner
3dfed10e 1111 let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
f035d41b 1112 debug_assert_eq!(unsafe { Layout::for_value(&*inner) }, layout);
3b2f2976 1113
f035d41b
XL
1114 unsafe {
1115 ptr::write(&mut (*inner).strong, atomic::AtomicUsize::new(1));
1116 ptr::write(&mut (*inner).weak, atomic::AtomicUsize::new(1));
1117 }
3b2f2976 1118
5869c6ff 1119 Ok(inner)
3b2f2976
XL
1120 }
1121
e74abb32 1122 /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
416331ca
XL
1123 unsafe fn allocate_for_ptr(ptr: *const T) -> *mut ArcInner<T> {
1124 // Allocate for the `ArcInner<T>` using the given value.
f035d41b 1125 unsafe {
3dfed10e
XL
1126 Self::allocate_for_layout(
1127 Layout::for_value(&*ptr),
fc512014 1128 |layout| Global.allocate(layout),
5869c6ff 1129 |mem| (ptr as *mut ArcInner<T>).set_ptr_value(mem) as *mut ArcInner<T>,
3dfed10e 1130 )
f035d41b 1131 }
416331ca
XL
1132 }
1133
3b2f2976
XL
1134 fn from_box(v: Box<T>) -> Arc<T> {
1135 unsafe {
29967ef6 1136 let (box_unique, alloc) = Box::into_unique(v);
83c7162d 1137 let bptr = box_unique.as_ptr();
3b2f2976
XL
1138
1139 let value_size = size_of_val(&*bptr);
1140 let ptr = Self::allocate_for_ptr(bptr);
1141
1142 // Copy value as bytes
1143 ptr::copy_nonoverlapping(
1144 bptr as *const T as *const u8,
1145 &mut (*ptr).data as *mut _ as *mut u8,
dfeec247
XL
1146 value_size,
1147 );
3b2f2976
XL
1148
1149 // Free the allocation without dropping its contents
29967ef6 1150 box_free(box_unique, alloc);
3b2f2976 1151
416331ca 1152 Self::from_ptr(ptr)
3b2f2976
XL
1153 }
1154 }
1155}
1156
416331ca
XL
1157impl<T> Arc<[T]> {
1158 /// Allocates an `ArcInner<[T]>` with the given length.
1159 unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
f035d41b 1160 unsafe {
3dfed10e
XL
1161 Self::allocate_for_layout(
1162 Layout::array::<T>(len).unwrap(),
fc512014 1163 |layout| Global.allocate(layout),
3dfed10e
XL
1164 |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut ArcInner<[T]>,
1165 )
f035d41b 1166 }
416331ca 1167 }
416331ca 1168
f9f354fc 1169 /// Copy elements from slice into newly allocated Arc<\[T\]>
416331ca
XL
1170 ///
1171 /// Unsafe because the caller must either take ownership or bind `T: Copy`.
3b2f2976 1172 unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
f035d41b
XL
1173 unsafe {
1174 let ptr = Self::allocate_for_slice(v.len());
3b2f2976 1175
f035d41b 1176 ptr::copy_nonoverlapping(v.as_ptr(), &mut (*ptr).data as *mut [T] as *mut T, v.len());
3b2f2976 1177
f035d41b
XL
1178 Self::from_ptr(ptr)
1179 }
3b2f2976 1180 }
3b2f2976 1181
416331ca
XL
1182 /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
1183 ///
1184 /// Behavior is undefined should the size be wrong.
1185 unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Arc<[T]> {
3b2f2976
XL
1186 // Panic guard while cloning T elements.
1187 // In the event of a panic, elements that have been written
1188 // into the new ArcInner will be dropped, then the memory freed.
1189 struct Guard<T> {
83c7162d 1190 mem: NonNull<u8>,
3b2f2976
XL
1191 elems: *mut T,
1192 layout: Layout,
1193 n_elems: usize,
1194 }
1195
1196 impl<T> Drop for Guard<T> {
1197 fn drop(&mut self) {
3b2f2976
XL
1198 unsafe {
1199 let slice = from_raw_parts_mut(self.elems, self.n_elems);
1200 ptr::drop_in_place(slice);
1201
fc512014 1202 Global.deallocate(self.mem, self.layout);
3b2f2976
XL
1203 }
1204 }
1205 }
1206
f035d41b
XL
1207 unsafe {
1208 let ptr = Self::allocate_for_slice(len);
3b2f2976 1209
f035d41b
XL
1210 let mem = ptr as *mut _ as *mut u8;
1211 let layout = Layout::for_value(&*ptr);
3b2f2976 1212
f035d41b
XL
1213 // Pointer to first element
1214 let elems = &mut (*ptr).data as *mut [T] as *mut T;
3b2f2976 1215
f035d41b 1216 let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
3b2f2976 1217
f035d41b
XL
1218 for (i, item) in iter.enumerate() {
1219 ptr::write(elems.add(i), item);
1220 guard.n_elems += 1;
1221 }
416331ca 1222
f035d41b
XL
1223 // All clear. Forget the guard so it doesn't free the new ArcInner.
1224 mem::forget(guard);
416331ca 1225
f035d41b
XL
1226 Self::from_ptr(ptr)
1227 }
416331ca
XL
1228 }
1229}
3b2f2976 1230
416331ca
XL
1231/// Specialization trait used for `From<&[T]>`.
1232trait ArcFromSlice<T> {
1233 fn from_slice(slice: &[T]) -> Self;
1234}
3b2f2976 1235
416331ca
XL
1236impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
1237 #[inline]
1238 default fn from_slice(v: &[T]) -> Self {
dfeec247 1239 unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
3b2f2976
XL
1240 }
1241}
1242
1243impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
1244 #[inline]
1245 fn from_slice(v: &[T]) -> Self {
1246 unsafe { Arc::copy_from_slice(v) }
1247 }
1248}
1249
85aaf69f 1250#[stable(feature = "rust1", since = "1.0.0")]
62682a34 1251impl<T: ?Sized> Clone for Arc<T> {
c30ab7b3 1252 /// Makes a clone of the `Arc` pointer.
1a4d82fc 1253 ///
e74abb32 1254 /// This creates another pointer to the same allocation, increasing the
c30ab7b3 1255 /// strong reference count.
1a4d82fc
JJ
1256 ///
1257 /// # Examples
1258 ///
1259 /// ```
1260 /// use std::sync::Arc;
1261 ///
85aaf69f 1262 /// let five = Arc::new(5);
1a4d82fc 1263 ///
0bf4aa26 1264 /// let _ = Arc::clone(&five);
1a4d82fc
JJ
1265 /// ```
1266 #[inline]
1267 fn clone(&self) -> Arc<T> {
c34b1796
AL
1268 // Using a relaxed ordering is alright here, as knowledge of the
1269 // original reference prevents other threads from erroneously deleting
1270 // the object.
1a4d82fc 1271 //
c34b1796
AL
1272 // As explained in the [Boost documentation][1], Increasing the
1273 // reference counter can always be done with memory_order_relaxed: New
1274 // references to an object can only be formed from an existing
1275 // reference, and passing an existing reference from one thread to
1276 // another must already provide any required synchronization.
1a4d82fc
JJ
1277 //
1278 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
c1a9b12d
SL
1279 let old_size = self.inner().strong.fetch_add(1, Relaxed);
1280
1281 // However we need to guard against massive refcounts in case someone
1282 // is `mem::forget`ing Arcs. If we don't do this the count can overflow
1283 // and users will use-after free. We racily saturate to `isize::MAX` on
1284 // the assumption that there aren't ~2 billion threads incrementing
1285 // the reference count at once. This branch will never be taken in
1286 // any realistic program.
1287 //
1288 // We abort because such a program is incredibly degenerate, and we
1289 // don't care to support it.
1290 if old_size > MAX_REFCOUNT {
f035d41b 1291 abort();
c1a9b12d
SL
1292 }
1293
416331ca 1294 Self::from_inner(self.ptr)
1a4d82fc
JJ
1295 }
1296}
1297
85aaf69f 1298#[stable(feature = "rust1", since = "1.0.0")]
62682a34 1299impl<T: ?Sized> Deref for Arc<T> {
1a4d82fc
JJ
1300 type Target = T;
1301
1302 #[inline]
1303 fn deref(&self) -> &T {
1304 &self.inner().data
1305 }
1306}
1307
dfeec247 1308#[unstable(feature = "receiver_trait", issue = "none")]
0731742a
XL
1309impl<T: ?Sized> Receiver for Arc<T> {}
1310
c34b1796 1311impl<T: Clone> Arc<T> {
c30ab7b3
SL
1312 /// Makes a mutable reference into the given `Arc`.
1313 ///
3dfed10e 1314 /// If there are other `Arc` or [`Weak`] pointers to the same allocation,
e74abb32
XL
1315 /// then `make_mut` will create a new allocation and invoke [`clone`][clone] on the inner value
1316 /// to ensure unique ownership. This is also referred to as clone-on-write.
1317 ///
1318 /// Note that this differs from the behavior of [`Rc::make_mut`] which disassociates
1319 /// any remaining `Weak` pointers.
1a4d82fc 1320 ///
c30ab7b3
SL
1321 /// See also [`get_mut`][get_mut], which will fail rather than cloning.
1322 ///
3dfed10e
XL
1323 /// [clone]: Clone::clone
1324 /// [get_mut]: Arc::get_mut
1325 /// [`Rc::make_mut`]: super::rc::Rc::make_mut
62682a34 1326 ///
1a4d82fc
JJ
1327 /// # Examples
1328 ///
1329 /// ```
1330 /// use std::sync::Arc;
1331 ///
e9174d1e
SL
1332 /// let mut data = Arc::new(5);
1333 ///
1334 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
7cac9316 1335 /// let mut other_data = Arc::clone(&data); // Won't clone inner data
e9174d1e
SL
1336 /// *Arc::make_mut(&mut data) += 1; // Clones inner data
1337 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
1338 /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
1339 ///
e74abb32 1340 /// // Now `data` and `other_data` point to different allocations.
e9174d1e
SL
1341 /// assert_eq!(*data, 8);
1342 /// assert_eq!(*other_data, 12);
1a4d82fc
JJ
1343 /// ```
1344 #[inline]
e9174d1e
SL
1345 #[stable(feature = "arc_unique", since = "1.4.0")]
1346 pub fn make_mut(this: &mut Self) -> &mut T {
c1a9b12d
SL
1347 // Note that we hold both a strong reference and a weak reference.
1348 // Thus, releasing our strong reference only will not, by itself, cause
1349 // the memory to be deallocated.
62682a34 1350 //
c1a9b12d
SL
1351 // Use Acquire to ensure that we see any writes to `weak` that happen
1352 // before release writes (i.e., decrements) to `strong`. Since we hold a
1353 // weak count, there's no chance the ArcInner itself could be
1354 // deallocated.
54a0048b 1355 if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
5869c6ff
XL
1356 // Another strong pointer exists, so we must clone.
1357 // Pre-allocate memory to allow writing the cloned value directly.
1358 let mut arc = Self::new_uninit();
1359 unsafe {
1360 let data = Arc::get_mut_unchecked(&mut arc);
1361 (**this).write_clone_into_raw(data.as_mut_ptr());
1362 *this = arc.assume_init();
1363 }
c1a9b12d
SL
1364 } else if this.inner().weak.load(Relaxed) != 1 {
1365 // Relaxed suffices in the above because this is fundamentally an
1366 // optimization: we are always racing with weak pointers being
1367 // dropped. Worst case, we end up allocated a new Arc unnecessarily.
1368
1369 // We removed the last strong ref, but there are additional weak
1370 // refs remaining. We'll move the contents to a new Arc, and
1371 // invalidate the other weak refs.
1372
1373 // Note that it is not possible for the read of `weak` to yield
1374 // usize::MAX (i.e., locked), since the weak count can only be
1375 // locked by a thread with a strong reference.
1376
1377 // Materialize our own implicit weak pointer, so that it can clean
1378 // up the ArcInner as needed.
5869c6ff 1379 let _weak = Weak { ptr: this.ptr };
c1a9b12d 1380
5869c6ff
XL
1381 // Can just steal the data, all that's left is Weaks
1382 let mut arc = Self::new_uninit();
c1a9b12d 1383 unsafe {
5869c6ff
XL
1384 let data = Arc::get_mut_unchecked(&mut arc);
1385 data.as_mut_ptr().copy_from_nonoverlapping(&**this, 1);
1386 ptr::write(this, arc.assume_init());
c1a9b12d
SL
1387 }
1388 } else {
1389 // We were the sole reference of either kind; bump back up the
1390 // strong ref count.
1391 this.inner().strong.store(1, Release);
1a4d82fc 1392 }
c1a9b12d 1393
9346a6ac 1394 // As with `get_mut()`, the unsafety is ok because our reference was
c34b1796 1395 // either unique to begin with, or became one upon cloning the contents.
f9f354fc 1396 unsafe { Self::get_mut_unchecked(this) }
1a4d82fc
JJ
1397 }
1398}
1399
c1a9b12d 1400impl<T: ?Sized> Arc<T> {
e74abb32 1401 /// Returns a mutable reference into the given `Arc`, if there are
3dfed10e 1402 /// no other `Arc` or [`Weak`] pointers to the same allocation.
c30ab7b3 1403 ///
3dfed10e 1404 /// Returns [`None`] otherwise, because it is not safe to
c30ab7b3
SL
1405 /// mutate a shared value.
1406 ///
1407 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
e74abb32 1408 /// the inner value when there are other pointers.
c30ab7b3 1409 ///
3dfed10e
XL
1410 /// [make_mut]: Arc::make_mut
1411 /// [clone]: Clone::clone
c1a9b12d
SL
1412 ///
1413 /// # Examples
1414 ///
1415 /// ```
e9174d1e 1416 /// use std::sync::Arc;
c1a9b12d
SL
1417 ///
1418 /// let mut x = Arc::new(3);
1419 /// *Arc::get_mut(&mut x).unwrap() = 4;
1420 /// assert_eq!(*x, 4);
1421 ///
7cac9316 1422 /// let _y = Arc::clone(&x);
c1a9b12d 1423 /// assert!(Arc::get_mut(&mut x).is_none());
c1a9b12d
SL
1424 /// ```
1425 #[inline]
e9174d1e
SL
1426 #[stable(feature = "arc_unique", since = "1.4.0")]
1427 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
c1a9b12d
SL
1428 if this.is_unique() {
1429 // This unsafety is ok because we're guaranteed that the pointer
1430 // returned is the *only* pointer that will ever be returned to T. Our
1431 // reference count is guaranteed to be 1 at this point, and we required
1432 // the Arc itself to be `mut`, so we're returning the only possible
1433 // reference to the inner data.
dfeec247 1434 unsafe { Some(Arc::get_mut_unchecked(this)) }
c1a9b12d
SL
1435 } else {
1436 None
1437 }
1438 }
1439
e74abb32 1440 /// Returns a mutable reference into the given `Arc`,
e1599b0c
XL
1441 /// without any check.
1442 ///
1443 /// See also [`get_mut`], which is safe and does appropriate checks.
1444 ///
3dfed10e 1445 /// [`get_mut`]: Arc::get_mut
e1599b0c
XL
1446 ///
1447 /// # Safety
1448 ///
e74abb32 1449 /// Any other `Arc` or [`Weak`] pointers to the same allocation must not be dereferenced
e1599b0c
XL
1450 /// for the duration of the returned borrow.
1451 /// This is trivially the case if no such pointers exist,
1452 /// for example immediately after `Arc::new`.
1453 ///
1454 /// # Examples
1455 ///
1456 /// ```
1457 /// #![feature(get_mut_unchecked)]
1458 ///
1459 /// use std::sync::Arc;
1460 ///
1461 /// let mut x = Arc::new(String::new());
1462 /// unsafe {
1463 /// Arc::get_mut_unchecked(&mut x).push_str("foo")
1464 /// }
1465 /// assert_eq!(*x, "foo");
1466 /// ```
1467 #[inline]
1468 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
1469 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
f9f354fc
XL
1470 // We are careful to *not* create a reference covering the "count" fields, as
1471 // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
f035d41b 1472 unsafe { &mut (*this.ptr.as_ptr()).data }
e1599b0c
XL
1473 }
1474
c1a9b12d
SL
1475 /// Determine whether this is the unique reference (including weak refs) to
1476 /// the underlying data.
1477 ///
1478 /// Note that this requires locking the weak ref count.
1479 fn is_unique(&mut self) -> bool {
1480 // lock the weak pointer count if we appear to be the sole weak pointer
1481 // holder.
1482 //
1483 // The acquire label here ensures a happens-before relationship with any
8faf50e0
XL
1484 // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
1485 // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
1486 // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
54a0048b 1487 if self.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
8faf50e0
XL
1488 // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
1489 // counter in `drop` -- the only access that happens when any but the last reference
1490 // is being dropped.
1491 let unique = self.inner().strong.load(Acquire) == 1;
c1a9b12d
SL
1492
1493 // The release write here synchronizes with a read in `downgrade`,
1494 // effectively preventing the above read of `strong` from happening
1495 // after the write.
1496 self.inner().weak.store(1, Release); // release the lock
1497 unique
1498 } else {
1499 false
1500 }
1501 }
1502}
1503
85aaf69f 1504#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 1505unsafe impl<#[may_dangle] T: ?Sized> Drop for Arc<T> {
c30ab7b3 1506 /// Drops the `Arc`.
1a4d82fc 1507 ///
c34b1796 1508 /// This will decrement the strong reference count. If the strong reference
c30ab7b3 1509 /// count reaches zero then the only other references (if any) are
b7449926 1510 /// [`Weak`], so we `drop` the inner value.
1a4d82fc
JJ
1511 ///
1512 /// # Examples
1513 ///
1514 /// ```
1515 /// use std::sync::Arc;
1516 ///
c30ab7b3 1517 /// struct Foo;
1a4d82fc 1518 ///
c30ab7b3
SL
1519 /// impl Drop for Foo {
1520 /// fn drop(&mut self) {
1521 /// println!("dropped!");
1522 /// }
1a4d82fc 1523 /// }
1a4d82fc 1524 ///
c30ab7b3 1525 /// let foo = Arc::new(Foo);
7cac9316 1526 /// let foo2 = Arc::clone(&foo);
1a4d82fc 1527 ///
c30ab7b3
SL
1528 /// drop(foo); // Doesn't print anything
1529 /// drop(foo2); // Prints "dropped!"
1a4d82fc 1530 /// ```
c34b1796 1531 #[inline]
1a4d82fc 1532 fn drop(&mut self) {
c34b1796
AL
1533 // Because `fetch_sub` is already atomic, we do not need to synchronize
1534 // with other threads unless we are going to delete the object. This
1535 // same logic applies to the below `fetch_sub` to the `weak` count.
b039eaaf 1536 if self.inner().strong.fetch_sub(1, Release) != 1 {
92a42be0 1537 return;
b039eaaf 1538 }
1a4d82fc 1539
c34b1796
AL
1540 // This fence is needed to prevent reordering of use of the data and
1541 // deletion of the data. Because it is marked `Release`, the decreasing
1542 // of the reference count synchronizes with this `Acquire` fence. This
1543 // means that use of the data happens before decreasing the reference
1544 // count, which happens before this fence, which happens before the
1545 // deletion of the data.
1a4d82fc
JJ
1546 //
1547 // As explained in the [Boost documentation][1],
1548 //
c34b1796
AL
1549 // > It is important to enforce any possible access to the object in one
1550 // > thread (through an existing reference) to *happen before* deleting
1551 // > the object in a different thread. This is achieved by a "release"
1552 // > operation after dropping a reference (any access to the object
1553 // > through this reference must obviously happened before), and an
1554 // > "acquire" operation before deleting the object.
1a4d82fc 1555 //
7cac9316
XL
1556 // In particular, while the contents of an Arc are usually immutable, it's
1557 // possible to have interior writes to something like a Mutex<T>. Since a
1558 // Mutex is not acquired when it is deleted, we can't rely on its
1559 // synchronization logic to make writes in thread A visible to a destructor
1560 // running in thread B.
1561 //
1562 // Also note that the Acquire fence here could probably be replaced with an
1563 // Acquire load, which could improve performance in highly-contended
1564 // situations. See [2].
1565 //
1a4d82fc 1566 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
7cac9316 1567 // [2]: (https://github.com/rust-lang/rust/pull/41714)
ba9703b0 1568 acquire!(self.inner().strong);
1a4d82fc 1569
c34b1796 1570 unsafe {
b039eaaf 1571 self.drop_slow();
1a4d82fc
JJ
1572 }
1573 }
1574}
1575
8faf50e0 1576impl Arc<dyn Any + Send + Sync> {
94b46f34 1577 #[inline]
8faf50e0
XL
1578 #[stable(feature = "rc_downcast", since = "1.29.0")]
1579 /// Attempt to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
94b46f34
XL
1580 ///
1581 /// # Examples
1582 ///
1583 /// ```
94b46f34
XL
1584 /// use std::any::Any;
1585 /// use std::sync::Arc;
1586 ///
8faf50e0 1587 /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
94b46f34
XL
1588 /// if let Ok(string) = value.downcast::<String>() {
1589 /// println!("String ({}): {}", string.len(), string);
1590 /// }
1591 /// }
1592 ///
e74abb32
XL
1593 /// let my_string = "Hello World".to_string();
1594 /// print_if_string(Arc::new(my_string));
1595 /// print_if_string(Arc::new(0i8));
94b46f34
XL
1596 /// ```
1597 pub fn downcast<T>(self) -> Result<Arc<T>, Self>
1598 where
1599 T: Any + Send + Sync + 'static,
1600 {
1601 if (*self).is::<T>() {
1602 let ptr = self.ptr.cast::<ArcInner<T>>();
1603 mem::forget(self);
416331ca 1604 Ok(Arc::from_inner(ptr))
94b46f34
XL
1605 } else {
1606 Err(self)
1607 }
1608 }
1609}
1610
a7813a04 1611impl<T> Weak<T> {
8faf50e0
XL
1612 /// Constructs a new `Weak<T>`, without allocating any memory.
1613 /// Calling [`upgrade`] on the return value always gives [`None`].
c30ab7b3 1614 ///
3dfed10e 1615 /// [`upgrade`]: Weak::upgrade
a7813a04
XL
1616 ///
1617 /// # Examples
1618 ///
1619 /// ```
1620 /// use std::sync::Weak;
1621 ///
1622 /// let empty: Weak<i64> = Weak::new();
c30ab7b3 1623 /// assert!(empty.upgrade().is_none());
a7813a04
XL
1624 /// ```
1625 #[stable(feature = "downgraded_weak", since = "1.10.0")]
1626 pub fn new() -> Weak<T> {
dfeec247 1627 Weak { ptr: NonNull::new(usize::MAX as *mut ArcInner<T>).expect("MAX is not 0") }
a7813a04 1628 }
29967ef6
XL
1629}
1630
1631/// Helper type to allow accessing the reference counts without
1632/// making any assertions about the data field.
1633struct WeakInner<'a> {
1634 weak: &'a atomic::AtomicUsize,
1635 strong: &'a atomic::AtomicUsize,
1636}
dc9dc135 1637
5869c6ff 1638impl<T: ?Sized> Weak<T> {
dc9dc135
XL
1639 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
1640 ///
ba9703b0
XL
1641 /// The pointer is valid only if there are some strong references. The pointer may be dangling,
1642 /// unaligned or even [`null`] otherwise.
dc9dc135
XL
1643 ///
1644 /// # Examples
1645 ///
1646 /// ```
416331ca 1647 /// use std::sync::Arc;
dc9dc135
XL
1648 /// use std::ptr;
1649 ///
1650 /// let strong = Arc::new("hello".to_owned());
1651 /// let weak = Arc::downgrade(&strong);
1652 /// // Both point to the same object
ba9703b0 1653 /// assert!(ptr::eq(&*strong, weak.as_ptr()));
dc9dc135 1654 /// // The strong here keeps it alive, so we can still access the object.
ba9703b0 1655 /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
dc9dc135
XL
1656 ///
1657 /// drop(strong);
ba9703b0 1658 /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
dc9dc135 1659 /// // undefined behaviour.
ba9703b0 1660 /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
dc9dc135
XL
1661 /// ```
1662 ///
3dfed10e 1663 /// [`null`]: core::ptr::null
f9f354fc 1664 #[stable(feature = "weak_into_raw", since = "1.45.0")]
ba9703b0 1665 pub fn as_ptr(&self) -> *const T {
f035d41b
XL
1666 let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
1667
5869c6ff
XL
1668 if is_dangling(ptr) {
1669 // If the pointer is dangling, we return the sentinel directly. This cannot be
1670 // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
1671 ptr as *const T
1672 } else {
1673 // SAFETY: if is_dangling returns false, then the pointer is dereferencable.
1674 // The payload may be dropped at this point, and we have to maintain provenance,
1675 // so use raw pointer manipulation.
1676 unsafe { ptr::addr_of_mut!((*ptr).data) }
f035d41b 1677 }
dc9dc135
XL
1678 }
1679
1680 /// Consumes the `Weak<T>` and turns it into a raw pointer.
1681 ///
3dfed10e
XL
1682 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
1683 /// one weak reference (the weak count is not modified by this operation). It can be turned
1684 /// back into the `Weak<T>` with [`from_raw`].
dc9dc135
XL
1685 ///
1686 /// The same restrictions of accessing the target of the pointer as with
ba9703b0 1687 /// [`as_ptr`] apply.
dc9dc135
XL
1688 ///
1689 /// # Examples
1690 ///
1691 /// ```
dc9dc135
XL
1692 /// use std::sync::{Arc, Weak};
1693 ///
1694 /// let strong = Arc::new("hello".to_owned());
1695 /// let weak = Arc::downgrade(&strong);
416331ca 1696 /// let raw = weak.into_raw();
dc9dc135
XL
1697 ///
1698 /// assert_eq!(1, Arc::weak_count(&strong));
1699 /// assert_eq!("hello", unsafe { &*raw });
1700 ///
1701 /// drop(unsafe { Weak::from_raw(raw) });
1702 /// assert_eq!(0, Arc::weak_count(&strong));
1703 /// ```
1704 ///
3dfed10e
XL
1705 /// [`from_raw`]: Weak::from_raw
1706 /// [`as_ptr`]: Weak::as_ptr
f9f354fc 1707 #[stable(feature = "weak_into_raw", since = "1.45.0")]
416331ca 1708 pub fn into_raw(self) -> *const T {
ba9703b0 1709 let result = self.as_ptr();
416331ca 1710 mem::forget(self);
dc9dc135
XL
1711 result
1712 }
1713
3dfed10e 1714 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
dc9dc135
XL
1715 ///
1716 /// This can be used to safely get a strong reference (by calling [`upgrade`]
1717 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
1718 ///
3dfed10e
XL
1719 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
1720 /// as these don't own anything; the method still works on them).
dc9dc135
XL
1721 ///
1722 /// # Safety
1723 ///
ba9703b0 1724 /// The pointer must have originated from the [`into_raw`] and must still own its potential
3dfed10e 1725 /// weak reference.
dc9dc135 1726 ///
3dfed10e
XL
1727 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
1728 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
1729 /// count is not modified by this operation) and therefore it must be paired with a previous
1730 /// call to [`into_raw`].
dc9dc135
XL
1731 /// # Examples
1732 ///
1733 /// ```
dc9dc135
XL
1734 /// use std::sync::{Arc, Weak};
1735 ///
1736 /// let strong = Arc::new("hello".to_owned());
1737 ///
416331ca
XL
1738 /// let raw_1 = Arc::downgrade(&strong).into_raw();
1739 /// let raw_2 = Arc::downgrade(&strong).into_raw();
dc9dc135
XL
1740 ///
1741 /// assert_eq!(2, Arc::weak_count(&strong));
1742 ///
416331ca 1743 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
dc9dc135
XL
1744 /// assert_eq!(1, Arc::weak_count(&strong));
1745 ///
1746 /// drop(strong);
1747 ///
1748 /// // Decrement the last weak count.
416331ca 1749 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
dc9dc135
XL
1750 /// ```
1751 ///
3dfed10e
XL
1752 /// [`new`]: Weak::new
1753 /// [`into_raw`]: Weak::into_raw
1754 /// [`upgrade`]: Weak::upgrade
1755 /// [`forget`]: std::mem::forget
f9f354fc 1756 #[stable(feature = "weak_into_raw", since = "1.45.0")]
dc9dc135 1757 pub unsafe fn from_raw(ptr: *const T) -> Self {
29967ef6 1758 // See Weak::as_ptr for context on how the input pointer is derived.
29967ef6 1759
5869c6ff
XL
1760 let ptr = if is_dangling(ptr as *mut T) {
1761 // This is a dangling Weak.
1762 ptr as *mut ArcInner<T>
1763 } else {
1764 // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
1765 // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
1766 let offset = unsafe { data_offset(ptr) };
1767 // Thus, we reverse the offset to get the whole RcBox.
1768 // SAFETY: the pointer originated from a Weak, so this offset is safe.
1769 unsafe { (ptr as *mut ArcInner<T>).set_ptr_value((ptr as *mut u8).offset(-offset)) }
29967ef6 1770 };
a7813a04 1771
29967ef6 1772 // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
5869c6ff 1773 Weak { ptr: unsafe { NonNull::new_unchecked(ptr) } }
29967ef6 1774 }
b9856134 1775}
f9f354fc 1776
b9856134 1777impl<T: ?Sized> Weak<T> {
e74abb32
XL
1778 /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
1779 /// dropping of the inner value if successful.
1a4d82fc 1780 ///
e74abb32 1781 /// Returns [`None`] if the inner value has since been dropped.
1a4d82fc 1782 ///
1a4d82fc
JJ
1783 /// # Examples
1784 ///
1785 /// ```
1786 /// use std::sync::Arc;
1787 ///
85aaf69f 1788 /// let five = Arc::new(5);
1a4d82fc 1789 ///
e9174d1e 1790 /// let weak_five = Arc::downgrade(&five);
1a4d82fc
JJ
1791 ///
1792 /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
c30ab7b3
SL
1793 /// assert!(strong_five.is_some());
1794 ///
1795 /// // Destroy all strong pointers.
1796 /// drop(strong_five);
1797 /// drop(five);
1798 ///
1799 /// assert!(weak_five.upgrade().is_none());
1a4d82fc 1800 /// ```
e9174d1e 1801 #[stable(feature = "arc_weak", since = "1.4.0")]
1a4d82fc 1802 pub fn upgrade(&self) -> Option<Arc<T>> {
c34b1796 1803 // We use a CAS loop to increment the strong count instead of a
3dfed10e
XL
1804 // fetch_add as this function should never take the reference count
1805 // from zero to one.
8faf50e0 1806 let inner = self.inner()?;
54a0048b
SL
1807
1808 // Relaxed load because any write of 0 that we can observe
1809 // leaves the field in a permanently zero state (so a
1810 // "stale" read of 0 is fine), and any other value is
1811 // confirmed via the CAS below.
1812 let mut n = inner.strong.load(Relaxed);
1813
1a4d82fc 1814 loop {
b039eaaf 1815 if n == 0 {
92a42be0
SL
1816 return None;
1817 }
1818
1819 // See comments in `Arc::clone` for why we do this (for `mem::forget`).
1820 if n > MAX_REFCOUNT {
f035d41b 1821 abort();
b039eaaf 1822 }
c1a9b12d 1823
3dfed10e
XL
1824 // Relaxed is fine for the failure case because we don't have any expectations about the new state.
1825 // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
1826 // value can be initialized after `Weak` references have already been created. In that case, we
1827 // expect to observe the fully initialized value.
1828 match inner.strong.compare_exchange_weak(n, n + 1, Acquire, Relaxed) {
416331ca 1829 Ok(_) => return Some(Arc::from_inner(self.ptr)), // null checked above
54a0048b 1830 Err(old) => n = old,
b039eaaf 1831 }
1a4d82fc
JJ
1832 }
1833 }
1834
e74abb32 1835 /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
9fa01778
XL
1836 ///
1837 /// If `self` was created using [`Weak::new`], this will return 0.
60c5eb7d 1838 #[stable(feature = "weak_counts", since = "1.41.0")]
9fa01778 1839 pub fn strong_count(&self) -> usize {
dfeec247 1840 if let Some(inner) = self.inner() { inner.strong.load(SeqCst) } else { 0 }
9fa01778
XL
1841 }
1842
1843 /// Gets an approximation of the number of `Weak` pointers pointing to this
e74abb32 1844 /// allocation.
9fa01778 1845 ///
60c5eb7d
XL
1846 /// If `self` was created using [`Weak::new`], or if there are no remaining
1847 /// strong pointers, this will return 0.
9fa01778
XL
1848 ///
1849 /// # Accuracy
1850 ///
1851 /// Due to implementation details, the returned value can be off by 1 in
1852 /// either direction when other threads are manipulating any `Arc`s or
e74abb32 1853 /// `Weak`s pointing to the same allocation.
60c5eb7d
XL
1854 #[stable(feature = "weak_counts", since = "1.41.0")]
1855 pub fn weak_count(&self) -> usize {
dfeec247
XL
1856 self.inner()
1857 .map(|inner| {
1858 let weak = inner.weak.load(SeqCst);
1859 let strong = inner.strong.load(SeqCst);
1860 if strong == 0 {
1861 0
1862 } else {
1863 // Since we observed that there was at least one strong pointer
1864 // after reading the weak count, we know that the implicit weak
1865 // reference (present whenever any strong references are alive)
1866 // was still around when we observed the weak count, and can
1867 // therefore safely subtract it.
1868 weak - 1
1869 }
1870 })
1871 .unwrap_or(0)
9fa01778
XL
1872 }
1873
1874 /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
1875 /// (i.e., when this `Weak` was created by `Weak::new`).
1a4d82fc 1876 #[inline]
f9f354fc 1877 fn inner(&self) -> Option<WeakInner<'_>> {
5869c6ff 1878 if is_dangling(self.ptr.as_ptr()) {
f9f354fc
XL
1879 None
1880 } else {
1881 // We are careful to *not* create a reference covering the "data" field, as
1882 // the field may be mutated concurrently (for example, if the last `Arc`
1883 // is dropped, the data field will be dropped in-place).
1884 Some(unsafe {
1885 let ptr = self.ptr.as_ptr();
1886 WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
1887 })
1888 }
1a4d82fc 1889 }
0731742a 1890
e74abb32
XL
1891 /// Returns `true` if the two `Weak`s point to the same allocation (similar to
1892 /// [`ptr::eq`]), or if both don't point to any allocation
e1599b0c 1893 /// (because they were created with `Weak::new()`).
0731742a
XL
1894 ///
1895 /// # Notes
1896 ///
1897 /// Since this compares pointers it means that `Weak::new()` will equal each
e74abb32 1898 /// other, even though they don't point to any allocation.
0731742a 1899 ///
0731742a
XL
1900 /// # Examples
1901 ///
1902 /// ```
dc9dc135 1903 /// use std::sync::Arc;
0731742a
XL
1904 ///
1905 /// let first_rc = Arc::new(5);
1906 /// let first = Arc::downgrade(&first_rc);
1907 /// let second = Arc::downgrade(&first_rc);
1908 ///
dc9dc135 1909 /// assert!(first.ptr_eq(&second));
0731742a
XL
1910 ///
1911 /// let third_rc = Arc::new(5);
1912 /// let third = Arc::downgrade(&third_rc);
1913 ///
dc9dc135 1914 /// assert!(!first.ptr_eq(&third));
0731742a
XL
1915 /// ```
1916 ///
1917 /// Comparing `Weak::new`.
1918 ///
1919 /// ```
0731742a
XL
1920 /// use std::sync::{Arc, Weak};
1921 ///
1922 /// let first = Weak::new();
1923 /// let second = Weak::new();
dc9dc135 1924 /// assert!(first.ptr_eq(&second));
0731742a
XL
1925 ///
1926 /// let third_rc = Arc::new(());
1927 /// let third = Arc::downgrade(&third_rc);
dc9dc135 1928 /// assert!(!first.ptr_eq(&third));
0731742a 1929 /// ```
e74abb32 1930 ///
3dfed10e 1931 /// [`ptr::eq`]: core::ptr::eq
0731742a 1932 #[inline]
e1599b0c 1933 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
dc9dc135
XL
1934 pub fn ptr_eq(&self, other: &Self) -> bool {
1935 self.ptr.as_ptr() == other.ptr.as_ptr()
0731742a 1936 }
1a4d82fc
JJ
1937}
1938
e9174d1e 1939#[stable(feature = "arc_weak", since = "1.4.0")]
62682a34 1940impl<T: ?Sized> Clone for Weak<T> {
e74abb32 1941 /// Makes a clone of the `Weak` pointer that points to the same allocation.
1a4d82fc
JJ
1942 ///
1943 /// # Examples
1944 ///
1945 /// ```
7cac9316 1946 /// use std::sync::{Arc, Weak};
1a4d82fc 1947 ///
e9174d1e 1948 /// let weak_five = Arc::downgrade(&Arc::new(5));
1a4d82fc 1949 ///
0bf4aa26 1950 /// let _ = Weak::clone(&weak_five);
1a4d82fc
JJ
1951 /// ```
1952 #[inline]
1953 fn clone(&self) -> Weak<T> {
8faf50e0
XL
1954 let inner = if let Some(inner) = self.inner() {
1955 inner
1956 } else {
1957 return Weak { ptr: self.ptr };
1958 };
c1a9b12d
SL
1959 // See comments in Arc::clone() for why this is relaxed. This can use a
1960 // fetch_add (ignoring the lock) because the weak count is only locked
1961 // where are *no other* weak pointers in existence. (So we can't be
1962 // running this code in that case).
8faf50e0 1963 let old_size = inner.weak.fetch_add(1, Relaxed);
c1a9b12d
SL
1964
1965 // See comments in Arc::clone() for why we do this (for mem::forget).
1966 if old_size > MAX_REFCOUNT {
f035d41b 1967 abort();
c1a9b12d
SL
1968 }
1969
e74abb32 1970 Weak { ptr: self.ptr }
1a4d82fc
JJ
1971 }
1972}
1973
a7813a04
XL
1974#[stable(feature = "downgraded_weak", since = "1.10.0")]
1975impl<T> Default for Weak<T> {
8faf50e0 1976 /// Constructs a new `Weak<T>`, without allocating memory.
0731742a 1977 /// Calling [`upgrade`] on the return value always
b7449926 1978 /// gives [`None`].
c30ab7b3 1979 ///
3dfed10e 1980 /// [`upgrade`]: Weak::upgrade
c30ab7b3
SL
1981 ///
1982 /// # Examples
1983 ///
1984 /// ```
1985 /// use std::sync::Weak;
1986 ///
1987 /// let empty: Weak<i64> = Default::default();
1988 /// assert!(empty.upgrade().is_none());
1989 /// ```
a7813a04
XL
1990 fn default() -> Weak<T> {
1991 Weak::new()
1992 }
1993}
1994
7453a54e 1995#[stable(feature = "arc_weak", since = "1.4.0")]
62682a34 1996impl<T: ?Sized> Drop for Weak<T> {
c30ab7b3 1997 /// Drops the `Weak` pointer.
1a4d82fc 1998 ///
1a4d82fc
JJ
1999 /// # Examples
2000 ///
2001 /// ```
7cac9316 2002 /// use std::sync::{Arc, Weak};
1a4d82fc 2003 ///
c30ab7b3 2004 /// struct Foo;
1a4d82fc 2005 ///
c30ab7b3
SL
2006 /// impl Drop for Foo {
2007 /// fn drop(&mut self) {
2008 /// println!("dropped!");
2009 /// }
1a4d82fc 2010 /// }
1a4d82fc 2011 ///
c30ab7b3
SL
2012 /// let foo = Arc::new(Foo);
2013 /// let weak_foo = Arc::downgrade(&foo);
7cac9316 2014 /// let other_weak_foo = Weak::clone(&weak_foo);
1a4d82fc 2015 ///
c30ab7b3
SL
2016 /// drop(weak_foo); // Doesn't print anything
2017 /// drop(foo); // Prints "dropped!"
2018 ///
2019 /// assert!(other_weak_foo.upgrade().is_none());
1a4d82fc
JJ
2020 /// ```
2021 fn drop(&mut self) {
c34b1796
AL
2022 // If we find out that we were the last weak pointer, then its time to
2023 // deallocate the data entirely. See the discussion in Arc::drop() about
2024 // the memory orderings
c1a9b12d
SL
2025 //
2026 // It's not necessary to check for the locked state here, because the
2027 // weak count can only be locked if there was precisely one weak ref,
2028 // meaning that drop could only subsequently run ON that remaining weak
2029 // ref, which can only happen after the lock is released.
dfeec247 2030 let inner = if let Some(inner) = self.inner() { inner } else { return };
8faf50e0
XL
2031
2032 if inner.weak.fetch_sub(1, Release) == 1 {
ba9703b0 2033 acquire!(inner.weak);
5869c6ff 2034 unsafe { Global.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())) }
1a4d82fc
JJ
2035 }
2036 }
2037}
2038
0731742a
XL
2039#[stable(feature = "rust1", since = "1.0.0")]
2040trait ArcEqIdent<T: ?Sized + PartialEq> {
2041 fn eq(&self, other: &Arc<T>) -> bool;
2042 fn ne(&self, other: &Arc<T>) -> bool;
2043}
2044
2045#[stable(feature = "rust1", since = "1.0.0")]
2046impl<T: ?Sized + PartialEq> ArcEqIdent<T> for Arc<T> {
2047 #[inline]
2048 default fn eq(&self, other: &Arc<T>) -> bool {
2049 **self == **other
2050 }
2051 #[inline]
2052 default fn ne(&self, other: &Arc<T>) -> bool {
2053 **self != **other
2054 }
2055}
2056
48663c56
XL
2057/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
2058/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
2059/// store large values, that are slow to clone, but also heavy to check for equality, causing this
2060/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
2061/// the same value, than two `&T`s.
e74abb32
XL
2062///
2063/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
0731742a 2064#[stable(feature = "rust1", since = "1.0.0")]
f9f354fc 2065impl<T: ?Sized + crate::rc::MarkerEq> ArcEqIdent<T> for Arc<T> {
0731742a
XL
2066 #[inline]
2067 fn eq(&self, other: &Arc<T>) -> bool {
2068 Arc::ptr_eq(self, other) || **self == **other
2069 }
2070
2071 #[inline]
2072 fn ne(&self, other: &Arc<T>) -> bool {
2073 !Arc::ptr_eq(self, other) && **self != **other
2074 }
2075}
2076
85aaf69f 2077#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2078impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
c30ab7b3 2079 /// Equality for two `Arc`s.
1a4d82fc 2080 ///
e74abb32
XL
2081 /// Two `Arc`s are equal if their inner values are equal, even if they are
2082 /// stored in different allocation.
1a4d82fc 2083 ///
e74abb32
XL
2084 /// If `T` also implements `Eq` (implying reflexivity of equality),
2085 /// two `Arc`s that point to the same allocation are always equal.
0731742a 2086 ///
1a4d82fc
JJ
2087 /// # Examples
2088 ///
2089 /// ```
2090 /// use std::sync::Arc;
2091 ///
85aaf69f 2092 /// let five = Arc::new(5);
1a4d82fc 2093 ///
c30ab7b3 2094 /// assert!(five == Arc::new(5));
1a4d82fc 2095 /// ```
0731742a 2096 #[inline]
b039eaaf 2097 fn eq(&self, other: &Arc<T>) -> bool {
0731742a 2098 ArcEqIdent::eq(self, other)
b039eaaf 2099 }
1a4d82fc 2100
c30ab7b3 2101 /// Inequality for two `Arc`s.
1a4d82fc 2102 ///
c30ab7b3 2103 /// Two `Arc`s are unequal if their inner values are unequal.
1a4d82fc 2104 ///
e74abb32
XL
2105 /// If `T` also implements `Eq` (implying reflexivity of equality),
2106 /// two `Arc`s that point to the same value are never unequal.
0731742a 2107 ///
1a4d82fc
JJ
2108 /// # Examples
2109 ///
2110 /// ```
2111 /// use std::sync::Arc;
2112 ///
85aaf69f 2113 /// let five = Arc::new(5);
1a4d82fc 2114 ///
c30ab7b3 2115 /// assert!(five != Arc::new(6));
1a4d82fc 2116 /// ```
0731742a 2117 #[inline]
b039eaaf 2118 fn ne(&self, other: &Arc<T>) -> bool {
0731742a 2119 ArcEqIdent::ne(self, other)
b039eaaf 2120 }
1a4d82fc 2121}
0731742a 2122
85aaf69f 2123#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2124impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
c30ab7b3 2125 /// Partial comparison for two `Arc`s.
1a4d82fc
JJ
2126 ///
2127 /// The two are compared by calling `partial_cmp()` on their inner values.
2128 ///
2129 /// # Examples
2130 ///
2131 /// ```
2132 /// use std::sync::Arc;
c30ab7b3 2133 /// use std::cmp::Ordering;
1a4d82fc 2134 ///
85aaf69f 2135 /// let five = Arc::new(5);
1a4d82fc 2136 ///
c30ab7b3 2137 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
1a4d82fc
JJ
2138 /// ```
2139 fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
2140 (**self).partial_cmp(&**other)
2141 }
2142
c30ab7b3 2143 /// Less-than comparison for two `Arc`s.
1a4d82fc
JJ
2144 ///
2145 /// The two are compared by calling `<` on their inner values.
2146 ///
2147 /// # Examples
2148 ///
2149 /// ```
2150 /// use std::sync::Arc;
2151 ///
85aaf69f 2152 /// let five = Arc::new(5);
1a4d82fc 2153 ///
c30ab7b3 2154 /// assert!(five < Arc::new(6));
1a4d82fc 2155 /// ```
b039eaaf
SL
2156 fn lt(&self, other: &Arc<T>) -> bool {
2157 *(*self) < *(*other)
2158 }
1a4d82fc 2159
c30ab7b3 2160 /// 'Less than or equal to' comparison for two `Arc`s.
1a4d82fc
JJ
2161 ///
2162 /// The two are compared by calling `<=` on their inner values.
2163 ///
2164 /// # Examples
2165 ///
2166 /// ```
2167 /// use std::sync::Arc;
2168 ///
85aaf69f 2169 /// let five = Arc::new(5);
1a4d82fc 2170 ///
c30ab7b3 2171 /// assert!(five <= Arc::new(5));
1a4d82fc 2172 /// ```
b039eaaf
SL
2173 fn le(&self, other: &Arc<T>) -> bool {
2174 *(*self) <= *(*other)
2175 }
1a4d82fc 2176
c30ab7b3 2177 /// Greater-than comparison for two `Arc`s.
1a4d82fc
JJ
2178 ///
2179 /// The two are compared by calling `>` on their inner values.
2180 ///
2181 /// # Examples
2182 ///
2183 /// ```
2184 /// use std::sync::Arc;
2185 ///
85aaf69f 2186 /// let five = Arc::new(5);
1a4d82fc 2187 ///
c30ab7b3 2188 /// assert!(five > Arc::new(4));
1a4d82fc 2189 /// ```
b039eaaf
SL
2190 fn gt(&self, other: &Arc<T>) -> bool {
2191 *(*self) > *(*other)
2192 }
1a4d82fc 2193
c30ab7b3 2194 /// 'Greater than or equal to' comparison for two `Arc`s.
1a4d82fc
JJ
2195 ///
2196 /// The two are compared by calling `>=` on their inner values.
2197 ///
2198 /// # Examples
2199 ///
2200 /// ```
2201 /// use std::sync::Arc;
2202 ///
85aaf69f 2203 /// let five = Arc::new(5);
1a4d82fc 2204 ///
c30ab7b3 2205 /// assert!(five >= Arc::new(5));
1a4d82fc 2206 /// ```
b039eaaf
SL
2207 fn ge(&self, other: &Arc<T>) -> bool {
2208 *(*self) >= *(*other)
2209 }
1a4d82fc 2210}
85aaf69f 2211#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2212impl<T: ?Sized + Ord> Ord for Arc<T> {
c30ab7b3
SL
2213 /// Comparison for two `Arc`s.
2214 ///
2215 /// The two are compared by calling `cmp()` on their inner values.
2216 ///
2217 /// # Examples
2218 ///
2219 /// ```
2220 /// use std::sync::Arc;
2221 /// use std::cmp::Ordering;
2222 ///
2223 /// let five = Arc::new(5);
2224 ///
2225 /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
2226 /// ```
b039eaaf
SL
2227 fn cmp(&self, other: &Arc<T>) -> Ordering {
2228 (**self).cmp(&**other)
2229 }
1a4d82fc 2230}
85aaf69f 2231#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2232impl<T: ?Sized + Eq> Eq for Arc<T> {}
1a4d82fc 2233
85aaf69f 2234#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2235impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
9fa01778 2236 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
85aaf69f 2237 fmt::Display::fmt(&**self, f)
1a4d82fc
JJ
2238 }
2239}
2240
85aaf69f 2241#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2242impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
9fa01778 2243 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
85aaf69f 2244 fmt::Debug::fmt(&**self, f)
1a4d82fc
JJ
2245 }
2246}
2247
9346a6ac 2248#[stable(feature = "rust1", since = "1.0.0")]
7453a54e 2249impl<T: ?Sized> fmt::Pointer for Arc<T> {
9fa01778 2250 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
ff7c6d11 2251 fmt::Pointer::fmt(&(&**self as *const T), f)
9346a6ac
AL
2252 }
2253}
2254
85aaf69f 2255#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 2256impl<T: Default> Default for Arc<T> {
c30ab7b3
SL
2257 /// Creates a new `Arc<T>`, with the `Default` value for `T`.
2258 ///
2259 /// # Examples
2260 ///
2261 /// ```
2262 /// use std::sync::Arc;
2263 ///
2264 /// let x: Arc<i32> = Default::default();
2265 /// assert_eq!(*x, 0);
2266 /// ```
b039eaaf
SL
2267 fn default() -> Arc<T> {
2268 Arc::new(Default::default())
2269 }
1a4d82fc
JJ
2270}
2271
85aaf69f 2272#[stable(feature = "rust1", since = "1.0.0")]
62682a34 2273impl<T: ?Sized + Hash> Hash for Arc<T> {
85aaf69f
SL
2274 fn hash<H: Hasher>(&self, state: &mut H) {
2275 (**self).hash(state)
2276 }
2277}
1a4d82fc 2278
92a42be0
SL
2279#[stable(feature = "from_for_ptrs", since = "1.6.0")]
2280impl<T> From<T> for Arc<T> {
2281 fn from(t: T) -> Self {
2282 Arc::new(t)
2283 }
2284}
2285
3b2f2976 2286#[stable(feature = "shared_from_slice", since = "1.21.0")]
9fa01778 2287impl<T: Clone> From<&[T]> for Arc<[T]> {
6a06907d
XL
2288 /// Allocate a reference-counted slice and fill it by cloning `v`'s items.
2289 ///
2290 /// # Example
2291 ///
2292 /// ```
2293 /// # use std::sync::Arc;
2294 /// let original: &[i32] = &[1, 2, 3];
2295 /// let shared: Arc<[i32]> = Arc::from(original);
2296 /// assert_eq!(&[1, 2, 3], &shared[..]);
2297 /// ```
3b2f2976
XL
2298 #[inline]
2299 fn from(v: &[T]) -> Arc<[T]> {
2300 <Self as ArcFromSlice<T>>::from_slice(v)
2301 }
2302}
2303
2304#[stable(feature = "shared_from_slice", since = "1.21.0")]
9fa01778 2305impl From<&str> for Arc<str> {
6a06907d
XL
2306 /// Allocate a reference-counted `str` and copy `v` into it.
2307 ///
2308 /// # Example
2309 ///
2310 /// ```
2311 /// # use std::sync::Arc;
2312 /// let shared: Arc<str> = Arc::from("eggplant");
2313 /// assert_eq!("eggplant", &shared[..]);
2314 /// ```
3b2f2976
XL
2315 #[inline]
2316 fn from(v: &str) -> Arc<str> {
ff7c6d11
XL
2317 let arc = Arc::<[u8]>::from(v.as_bytes());
2318 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
3b2f2976
XL
2319 }
2320}
2321
2322#[stable(feature = "shared_from_slice", since = "1.21.0")]
2323impl From<String> for Arc<str> {
6a06907d
XL
2324 /// Allocate a reference-counted `str` and copy `v` into it.
2325 ///
2326 /// # Example
2327 ///
2328 /// ```
2329 /// # use std::sync::Arc;
2330 /// let unique: String = "eggplant".to_owned();
2331 /// let shared: Arc<str> = Arc::from(unique);
2332 /// assert_eq!("eggplant", &shared[..]);
2333 /// ```
3b2f2976
XL
2334 #[inline]
2335 fn from(v: String) -> Arc<str> {
2336 Arc::from(&v[..])
2337 }
2338}
2339
2340#[stable(feature = "shared_from_slice", since = "1.21.0")]
2341impl<T: ?Sized> From<Box<T>> for Arc<T> {
6a06907d
XL
2342 /// Move a boxed object to a new, reference-counted allocation.
2343 ///
2344 /// # Example
2345 ///
2346 /// ```
2347 /// # use std::sync::Arc;
2348 /// let unique: Box<str> = Box::from("eggplant");
2349 /// let shared: Arc<str> = Arc::from(unique);
2350 /// assert_eq!("eggplant", &shared[..]);
2351 /// ```
3b2f2976
XL
2352 #[inline]
2353 fn from(v: Box<T>) -> Arc<T> {
2354 Arc::from_box(v)
2355 }
2356}
2357
2358#[stable(feature = "shared_from_slice", since = "1.21.0")]
2359impl<T> From<Vec<T>> for Arc<[T]> {
6a06907d
XL
2360 /// Allocate a reference-counted slice and move `v`'s items into it.
2361 ///
2362 /// # Example
2363 ///
2364 /// ```
2365 /// # use std::sync::Arc;
2366 /// let unique: Vec<i32> = vec![1, 2, 3];
2367 /// let shared: Arc<[i32]> = Arc::from(unique);
2368 /// assert_eq!(&[1, 2, 3], &shared[..]);
2369 /// ```
3b2f2976
XL
2370 #[inline]
2371 fn from(mut v: Vec<T>) -> Arc<[T]> {
2372 unsafe {
2373 let arc = Arc::copy_from_slice(&v);
2374
2375 // Allow the Vec to free its memory, but not destroy its contents
2376 v.set_len(0);
2377
2378 arc
2379 }
2380 }
2381}
2382
f9f354fc
XL
2383#[stable(feature = "shared_from_cow", since = "1.45.0")]
2384impl<'a, B> From<Cow<'a, B>> for Arc<B>
2385where
2386 B: ToOwned + ?Sized,
2387 Arc<B>: From<&'a B> + From<B::Owned>,
2388{
2389 #[inline]
2390 fn from(cow: Cow<'a, B>) -> Arc<B> {
2391 match cow {
2392 Cow::Borrowed(s) => Arc::from(s),
2393 Cow::Owned(s) => Arc::from(s),
2394 }
2395 }
2396}
2397
74b04a01 2398#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
3dfed10e 2399impl<T, const N: usize> TryFrom<Arc<[T]>> for Arc<[T; N]> {
416331ca 2400 type Error = Arc<[T]>;
1a4d82fc 2401
416331ca
XL
2402 fn try_from(boxed_slice: Arc<[T]>) -> Result<Self, Self::Error> {
2403 if boxed_slice.len() == N {
2404 Ok(unsafe { Arc::from_raw(Arc::into_raw(boxed_slice) as *mut [T; N]) })
2405 } else {
2406 Err(boxed_slice)
3b2f2976 2407 }
3b2f2976 2408 }
416331ca 2409}
3b2f2976 2410
416331ca
XL
2411#[stable(feature = "shared_from_iter", since = "1.37.0")]
2412impl<T> iter::FromIterator<T> for Arc<[T]> {
2413 /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
2414 ///
2415 /// # Performance characteristics
2416 ///
2417 /// ## The general case
2418 ///
2419 /// In the general case, collecting into `Arc<[T]>` is done by first
2420 /// collecting into a `Vec<T>`. That is, when writing the following:
2421 ///
2422 /// ```rust
2423 /// # use std::sync::Arc;
2424 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
2425 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2426 /// ```
2427 ///
2428 /// this behaves as if we wrote:
2429 ///
2430 /// ```rust
2431 /// # use std::sync::Arc;
2432 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
2433 /// .collect::<Vec<_>>() // The first set of allocations happens here.
2434 /// .into(); // A second allocation for `Arc<[T]>` happens here.
2435 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2436 /// ```
2437 ///
2438 /// This will allocate as many times as needed for constructing the `Vec<T>`
2439 /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
2440 ///
2441 /// ## Iterators of known length
2442 ///
2443 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
2444 /// a single allocation will be made for the `Arc<[T]>`. For example:
2445 ///
2446 /// ```rust
2447 /// # use std::sync::Arc;
2448 /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
2449 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
2450 /// ```
2451 fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
f9f354fc 2452 ToArcSlice::to_arc_slice(iter.into_iter())
3b2f2976 2453 }
416331ca 2454}
3b2f2976 2455
416331ca 2456/// Specialization trait used for collecting into `Arc<[T]>`.
f9f354fc
XL
2457trait ToArcSlice<T>: Iterator<Item = T> + Sized {
2458 fn to_arc_slice(self) -> Arc<[T]>;
416331ca 2459}
3b2f2976 2460
f9f354fc
XL
2461impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
2462 default fn to_arc_slice(self) -> Arc<[T]> {
2463 self.collect::<Vec<T>>().into()
3b2f2976 2464 }
416331ca 2465}
3b2f2976 2466
f9f354fc
XL
2467impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
2468 fn to_arc_slice(self) -> Arc<[T]> {
416331ca 2469 // This is the case for a `TrustedLen` iterator.
f9f354fc 2470 let (low, high) = self.size_hint();
416331ca
XL
2471 if let Some(high) = high {
2472 debug_assert_eq!(
dfeec247
XL
2473 low,
2474 high,
416331ca
XL
2475 "TrustedLen iterator's size hint is not exact: {:?}",
2476 (low, high)
2477 );
3b2f2976 2478
416331ca
XL
2479 unsafe {
2480 // SAFETY: We need to ensure that the iterator has an exact length and we have.
f9f354fc 2481 Arc::from_iter_exact(self, low)
3b2f2976 2482 }
416331ca
XL
2483 } else {
2484 // Fall back to normal implementation.
f9f354fc 2485 self.collect::<Vec<T>>().into()
3b2f2976 2486 }
3b2f2976 2487 }
416331ca 2488}
3b2f2976 2489
92a42be0 2490#[stable(feature = "rust1", since = "1.0.0")]
e9174d1e 2491impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
b039eaaf
SL
2492 fn borrow(&self) -> &T {
2493 &**self
2494 }
2495}
2496
2497#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2498impl<T: ?Sized> AsRef<T> for Arc<T> {
2499 fn as_ref(&self) -> &T {
2500 &**self
2501 }
e9174d1e 2502}
b7449926 2503
0731742a 2504#[stable(feature = "pin", since = "1.33.0")]
dfeec247 2505impl<T: ?Sized> Unpin for Arc<T> {}
dc9dc135 2506
5869c6ff 2507/// Get the offset within an `ArcInner` for the payload behind a pointer.
f035d41b
XL
2508///
2509/// # Safety
2510///
5869c6ff
XL
2511/// The pointer must point to (and have valid metadata for) a previously
2512/// valid instance of T, but the T is allowed to be dropped.
dc9dc135 2513unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> isize {
5869c6ff
XL
2514 // Align the unsized value to the end of the ArcInner.
2515 // Because RcBox is repr(C), it will always be the last field in memory.
2516 // SAFETY: since the only unsized types possible are slices, trait objects,
2517 // and extern types, the input safety requirement is currently enough to
2518 // satisfy the requirements of align_of_val_raw; this is an implementation
2519 // detail of the language that may not be relied upon outside of std.
2520 unsafe { data_offset_align(align_of_val_raw(ptr)) }
416331ca
XL
2521}
2522
2523#[inline]
2524fn data_offset_align(align: usize) -> isize {
dc9dc135
XL
2525 let layout = Layout::new::<ArcInner<()>>();
2526 (layout.size() + layout.padding_needed_for(align)) as isize
2527}