]> git.proxmox.com Git - rustc.git/blame - library/alloc/src/vec/mod.rs
New upstream version 1.55.0+dfsg1
[rustc.git] / library / alloc / src / vec / mod.rs
CommitLineData
7453a54e 1//! A contiguous growable array type with heap-allocated contents, written
041b39d2 2//! `Vec<T>`.
1a4d82fc 3//!
62682a34
SL
4//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
5//! `O(1)` pop (from the end).
1a4d82fc 6//!
74b04a01
XL
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
1a4d82fc
JJ
9//! # Examples
10//!
1b1a35ee 11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
1a4d82fc
JJ
12//!
13//! ```
d9579d0f 14//! let v: Vec<i32> = Vec::new();
1a4d82fc
JJ
15//! ```
16//!
c30ab7b3 17//! ...or by using the [`vec!`] macro:
1a4d82fc
JJ
18//!
19//! ```
d9579d0f 20//! let v: Vec<i32> = vec![];
1a4d82fc 21//!
d9579d0f
AL
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
1a4d82fc
JJ
25//! ```
26//!
c30ab7b3 27//! You can [`push`] values onto the end of a vector (which will grow the vector
e9174d1e 28//! as needed):
1a4d82fc
JJ
29//!
30//! ```
d9579d0f 31//! let mut v = vec![1, 2];
1a4d82fc 32//!
d9579d0f 33//! v.push(3);
1a4d82fc
JJ
34//! ```
35//!
d9579d0f
AL
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
1a4d82fc 40//!
d9579d0f 41//! let two = v.pop();
1a4d82fc 42//! ```
1a4d82fc 43//!
c30ab7b3 44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
d9579d0f
AL
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
1a4d82fc 50//! ```
c30ab7b3 51//!
3dfed10e 52//! [`push`]: Vec::push
1a4d82fc 53
85aaf69f 54#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 55
17df50a5
XL
56#[cfg(not(no_global_oom_handling))]
57use core::cmp;
58use core::cmp::Ordering;
1b1a35ee 59use core::convert::TryFrom;
1a4d82fc 60use core::fmt;
f035d41b 61use core::hash::{Hash, Hasher};
54a0048b 62use core::intrinsics::{arith_offset, assume};
17df50a5
XL
63use core::iter;
64#[cfg(not(no_global_oom_handling))]
65use core::iter::FromIterator;
ff7c6d11 66use core::marker::PhantomData;
3dfed10e 67use core::mem::{self, ManuallyDrop, MaybeUninit};
1b1a35ee 68use core::ops::{self, Index, IndexMut, Range, RangeBounds};
9fa01778
XL
69use core::ptr::{self, NonNull};
70use core::slice::{self, SliceIndex};
71
fc512014 72use crate::alloc::{Allocator, Global};
dfeec247 73use crate::borrow::{Cow, ToOwned};
9fa01778 74use crate::boxed::Box;
dfeec247 75use crate::collections::TryReserveError;
9fa01778 76use crate::raw_vec::RawVec;
d9579d0f 77
5869c6ff
XL
78#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
79pub use self::drain_filter::DrainFilter;
80
81mod drain_filter;
82
17df50a5 83#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
84#[stable(feature = "vec_splice", since = "1.21.0")]
85pub use self::splice::Splice;
86
17df50a5 87#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
88mod splice;
89
90#[stable(feature = "drain", since = "1.6.0")]
91pub use self::drain::Drain;
92
93mod drain;
94
17df50a5 95#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
96mod cow;
97
17df50a5 98#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
99pub(crate) use self::into_iter::AsIntoIter;
100#[stable(feature = "rust1", since = "1.0.0")]
101pub use self::into_iter::IntoIter;
102
103mod into_iter;
104
17df50a5 105#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
106use self::is_zero::IsZero;
107
108mod is_zero;
109
17df50a5 110#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
111mod source_iter_marker;
112
113mod partial_eq;
114
17df50a5 115#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
116use self::spec_from_elem::SpecFromElem;
117
17df50a5 118#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
119mod spec_from_elem;
120
17df50a5 121#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
122use self::set_len_on_drop::SetLenOnDrop;
123
17df50a5 124#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
125mod set_len_on_drop;
126
17df50a5 127#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
128use self::in_place_drop::InPlaceDrop;
129
17df50a5 130#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
131mod in_place_drop;
132
17df50a5 133#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
134use self::spec_from_iter_nested::SpecFromIterNested;
135
17df50a5 136#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
137mod spec_from_iter_nested;
138
17df50a5 139#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
140use self::spec_from_iter::SpecFromIter;
141
17df50a5 142#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
143mod spec_from_iter;
144
17df50a5 145#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
146use self::spec_extend::SpecExtend;
147
17df50a5 148#[cfg(not(no_global_oom_handling))]
5869c6ff
XL
149mod spec_extend;
150
6a06907d 151/// A contiguous growable array type, written as `Vec<T>` and pronounced 'vector'.
1a4d82fc
JJ
152///
153/// # Examples
154///
155/// ```
156/// let mut vec = Vec::new();
85aaf69f
SL
157/// vec.push(1);
158/// vec.push(2);
1a4d82fc
JJ
159///
160/// assert_eq!(vec.len(), 2);
161/// assert_eq!(vec[0], 1);
162///
163/// assert_eq!(vec.pop(), Some(2));
164/// assert_eq!(vec.len(), 1);
165///
85aaf69f 166/// vec[0] = 7;
1a4d82fc
JJ
167/// assert_eq!(vec[0], 7);
168///
60c5eb7d 169/// vec.extend([1, 2, 3].iter().copied());
1a4d82fc 170///
62682a34 171/// for x in &vec {
1a4d82fc
JJ
172/// println!("{}", x);
173/// }
c34b1796 174/// assert_eq!(vec, [7, 1, 2, 3]);
1a4d82fc
JJ
175/// ```
176///
c30ab7b3 177/// The [`vec!`] macro is provided to make initialization more convenient:
1a4d82fc
JJ
178///
179/// ```
85aaf69f 180/// let mut vec = vec![1, 2, 3];
1a4d82fc 181/// vec.push(4);
c34b1796 182/// assert_eq!(vec, [1, 2, 3, 4]);
1a4d82fc
JJ
183/// ```
184///
0bf4aa26
XL
185/// It can also initialize each element of a `Vec<T>` with a given value.
186/// This may be more efficient than performing allocation and initialization
187/// in separate steps, especially when initializing a vector of zeros:
c1a9b12d
SL
188///
189/// ```
190/// let vec = vec![0; 5];
191/// assert_eq!(vec, [0, 0, 0, 0, 0]);
0bf4aa26
XL
192///
193/// // The following is equivalent, but potentially slower:
1b1a35ee
XL
194/// let mut vec = Vec::with_capacity(5);
195/// vec.resize(5, 0);
196/// assert_eq!(vec, [0, 0, 0, 0, 0]);
c1a9b12d
SL
197/// ```
198///
1b1a35ee
XL
199/// For more information, see
200/// [Capacity and Reallocation](#capacity-and-reallocation).
201///
1a4d82fc
JJ
202/// Use a `Vec<T>` as an efficient stack:
203///
204/// ```
205/// let mut stack = Vec::new();
206///
85aaf69f
SL
207/// stack.push(1);
208/// stack.push(2);
209/// stack.push(3);
1a4d82fc 210///
bd371182 211/// while let Some(top) = stack.pop() {
1a4d82fc
JJ
212/// // Prints 3, 2, 1
213/// println!("{}", top);
214/// }
215/// ```
216///
7453a54e
SL
217/// # Indexing
218///
c30ab7b3
SL
219/// The `Vec` type allows to access values by index, because it implements the
220/// [`Index`] trait. An example will be more explicit:
7453a54e
SL
221///
222/// ```
c30ab7b3 223/// let v = vec![0, 2, 4, 6];
7453a54e
SL
224/// println!("{}", v[1]); // it will display '2'
225/// ```
226///
c30ab7b3 227/// However be careful: if you try to access an index which isn't in the `Vec`,
7453a54e
SL
228/// your software will panic! You cannot do this:
229///
041b39d2 230/// ```should_panic
c30ab7b3 231/// let v = vec![0, 2, 4, 6];
7453a54e
SL
232/// println!("{}", v[6]); // it will panic!
233/// ```
234///
e74abb32
XL
235/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
236/// the `Vec`.
7453a54e
SL
237///
238/// # Slicing
239///
6a06907d
XL
240/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
241/// To get a [slice][prim@slice], use [`&`]. Example:
7453a54e
SL
242///
243/// ```
244/// fn read_slice(slice: &[usize]) {
245/// // ...
246/// }
247///
c30ab7b3 248/// let v = vec![0, 1];
7453a54e
SL
249/// read_slice(&v);
250///
251/// // ... and that's all!
252/// // you can also do it like this:
1b1a35ee
XL
253/// let u: &[usize] = &v;
254/// // or like this:
255/// let u: &[_] = &v;
7453a54e
SL
256/// ```
257///
258/// In Rust, it's more common to pass slices as arguments rather than vectors
74b04a01 259/// when you just want to provide read access. The same goes for [`String`] and
c30ab7b3 260/// [`&str`].
7453a54e 261///
1a4d82fc
JJ
262/// # Capacity and reallocation
263///
c34b1796
AL
264/// The capacity of a vector is the amount of space allocated for any future
265/// elements that will be added onto the vector. This is not to be confused with
266/// the *length* of a vector, which specifies the number of actual elements
267/// within the vector. If a vector's length exceeds its capacity, its capacity
268/// will automatically be increased, but its elements will have to be
1a4d82fc
JJ
269/// reallocated.
270///
c34b1796
AL
271/// For example, a vector with capacity 10 and length 0 would be an empty vector
272/// with space for 10 more elements. Pushing 10 or fewer elements onto the
273/// vector will not change its capacity or cause reallocation to occur. However,
274/// if the vector's length is increased to 11, it will have to reallocate, which
c30ab7b3 275/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
c34b1796 276/// whenever possible to specify how big the vector is expected to get.
b039eaaf
SL
277///
278/// # Guarantees
279///
c30ab7b3 280/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
b039eaaf
SL
281/// about its design. This ensures that it's as low-overhead as possible in
282/// the general case, and can be correctly manipulated in primitive ways
283/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
0731742a 284/// If additional type parameters are added (e.g., to support custom allocators),
b039eaaf
SL
285/// overriding their defaults may change the behavior.
286///
c30ab7b3 287/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
b039eaaf
SL
288/// triplet. No more, no less. The order of these fields is completely
289/// unspecified, and you should use the appropriate methods to modify these.
290/// The pointer will never be null, so this type is null-pointer-optimized.
291///
cdc7bbd5 292/// However, the pointer might not actually point to allocated memory. In particular,
cc61c64b
XL
293/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
294/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
c30ab7b3
SL
295/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
296/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
cdc7bbd5 297/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
041b39d2 298/// if [`mem::size_of::<T>`]`() * capacity() > 0`. In general, `Vec`'s allocation
ff7c6d11
XL
299/// details are very subtle &mdash; if you intend to allocate memory using a `Vec`
300/// and use it for something else (either to pass to unsafe code, or to build your
301/// own memory-backed collection), be sure to deallocate this memory by using
302/// `from_raw_parts` to recover the `Vec` and then dropping it.
b039eaaf 303///
c30ab7b3 304/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
b039eaaf 305/// (as defined by the allocator Rust is configured to use by default), and its
0531ce1d
XL
306/// pointer points to [`len`] initialized, contiguous elements in order (what
307/// you would see if you coerced it to a slice), followed by [`capacity`]` -
308/// `[`len`] logically uninitialized, contiguous elements.
b039eaaf 309///
5869c6ff
XL
310/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
311/// visualized as below. The top part is the `Vec` struct, it contains a
312/// pointer to the head of the allocation in the heap, length and capacity.
313/// The bottom part is the allocation on the heap, a contiguous memory block.
314///
315/// ```text
316/// ptr len capacity
317/// +--------+--------+--------+
318/// | 0x0123 | 2 | 4 |
319/// +--------+--------+--------+
320/// |
321/// v
322/// Heap +--------+--------+--------+--------+
323/// | 'a' | 'b' | uninit | uninit |
324/// +--------+--------+--------+--------+
325/// ```
326///
327/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
328/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
329/// layout (including the order of fields).
330///
c30ab7b3 331/// `Vec` will never perform a "small optimization" where elements are actually
b039eaaf
SL
332/// stored on the stack for two reasons:
333///
334/// * It would make it more difficult for unsafe code to correctly manipulate
c30ab7b3
SL
335/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
336/// only moved, and it would be more difficult to determine if a `Vec` had
b039eaaf
SL
337/// actually allocated memory.
338///
339/// * It would penalize the general case, incurring an additional branch
340/// on every access.
341///
c30ab7b3
SL
342/// `Vec` will never automatically shrink itself, even if completely empty. This
343/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
cc61c64b 344/// and then filling it back up to the same [`len`] should incur no calls to
c30ab7b3 345/// the allocator. If you wish to free up unused memory, use
5869c6ff 346/// [`shrink_to_fit`] or [`shrink_to`].
b039eaaf 347///
c30ab7b3
SL
348/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
349/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
cc61c64b 350/// [`len`]` == `[`capacity`]. That is, the reported capacity is completely
c30ab7b3
SL
351/// accurate, and can be relied on. It can even be used to manually free the memory
352/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
353/// when not necessary.
b039eaaf 354///
c30ab7b3
SL
355/// `Vec` does not guarantee any particular growth strategy when reallocating
356/// when full, nor when [`reserve`] is called. The current strategy is basic
b039eaaf 357/// and it may prove desirable to use a non-constant growth factor. Whatever
29967ef6 358/// strategy is used will of course guarantee *O*(1) amortized [`push`].
b039eaaf 359///
c30ab7b3
SL
360/// `vec![x; n]`, `vec![a, b, c, d]`, and
361/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
cc61c64b 362/// with exactly the requested capacity. If [`len`]` == `[`capacity`],
c30ab7b3
SL
363/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
364/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
b039eaaf 365///
c30ab7b3 366/// `Vec` will not specifically overwrite any data that is removed from it,
b039eaaf
SL
367/// but also won't specifically preserve it. Its uninitialized memory is
368/// scratch space that it may use however it wants. It will generally just do
369/// whatever is most efficient or otherwise easy to implement. Do not rely on
c30ab7b3
SL
370/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
371/// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
cdc7bbd5 372/// first, that might not actually happen because the optimizer does not consider
7cac9316
XL
373/// this a side-effect that must be preserved. There is one case which we will
374/// not break, however: using `unsafe` code to write to the excess capacity,
375/// and then increasing the length to match, is always valid.
b039eaaf 376///
6a06907d 377/// Currently, `Vec` does not guarantee the order in which elements are dropped.
0531ce1d 378/// The order has changed in the past and may change again.
b039eaaf 379///
e74abb32
XL
380/// [`get`]: ../../std/vec/struct.Vec.html#method.get
381/// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
3dfed10e
XL
382/// [`String`]: crate::string::String
383/// [`&str`]: type@str
384/// [`shrink_to_fit`]: Vec::shrink_to_fit
5869c6ff 385/// [`shrink_to`]: Vec::shrink_to
3dfed10e
XL
386/// [`capacity`]: Vec::capacity
387/// [`mem::size_of::<T>`]: core::mem::size_of
388/// [`len`]: Vec::len
389/// [`push`]: Vec::push
390/// [`insert`]: Vec::insert
391/// [`reserve`]: Vec::reserve
5869c6ff 392/// [`MaybeUninit`]: core::mem::MaybeUninit
3dfed10e 393/// [owned slice]: Box
85aaf69f 394#[stable(feature = "rust1", since = "1.0.0")]
e74abb32 395#[cfg_attr(not(test), rustc_diagnostic_item = "vec_type")]
fc512014
XL
396pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
397 buf: RawVec<T, A>,
85aaf69f 398 len: usize,
1a4d82fc
JJ
399}
400
1a4d82fc
JJ
401////////////////////////////////////////////////////////////////////////////////
402// Inherent methods
403////////////////////////////////////////////////////////////////////////////////
404
405impl<T> Vec<T> {
406 /// Constructs a new, empty `Vec<T>`.
407 ///
408 /// The vector will not allocate until elements are pushed onto it.
409 ///
410 /// # Examples
411 ///
412 /// ```
92a42be0 413 /// # #![allow(unused_mut)]
85aaf69f 414 /// let mut vec: Vec<i32> = Vec::new();
1a4d82fc
JJ
415 /// ```
416 #[inline]
74b04a01 417 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
85aaf69f 418 #[stable(feature = "rust1", since = "1.0.0")]
fc512014 419 pub const fn new() -> Self {
dfeec247 420 Vec { buf: RawVec::NEW, len: 0 }
1a4d82fc
JJ
421 }
422
423 /// Constructs a new, empty `Vec<T>` with the specified capacity.
424 ///
e9174d1e
SL
425 /// The vector will be able to hold exactly `capacity` elements without
426 /// reallocating. If `capacity` is 0, the vector will not allocate.
1a4d82fc 427 ///
0531ce1d
XL
428 /// It is important to note that although the returned vector has the
429 /// *capacity* specified, the vector will have a zero *length*. For an
430 /// explanation of the difference between length and capacity, see
431 /// *[Capacity and reallocation]*.
c30ab7b3
SL
432 ///
433 /// [Capacity and reallocation]: #capacity-and-reallocation
1a4d82fc 434 ///
cdc7bbd5
XL
435 /// # Panics
436 ///
437 /// Panics if the new capacity exceeds `isize::MAX` bytes.
438 ///
1a4d82fc
JJ
439 /// # Examples
440 ///
441 /// ```
9346a6ac 442 /// let mut vec = Vec::with_capacity(10);
1a4d82fc
JJ
443 ///
444 /// // The vector contains no items, even though it has capacity for more
445 /// assert_eq!(vec.len(), 0);
f035d41b 446 /// assert_eq!(vec.capacity(), 10);
1a4d82fc
JJ
447 ///
448 /// // These are all done without reallocating...
85aaf69f 449 /// for i in 0..10 {
1a4d82fc
JJ
450 /// vec.push(i);
451 /// }
f035d41b
XL
452 /// assert_eq!(vec.len(), 10);
453 /// assert_eq!(vec.capacity(), 10);
1a4d82fc
JJ
454 ///
455 /// // ...but this may make the vector reallocate
456 /// vec.push(11);
f035d41b
XL
457 /// assert_eq!(vec.len(), 11);
458 /// assert!(vec.capacity() >= 11);
1a4d82fc 459 /// ```
17df50a5 460 #[cfg(not(no_global_oom_handling))]
1a4d82fc 461 #[inline]
85aaf69f 462 #[stable(feature = "rust1", since = "1.0.0")]
fc512014
XL
463 pub fn with_capacity(capacity: usize) -> Self {
464 Self::with_capacity_in(capacity, Global)
1a4d82fc
JJ
465 }
466
fc512014 467 /// Creates a `Vec<T>` directly from the raw components of another vector.
e74abb32 468 ///
fc512014 469 /// # Safety
e74abb32 470 ///
fc512014
XL
471 /// This is highly unsafe, due to the number of invariants that aren't
472 /// checked:
e74abb32 473 ///
fc512014
XL
474 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
475 /// (at least, it's highly likely to be incorrect if it wasn't).
476 /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
477 /// (`T` having a less strict alignment is not sufficient, the alignment really
478 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
479 /// allocated and deallocated with the same layout.)
480 /// * `length` needs to be less than or equal to `capacity`.
481 /// * `capacity` needs to be the capacity that the pointer was allocated with.
482 ///
483 /// Violating these may cause problems like corrupting the allocator's
484 /// internal data structures. For example it is **not** safe
485 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
486 /// It's also not safe to build one from a `Vec<u16>` and its length, because
487 /// the allocator cares about the alignment, and these two types have different
488 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
489 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
490 ///
491 /// The ownership of `ptr` is effectively transferred to the
492 /// `Vec<T>` which may then deallocate, reallocate or change the
493 /// contents of memory pointed to by the pointer at will. Ensure
494 /// that nothing else uses the pointer after calling this
495 /// function.
496 ///
497 /// [`String`]: crate::string::String
498 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
e74abb32
XL
499 ///
500 /// # Examples
501 ///
502 /// ```
fc512014
XL
503 /// use std::ptr;
504 /// use std::mem;
e74abb32 505 ///
fc512014 506 /// let v = vec![1, 2, 3];
e74abb32 507 ///
fc512014
XL
508 // FIXME Update this when vec_into_raw_parts is stabilized
509 /// // Prevent running `v`'s destructor so we are in complete control
510 /// // of the allocation.
511 /// let mut v = mem::ManuallyDrop::new(v);
e74abb32 512 ///
fc512014
XL
513 /// // Pull out the various important pieces of information about `v`
514 /// let p = v.as_mut_ptr();
515 /// let len = v.len();
516 /// let cap = v.capacity();
517 ///
518 /// unsafe {
519 /// // Overwrite memory with 4, 5, 6
520 /// for i in 0..len as isize {
521 /// ptr::write(p.offset(i), 4 + i);
522 /// }
523 ///
524 /// // Put everything back together into a Vec
525 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
526 /// assert_eq!(rebuilt, [4, 5, 6]);
527 /// }
e74abb32 528 /// ```
fc512014
XL
529 #[inline]
530 #[stable(feature = "rust1", since = "1.0.0")]
531 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
532 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
e74abb32 533 }
fc512014 534}
e74abb32 535
fc512014
XL
536impl<T, A: Allocator> Vec<T, A> {
537 /// Constructs a new, empty `Vec<T, A>`.
538 ///
539 /// The vector will not allocate until elements are pushed onto it.
540 ///
541 /// # Examples
542 ///
543 /// ```
544 /// #![feature(allocator_api)]
545 ///
546 /// use std::alloc::System;
547 ///
548 /// # #[allow(unused_mut)]
549 /// let mut vec: Vec<i32, _> = Vec::new_in(System);
550 /// ```
551 #[inline]
552 #[unstable(feature = "allocator_api", issue = "32838")]
553 pub const fn new_in(alloc: A) -> Self {
554 Vec { buf: RawVec::new_in(alloc), len: 0 }
555 }
556
557 /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
558 /// allocator.
559 ///
560 /// The vector will be able to hold exactly `capacity` elements without
561 /// reallocating. If `capacity` is 0, the vector will not allocate.
562 ///
563 /// It is important to note that although the returned vector has the
564 /// *capacity* specified, the vector will have a zero *length*. For an
565 /// explanation of the difference between length and capacity, see
566 /// *[Capacity and reallocation]*.
567 ///
568 /// [Capacity and reallocation]: #capacity-and-reallocation
569 ///
cdc7bbd5
XL
570 /// # Panics
571 ///
572 /// Panics if the new capacity exceeds `isize::MAX` bytes.
573 ///
fc512014
XL
574 /// # Examples
575 ///
576 /// ```
577 /// #![feature(allocator_api)]
578 ///
579 /// use std::alloc::System;
580 ///
581 /// let mut vec = Vec::with_capacity_in(10, System);
582 ///
583 /// // The vector contains no items, even though it has capacity for more
584 /// assert_eq!(vec.len(), 0);
585 /// assert_eq!(vec.capacity(), 10);
586 ///
587 /// // These are all done without reallocating...
588 /// for i in 0..10 {
589 /// vec.push(i);
590 /// }
591 /// assert_eq!(vec.len(), 10);
592 /// assert_eq!(vec.capacity(), 10);
593 ///
594 /// // ...but this may make the vector reallocate
595 /// vec.push(11);
596 /// assert_eq!(vec.len(), 11);
597 /// assert!(vec.capacity() >= 11);
598 /// ```
17df50a5 599 #[cfg(not(no_global_oom_handling))]
fc512014
XL
600 #[inline]
601 #[unstable(feature = "allocator_api", issue = "32838")]
602 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
603 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
604 }
605
606 /// Creates a `Vec<T, A>` directly from the raw components of another vector.
1a4d82fc 607 ///
b039eaaf 608 /// # Safety
c1a9b12d
SL
609 ///
610 /// This is highly unsafe, due to the number of invariants that aren't
611 /// checked:
612 ///
c30ab7b3 613 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
c1a9b12d 614 /// (at least, it's highly likely to be incorrect if it wasn't).
74b04a01
XL
615 /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
616 /// (`T` having a less strict alignment is not sufficient, the alignment really
1b1a35ee 617 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
74b04a01 618 /// allocated and deallocated with the same layout.)
5bcae85e 619 /// * `length` needs to be less than or equal to `capacity`.
c1a9b12d
SL
620 /// * `capacity` needs to be the capacity that the pointer was allocated with.
621 ///
622 /// Violating these may cause problems like corrupting the allocator's
3b2f2976 623 /// internal data structures. For example it is **not** safe
e74abb32
XL
624 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
625 /// It's also not safe to build one from a `Vec<u16>` and its length, because
626 /// the allocator cares about the alignment, and these two types have different
627 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
628 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1a4d82fc 629 ///
5bcae85e
SL
630 /// The ownership of `ptr` is effectively transferred to the
631 /// `Vec<T>` which may then deallocate, reallocate or change the
632 /// contents of memory pointed to by the pointer at will. Ensure
633 /// that nothing else uses the pointer after calling this
634 /// function.
635 ///
3dfed10e
XL
636 /// [`String`]: crate::string::String
637 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
c30ab7b3 638 ///
1a4d82fc
JJ
639 /// # Examples
640 ///
641 /// ```
fc512014
XL
642 /// #![feature(allocator_api)]
643 ///
644 /// use std::alloc::System;
645 ///
1a4d82fc
JJ
646 /// use std::ptr;
647 /// use std::mem;
648 ///
fc512014
XL
649 /// let mut v = Vec::with_capacity_in(3, System);
650 /// v.push(1);
651 /// v.push(2);
652 /// v.push(3);
1a4d82fc 653 ///
e74abb32
XL
654 // FIXME Update this when vec_into_raw_parts is stabilized
655 /// // Prevent running `v`'s destructor so we are in complete control
656 /// // of the allocation.
657 /// let mut v = mem::ManuallyDrop::new(v);
1a4d82fc 658 ///
e74abb32
XL
659 /// // Pull out the various important pieces of information about `v`
660 /// let p = v.as_mut_ptr();
661 /// let len = v.len();
662 /// let cap = v.capacity();
fc512014 663 /// let alloc = v.allocator();
1a4d82fc 664 ///
e74abb32
XL
665 /// unsafe {
666 /// // Overwrite memory with 4, 5, 6
667 /// for i in 0..len as isize {
668 /// ptr::write(p.offset(i), 4 + i);
1a4d82fc 669 /// }
e74abb32
XL
670 ///
671 /// // Put everything back together into a Vec
fc512014 672 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
e74abb32 673 /// assert_eq!(rebuilt, [4, 5, 6]);
1a4d82fc
JJ
674 /// }
675 /// ```
fc512014
XL
676 #[inline]
677 #[unstable(feature = "allocator_api", issue = "32838")]
678 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
679 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
680 }
681
682 /// Decomposes a `Vec<T>` into its raw components.
683 ///
684 /// Returns the raw pointer to the underlying data, the length of
685 /// the vector (in elements), and the allocated capacity of the
686 /// data (in elements). These are the same arguments in the same
687 /// order as the arguments to [`from_raw_parts`].
688 ///
689 /// After calling this function, the caller is responsible for the
690 /// memory previously managed by the `Vec`. The only way to do
691 /// this is to convert the raw pointer, length, and capacity back
692 /// into a `Vec` with the [`from_raw_parts`] function, allowing
693 /// the destructor to perform the cleanup.
694 ///
695 /// [`from_raw_parts`]: Vec::from_raw_parts
696 ///
697 /// # Examples
698 ///
699 /// ```
700 /// #![feature(vec_into_raw_parts)]
701 /// let v: Vec<i32> = vec![-1, 0, 1];
702 ///
703 /// let (ptr, len, cap) = v.into_raw_parts();
704 ///
705 /// let rebuilt = unsafe {
706 /// // We can now make changes to the components, such as
707 /// // transmuting the raw pointer to a compatible type.
708 /// let ptr = ptr as *mut u32;
709 ///
710 /// Vec::from_raw_parts(ptr, len, cap)
711 /// };
712 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
713 /// ```
714 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
715 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
716 let mut me = ManuallyDrop::new(self);
717 (me.as_mut_ptr(), me.len(), me.capacity())
718 }
719
720 /// Decomposes a `Vec<T>` into its raw components.
721 ///
722 /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
723 /// the allocated capacity of the data (in elements), and the allocator. These are the same
724 /// arguments in the same order as the arguments to [`from_raw_parts_in`].
725 ///
726 /// After calling this function, the caller is responsible for the
727 /// memory previously managed by the `Vec`. The only way to do
728 /// this is to convert the raw pointer, length, and capacity back
729 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
730 /// the destructor to perform the cleanup.
731 ///
732 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
733 ///
734 /// # Examples
735 ///
736 /// ```
737 /// #![feature(allocator_api, vec_into_raw_parts)]
738 ///
739 /// use std::alloc::System;
740 ///
741 /// let mut v: Vec<i32, System> = Vec::new_in(System);
742 /// v.push(-1);
743 /// v.push(0);
744 /// v.push(1);
745 ///
746 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
747 ///
748 /// let rebuilt = unsafe {
749 /// // We can now make changes to the components, such as
750 /// // transmuting the raw pointer to a compatible type.
751 /// let ptr = ptr as *mut u32;
752 ///
753 /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
754 /// };
755 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
756 /// ```
757 #[unstable(feature = "allocator_api", issue = "32838")]
758 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
759 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
760 let mut me = ManuallyDrop::new(self);
761 let len = me.len();
762 let capacity = me.capacity();
763 let ptr = me.as_mut_ptr();
764 let alloc = unsafe { ptr::read(me.allocator()) };
765 (ptr, len, capacity, alloc)
1a4d82fc
JJ
766 }
767
1a4d82fc
JJ
768 /// Returns the number of elements the vector can hold without
769 /// reallocating.
770 ///
771 /// # Examples
772 ///
773 /// ```
85aaf69f 774 /// let vec: Vec<i32> = Vec::with_capacity(10);
1a4d82fc
JJ
775 /// assert_eq!(vec.capacity(), 10);
776 /// ```
777 #[inline]
85aaf69f
SL
778 #[stable(feature = "rust1", since = "1.0.0")]
779 pub fn capacity(&self) -> usize {
416331ca 780 self.buf.capacity()
1a4d82fc
JJ
781 }
782
c34b1796
AL
783 /// Reserves capacity for at least `additional` more elements to be inserted
784 /// in the given `Vec<T>`. The collection may reserve more space to avoid
8bb4bdeb
XL
785 /// frequent reallocations. After calling `reserve`, capacity will be
786 /// greater than or equal to `self.len() + additional`. Does nothing if
787 /// capacity is already sufficient.
1a4d82fc
JJ
788 ///
789 /// # Panics
790 ///
f035d41b 791 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1a4d82fc
JJ
792 ///
793 /// # Examples
794 ///
795 /// ```
85aaf69f 796 /// let mut vec = vec![1];
1a4d82fc
JJ
797 /// vec.reserve(10);
798 /// assert!(vec.capacity() >= 11);
799 /// ```
17df50a5 800 #[cfg(not(no_global_oom_handling))]
85aaf69f
SL
801 #[stable(feature = "rust1", since = "1.0.0")]
802 pub fn reserve(&mut self, additional: usize) {
c1a9b12d 803 self.buf.reserve(self.len, additional);
1a4d82fc
JJ
804 }
805
806 /// Reserves the minimum capacity for exactly `additional` more elements to
8bb4bdeb
XL
807 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
808 /// capacity will be greater than or equal to `self.len() + additional`.
809 /// Does nothing if the capacity is already sufficient.
1a4d82fc
JJ
810 ///
811 /// Note that the allocator may give the collection more space than it
9fa01778 812 /// requests. Therefore, capacity can not be relied upon to be precisely
1a4d82fc
JJ
813 /// minimal. Prefer `reserve` if future insertions are expected.
814 ///
815 /// # Panics
816 ///
85aaf69f 817 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
818 ///
819 /// # Examples
820 ///
821 /// ```
85aaf69f 822 /// let mut vec = vec![1];
1a4d82fc
JJ
823 /// vec.reserve_exact(10);
824 /// assert!(vec.capacity() >= 11);
825 /// ```
17df50a5 826 #[cfg(not(no_global_oom_handling))]
85aaf69f
SL
827 #[stable(feature = "rust1", since = "1.0.0")]
828 pub fn reserve_exact(&mut self, additional: usize) {
c1a9b12d 829 self.buf.reserve_exact(self.len, additional);
1a4d82fc
JJ
830 }
831
0531ce1d
XL
832 /// Tries to reserve capacity for at least `additional` more elements to be inserted
833 /// in the given `Vec<T>`. The collection may reserve more space to avoid
1b1a35ee 834 /// frequent reallocations. After calling `try_reserve`, capacity will be
0531ce1d
XL
835 /// greater than or equal to `self.len() + additional`. Does nothing if
836 /// capacity is already sufficient.
837 ///
838 /// # Errors
839 ///
840 /// If the capacity overflows, or the allocator reports a failure, then an error
841 /// is returned.
842 ///
843 /// # Examples
844 ///
845 /// ```
846 /// #![feature(try_reserve)]
e1599b0c 847 /// use std::collections::TryReserveError;
0531ce1d 848 ///
e1599b0c 849 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
0531ce1d
XL
850 /// let mut output = Vec::new();
851 ///
852 /// // Pre-reserve the memory, exiting if we can't
853 /// output.try_reserve(data.len())?;
854 ///
855 /// // Now we know this can't OOM in the middle of our complex work
856 /// output.extend(data.iter().map(|&val| {
857 /// val * 2 + 5 // very complicated
858 /// }));
859 ///
860 /// Ok(output)
861 /// }
862 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
863 /// ```
dfeec247 864 #[unstable(feature = "try_reserve", reason = "new API", issue = "48043")]
e1599b0c 865 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
0531ce1d
XL
866 self.buf.try_reserve(self.len, additional)
867 }
868
1b1a35ee
XL
869 /// Tries to reserve the minimum capacity for exactly `additional`
870 /// elements to be inserted in the given `Vec<T>`. After calling
871 /// `try_reserve_exact`, capacity will be greater than or equal to
872 /// `self.len() + additional` if it returns `Ok(())`.
0531ce1d
XL
873 /// Does nothing if the capacity is already sufficient.
874 ///
875 /// Note that the allocator may give the collection more space than it
9fa01778 876 /// requests. Therefore, capacity can not be relied upon to be precisely
0531ce1d
XL
877 /// minimal. Prefer `reserve` if future insertions are expected.
878 ///
879 /// # Errors
880 ///
881 /// If the capacity overflows, or the allocator reports a failure, then an error
882 /// is returned.
883 ///
884 /// # Examples
885 ///
886 /// ```
887 /// #![feature(try_reserve)]
e1599b0c 888 /// use std::collections::TryReserveError;
0531ce1d 889 ///
e1599b0c 890 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
0531ce1d
XL
891 /// let mut output = Vec::new();
892 ///
893 /// // Pre-reserve the memory, exiting if we can't
1b1a35ee 894 /// output.try_reserve_exact(data.len())?;
0531ce1d
XL
895 ///
896 /// // Now we know this can't OOM in the middle of our complex work
897 /// output.extend(data.iter().map(|&val| {
898 /// val * 2 + 5 // very complicated
899 /// }));
900 ///
901 /// Ok(output)
902 /// }
903 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
904 /// ```
dfeec247
XL
905 #[unstable(feature = "try_reserve", reason = "new API", issue = "48043")]
906 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
0531ce1d
XL
907 self.buf.try_reserve_exact(self.len, additional)
908 }
909
1a4d82fc
JJ
910 /// Shrinks the capacity of the vector as much as possible.
911 ///
912 /// It will drop down as close as possible to the length but the allocator
913 /// may still inform the vector that there is space for a few more elements.
914 ///
915 /// # Examples
916 ///
917 /// ```
85aaf69f 918 /// let mut vec = Vec::with_capacity(10);
17df50a5 919 /// vec.extend([1, 2, 3]);
1a4d82fc
JJ
920 /// assert_eq!(vec.capacity(), 10);
921 /// vec.shrink_to_fit();
922 /// assert!(vec.capacity() >= 3);
923 /// ```
17df50a5 924 #[cfg(not(no_global_oom_handling))]
85aaf69f 925 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 926 pub fn shrink_to_fit(&mut self) {
3dfed10e
XL
927 // The capacity is never less than the length, and there's nothing to do when
928 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
929 // by only calling it with a greater capacity.
930 if self.capacity() > self.len {
83c7162d
XL
931 self.buf.shrink_to_fit(self.len);
932 }
1a4d82fc
JJ
933 }
934
0531ce1d
XL
935 /// Shrinks the capacity of the vector with a lower bound.
936 ///
937 /// The capacity will remain at least as large as both the length
938 /// and the supplied value.
939 ///
5869c6ff 940 /// If the current capacity is less than the lower limit, this is a no-op.
0531ce1d
XL
941 ///
942 /// # Examples
943 ///
944 /// ```
945 /// #![feature(shrink_to)]
946 /// let mut vec = Vec::with_capacity(10);
17df50a5 947 /// vec.extend([1, 2, 3]);
0531ce1d
XL
948 /// assert_eq!(vec.capacity(), 10);
949 /// vec.shrink_to(4);
950 /// assert!(vec.capacity() >= 4);
951 /// vec.shrink_to(0);
952 /// assert!(vec.capacity() >= 3);
953 /// ```
17df50a5 954 #[cfg(not(no_global_oom_handling))]
dfeec247 955 #[unstable(feature = "shrink_to", reason = "new API", issue = "56431")]
0531ce1d 956 pub fn shrink_to(&mut self, min_capacity: usize) {
5869c6ff
XL
957 if self.capacity() > min_capacity {
958 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
959 }
0531ce1d
XL
960 }
961
c30ab7b3 962 /// Converts the vector into [`Box<[T]>`][owned slice].
1a4d82fc 963 ///
ea8adc8c 964 /// Note that this will drop any excess capacity.
c30ab7b3 965 ///
3dfed10e 966 /// [owned slice]: Box
5bcae85e
SL
967 ///
968 /// # Examples
969 ///
970 /// ```
971 /// let v = vec![1, 2, 3];
972 ///
973 /// let slice = v.into_boxed_slice();
974 /// ```
975 ///
976 /// Any excess capacity is removed:
977 ///
978 /// ```
979 /// let mut vec = Vec::with_capacity(10);
17df50a5 980 /// vec.extend([1, 2, 3]);
5bcae85e
SL
981 ///
982 /// assert_eq!(vec.capacity(), 10);
983 /// let slice = vec.into_boxed_slice();
984 /// assert_eq!(slice.into_vec().capacity(), 3);
985 /// ```
17df50a5 986 #[cfg(not(no_global_oom_handling))]
c34b1796 987 #[stable(feature = "rust1", since = "1.0.0")]
fc512014 988 pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1a4d82fc 989 unsafe {
c1a9b12d 990 self.shrink_to_fit();
ba9703b0
XL
991 let me = ManuallyDrop::new(self);
992 let buf = ptr::read(&me.buf);
993 let len = me.len();
994 buf.into_box(len).assume_init()
1a4d82fc
JJ
995 }
996 }
997
5bcae85e
SL
998 /// Shortens the vector, keeping the first `len` elements and dropping
999 /// the rest.
1a4d82fc
JJ
1000 ///
1001 /// If `len` is greater than the vector's current length, this has no
1002 /// effect.
1003 ///
5bcae85e
SL
1004 /// The [`drain`] method can emulate `truncate`, but causes the excess
1005 /// elements to be returned instead of dropped.
1006 ///
8bb4bdeb
XL
1007 /// Note that this method has no effect on the allocated capacity
1008 /// of the vector.
1009 ///
1a4d82fc
JJ
1010 /// # Examples
1011 ///
5bcae85e
SL
1012 /// Truncating a five element vector to two elements:
1013 ///
1a4d82fc 1014 /// ```
92a42be0 1015 /// let mut vec = vec![1, 2, 3, 4, 5];
1a4d82fc 1016 /// vec.truncate(2);
c34b1796 1017 /// assert_eq!(vec, [1, 2]);
1a4d82fc 1018 /// ```
5bcae85e
SL
1019 ///
1020 /// No truncation occurs when `len` is greater than the vector's current
1021 /// length:
1022 ///
1023 /// ```
1024 /// let mut vec = vec![1, 2, 3];
1025 /// vec.truncate(8);
1026 /// assert_eq!(vec, [1, 2, 3]);
1027 /// ```
1028 ///
1029 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1030 /// method.
1031 ///
1032 /// ```
1033 /// let mut vec = vec![1, 2, 3];
1034 /// vec.truncate(0);
1035 /// assert_eq!(vec, []);
1036 /// ```
1037 ///
3dfed10e
XL
1038 /// [`clear`]: Vec::clear
1039 /// [`drain`]: Vec::drain
85aaf69f
SL
1040 #[stable(feature = "rust1", since = "1.0.0")]
1041 pub fn truncate(&mut self, len: usize) {
60c5eb7d
XL
1042 // This is safe because:
1043 //
1044 // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1045 // case avoids creating an invalid slice, and
1046 // * the `len` of the vector is shrunk before calling `drop_in_place`,
1047 // such that no value will be dropped twice in case `drop_in_place`
1048 // were to panic once (if it panics twice, the program aborts).
1049 unsafe {
5869c6ff
XL
1050 // Note: It's intentional that this is `>` and not `>=`.
1051 // Changing it to `>=` has negative performance
1052 // implications in some cases. See #78884 for more.
60c5eb7d
XL
1053 if len > self.len {
1054 return;
1a4d82fc 1055 }
ba9703b0 1056 let remaining_len = self.len - len;
f9f354fc 1057 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
e1599b0c 1058 self.len = len;
60c5eb7d 1059 ptr::drop_in_place(s);
1a4d82fc
JJ
1060 }
1061 }
1062
9346a6ac 1063 /// Extracts a slice containing the entire vector.
62682a34
SL
1064 ///
1065 /// Equivalent to `&s[..]`.
5bcae85e
SL
1066 ///
1067 /// # Examples
1068 ///
1069 /// ```
1070 /// use std::io::{self, Write};
1071 /// let buffer = vec![1, 2, 3, 5, 8];
1072 /// io::sink().write(buffer.as_slice()).unwrap();
1073 /// ```
1a4d82fc 1074 #[inline]
9cc50fc6 1075 #[stable(feature = "vec_as_slice", since = "1.7.0")]
c34b1796
AL
1076 pub fn as_slice(&self) -> &[T] {
1077 self
1078 }
1079
62682a34
SL
1080 /// Extracts a mutable slice of the entire vector.
1081 ///
1082 /// Equivalent to `&mut s[..]`.
5bcae85e
SL
1083 ///
1084 /// # Examples
1085 ///
1086 /// ```
1087 /// use std::io::{self, Read};
1088 /// let mut buffer = vec![0; 3];
1089 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1090 /// ```
c34b1796 1091 #[inline]
9cc50fc6 1092 #[stable(feature = "vec_as_slice", since = "1.7.0")]
85aaf69f 1093 pub fn as_mut_slice(&mut self) -> &mut [T] {
5bcae85e 1094 self
1a4d82fc
JJ
1095 }
1096
dc9dc135
XL
1097 /// Returns a raw pointer to the vector's buffer.
1098 ///
1099 /// The caller must ensure that the vector outlives the pointer this
1100 /// function returns, or else it will end up pointing to garbage.
1101 /// Modifying the vector may cause its buffer to be reallocated,
1102 /// which would also make any pointers to it invalid.
1103 ///
1104 /// The caller must also ensure that the memory the pointer (non-transitively) points to
1105 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1106 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1107 ///
1108 /// # Examples
1109 ///
1110 /// ```
1111 /// let x = vec![1, 2, 4];
1112 /// let x_ptr = x.as_ptr();
1113 ///
1114 /// unsafe {
1115 /// for i in 0..x.len() {
1116 /// assert_eq!(*x_ptr.add(i), 1 << i);
1117 /// }
1118 /// }
1119 /// ```
1120 ///
3dfed10e 1121 /// [`as_mut_ptr`]: Vec::as_mut_ptr
dc9dc135
XL
1122 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1123 #[inline]
1124 pub fn as_ptr(&self) -> *const T {
1125 // We shadow the slice method of the same name to avoid going through
1126 // `deref`, which creates an intermediate reference.
1127 let ptr = self.buf.ptr();
dfeec247
XL
1128 unsafe {
1129 assume(!ptr.is_null());
1130 }
dc9dc135
XL
1131 ptr
1132 }
1133
1134 /// Returns an unsafe mutable pointer to the vector's buffer.
1135 ///
1136 /// The caller must ensure that the vector outlives the pointer this
1137 /// function returns, or else it will end up pointing to garbage.
1138 /// Modifying the vector may cause its buffer to be reallocated,
1139 /// which would also make any pointers to it invalid.
1140 ///
1141 /// # Examples
1142 ///
1143 /// ```
1144 /// // Allocate vector big enough for 4 elements.
1145 /// let size = 4;
1146 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1147 /// let x_ptr = x.as_mut_ptr();
1148 ///
1149 /// // Initialize elements via raw pointer writes, then set length.
1150 /// unsafe {
1151 /// for i in 0..size {
1152 /// *x_ptr.add(i) = i as i32;
1153 /// }
1154 /// x.set_len(size);
1155 /// }
fc512014 1156 /// assert_eq!(&*x, &[0, 1, 2, 3]);
dc9dc135
XL
1157 /// ```
1158 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1159 #[inline]
1160 pub fn as_mut_ptr(&mut self) -> *mut T {
1161 // We shadow the slice method of the same name to avoid going through
1162 // `deref_mut`, which creates an intermediate reference.
1163 let ptr = self.buf.ptr();
dfeec247
XL
1164 unsafe {
1165 assume(!ptr.is_null());
1166 }
dc9dc135
XL
1167 ptr
1168 }
1169
fc512014
XL
1170 /// Returns a reference to the underlying allocator.
1171 #[unstable(feature = "allocator_api", issue = "32838")]
1172 #[inline]
1173 pub fn allocator(&self) -> &A {
1174 self.buf.allocator()
1175 }
1176
0731742a 1177 /// Forces the length of the vector to `new_len`.
1a4d82fc 1178 ///
0731742a 1179 /// This is a low-level operation that maintains none of the normal
9fa01778 1180 /// invariants of the type. Normally changing the length of a vector
0731742a
XL
1181 /// is done using one of the safe operations instead, such as
1182 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1a4d82fc 1183 ///
3dfed10e
XL
1184 /// [`truncate`]: Vec::truncate
1185 /// [`resize`]: Vec::resize
1186 /// [`extend`]: Extend::extend
1187 /// [`clear`]: Vec::clear
1a4d82fc 1188 ///
0731742a 1189 /// # Safety
5bcae85e 1190 ///
0731742a
XL
1191 /// - `new_len` must be less than or equal to [`capacity()`].
1192 /// - The elements at `old_len..new_len` must be initialized.
5bcae85e 1193 ///
3dfed10e 1194 /// [`capacity()`]: Vec::capacity
0731742a
XL
1195 ///
1196 /// # Examples
1197 ///
1198 /// This method can be useful for situations in which the vector
1199 /// is serving as a buffer for other code, particularly over FFI:
1200 ///
1201 /// ```no_run
1202 /// # #![allow(dead_code)]
1203 /// # // This is just a minimal skeleton for the doc example;
1204 /// # // don't use this as a starting point for a real library.
1205 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1206 /// # const Z_OK: i32 = 0;
1207 /// # extern "C" {
1208 /// # fn deflateGetDictionary(
1209 /// # strm: *mut std::ffi::c_void,
1210 /// # dictionary: *mut u8,
1211 /// # dictLength: *mut usize,
1212 /// # ) -> i32;
1213 /// # }
1214 /// # impl StreamWrapper {
1215 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1216 /// // Per the FFI method's docs, "32768 bytes is always enough".
1217 /// let mut dict = Vec::with_capacity(32_768);
1218 /// let mut dict_length = 0;
1219 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1220 /// // 1. `dict_length` elements were initialized.
1221 /// // 2. `dict_length` <= the capacity (32_768)
1222 /// // which makes `set_len` safe to call.
1223 /// unsafe {
1224 /// // Make the FFI call...
1225 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1226 /// if r == Z_OK {
1227 /// // ...and update the length to what was initialized.
1228 /// dict.set_len(dict_length);
1229 /// Some(dict)
1230 /// } else {
1231 /// None
1232 /// }
1233 /// }
5bcae85e 1234 /// }
0731742a 1235 /// # }
5bcae85e
SL
1236 /// ```
1237 ///
0731742a
XL
1238 /// While the following example is sound, there is a memory leak since
1239 /// the inner vectors were not freed prior to the `set_len` call:
5bcae85e
SL
1240 ///
1241 /// ```
1242 /// let mut vec = vec![vec![1, 0, 0],
1243 /// vec![0, 1, 0],
1244 /// vec![0, 0, 1]];
0731742a
XL
1245 /// // SAFETY:
1246 /// // 1. `old_len..0` is empty so no elements need to be initialized.
1247 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1a4d82fc 1248 /// unsafe {
5bcae85e
SL
1249 /// vec.set_len(0);
1250 /// }
1251 /// ```
1252 ///
0731742a
XL
1253 /// Normally, here, one would use [`clear`] instead to correctly drop
1254 /// the contents and thus not leak memory.
1a4d82fc 1255 #[inline]
85aaf69f 1256 #[stable(feature = "rust1", since = "1.0.0")]
0731742a
XL
1257 pub unsafe fn set_len(&mut self, new_len: usize) {
1258 debug_assert!(new_len <= self.capacity());
1259
1260 self.len = new_len;
1a4d82fc
JJ
1261 }
1262
cc61c64b
XL
1263 /// Removes an element from the vector and returns it.
1264 ///
1265 /// The removed element is replaced by the last element of the vector.
1a4d82fc
JJ
1266 ///
1267 /// This does not preserve ordering, but is O(1).
1268 ///
1269 /// # Panics
1270 ///
1271 /// Panics if `index` is out of bounds.
1272 ///
1273 /// # Examples
1274 ///
1275 /// ```
1276 /// let mut v = vec!["foo", "bar", "baz", "qux"];
1277 ///
1278 /// assert_eq!(v.swap_remove(1), "bar");
c34b1796 1279 /// assert_eq!(v, ["foo", "qux", "baz"]);
1a4d82fc
JJ
1280 ///
1281 /// assert_eq!(v.swap_remove(0), "foo");
c34b1796 1282 /// assert_eq!(v, ["baz", "qux"]);
1a4d82fc
JJ
1283 /// ```
1284 #[inline]
85aaf69f
SL
1285 #[stable(feature = "rust1", since = "1.0.0")]
1286 pub fn swap_remove(&mut self, index: usize) -> T {
ba9703b0
XL
1287 #[cold]
1288 #[inline(never)]
1289 fn assert_failed(index: usize, len: usize) -> ! {
1290 panic!("swap_remove index (is {}) should be < len (is {})", index, len);
1291 }
1292
1293 let len = self.len();
1294 if index >= len {
1295 assert_failed(index, len);
1296 }
8faf50e0
XL
1297 unsafe {
1298 // We replace self[index] with the last element. Note that if the
ba9703b0 1299 // bounds check above succeeds there must be a last element (which
8faf50e0 1300 // can be self[index] itself).
ba9703b0 1301 let last = ptr::read(self.as_ptr().add(len - 1));
f035d41b 1302 let hole = self.as_mut_ptr().add(index);
ba9703b0 1303 self.set_len(len - 1);
8faf50e0
XL
1304 ptr::replace(hole, last)
1305 }
1a4d82fc
JJ
1306 }
1307
1308 /// Inserts an element at position `index` within the vector, shifting all
7453a54e 1309 /// elements after it to the right.
1a4d82fc
JJ
1310 ///
1311 /// # Panics
1312 ///
2c00a5a8 1313 /// Panics if `index > len`.
1a4d82fc
JJ
1314 ///
1315 /// # Examples
1316 ///
1317 /// ```
85aaf69f 1318 /// let mut vec = vec![1, 2, 3];
1a4d82fc 1319 /// vec.insert(1, 4);
c34b1796 1320 /// assert_eq!(vec, [1, 4, 2, 3]);
1a4d82fc 1321 /// vec.insert(4, 5);
c34b1796 1322 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1a4d82fc 1323 /// ```
17df50a5 1324 #[cfg(not(no_global_oom_handling))]
85aaf69f
SL
1325 #[stable(feature = "rust1", since = "1.0.0")]
1326 pub fn insert(&mut self, index: usize, element: T) {
ba9703b0
XL
1327 #[cold]
1328 #[inline(never)]
1329 fn assert_failed(index: usize, len: usize) -> ! {
1330 panic!("insertion index (is {}) should be <= len (is {})", index, len);
1331 }
1332
1a4d82fc 1333 let len = self.len();
ba9703b0
XL
1334 if index > len {
1335 assert_failed(index, len);
1336 }
c1a9b12d 1337
1a4d82fc 1338 // space for the new element
416331ca 1339 if len == self.buf.capacity() {
94b46f34 1340 self.reserve(1);
92a42be0 1341 }
1a4d82fc 1342
92a42be0
SL
1343 unsafe {
1344 // infallible
1a4d82fc
JJ
1345 // The spot to put the new value
1346 {
b7449926 1347 let p = self.as_mut_ptr().add(index);
1a4d82fc
JJ
1348 // Shift everything over to make space. (Duplicating the
1349 // `index`th element into two consecutive places.)
c1a9b12d 1350 ptr::copy(p, p.offset(1), len - index);
1a4d82fc
JJ
1351 // Write it in, overwriting the first copy of the `index`th
1352 // element.
c1a9b12d 1353 ptr::write(p, element);
1a4d82fc
JJ
1354 }
1355 self.set_len(len + 1);
1356 }
1357 }
1358
1359 /// Removes and returns the element at position `index` within the vector,
7453a54e 1360 /// shifting all elements after it to the left.
1a4d82fc
JJ
1361 ///
1362 /// # Panics
1363 ///
bd371182 1364 /// Panics if `index` is out of bounds.
1a4d82fc
JJ
1365 ///
1366 /// # Examples
1367 ///
1368 /// ```
85aaf69f 1369 /// let mut v = vec![1, 2, 3];
1a4d82fc 1370 /// assert_eq!(v.remove(1), 2);
c34b1796 1371 /// assert_eq!(v, [1, 3]);
1a4d82fc 1372 /// ```
85aaf69f
SL
1373 #[stable(feature = "rust1", since = "1.0.0")]
1374 pub fn remove(&mut self, index: usize) -> T {
ba9703b0
XL
1375 #[cold]
1376 #[inline(never)]
1377 fn assert_failed(index: usize, len: usize) -> ! {
1378 panic!("removal index (is {}) should be < len (is {})", index, len);
1379 }
1380
1a4d82fc 1381 let len = self.len();
ba9703b0
XL
1382 if index >= len {
1383 assert_failed(index, len);
1384 }
92a42be0
SL
1385 unsafe {
1386 // infallible
1a4d82fc
JJ
1387 let ret;
1388 {
1389 // the place we are taking from.
b7449926 1390 let ptr = self.as_mut_ptr().add(index);
1a4d82fc
JJ
1391 // copy it out, unsafely having a copy of the value on
1392 // the stack and in the vector at the same time.
85aaf69f 1393 ret = ptr::read(ptr);
1a4d82fc
JJ
1394
1395 // Shift everything down to fill in that spot.
c1a9b12d 1396 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1a4d82fc
JJ
1397 }
1398 self.set_len(len - 1);
1399 ret
1400 }
1401 }
1402
1403 /// Retains only the elements specified by the predicate.
1404 ///
c30ab7b3 1405 /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
48663c56
XL
1406 /// This method operates in place, visiting each element exactly once in the
1407 /// original order, and preserves the order of the retained elements.
1a4d82fc
JJ
1408 ///
1409 /// # Examples
1410 ///
1411 /// ```
85aaf69f 1412 /// let mut vec = vec![1, 2, 3, 4];
dfeec247 1413 /// vec.retain(|&x| x % 2 == 0);
c34b1796 1414 /// assert_eq!(vec, [2, 4]);
1a4d82fc 1415 /// ```
48663c56 1416 ///
6a06907d
XL
1417 /// Because the elements are visited exactly once in the original order,
1418 /// external state may be used to decide which elements to keep.
48663c56
XL
1419 ///
1420 /// ```
1421 /// let mut vec = vec![1, 2, 3, 4, 5];
1422 /// let keep = [false, true, true, false, true];
6a06907d
XL
1423 /// let mut iter = keep.iter();
1424 /// vec.retain(|_| *iter.next().unwrap());
48663c56
XL
1425 /// assert_eq!(vec, [2, 3, 5]);
1426 /// ```
85aaf69f 1427 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0 1428 pub fn retain<F>(&mut self, mut f: F)
dfeec247
XL
1429 where
1430 F: FnMut(&T) -> bool,
92a42be0 1431 {
6a06907d
XL
1432 let original_len = self.len();
1433 // Avoid double drop if the drop guard is not executed,
1434 // since we may make some holes during the process.
1435 unsafe { self.set_len(0) };
1436
1437 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1438 // |<- processed len ->| ^- next to check
1439 // |<- deleted cnt ->|
1440 // |<- original_len ->|
1441 // Kept: Elements which predicate returns true on.
1442 // Hole: Moved or dropped element slot.
1443 // Unchecked: Unchecked valid elements.
1444 //
1445 // This drop guard will be invoked when predicate or `drop` of element panicked.
1446 // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1447 // In cases when predicate and `drop` never panick, it will be optimized out.
1448 struct BackshiftOnDrop<'a, T, A: Allocator> {
1449 v: &'a mut Vec<T, A>,
1450 processed_len: usize,
1451 deleted_cnt: usize,
1452 original_len: usize,
1453 }
60c5eb7d 1454
6a06907d
XL
1455 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1456 fn drop(&mut self) {
1457 if self.deleted_cnt > 0 {
1458 // SAFETY: Trailing unchecked items must be valid since we never touch them.
1459 unsafe {
1460 ptr::copy(
1461 self.v.as_ptr().add(self.processed_len),
1462 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1463 self.original_len - self.processed_len,
1464 );
1465 }
1466 }
1467 // SAFETY: After filling holes, all items are in contiguous memory.
1468 unsafe {
1469 self.v.set_len(self.original_len - self.deleted_cnt);
60c5eb7d
XL
1470 }
1471 }
1472 }
6a06907d
XL
1473
1474 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1475
1476 while g.processed_len < original_len {
1477 // SAFETY: Unchecked element must be valid.
1478 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1479 if !f(cur) {
1480 // Advance early to avoid double drop if `drop_in_place` panicked.
1481 g.processed_len += 1;
1482 g.deleted_cnt += 1;
1483 // SAFETY: We never touch this element again after dropped.
1484 unsafe { ptr::drop_in_place(cur) };
1485 // We already advanced the counter.
1486 continue;
1487 }
1488 if g.deleted_cnt > 0 {
1489 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1490 // We use copy for move, and never touch this element again.
1491 unsafe {
1492 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1493 ptr::copy_nonoverlapping(cur, hole_slot, 1);
1494 }
1495 }
1496 g.processed_len += 1;
60c5eb7d 1497 }
6a06907d
XL
1498
1499 // All item are processed. This can be optimized to `set_len` by LLVM.
1500 drop(g);
1a4d82fc
JJ
1501 }
1502
041b39d2
XL
1503 /// Removes all but the first of consecutive elements in the vector that resolve to the same
1504 /// key.
c30ab7b3
SL
1505 ///
1506 /// If the vector is sorted, this removes all duplicates.
1507 ///
1508 /// # Examples
1509 ///
1510 /// ```
c30ab7b3
SL
1511 /// let mut vec = vec![10, 20, 21, 30, 20];
1512 ///
1513 /// vec.dedup_by_key(|i| *i / 10);
1514 ///
1515 /// assert_eq!(vec, [10, 20, 30, 20]);
1516 /// ```
32a655c1 1517 #[stable(feature = "dedup_by", since = "1.16.0")]
c30ab7b3 1518 #[inline]
dfeec247
XL
1519 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1520 where
1521 F: FnMut(&mut T) -> K,
1522 K: PartialEq,
1523 {
c30ab7b3
SL
1524 self.dedup_by(|a, b| key(a) == key(b))
1525 }
1526
041b39d2
XL
1527 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1528 /// relation.
cc61c64b 1529 ///
0bf4aa26
XL
1530 /// The `same_bucket` function is passed references to two elements from the vector and
1531 /// must determine if the elements compare equal. The elements are passed in opposite order
1532 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
c30ab7b3
SL
1533 ///
1534 /// If the vector is sorted, this removes all duplicates.
1535 ///
1536 /// # Examples
1537 ///
1538 /// ```
c30ab7b3
SL
1539 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1540 ///
1541 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1542 ///
1543 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1544 /// ```
32a655c1 1545 #[stable(feature = "dedup_by", since = "1.16.0")]
6a06907d 1546 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
dfeec247
XL
1547 where
1548 F: FnMut(&mut T, &mut T) -> bool,
1549 {
6a06907d
XL
1550 let len = self.len();
1551 if len <= 1 {
1552 return;
1553 }
1554
1555 /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1556 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1557 /* Offset of the element we want to check if it is duplicate */
1558 read: usize,
1559
1560 /* Offset of the place where we want to place the non-duplicate
1561 * when we find it. */
1562 write: usize,
1563
1564 /* The Vec that would need correction if `same_bucket` panicked */
1565 vec: &'a mut Vec<T, A>,
1566 }
1567
1568 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1569 fn drop(&mut self) {
1570 /* This code gets executed when `same_bucket` panics */
1571
1572 /* SAFETY: invariant guarantees that `read - write`
1573 * and `len - read` never overflow and that the copy is always
1574 * in-bounds. */
1575 unsafe {
1576 let ptr = self.vec.as_mut_ptr();
1577 let len = self.vec.len();
1578
1579 /* How many items were left when `same_bucket` paniced.
1580 * Basically vec[read..].len() */
1581 let items_left = len.wrapping_sub(self.read);
1582
1583 /* Pointer to first item in vec[write..write+items_left] slice */
1584 let dropped_ptr = ptr.add(self.write);
1585 /* Pointer to first item in vec[read..] slice */
1586 let valid_ptr = ptr.add(self.read);
1587
1588 /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1589 * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1590 ptr::copy(valid_ptr, dropped_ptr, items_left);
1591
1592 /* How many items have been already dropped
1593 * Basically vec[read..write].len() */
1594 let dropped = self.read.wrapping_sub(self.write);
1595
1596 self.vec.set_len(len - dropped);
1597 }
1598 }
1599 }
1600
1601 let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1602 let ptr = gap.vec.as_mut_ptr();
1603
1604 /* Drop items while going through Vec, it should be more efficient than
1605 * doing slice partition_dedup + truncate */
1606
1607 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1608 * are always in-bounds and read_ptr never aliases prev_ptr */
1609 unsafe {
1610 while gap.read < len {
1611 let read_ptr = ptr.add(gap.read);
1612 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1613
1614 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
17df50a5
XL
1615 // Increase `gap.read` now since the drop may panic.
1616 gap.read += 1;
6a06907d
XL
1617 /* We have found duplicate, drop it in-place */
1618 ptr::drop_in_place(read_ptr);
1619 } else {
1620 let write_ptr = ptr.add(gap.write);
1621
1622 /* Because `read_ptr` can be equal to `write_ptr`, we either
1623 * have to use `copy` or conditional `copy_nonoverlapping`.
1624 * Looks like the first option is faster. */
1625 ptr::copy(read_ptr, write_ptr, 1);
1626
1627 /* We have filled that place, so go further */
1628 gap.write += 1;
17df50a5 1629 gap.read += 1;
6a06907d 1630 }
6a06907d
XL
1631 }
1632
1633 /* Technically we could let `gap` clean up with its Drop, but
1634 * when `same_bucket` is guaranteed to not panic, this bloats a little
1635 * the codegen, so we just do it manually */
1636 gap.vec.set_len(gap.write);
1637 mem::forget(gap);
1638 }
c30ab7b3
SL
1639 }
1640
1a4d82fc
JJ
1641 /// Appends an element to the back of a collection.
1642 ///
1643 /// # Panics
1644 ///
f035d41b 1645 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1a4d82fc
JJ
1646 ///
1647 /// # Examples
1648 ///
c34b1796 1649 /// ```
c1a9b12d 1650 /// let mut vec = vec![1, 2];
1a4d82fc 1651 /// vec.push(3);
c34b1796 1652 /// assert_eq!(vec, [1, 2, 3]);
1a4d82fc 1653 /// ```
17df50a5 1654 #[cfg(not(no_global_oom_handling))]
1a4d82fc 1655 #[inline]
85aaf69f 1656 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1657 pub fn push(&mut self, value: T) {
c1a9b12d
SL
1658 // This will panic or abort if we would allocate > isize::MAX bytes
1659 // or if the length increment would overflow for zero-sized types.
416331ca 1660 if self.len == self.buf.capacity() {
94b46f34 1661 self.reserve(1);
92a42be0 1662 }
1a4d82fc 1663 unsafe {
b7449926 1664 let end = self.as_mut_ptr().add(self.len);
c1a9b12d 1665 ptr::write(end, value);
1a4d82fc
JJ
1666 self.len += 1;
1667 }
1668 }
1669
c30ab7b3 1670 /// Removes the last element from a vector and returns it, or [`None`] if it
e9174d1e 1671 /// is empty.
1a4d82fc
JJ
1672 ///
1673 /// # Examples
1674 ///
c34b1796 1675 /// ```
85aaf69f 1676 /// let mut vec = vec![1, 2, 3];
1a4d82fc 1677 /// assert_eq!(vec.pop(), Some(3));
c34b1796 1678 /// assert_eq!(vec, [1, 2]);
1a4d82fc
JJ
1679 /// ```
1680 #[inline]
85aaf69f 1681 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1682 pub fn pop(&mut self) -> Option<T> {
1683 if self.len == 0 {
1684 None
1685 } else {
1686 unsafe {
1687 self.len -= 1;
ba9703b0 1688 Some(ptr::read(self.as_ptr().add(self.len())))
1a4d82fc
JJ
1689 }
1690 }
1691 }
1692
85aaf69f
SL
1693 /// Moves all the elements of `other` into `Self`, leaving `other` empty.
1694 ///
1695 /// # Panics
1696 ///
1697 /// Panics if the number of elements in the vector overflows a `usize`.
1698 ///
1699 /// # Examples
1700 ///
1701 /// ```
1702 /// let mut vec = vec![1, 2, 3];
1703 /// let mut vec2 = vec![4, 5, 6];
1704 /// vec.append(&mut vec2);
c34b1796
AL
1705 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1706 /// assert_eq!(vec2, []);
85aaf69f 1707 /// ```
17df50a5 1708 #[cfg(not(no_global_oom_handling))]
85aaf69f 1709 #[inline]
e9174d1e 1710 #[stable(feature = "append", since = "1.4.0")]
85aaf69f 1711 pub fn append(&mut self, other: &mut Self) {
92a42be0 1712 unsafe {
cc61c64b 1713 self.append_elements(other.as_slice() as _);
92a42be0
SL
1714 other.set_len(0);
1715 }
85aaf69f
SL
1716 }
1717
cc61c64b 1718 /// Appends elements to `Self` from other buffer.
17df50a5 1719 #[cfg(not(no_global_oom_handling))]
cc61c64b
XL
1720 #[inline]
1721 unsafe fn append_elements(&mut self, other: *const [T]) {
f035d41b 1722 let count = unsafe { (*other).len() };
cc61c64b
XL
1723 self.reserve(count);
1724 let len = self.len();
f035d41b 1725 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
cc61c64b
XL
1726 self.len += count;
1727 }
1728
7cac9316 1729 /// Creates a draining iterator that removes the specified range in the vector
9cc50fc6 1730 /// and yields the removed items.
d9579d0f 1731 ///
3dfed10e
XL
1732 /// When the iterator **is** dropped, all elements in the range are removed
1733 /// from the vector, even if the iterator was not fully consumed. If the
1734 /// iterator **is not** dropped (with [`mem::forget`] for example), it is
1735 /// unspecified how many elements are removed.
d9579d0f
AL
1736 ///
1737 /// # Panics
1738 ///
1739 /// Panics if the starting point is greater than the end point or if
1740 /// the end point is greater than the length of the vector.
1a4d82fc
JJ
1741 ///
1742 /// # Examples
1743 ///
1744 /// ```
d9579d0f 1745 /// let mut v = vec![1, 2, 3];
9cc50fc6
SL
1746 /// let u: Vec<_> = v.drain(1..).collect();
1747 /// assert_eq!(v, &[1]);
1748 /// assert_eq!(u, &[2, 3]);
1749 ///
1750 /// // A full range clears the vector
1751 /// v.drain(..);
d9579d0f 1752 /// assert_eq!(v, &[]);
1a4d82fc 1753 /// ```
92a42be0 1754 #[stable(feature = "drain", since = "1.6.0")]
fc512014 1755 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
dfeec247
XL
1756 where
1757 R: RangeBounds<usize>,
92a42be0 1758 {
d9579d0f
AL
1759 // Memory safety
1760 //
1761 // When the Drain is first created, it shortens the length of
ff7c6d11 1762 // the source vector to make sure no uninitialized or moved-from elements
d9579d0f
AL
1763 // are accessible at all if the Drain's destructor never gets to run.
1764 //
1765 // Drain will ptr::read out the values to remove.
1766 // When finished, remaining tail of the vec is copied back to cover
1767 // the hole, and the vector length is restored to the new length.
1768 //
1769 let len = self.len();
6a06907d 1770 let Range { start, end } = slice::range(range, ..len);
d9579d0f 1771
1a4d82fc 1772 unsafe {
d9579d0f
AL
1773 // set self.vec length's to start, to be safe in case Drain is leaked
1774 self.set_len(start);
1775 // Use the borrow in the IterMut to indicate borrowing behavior of the
1776 // whole Drain iterator (like &mut T).
dfeec247 1777 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
1a4d82fc 1778 Drain {
d9579d0f
AL
1779 tail_start: end,
1780 tail_len: len - end,
5bcae85e 1781 iter: range_slice.iter(),
2c00a5a8 1782 vec: NonNull::from(self),
1a4d82fc
JJ
1783 }
1784 }
1785 }
1786
1787 /// Clears the vector, removing all values.
1788 ///
8bb4bdeb
XL
1789 /// Note that this method has no effect on the allocated capacity
1790 /// of the vector.
1791 ///
1a4d82fc
JJ
1792 /// # Examples
1793 ///
1794 /// ```
85aaf69f 1795 /// let mut v = vec![1, 2, 3];
1a4d82fc
JJ
1796 ///
1797 /// v.clear();
1798 ///
1799 /// assert!(v.is_empty());
1800 /// ```
1801 #[inline]
85aaf69f 1802 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1803 pub fn clear(&mut self) {
1804 self.truncate(0)
1805 }
1806
7cac9316
XL
1807 /// Returns the number of elements in the vector, also referred to
1808 /// as its 'length'.
1a4d82fc
JJ
1809 ///
1810 /// # Examples
1811 ///
1812 /// ```
85aaf69f 1813 /// let a = vec![1, 2, 3];
1a4d82fc
JJ
1814 /// assert_eq!(a.len(), 3);
1815 /// ```
1816 #[inline]
85aaf69f 1817 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1818 pub fn len(&self) -> usize {
1819 self.len
1820 }
1a4d82fc
JJ
1821
1822 /// Returns `true` if the vector contains no elements.
1823 ///
1824 /// # Examples
1825 ///
1826 /// ```
1827 /// let mut v = Vec::new();
1828 /// assert!(v.is_empty());
1829 ///
85aaf69f 1830 /// v.push(1);
1a4d82fc
JJ
1831 /// assert!(!v.is_empty());
1832 /// ```
85aaf69f 1833 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1834 pub fn is_empty(&self) -> bool {
1835 self.len() == 0
1836 }
1a4d82fc 1837
85aaf69f
SL
1838 /// Splits the collection into two at the given index.
1839 ///
60c5eb7d
XL
1840 /// Returns a newly allocated vector containing the elements in the range
1841 /// `[at, len)`. After the call, the original vector will be left containing
1842 /// the elements `[0, at)` with its previous capacity unchanged.
85aaf69f
SL
1843 ///
1844 /// # Panics
1845 ///
1846 /// Panics if `at > len`.
1847 ///
1848 /// # Examples
1849 ///
1850 /// ```
fc512014 1851 /// let mut vec = vec![1, 2, 3];
85aaf69f 1852 /// let vec2 = vec.split_off(1);
c34b1796
AL
1853 /// assert_eq!(vec, [1]);
1854 /// assert_eq!(vec2, [2, 3]);
85aaf69f 1855 /// ```
17df50a5 1856 #[cfg(not(no_global_oom_handling))]
85aaf69f 1857 #[inline]
ba9703b0 1858 #[must_use = "use `.truncate()` if you don't need the other half"]
e9174d1e 1859 #[stable(feature = "split_off", since = "1.4.0")]
fc512014
XL
1860 pub fn split_off(&mut self, at: usize) -> Self
1861 where
1862 A: Clone,
1863 {
ba9703b0
XL
1864 #[cold]
1865 #[inline(never)]
1866 fn assert_failed(at: usize, len: usize) -> ! {
1867 panic!("`at` split index (is {}) should be <= len (is {})", at, len);
1868 }
1869
1870 if at > self.len() {
1871 assert_failed(at, self.len());
1872 }
85aaf69f 1873
1b1a35ee
XL
1874 if at == 0 {
1875 // the new vector can take over the original buffer and avoid the copy
fc512014
XL
1876 return mem::replace(
1877 self,
1878 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
1879 );
1b1a35ee
XL
1880 }
1881
85aaf69f 1882 let other_len = self.len - at;
fc512014 1883 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
85aaf69f
SL
1884
1885 // Unsafely `set_len` and copy items to `other`.
1886 unsafe {
1887 self.set_len(at);
1888 other.set_len(other_len);
1889
dfeec247 1890 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
85aaf69f
SL
1891 }
1892 other
1893 }
83c7162d
XL
1894
1895 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1896 ///
1897 /// If `new_len` is greater than `len`, the `Vec` is extended by the
1898 /// difference, with each additional slot filled with the result of
1899 /// calling the closure `f`. The return values from `f` will end up
1900 /// in the `Vec` in the order they have been generated.
1901 ///
1902 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1903 ///
1904 /// This method uses a closure to create new values on every push. If
1b1a35ee
XL
1905 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
1906 /// want to use the [`Default`] trait to generate values, you can
1907 /// pass [`Default::default`] as the second argument.
83c7162d
XL
1908 ///
1909 /// # Examples
1910 ///
1911 /// ```
83c7162d
XL
1912 /// let mut vec = vec![1, 2, 3];
1913 /// vec.resize_with(5, Default::default);
1914 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
1915 ///
1916 /// let mut vec = vec![];
1917 /// let mut p = 1;
1918 /// vec.resize_with(4, || { p *= 2; p });
1919 /// assert_eq!(vec, [2, 4, 8, 16]);
1920 /// ```
17df50a5 1921 #[cfg(not(no_global_oom_handling))]
0731742a 1922 #[stable(feature = "vec_resize_with", since = "1.33.0")]
83c7162d 1923 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
dfeec247
XL
1924 where
1925 F: FnMut() -> T,
83c7162d
XL
1926 {
1927 let len = self.len();
1928 if new_len > len {
1929 self.extend_with(new_len - len, ExtendFunc(f));
1930 } else {
1931 self.truncate(new_len);
1932 }
1933 }
416331ca
XL
1934
1935 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
1936 /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
1937 /// `'a`. If the type has only static references, or none at all, then this
1938 /// may be chosen to be `'static`.
1939 ///
29967ef6
XL
1940 /// This function is similar to the [`leak`][Box::leak] function on [`Box`]
1941 /// except that there is no way to recover the leaked memory.
416331ca
XL
1942 ///
1943 /// This function is mainly useful for data that lives for the remainder of
1944 /// the program's life. Dropping the returned reference will cause a memory
1945 /// leak.
1946 ///
1947 /// # Examples
1948 ///
1949 /// Simple usage:
1950 ///
1951 /// ```
e74abb32 1952 /// let x = vec![1, 2, 3];
3dfed10e 1953 /// let static_ref: &'static mut [usize] = x.leak();
e74abb32
XL
1954 /// static_ref[0] += 1;
1955 /// assert_eq!(static_ref, &[2, 2, 3]);
416331ca 1956 /// ```
17df50a5 1957 #[cfg(not(no_global_oom_handling))]
3dfed10e 1958 #[stable(feature = "vec_leak", since = "1.47.0")]
416331ca 1959 #[inline]
3dfed10e 1960 pub fn leak<'a>(self) -> &'a mut [T]
416331ca 1961 where
fc512014 1962 A: 'a,
416331ca 1963 {
3dfed10e
XL
1964 Box::leak(self.into_boxed_slice())
1965 }
1966
1967 /// Returns the remaining spare capacity of the vector as a slice of
1968 /// `MaybeUninit<T>`.
1969 ///
1970 /// The returned slice can be used to fill the vector with data (e.g. by
1971 /// reading from a file) before marking the data as initialized using the
1972 /// [`set_len`] method.
1973 ///
1974 /// [`set_len`]: Vec::set_len
1975 ///
1976 /// # Examples
1977 ///
1978 /// ```
1979 /// #![feature(vec_spare_capacity, maybe_uninit_extra)]
1980 ///
1981 /// // Allocate vector big enough for 10 elements.
1982 /// let mut v = Vec::with_capacity(10);
1983 ///
1984 /// // Fill in the first 3 elements.
1985 /// let uninit = v.spare_capacity_mut();
1986 /// uninit[0].write(0);
1987 /// uninit[1].write(1);
1988 /// uninit[2].write(2);
1989 ///
1990 /// // Mark the first 3 elements of the vector as being initialized.
1991 /// unsafe {
1992 /// v.set_len(3);
1993 /// }
1994 ///
1995 /// assert_eq!(&v, &[0, 1, 2]);
1996 /// ```
1997 #[unstable(feature = "vec_spare_capacity", issue = "75017")]
1998 #[inline]
1999 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
6a06907d
XL
2000 // Note:
2001 // This method is not implemented in terms of `split_at_spare_mut`,
2002 // to prevent invalidation of pointers to the buffer.
2003 unsafe {
2004 slice::from_raw_parts_mut(
2005 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2006 self.buf.capacity() - self.len,
2007 )
2008 }
5869c6ff
XL
2009 }
2010
6a06907d
XL
2011 /// Returns vector content as a slice of `T`, along with the remaining spare
2012 /// capacity of the vector as a slice of `MaybeUninit<T>`.
2013 ///
2014 /// The returned spare capacity slice can be used to fill the vector with data
2015 /// (e.g. by reading from a file) before marking the data as initialized using
2016 /// the [`set_len`] method.
2017 ///
2018 /// [`set_len`]: Vec::set_len
2019 ///
2020 /// Note that this is a low-level API, which should be used with care for
2021 /// optimization purposes. If you need to append data to a `Vec`
2022 /// you can use [`push`], [`extend`], [`extend_from_slice`],
2023 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2024 /// [`resize_with`], depending on your exact needs.
2025 ///
2026 /// [`push`]: Vec::push
2027 /// [`extend`]: Vec::extend
2028 /// [`extend_from_slice`]: Vec::extend_from_slice
2029 /// [`extend_from_within`]: Vec::extend_from_within
2030 /// [`insert`]: Vec::insert
2031 /// [`append`]: Vec::append
2032 /// [`resize`]: Vec::resize
2033 /// [`resize_with`]: Vec::resize_with
2034 ///
2035 /// # Examples
2036 ///
2037 /// ```
2038 /// #![feature(vec_split_at_spare, maybe_uninit_extra)]
2039 ///
2040 /// let mut v = vec![1, 1, 2];
2041 ///
2042 /// // Reserve additional space big enough for 10 elements.
2043 /// v.reserve(10);
2044 ///
2045 /// let (init, uninit) = v.split_at_spare_mut();
2046 /// let sum = init.iter().copied().sum::<u32>();
2047 ///
2048 /// // Fill in the next 4 elements.
2049 /// uninit[0].write(sum);
2050 /// uninit[1].write(sum * 2);
2051 /// uninit[2].write(sum * 3);
2052 /// uninit[3].write(sum * 4);
2053 ///
2054 /// // Mark the 4 elements of the vector as being initialized.
2055 /// unsafe {
2056 /// let len = v.len();
2057 /// v.set_len(len + 4);
2058 /// }
2059 ///
2060 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2061 /// ```
2062 #[unstable(feature = "vec_split_at_spare", issue = "81944")]
5869c6ff 2063 #[inline]
6a06907d
XL
2064 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2065 // SAFETY:
2066 // - len is ignored and so never changed
2067 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2068 (init, spare)
2069 }
5869c6ff 2070
6a06907d
XL
2071 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2072 ///
cdc7bbd5 2073 /// This method provides unique access to all vec parts at once in `extend_from_within`.
6a06907d
XL
2074 unsafe fn split_at_spare_mut_with_len(
2075 &mut self,
2076 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2077 let Range { start: ptr, end: spare_ptr } = self.as_mut_ptr_range();
2078 let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2079 let spare_len = self.buf.capacity() - self.len;
5869c6ff 2080
6a06907d 2081 // SAFETY:
5869c6ff 2082 // - `ptr` is guaranteed to be valid for `len` elements
6a06907d 2083 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3dfed10e 2084 unsafe {
5869c6ff 2085 let initialized = slice::from_raw_parts_mut(ptr, self.len);
6a06907d 2086 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
5869c6ff 2087
6a06907d 2088 (initialized, spare, &mut self.len)
3dfed10e 2089 }
416331ca 2090 }
1a4d82fc
JJ
2091}
2092
fc512014 2093impl<T: Clone, A: Allocator> Vec<T, A> {
7cac9316 2094 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1a4d82fc 2095 ///
7cac9316 2096 /// If `new_len` is greater than `len`, the `Vec` is extended by the
92a42be0 2097 /// difference, with each additional slot filled with `value`.
7cac9316
XL
2098 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2099 ///
74b04a01
XL
2100 /// This method requires `T` to implement [`Clone`],
2101 /// in order to be able to clone the passed value.
2102 /// If you need more flexibility (or want to rely on [`Default`] instead of
1b1a35ee 2103 /// [`Clone`]), use [`Vec::resize_with`].
1a4d82fc
JJ
2104 ///
2105 /// # Examples
2106 ///
2107 /// ```
2108 /// let mut vec = vec!["hello"];
2109 /// vec.resize(3, "world");
c34b1796 2110 /// assert_eq!(vec, ["hello", "world", "world"]);
1a4d82fc 2111 ///
85aaf69f 2112 /// let mut vec = vec![1, 2, 3, 4];
1a4d82fc 2113 /// vec.resize(2, 0);
c34b1796 2114 /// assert_eq!(vec, [1, 2]);
1a4d82fc 2115 /// ```
17df50a5 2116 #[cfg(not(no_global_oom_handling))]
b039eaaf 2117 #[stable(feature = "vec_resize", since = "1.5.0")]
85aaf69f 2118 pub fn resize(&mut self, new_len: usize, value: T) {
1a4d82fc
JJ
2119 let len = self.len();
2120
2121 if new_len > len {
7cac9316 2122 self.extend_with(new_len - len, ExtendElement(value))
1a4d82fc
JJ
2123 } else {
2124 self.truncate(new_len);
2125 }
2126 }
2127
7cac9316
XL
2128 /// Clones and appends all elements in a slice to the `Vec`.
2129 ///
2130 /// Iterates over the slice `other`, clones each element, and then appends
2131 /// it to this `Vec`. The `other` vector is traversed in-order.
2132 ///
0531ce1d 2133 /// Note that this function is same as [`extend`] except that it is
7cac9316
XL
2134 /// specialized to work with slices instead. If and when Rust gets
2135 /// specialization this function will likely be deprecated (but still
2136 /// available).
2137 ///
2138 /// # Examples
2139 ///
2140 /// ```
2141 /// let mut vec = vec![1];
2142 /// vec.extend_from_slice(&[2, 3, 4]);
2143 /// assert_eq!(vec, [1, 2, 3, 4]);
2144 /// ```
0531ce1d 2145 ///
1b1a35ee 2146 /// [`extend`]: Vec::extend
17df50a5 2147 #[cfg(not(no_global_oom_handling))]
7cac9316
XL
2148 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
2149 pub fn extend_from_slice(&mut self, other: &[T]) {
2150 self.spec_extend(other.iter())
2151 }
5869c6ff
XL
2152
2153 /// Copies elements from `src` range to the end of the vector.
2154 ///
2155 /// ## Examples
2156 ///
2157 /// ```
5869c6ff
XL
2158 /// let mut vec = vec![0, 1, 2, 3, 4];
2159 ///
2160 /// vec.extend_from_within(2..);
2161 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2162 ///
2163 /// vec.extend_from_within(..2);
2164 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2165 ///
2166 /// vec.extend_from_within(4..8);
2167 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2168 /// ```
17df50a5 2169 #[cfg(not(no_global_oom_handling))]
cdc7bbd5 2170 #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
5869c6ff
XL
2171 pub fn extend_from_within<R>(&mut self, src: R)
2172 where
2173 R: RangeBounds<usize>,
2174 {
6a06907d 2175 let range = slice::range(src, ..self.len());
5869c6ff
XL
2176 self.reserve(range.len());
2177
2178 // SAFETY:
6a06907d 2179 // - `slice::range` guarantees that the given range is valid for indexing self
5869c6ff
XL
2180 unsafe {
2181 self.spec_extend_from_within(range);
2182 }
2183 }
7cac9316
XL
2184}
2185
f035d41b 2186// This code generalizes `extend_with_{element,default}`.
7cac9316 2187trait ExtendWith<T> {
83c7162d 2188 fn next(&mut self) -> T;
7cac9316
XL
2189 fn last(self) -> T;
2190}
2191
2192struct ExtendElement<T>(T);
2193impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
dfeec247
XL
2194 fn next(&mut self) -> T {
2195 self.0.clone()
2196 }
2197 fn last(self) -> T {
2198 self.0
2199 }
7cac9316
XL
2200}
2201
2202struct ExtendDefault;
2203impl<T: Default> ExtendWith<T> for ExtendDefault {
dfeec247
XL
2204 fn next(&mut self) -> T {
2205 Default::default()
2206 }
2207 fn last(self) -> T {
2208 Default::default()
2209 }
7cac9316 2210}
83c7162d
XL
2211
2212struct ExtendFunc<F>(F);
2213impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
dfeec247
XL
2214 fn next(&mut self) -> T {
2215 (self.0)()
2216 }
2217 fn last(mut self) -> T {
2218 (self.0)()
2219 }
83c7162d
XL
2220}
2221
fc512014 2222impl<T, A: Allocator> Vec<T, A> {
17df50a5 2223 #[cfg(not(no_global_oom_handling))]
7cac9316 2224 /// Extend the vector by `n` values, using the given generator.
83c7162d 2225 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
c1a9b12d
SL
2226 self.reserve(n);
2227
2228 unsafe {
b7449926 2229 let mut ptr = self.as_mut_ptr().add(self.len());
9e0c209e 2230 // Use SetLenOnDrop to work around bug where compiler
8bb4bdeb 2231 // may not realize the store through `ptr` through self.set_len()
9e0c209e
SL
2232 // don't alias.
2233 let mut local_len = SetLenOnDrop::new(&mut self.len);
2234
c1a9b12d 2235 // Write all elements except the last one
9e0c209e 2236 for _ in 1..n {
7cac9316 2237 ptr::write(ptr, value.next());
c1a9b12d 2238 ptr = ptr.offset(1);
7cac9316 2239 // Increment the length in every step in case next() panics
9e0c209e 2240 local_len.increment_len(1);
c1a9b12d
SL
2241 }
2242
2243 if n > 0 {
2244 // We can write the last element directly without cloning needlessly
7cac9316 2245 ptr::write(ptr, value.last());
9e0c209e 2246 local_len.increment_len(1);
c1a9b12d 2247 }
9e0c209e
SL
2248
2249 // len set by scope guard
c1a9b12d
SL
2250 }
2251 }
1a4d82fc
JJ
2252}
2253
fc512014 2254impl<T: PartialEq, A: Allocator> Vec<T, A> {
0bf4aa26
XL
2255 /// Removes consecutive repeated elements in the vector according to the
2256 /// [`PartialEq`] trait implementation.
1a4d82fc
JJ
2257 ///
2258 /// If the vector is sorted, this removes all duplicates.
2259 ///
2260 /// # Examples
2261 ///
2262 /// ```
85aaf69f 2263 /// let mut vec = vec![1, 2, 2, 3, 2];
1a4d82fc
JJ
2264 ///
2265 /// vec.dedup();
2266 ///
c34b1796 2267 /// assert_eq!(vec, [1, 2, 3, 2]);
1a4d82fc 2268 /// ```
85aaf69f 2269 #[stable(feature = "rust1", since = "1.0.0")]
c30ab7b3 2270 #[inline]
1a4d82fc 2271 pub fn dedup(&mut self) {
c30ab7b3 2272 self.dedup_by(|a, b| a == b)
1a4d82fc 2273 }
dfeec247 2274}
8bb4bdeb 2275
1a4d82fc
JJ
2276////////////////////////////////////////////////////////////////////////////////
2277// Internal methods and functions
2278////////////////////////////////////////////////////////////////////////////////
2279
85aaf69f 2280#[doc(hidden)]
17df50a5 2281#[cfg(not(no_global_oom_handling))]
85aaf69f
SL
2282#[stable(feature = "rust1", since = "1.0.0")]
2283pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
fc512014
XL
2284 <T as SpecFromElem>::from_elem(elem, n, Global)
2285}
2286
2287#[doc(hidden)]
17df50a5 2288#[cfg(not(no_global_oom_handling))]
fc512014
XL
2289#[unstable(feature = "allocator_api", issue = "32838")]
2290pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2291 <T as SpecFromElem>::from_elem(elem, n, alloc)
cc61c64b
XL
2292}
2293
5869c6ff 2294trait ExtendFromWithinSpec {
6a06907d
XL
2295 /// # Safety
2296 ///
5869c6ff
XL
2297 /// - `src` needs to be valid index
2298 /// - `self.capacity() - self.len()` must be `>= src.len()`
2299 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
f035d41b
XL
2300}
2301
5869c6ff
XL
2302impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2303 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
6a06907d
XL
2304 // SAFETY:
2305 // - len is increased only after initializing elements
2306 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
83c7162d 2307
6a06907d
XL
2308 // SAFETY:
2309 // - caller guaratees that src is a valid index
2310 let to_clone = unsafe { this.get_unchecked(src) };
2311
cdc7bbd5
XL
2312 iter::zip(to_clone, spare)
2313 .map(|(src, dst)| dst.write(src.clone()))
6a06907d 2314 // Note:
cdc7bbd5 2315 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
6a06907d
XL
2316 // - len is increased after each element to prevent leaks (see issue #82533)
2317 .for_each(|_| *len += 1);
83c7162d
XL
2318 }
2319}
cc61c64b 2320
5869c6ff
XL
2321impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2322 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2323 let count = src.len();
2324 {
2325 let (init, spare) = self.split_at_spare_mut();
2326
6a06907d 2327 // SAFETY:
5869c6ff
XL
2328 // - caller guaratees that `src` is a valid index
2329 let source = unsafe { init.get_unchecked(src) };
2330
6a06907d 2331 // SAFETY:
5869c6ff
XL
2332 // - Both pointers are created from unique slice references (`&mut [_]`)
2333 // so they are valid and do not overlap.
2334 // - Elements are :Copy so it's OK to to copy them, without doing
2335 // anything with the original values
2336 // - `count` is equal to the len of `source`, so source is valid for
2337 // `count` reads
2338 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2339 // is valid for `count` writes
2340 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2341 }
2342
6a06907d 2343 // SAFETY:
5869c6ff
XL
2344 // - The elements were just initialized by `copy_nonoverlapping`
2345 self.len += count;
e74abb32
XL
2346 }
2347}
2348
1a4d82fc
JJ
2349////////////////////////////////////////////////////////////////////////////////
2350// Common trait implementations for Vec
2351////////////////////////////////////////////////////////////////////////////////
2352
f035d41b 2353#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2354impl<T, A: Allocator> ops::Deref for Vec<T, A> {
f035d41b
XL
2355 type Target = [T];
2356
2357 fn deref(&self) -> &[T] {
2358 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2359 }
2360}
2361
2362#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2363impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
f035d41b
XL
2364 fn deref_mut(&mut self) -> &mut [T] {
2365 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2366 }
2367}
2368
17df50a5 2369#[cfg(not(no_global_oom_handling))]
bd371182 2370#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2371impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
c34b1796 2372 #[cfg(not(test))]
fc512014
XL
2373 fn clone(&self) -> Self {
2374 let alloc = self.allocator().clone();
2375 <[T]>::to_vec_in(&**self, alloc)
92a42be0 2376 }
c34b1796
AL
2377
2378 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2379 // required for this method definition, is not available. Instead use the
2380 // `slice::to_vec` function which is only available with cfg(test)
2381 // NB see the slice::hack module in slice.rs for more information
2382 #[cfg(test)]
fc512014
XL
2383 fn clone(&self) -> Self {
2384 let alloc = self.allocator().clone();
2385 crate::slice::to_vec(&**self, alloc)
c34b1796 2386 }
1a4d82fc 2387
fc512014
XL
2388 fn clone_from(&mut self, other: &Self) {
2389 // drop anything that will not be overwritten
2390 self.truncate(other.len());
2391
2392 // self.len <= other.len due to the truncate above, so the
2393 // slices here are always in-bounds.
2394 let (init, tail) = other.split_at(self.len());
2395
2396 // reuse the contained values' allocations/resources.
2397 self.clone_from_slice(init);
2398 self.extend_from_slice(tail);
1a4d82fc
JJ
2399 }
2400}
2401
136023e0
XL
2402/// The hash of a vector is the same as that of the corresponding slice,
2403/// as required by the `core::borrow::Borrow` implementation.
2404///
2405/// ```
2406/// #![feature(build_hasher_simple_hash_one)]
2407/// use std::hash::BuildHasher;
2408///
2409/// let b = std::collections::hash_map::RandomState::new();
2410/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2411/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2412/// assert_eq!(b.hash_one(v), b.hash_one(s));
2413/// ```
85aaf69f 2414#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2415impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
1a4d82fc 2416 #[inline]
f035d41b 2417 fn hash<H: Hasher>(&self, state: &mut H) {
85aaf69f 2418 Hash::hash(&**self, state)
1a4d82fc
JJ
2419 }
2420}
2421
85aaf69f 2422#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 2423#[rustc_on_unimplemented(
dfeec247
XL
2424 message = "vector indices are of type `usize` or ranges of `usize`",
2425 label = "vector indices are of type `usize` or ranges of `usize`"
8faf50e0 2426)]
fc512014 2427impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
0531ce1d 2428 type Output = I::Output;
54a0048b
SL
2429
2430 #[inline]
0531ce1d 2431 fn index(&self, index: I) -> &Self::Output {
54a0048b
SL
2432 Index::index(&**self, index)
2433 }
2434}
1a4d82fc 2435
85aaf69f 2436#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 2437#[rustc_on_unimplemented(
dfeec247
XL
2438 message = "vector indices are of type `usize` or ranges of `usize`",
2439 label = "vector indices are of type `usize` or ranges of `usize`"
8faf50e0 2440)]
fc512014 2441impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
54a0048b 2442 #[inline]
0531ce1d 2443 fn index_mut(&mut self, index: I) -> &mut Self::Output {
54a0048b
SL
2444 IndexMut::index_mut(&mut **self, index)
2445 }
2446}
1a4d82fc 2447
17df50a5 2448#[cfg(not(no_global_oom_handling))]
85aaf69f 2449#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2450impl<T> FromIterator<T> for Vec<T> {
2451 #[inline]
54a0048b 2452 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
1b1a35ee 2453 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
1a4d82fc
JJ
2454 }
2455}
2456
85aaf69f 2457#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2458impl<T, A: Allocator> IntoIterator for Vec<T, A> {
85aaf69f 2459 type Item = T;
fc512014 2460 type IntoIter = IntoIter<T, A>;
85aaf69f 2461
9346a6ac
AL
2462 /// Creates a consuming iterator, that is, one that moves each value out of
2463 /// the vector (from start to end). The vector cannot be used after calling
2464 /// this.
2465 ///
2466 /// # Examples
2467 ///
2468 /// ```
2469 /// let v = vec!["a".to_string(), "b".to_string()];
2470 /// for s in v.into_iter() {
2471 /// // s has type String, not &String
2472 /// println!("{}", s);
2473 /// }
2474 /// ```
2475 #[inline]
fc512014 2476 fn into_iter(self) -> IntoIter<T, A> {
9346a6ac 2477 unsafe {
ba9703b0 2478 let mut me = ManuallyDrop::new(self);
fc512014 2479 let alloc = ptr::read(me.allocator());
ba9703b0 2480 let begin = me.as_mut_ptr();
9346a6ac 2481 let end = if mem::size_of::<T>() == 0 {
ba9703b0 2482 arith_offset(begin as *const i8, me.len() as isize) as *const T
9346a6ac 2483 } else {
ba9703b0 2484 begin.add(me.len()) as *const T
9346a6ac 2485 };
ba9703b0 2486 let cap = me.buf.capacity();
92a42be0 2487 IntoIter {
2c00a5a8 2488 buf: NonNull::new_unchecked(begin),
ff7c6d11 2489 phantom: PhantomData,
3b2f2976 2490 cap,
fc512014 2491 alloc,
92a42be0 2492 ptr: begin,
3b2f2976 2493 end,
92a42be0 2494 }
9346a6ac 2495 }
85aaf69f
SL
2496 }
2497}
2498
2499#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2500impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
85aaf69f
SL
2501 type Item = &'a T;
2502 type IntoIter = slice::Iter<'a, T>;
2503
2504 fn into_iter(self) -> slice::Iter<'a, T> {
2505 self.iter()
2506 }
2507}
2508
2509#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2510impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
85aaf69f
SL
2511 type Item = &'a mut T;
2512 type IntoIter = slice::IterMut<'a, T>;
2513
3b2f2976 2514 fn into_iter(self) -> slice::IterMut<'a, T> {
85aaf69f
SL
2515 self.iter_mut()
2516 }
2517}
2518
17df50a5 2519#[cfg(not(no_global_oom_handling))]
bd371182 2520#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2521impl<T, A: Allocator> Extend<T> for Vec<T, A> {
1a4d82fc 2522 #[inline]
54a0048b 2523 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
cc61c64b 2524 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
62682a34 2525 }
f9f354fc
XL
2526
2527 #[inline]
2528 fn extend_one(&mut self, item: T) {
2529 self.push(item);
2530 }
2531
2532 #[inline]
2533 fn extend_reserve(&mut self, additional: usize) {
2534 self.reserve(additional);
2535 }
62682a34
SL
2536}
2537
fc512014 2538impl<T, A: Allocator> Vec<T, A> {
1b1a35ee
XL
2539 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2540 // they have no further optimizations to apply
17df50a5 2541 #[cfg(not(no_global_oom_handling))]
476ff2be
SL
2542 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
2543 // This is the case for a general iterator.
2544 //
2545 // This function should be the moral equivalent of:
2546 //
2547 // for item in iterator {
2548 // self.push(item);
2549 // }
2550 while let Some(element) = iterator.next() {
2551 let len = self.len();
2552 if len == self.capacity() {
2553 let (lower, _) = iterator.size_hint();
2554 self.reserve(lower.saturating_add(1));
2555 }
2556 unsafe {
ba9703b0 2557 ptr::write(self.as_mut_ptr().add(len), element);
136023e0
XL
2558 // Since next() executes user code which can panic we have to bump the length
2559 // after each step.
476ff2be
SL
2560 // NB can't overflow since we would have had to alloc the address space
2561 self.set_len(len + 1);
62682a34 2562 }
1a4d82fc
JJ
2563 }
2564 }
7cac9316
XL
2565
2566 /// Creates a splicing iterator that replaces the specified range in the vector
2567 /// with the given `replace_with` iterator and yields the removed items.
2568 /// `replace_with` does not need to be the same length as `range`.
2569 ///
3dfed10e 2570 /// `range` is removed even if the iterator is not consumed until the end.
7cac9316 2571 ///
dc9dc135 2572 /// It is unspecified how many elements are removed from the vector
7cac9316
XL
2573 /// if the `Splice` value is leaked.
2574 ///
dc9dc135 2575 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
7cac9316 2576 ///
dc9dc135 2577 /// This is optimal if:
7cac9316
XL
2578 ///
2579 /// * The tail (elements in the vector after `range`) is empty,
5869c6ff 2580 /// * or `replace_with` yields fewer or equal elements than `range`’s length
7cac9316
XL
2581 /// * or the lower bound of its `size_hint()` is exact.
2582 ///
2583 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
2584 ///
2585 /// # Panics
2586 ///
2587 /// Panics if the starting point is greater than the end point or if
2588 /// the end point is greater than the length of the vector.
2589 ///
2590 /// # Examples
2591 ///
2592 /// ```
7cac9316
XL
2593 /// let mut v = vec![1, 2, 3];
2594 /// let new = [7, 8];
17df50a5 2595 /// let u: Vec<_> = v.splice(..2, new).collect();
7cac9316
XL
2596 /// assert_eq!(v, &[7, 8, 3]);
2597 /// assert_eq!(u, &[1, 2]);
2598 /// ```
17df50a5 2599 #[cfg(not(no_global_oom_handling))]
7cac9316 2600 #[inline]
3b2f2976 2601 #[stable(feature = "vec_splice", since = "1.21.0")]
fc512014 2602 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
dfeec247
XL
2603 where
2604 R: RangeBounds<usize>,
2605 I: IntoIterator<Item = T>,
7cac9316 2606 {
dfeec247 2607 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
7cac9316
XL
2608 }
2609
3b2f2976
XL
2610 /// Creates an iterator which uses a closure to determine if an element should be removed.
2611 ///
2612 /// If the closure returns true, then the element is removed and yielded.
0531ce1d
XL
2613 /// If the closure returns false, the element will remain in the vector and will not be yielded
2614 /// by the iterator.
3b2f2976
XL
2615 ///
2616 /// Using this method is equivalent to the following code:
2617 ///
2618 /// ```
ea8adc8c
XL
2619 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
2620 /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3b2f2976 2621 /// let mut i = 0;
cdc7bbd5 2622 /// while i < vec.len() {
3b2f2976
XL
2623 /// if some_predicate(&mut vec[i]) {
2624 /// let val = vec.remove(i);
2625 /// // your code here
ea8adc8c
XL
2626 /// } else {
2627 /// i += 1;
3b2f2976 2628 /// }
3b2f2976 2629 /// }
ea8adc8c
XL
2630 ///
2631 /// # assert_eq!(vec, vec![1, 4, 5]);
3b2f2976
XL
2632 /// ```
2633 ///
2634 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
2635 /// because it can backshift the elements of the array in bulk.
2636 ///
2637 /// Note that `drain_filter` also lets you mutate every element in the filter closure,
2638 /// regardless of whether you choose to keep or remove it.
2639 ///
3b2f2976
XL
2640 /// # Examples
2641 ///
2642 /// Splitting an array into evens and odds, reusing the original allocation:
2643 ///
2644 /// ```
2645 /// #![feature(drain_filter)]
2646 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
2647 ///
2648 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
2649 /// let odds = numbers;
2650 ///
2651 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
2652 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
2653 /// ```
2654 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
fc512014 2655 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
dfeec247
XL
2656 where
2657 F: FnMut(&mut T) -> bool,
3b2f2976
XL
2658 {
2659 let old_len = self.len();
2660
2661 // Guard against us getting leaked (leak amplification)
dfeec247
XL
2662 unsafe {
2663 self.set_len(0);
3b2f2976 2664 }
dfeec247
XL
2665
2666 DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
3b2f2976 2667 }
1a4d82fc
JJ
2668}
2669
3b2f2976
XL
2670/// Extend implementation that copies elements out of references before pushing them onto the Vec.
2671///
2672/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
2673/// append the entire slice at once.
2674///
6a06907d 2675/// [`copy_from_slice`]: slice::copy_from_slice
17df50a5 2676#[cfg(not(no_global_oom_handling))]
62682a34 2677#[stable(feature = "extend_ref", since = "1.2.0")]
fc512014 2678impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
92a42be0 2679 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
476ff2be 2680 self.spec_extend(iter.into_iter())
62682a34 2681 }
f9f354fc
XL
2682
2683 #[inline]
2684 fn extend_one(&mut self, &item: &'a T) {
2685 self.push(item);
2686 }
2687
2688 #[inline]
2689 fn extend_reserve(&mut self, additional: usize) {
2690 self.reserve(additional);
2691 }
62682a34
SL
2692}
2693
29967ef6 2694/// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
85aaf69f 2695#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2696impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
1a4d82fc 2697 #[inline]
fc512014 2698 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
85aaf69f 2699 PartialOrd::partial_cmp(&**self, &**other)
1a4d82fc
JJ
2700 }
2701}
2702
85aaf69f 2703#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2704impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
1a4d82fc 2705
29967ef6 2706/// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
85aaf69f 2707#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2708impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
1a4d82fc 2709 #[inline]
fc512014 2710 fn cmp(&self, other: &Self) -> Ordering {
85aaf69f 2711 Ord::cmp(&**self, &**other)
1a4d82fc
JJ
2712 }
2713}
2714
85aaf69f 2715#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2716unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
1a4d82fc 2717 fn drop(&mut self) {
9e0c209e
SL
2718 unsafe {
2719 // use drop for [T]
f9f354fc
XL
2720 // use a raw slice to refer to the elements of the vector as weakest necessary type;
2721 // could avoid questions of validity in certain cases
2722 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
1a4d82fc 2723 }
c1a9b12d 2724 // RawVec handles deallocation
1a4d82fc
JJ
2725 }
2726}
2727
85aaf69f 2728#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 2729impl<T> Default for Vec<T> {
9e0c209e 2730 /// Creates an empty `Vec<T>`.
1a4d82fc
JJ
2731 fn default() -> Vec<T> {
2732 Vec::new()
2733 }
2734}
2735
85aaf69f 2736#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2737impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
9fa01778 2738 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
85aaf69f 2739 fmt::Debug::fmt(&**self, f)
1a4d82fc
JJ
2740 }
2741}
2742
c34b1796 2743#[stable(feature = "rust1", since = "1.0.0")]
fc512014
XL
2744impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
2745 fn as_ref(&self) -> &Vec<T, A> {
c34b1796
AL
2746 self
2747 }
2748}
2749
b039eaaf 2750#[stable(feature = "vec_as_mut", since = "1.5.0")]
fc512014
XL
2751impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
2752 fn as_mut(&mut self) -> &mut Vec<T, A> {
b039eaaf
SL
2753 self
2754 }
2755}
2756
c34b1796 2757#[stable(feature = "rust1", since = "1.0.0")]
fc512014 2758impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
c34b1796
AL
2759 fn as_ref(&self) -> &[T] {
2760 self
2761 }
2762}
2763
b039eaaf 2764#[stable(feature = "vec_as_mut", since = "1.5.0")]
fc512014 2765impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
b039eaaf
SL
2766 fn as_mut(&mut self) -> &mut [T] {
2767 self
2768 }
2769}
2770
17df50a5 2771#[cfg(not(no_global_oom_handling))]
c34b1796 2772#[stable(feature = "rust1", since = "1.0.0")]
532ac7d7 2773impl<T: Clone> From<&[T]> for Vec<T> {
cdc7bbd5
XL
2774 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
2775 ///
2776 /// # Examples
2777 ///
2778 /// ```
2779 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
2780 /// ```
c34b1796 2781 #[cfg(not(test))]
532ac7d7 2782 fn from(s: &[T]) -> Vec<T> {
c34b1796
AL
2783 s.to_vec()
2784 }
2785 #[cfg(test)]
532ac7d7 2786 fn from(s: &[T]) -> Vec<T> {
fc512014 2787 crate::slice::to_vec(s, Global)
c34b1796
AL
2788 }
2789}
2790
17df50a5 2791#[cfg(not(no_global_oom_handling))]
7cac9316 2792#[stable(feature = "vec_from_mut", since = "1.19.0")]
532ac7d7 2793impl<T: Clone> From<&mut [T]> for Vec<T> {
cdc7bbd5
XL
2794 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
2795 ///
2796 /// # Examples
2797 ///
2798 /// ```
2799 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
2800 /// ```
7cac9316 2801 #[cfg(not(test))]
532ac7d7 2802 fn from(s: &mut [T]) -> Vec<T> {
7cac9316
XL
2803 s.to_vec()
2804 }
2805 #[cfg(test)]
532ac7d7 2806 fn from(s: &mut [T]) -> Vec<T> {
fc512014 2807 crate::slice::to_vec(s, Global)
7cac9316
XL
2808 }
2809}
2810
ba9703b0 2811#[stable(feature = "vec_from_array", since = "1.44.0")]
3dfed10e 2812impl<T, const N: usize> From<[T; N]> for Vec<T> {
ba9703b0
XL
2813 #[cfg(not(test))]
2814 fn from(s: [T; N]) -> Vec<T> {
2815 <[T]>::into_vec(box s)
2816 }
cdc7bbd5
XL
2817 /// Allocate a `Vec<T>` and move `s`'s items into it.
2818 ///
2819 /// # Examples
2820 ///
2821 /// ```
2822 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
2823 /// ```
ba9703b0
XL
2824 #[cfg(test)]
2825 fn from(s: [T; N]) -> Vec<T> {
2826 crate::slice::into_vec(box s)
2827 }
2828}
2829
c30ab7b3 2830#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
dfeec247
XL
2831impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
2832where
2833 [T]: ToOwned<Owned = Vec<T>>,
2834{
cdc7bbd5
XL
2835 /// Convert a clone-on-write slice into a vector.
2836 ///
2837 /// If `s` already owns a `Vec<T>`, it will be returned directly.
2838 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
2839 /// filled by cloning `s`'s items into it.
2840 ///
2841 /// # Examples
2842 ///
2843 /// ```
2844 /// # use std::borrow::Cow;
2845 /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
2846 /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
2847 /// assert_eq!(Vec::from(o), Vec::from(b));
2848 /// ```
c30ab7b3
SL
2849 fn from(s: Cow<'a, [T]>) -> Vec<T> {
2850 s.into_owned()
2851 }
2852}
2853
cc61c64b
XL
2854// note: test pulls in libstd, which causes errors here
2855#[cfg(not(test))]
7cac9316 2856#[stable(feature = "vec_from_box", since = "1.18.0")]
fc512014 2857impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
cdc7bbd5
XL
2858 /// Convert a boxed slice into a vector by transferring ownership of
2859 /// the existing heap allocation.
2860 ///
2861 /// # Examples
2862 ///
2863 /// ```
2864 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
2865 /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
2866 /// ```
fc512014 2867 fn from(s: Box<[T], A>) -> Self {
cdc7bbd5 2868 s.into_vec()
cc61c64b
XL
2869 }
2870}
2871
041b39d2 2872// note: test pulls in libstd, which causes errors here
17df50a5 2873#[cfg(not(no_global_oom_handling))]
041b39d2
XL
2874#[cfg(not(test))]
2875#[stable(feature = "box_from_vec", since = "1.20.0")]
fc512014 2876impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
cdc7bbd5
XL
2877 /// Convert a vector into a boxed slice.
2878 ///
2879 /// If `v` has excess capacity, its items will be moved into a
2880 /// newly-allocated buffer with exactly the right capacity.
2881 ///
2882 /// # Examples
2883 ///
2884 /// ```
2885 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
2886 /// ```
fc512014 2887 fn from(v: Vec<T, A>) -> Self {
041b39d2 2888 v.into_boxed_slice()
cc61c64b
XL
2889 }
2890}
2891
17df50a5 2892#[cfg(not(no_global_oom_handling))]
c34b1796 2893#[stable(feature = "rust1", since = "1.0.0")]
532ac7d7 2894impl From<&str> for Vec<u8> {
cdc7bbd5
XL
2895 /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
2896 ///
2897 /// # Examples
2898 ///
2899 /// ```
2900 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
2901 /// ```
532ac7d7 2902 fn from(s: &str) -> Vec<u8> {
c34b1796
AL
2903 From::from(s.as_bytes())
2904 }
2905}
2906
1b1a35ee 2907#[stable(feature = "array_try_from_vec", since = "1.48.0")]
fc512014
XL
2908impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
2909 type Error = Vec<T, A>;
1b1a35ee
XL
2910
2911 /// Gets the entire contents of the `Vec<T>` as an array,
2912 /// if its size exactly matches that of the requested array.
2913 ///
2914 /// # Examples
2915 ///
2916 /// ```
2917 /// use std::convert::TryInto;
2918 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
2919 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
2920 /// ```
2921 ///
2922 /// If the length doesn't match, the input comes back in `Err`:
2923 /// ```
2924 /// use std::convert::TryInto;
2925 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
2926 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
2927 /// ```
2928 ///
2929 /// If you're fine with just getting a prefix of the `Vec<T>`,
2930 /// you can call [`.truncate(N)`](Vec::truncate) first.
2931 /// ```
2932 /// use std::convert::TryInto;
2933 /// let mut v = String::from("hello world").into_bytes();
2934 /// v.sort();
2935 /// v.truncate(2);
2936 /// let [a, b]: [_; 2] = v.try_into().unwrap();
2937 /// assert_eq!(a, b' ');
2938 /// assert_eq!(b, b'd');
2939 /// ```
fc512014 2940 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
1b1a35ee
XL
2941 if vec.len() != N {
2942 return Err(vec);
2943 }
2944
2945 // SAFETY: `.set_len(0)` is always sound.
2946 unsafe { vec.set_len(0) };
2947
2948 // SAFETY: A `Vec`'s pointer is always aligned properly, and
2949 // the alignment the array needs is the same as the items.
2950 // We checked earlier that we have sufficient items.
2951 // The items will not double-drop as the `set_len`
2952 // tells the `Vec` not to also drop them.
2953 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
2954 Ok(array)
2955 }
2956}