]> git.proxmox.com Git - rustc.git/blame - library/core/src/cell.rs
New upstream version 1.62.1+dfsg1
[rustc.git] / library / core / src / cell.rs
CommitLineData
1a4d82fc
JJ
1//! Shareable mutable containers.
2//!
0531ce1d
XL
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
5869c6ff 14//! presence of aliasing. Both [`Cell<T>`] and [`RefCell<T>`] allow doing this in a single-threaded
0531ce1d 15//! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
5869c6ff
XL
16//! [`Sync`]). If you need to do aliasing and mutation between multiple threads it is possible to
17//! use [`Mutex<T>`], [`RwLock<T>`] or [`atomic`] types.
0531ce1d 18//!
85aaf69f
SL
19//! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
20//! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
21//! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
22//! with typical Rust types that exhibit 'inherited mutability'.
1a4d82fc 23//!
8bb4bdeb
XL
24//! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
25//! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
26//! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
27//! methods to retrieve and change the current interior value:
28//!
5869c6ff
XL
29//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
30//! interior value.
31//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
32//! interior value with [`Default::default()`] and returns the replaced value.
33//! - For all types, the [`replace`](Cell::replace) method replaces the current interior value and
34//! returns the replaced value and the [`into_inner`](Cell::into_inner) method consumes the
35//! `Cell<T>` and returns the interior value. Additionally, the [`set`](Cell::set) method
36//! replaces the interior value, dropping the replaced value.
1a4d82fc 37//!
85aaf69f
SL
38//! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
39//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
40//! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
41//! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
bd371182
AL
42//! to borrow a value that is already mutably borrowed; when this happens it results in thread
43//! panic.
1a4d82fc
JJ
44//!
45//! # When to choose interior mutability
46//!
85aaf69f
SL
47//! The more common inherited mutability, where one must have unique access to mutate a value, is
48//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
49//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
50//! interior mutability is something of a last resort. Since cell types enable mutation where it
51//! would otherwise be disallowed though, there are occasions when interior mutability might be
52//! appropriate, or even *must* be used, e.g.
1a4d82fc 53//!
c1a9b12d 54//! * Introducing mutability 'inside' of something immutable
1a4d82fc 55//! * Implementation details of logically-immutable methods.
5869c6ff 56//! * Mutating implementations of [`Clone`].
1a4d82fc 57//!
c1a9b12d 58//! ## Introducing mutability 'inside' of something immutable
1a4d82fc 59//!
5869c6ff
XL
60//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
61//! be cloned and shared between multiple parties. Because the contained values may be
c1a9b12d
SL
62//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
63//! impossible to mutate data inside of these smart pointers at all.
1a4d82fc 64//!
85aaf69f
SL
65//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
66//! mutability:
1a4d82fc
JJ
67//!
68//! ```
dc9dc135 69//! use std::cell::{RefCell, RefMut};
1a4d82fc 70//! use std::collections::HashMap;
1a4d82fc
JJ
71//! use std::rc::Rc;
72//!
73//! fn main() {
74//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
dc9dc135
XL
75//! // Create a new block to limit the scope of the dynamic borrow
76//! {
77//! let mut map: RefMut<_> = shared_map.borrow_mut();
78//! map.insert("africa", 92388);
79//! map.insert("kyoto", 11837);
80//! map.insert("piccadilly", 11826);
81//! map.insert("marbles", 38);
82//! }
83//!
84//! // Note that if we had not let the previous borrow of the cache fall out
85//! // of scope then the subsequent borrow would cause a dynamic thread panic.
86//! // This is the major hazard of using `RefCell`.
87//! let total: i32 = shared_map.borrow().values().sum();
5e7ed085 88//! println!("{total}");
1a4d82fc
JJ
89//! }
90//! ```
91//!
85aaf69f 92//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
5869c6ff 93//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
c1a9b12d 94//! multi-threaded situation.
85aaf69f 95//!
1a4d82fc
JJ
96//! ## Implementation details of logically-immutable methods
97//!
85aaf69f 98//! Occasionally it may be desirable not to expose in an API that there is mutation happening
0731742a 99//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
85aaf69f
SL
100//! forces the implementation to perform mutation; or because you must employ mutation to implement
101//! a trait method that was originally defined to take `&self`.
1a4d82fc
JJ
102//!
103//! ```
92a42be0 104//! # #![allow(dead_code)]
1a4d82fc
JJ
105//! use std::cell::RefCell;
106//!
107//! struct Graph {
85aaf69f
SL
108//! edges: Vec<(i32, i32)>,
109//! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
1a4d82fc
JJ
110//! }
111//!
112//! impl Graph {
85aaf69f 113//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
dc9dc135
XL
114//! self.span_tree_cache.borrow_mut()
115//! .get_or_insert_with(|| self.calc_span_tree())
116//! .clone()
117//! }
1a4d82fc 118//!
dc9dc135
XL
119//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
120//! // Expensive computation goes here
121//! vec![]
1a4d82fc 122//! }
1a4d82fc 123//! }
1a4d82fc
JJ
124//! ```
125//!
62682a34 126//! ## Mutating implementations of `Clone`
1a4d82fc 127//!
85aaf69f 128//! This is simply a special - but common - case of the previous: hiding mutability for operations
5869c6ff
XL
129//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
130//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
131//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
132//! reference counts within a `Cell<T>`.
1a4d82fc
JJ
133//!
134//! ```
135//! use std::cell::Cell;
0531ce1d 136//! use std::ptr::NonNull;
f9f354fc 137//! use std::process::abort;
60c5eb7d 138//! use std::marker::PhantomData;
1a4d82fc 139//!
9e0c209e 140//! struct Rc<T: ?Sized> {
60c5eb7d
XL
141//! ptr: NonNull<RcBox<T>>,
142//! phantom: PhantomData<RcBox<T>>,
1a4d82fc
JJ
143//! }
144//!
9e0c209e
SL
145//! struct RcBox<T: ?Sized> {
146//! strong: Cell<usize>,
147//! refcount: Cell<usize>,
1a4d82fc 148//! value: T,
1a4d82fc
JJ
149//! }
150//!
9e0c209e 151//! impl<T: ?Sized> Clone for Rc<T> {
1a4d82fc 152//! fn clone(&self) -> Rc<T> {
9e0c209e 153//! self.inc_strong();
60c5eb7d
XL
154//! Rc {
155//! ptr: self.ptr,
156//! phantom: PhantomData,
157//! }
9e0c209e
SL
158//! }
159//! }
160//!
161//! trait RcBoxPtr<T: ?Sized> {
162//!
163//! fn inner(&self) -> &RcBox<T>;
164//!
165//! fn strong(&self) -> usize {
166//! self.inner().strong.get()
167//! }
168//!
169//! fn inc_strong(&self) {
170//! self.inner()
171//! .strong
172//! .set(self.strong()
173//! .checked_add(1)
f9f354fc 174//! .unwrap_or_else(|| abort() ));
1a4d82fc
JJ
175//! }
176//! }
9e0c209e
SL
177//!
178//! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
179//! fn inner(&self) -> &RcBox<T> {
180//! unsafe {
7cac9316 181//! self.ptr.as_ref()
9e0c209e
SL
182//! }
183//! }
184//! }
1a4d82fc
JJ
185//! ```
186//!
5869c6ff
XL
187//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
188//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
189//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
190//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
cdc7bbd5 191//! [`atomic`]: crate::sync::atomic
1a4d82fc 192
85aaf69f 193#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 194
48663c56
XL
195use crate::cmp::Ordering;
196use crate::fmt::{self, Debug, Display};
197use crate::marker::Unsize;
198use crate::mem;
dfeec247 199use crate::ops::{CoerceUnsized, Deref, DerefMut};
48663c56 200use crate::ptr;
1a4d82fc 201
8bb4bdeb 202/// A mutable memory location.
85aaf69f 203///
3b2f2976
XL
204/// # Examples
205///
a1dfa0c6
XL
206/// In this example, you can see that `Cell<T>` enables mutation inside an
207/// immutable struct. In other words, it enables "interior mutability".
3b2f2976
XL
208///
209/// ```
210/// use std::cell::Cell;
211///
212/// struct SomeStruct {
213/// regular_field: u8,
214/// special_field: Cell<u8>,
215/// }
216///
217/// let my_struct = SomeStruct {
218/// regular_field: 0,
219/// special_field: Cell::new(1),
220/// };
221///
222/// let new_value = 100;
223///
a1dfa0c6 224/// // ERROR: `my_struct` is immutable
3b2f2976
XL
225/// // my_struct.regular_field = new_value;
226///
a1dfa0c6
XL
227/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
228/// // which can always be mutated
3b2f2976
XL
229/// my_struct.special_field.set(new_value);
230/// assert_eq!(my_struct.special_field.get(), new_value);
231/// ```
232///
29967ef6 233/// See the [module-level documentation](self) for more.
85aaf69f 234#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0
XL
235#[repr(transparent)]
236pub struct Cell<T: ?Sized> {
1a4d82fc
JJ
237 value: UnsafeCell<T>,
238}
239
8bb4bdeb 240#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 241unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
8bb4bdeb 242
3c0e092e
XL
243// Note that this negative impl isn't strictly necessary for correctness,
244// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
245// However, given how important `Cell`'s `!Sync`-ness is,
246// having an explicit negative impl is nice for documentation purposes
247// and results in nicer error messages.
8bb4bdeb 248#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 249impl<T: ?Sized> !Sync for Cell<T> {}
8bb4bdeb
XL
250
251#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 252impl<T: Copy> Clone for Cell<T> {
8bb4bdeb
XL
253 #[inline]
254 fn clone(&self) -> Cell<T> {
255 Cell::new(self.get())
256 }
257}
258
259#[stable(feature = "rust1", since = "1.0.0")]
416331ca 260impl<T: Default> Default for Cell<T> {
8bb4bdeb
XL
261 /// Creates a `Cell<T>`, with the `Default` value for T.
262 #[inline]
263 fn default() -> Cell<T> {
264 Cell::new(Default::default())
265 }
266}
267
268#[stable(feature = "rust1", since = "1.0.0")]
416331ca 269impl<T: PartialEq + Copy> PartialEq for Cell<T> {
8bb4bdeb
XL
270 #[inline]
271 fn eq(&self, other: &Cell<T>) -> bool {
272 self.get() == other.get()
273 }
274}
275
276#[stable(feature = "cell_eq", since = "1.2.0")]
416331ca 277impl<T: Eq + Copy> Eq for Cell<T> {}
8bb4bdeb
XL
278
279#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 280impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
8bb4bdeb
XL
281 #[inline]
282 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
283 self.get().partial_cmp(&other.get())
284 }
285
286 #[inline]
287 fn lt(&self, other: &Cell<T>) -> bool {
288 self.get() < other.get()
289 }
290
291 #[inline]
292 fn le(&self, other: &Cell<T>) -> bool {
293 self.get() <= other.get()
294 }
295
296 #[inline]
297 fn gt(&self, other: &Cell<T>) -> bool {
298 self.get() > other.get()
299 }
300
301 #[inline]
302 fn ge(&self, other: &Cell<T>) -> bool {
303 self.get() >= other.get()
304 }
305}
306
307#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 308impl<T: Ord + Copy> Ord for Cell<T> {
8bb4bdeb
XL
309 #[inline]
310 fn cmp(&self, other: &Cell<T>) -> Ordering {
311 self.get().cmp(&other.get())
312 }
313}
314
315#[stable(feature = "cell_from", since = "1.12.0")]
3c0e092e
XL
316#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
317impl<T> const From<T> for Cell<T> {
5099ac24 318 /// Creates a new `Cell<T>` containing the given value.
8bb4bdeb
XL
319 fn from(t: T) -> Cell<T> {
320 Cell::new(t)
321 }
322}
323
324impl<T> Cell<T> {
325 /// Creates a new `Cell` containing the given value.
85aaf69f
SL
326 ///
327 /// # Examples
328 ///
329 /// ```
330 /// use std::cell::Cell;
331 ///
332 /// let c = Cell::new(5);
85aaf69f 333 /// ```
85aaf69f 334 #[stable(feature = "rust1", since = "1.0.0")]
cdc7bbd5 335 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
8bb4bdeb
XL
336 #[inline]
337 pub const fn new(value: T) -> Cell<T> {
dfeec247 338 Cell { value: UnsafeCell::new(value) }
1a4d82fc
JJ
339 }
340
8bb4bdeb
XL
341 /// Sets the contained value.
342 ///
343 /// # Examples
344 ///
345 /// ```
346 /// use std::cell::Cell;
347 ///
348 /// let c = Cell::new(5);
349 ///
350 /// c.set(10);
351 /// ```
a7813a04 352 #[inline]
8bb4bdeb
XL
353 #[stable(feature = "rust1", since = "1.0.0")]
354 pub fn set(&self, val: T) {
355 let old = self.replace(val);
356 drop(old);
a7813a04
XL
357 }
358
c295e0f8 359 /// Swaps the values of two `Cell`s.
8bb4bdeb
XL
360 /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
361 ///
362 /// # Examples
363 ///
364 /// ```
365 /// use std::cell::Cell;
366 ///
367 /// let c1 = Cell::new(5i32);
368 /// let c2 = Cell::new(10i32);
369 /// c1.swap(&c2);
370 /// assert_eq!(10, c1.get());
371 /// assert_eq!(5, c2.get());
372 /// ```
a7813a04 373 #[inline]
8bb4bdeb
XL
374 #[stable(feature = "move_cell", since = "1.17.0")]
375 pub fn swap(&self, other: &Self) {
376 if ptr::eq(self, other) {
377 return;
378 }
dfeec247
XL
379 // SAFETY: This can be risky if called from separate threads, but `Cell`
380 // is `!Sync` so this won't happen. This also won't invalidate any
381 // pointers since `Cell` makes sure nothing else will be pointing into
382 // either of these `Cell`s.
8bb4bdeb
XL
383 unsafe {
384 ptr::swap(self.value.get(), other.value.get());
385 }
a7813a04
XL
386 }
387
6a06907d 388 /// Replaces the contained value with `val`, and returns the old contained value.
8bb4bdeb
XL
389 ///
390 /// # Examples
391 ///
392 /// ```
393 /// use std::cell::Cell;
394 ///
041b39d2
XL
395 /// let cell = Cell::new(5);
396 /// assert_eq!(cell.get(), 5);
397 /// assert_eq!(cell.replace(10), 5);
398 /// assert_eq!(cell.get(), 10);
8bb4bdeb
XL
399 /// ```
400 #[stable(feature = "move_cell", since = "1.17.0")]
401 pub fn replace(&self, val: T) -> T {
dfeec247
XL
402 // SAFETY: This can cause data races if called from a separate thread,
403 // but `Cell` is `!Sync` so this won't happen.
8bb4bdeb 404 mem::replace(unsafe { &mut *self.value.get() }, val)
a7813a04 405 }
a7813a04 406
8bb4bdeb
XL
407 /// Unwraps the value.
408 ///
409 /// # Examples
410 ///
411 /// ```
412 /// use std::cell::Cell;
413 ///
414 /// let c = Cell::new(5);
415 /// let five = c.into_inner();
416 ///
417 /// assert_eq!(five, 5);
418 /// ```
419 #[stable(feature = "move_cell", since = "1.17.0")]
29967ef6
XL
420 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
421 pub const fn into_inner(self) -> T {
2c00a5a8 422 self.value.into_inner()
a7813a04 423 }
e74abb32
XL
424}
425
dfeec247 426impl<T: Copy> Cell<T> {
e74abb32
XL
427 /// Returns a copy of the contained value.
428 ///
429 /// # Examples
430 ///
431 /// ```
432 /// use std::cell::Cell;
433 ///
434 /// let c = Cell::new(5);
435 ///
436 /// let five = c.get();
437 /// ```
438 #[inline]
439 #[stable(feature = "rust1", since = "1.0.0")]
440 pub fn get(&self) -> T {
dfeec247
XL
441 // SAFETY: This can cause data races if called from a separate thread,
442 // but `Cell` is `!Sync` so this won't happen.
443 unsafe { *self.value.get() }
e74abb32
XL
444 }
445
446 /// Updates the contained value using a function and returns the new value.
447 ///
448 /// # Examples
449 ///
450 /// ```
451 /// #![feature(cell_update)]
452 ///
453 /// use std::cell::Cell;
454 ///
455 /// let c = Cell::new(5);
456 /// let new = c.update(|x| x + 1);
457 ///
458 /// assert_eq!(new, 6);
459 /// assert_eq!(c.get(), 6);
460 /// ```
461 #[inline]
462 #[unstable(feature = "cell_update", issue = "50186")]
463 pub fn update<F>(&self, f: F) -> T
464 where
465 F: FnOnce(T) -> T,
466 {
467 let old = self.get();
468 let new = f(old);
469 self.set(new);
470 new
471 }
a7813a04
XL
472}
473
8faf50e0
XL
474impl<T: ?Sized> Cell<T> {
475 /// Returns a raw pointer to the underlying data in this cell.
476 ///
477 /// # Examples
478 ///
479 /// ```
480 /// use std::cell::Cell;
481 ///
482 /// let c = Cell::new(5);
483 ///
484 /// let ptr = c.as_ptr();
485 /// ```
486 #[inline]
487 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
dfeec247 488 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
a1dfa0c6 489 pub const fn as_ptr(&self) -> *mut T {
8faf50e0
XL
490 self.value.get()
491 }
492
493 /// Returns a mutable reference to the underlying data.
494 ///
495 /// This call borrows `Cell` mutably (at compile-time) which guarantees
496 /// that we possess the only reference.
497 ///
136023e0
XL
498 /// However be cautious: this method expects `self` to be mutable, which is
499 /// generally not the case when using a `Cell`. If you require interior
500 /// mutability by reference, consider using `RefCell` which provides
501 /// run-time checked mutable borrows through its [`borrow_mut`] method.
502 ///
503 /// [`borrow_mut`]: RefCell::borrow_mut()
504 ///
8faf50e0
XL
505 /// # Examples
506 ///
507 /// ```
508 /// use std::cell::Cell;
509 ///
510 /// let mut c = Cell::new(5);
511 /// *c.get_mut() += 1;
512 ///
513 /// assert_eq!(c.get(), 6);
514 /// ```
515 #[inline]
516 #[stable(feature = "cell_get_mut", since = "1.11.0")]
517 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 518 self.value.get_mut()
8faf50e0
XL
519 }
520
521 /// Returns a `&Cell<T>` from a `&mut T`
522 ///
523 /// # Examples
524 ///
525 /// ```
8faf50e0
XL
526 /// use std::cell::Cell;
527 ///
528 /// let slice: &mut [i32] = &mut [1, 2, 3];
529 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
530 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
531 ///
532 /// assert_eq!(slice_cell.len(), 3);
533 /// ```
534 #[inline]
dc9dc135 535 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 536 pub fn from_mut(t: &mut T) -> &Cell<T> {
dfeec247
XL
537 // SAFETY: `&mut` ensures unique access.
538 unsafe { &*(t as *mut T as *const Cell<T>) }
8faf50e0
XL
539 }
540}
541
8bb4bdeb
XL
542impl<T: Default> Cell<T> {
543 /// Takes the value of the cell, leaving `Default::default()` in its place.
544 ///
545 /// # Examples
546 ///
547 /// ```
548 /// use std::cell::Cell;
549 ///
550 /// let c = Cell::new(5);
551 /// let five = c.take();
552 ///
553 /// assert_eq!(five, 5);
554 /// assert_eq!(c.into_inner(), 0);
555 /// ```
556 #[stable(feature = "move_cell", since = "1.17.0")]
557 pub fn take(&self) -> T {
558 self.replace(Default::default())
5bcae85e
SL
559 }
560}
561
9e0c209e
SL
562#[unstable(feature = "coerce_unsized", issue = "27732")]
563impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
564
8faf50e0
XL
565impl<T> Cell<[T]> {
566 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
567 ///
568 /// # Examples
569 ///
570 /// ```
8faf50e0
XL
571 /// use std::cell::Cell;
572 ///
573 /// let slice: &mut [i32] = &mut [1, 2, 3];
574 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
575 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
576 ///
577 /// assert_eq!(slice_cell.len(), 3);
578 /// ```
dc9dc135 579 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 580 pub fn as_slice_of_cells(&self) -> &[Cell<T>] {
dfeec247
XL
581 // SAFETY: `Cell<T>` has the same memory layout as `T`.
582 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
8faf50e0
XL
583 }
584}
585
94222f64
XL
586impl<T, const N: usize> Cell<[T; N]> {
587 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
588 ///
589 /// # Examples
590 ///
591 /// ```
592 /// #![feature(as_array_of_cells)]
593 /// use std::cell::Cell;
594 ///
595 /// let mut array: [i32; 3] = [1, 2, 3];
596 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
597 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
598 /// ```
599 #[unstable(feature = "as_array_of_cells", issue = "88248")]
600 pub fn as_array_of_cells(&self) -> &[Cell<T>; N] {
601 // SAFETY: `Cell<T>` has the same memory layout as `T`.
602 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
603 }
604}
605
1a4d82fc 606/// A mutable memory location with dynamically checked borrow rules
85aaf69f 607///
29967ef6 608/// See the [module-level documentation](self) for more.
85aaf69f 609#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 610pub struct RefCell<T: ?Sized> {
1a4d82fc 611 borrow: Cell<BorrowFlag>,
cdc7bbd5 612 // Stores the location of the earliest currently active borrow.
94222f64 613 // This gets updated whenever we go from having zero borrows
cdc7bbd5 614 // to having a single borrow. When a borrow occurs, this gets included
136023e0 615 // in the generated `BorrowError/`BorrowMutError`
cdc7bbd5
XL
616 #[cfg(feature = "debug_refcell")]
617 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
d9579d0f 618 value: UnsafeCell<T>,
1a4d82fc
JJ
619}
620
29967ef6 621/// An error returned by [`RefCell::try_borrow`].
9e0c209e 622#[stable(feature = "try_borrow", since = "1.13.0")]
136023e0 623#[non_exhaustive]
9e0c209e 624pub struct BorrowError {
cdc7bbd5
XL
625 #[cfg(feature = "debug_refcell")]
626 location: &'static crate::panic::Location<'static>,
5bcae85e
SL
627}
628
9e0c209e
SL
629#[stable(feature = "try_borrow", since = "1.13.0")]
630impl Debug for BorrowError {
48663c56 631 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cdc7bbd5
XL
632 let mut builder = f.debug_struct("BorrowError");
633
634 #[cfg(feature = "debug_refcell")]
635 builder.field("location", self.location);
636
637 builder.finish()
5bcae85e
SL
638 }
639}
640
9e0c209e
SL
641#[stable(feature = "try_borrow", since = "1.13.0")]
642impl Display for BorrowError {
48663c56 643 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
644 Display::fmt("already mutably borrowed", f)
645 }
646}
647
29967ef6 648/// An error returned by [`RefCell::try_borrow_mut`].
9e0c209e 649#[stable(feature = "try_borrow", since = "1.13.0")]
136023e0 650#[non_exhaustive]
9e0c209e 651pub struct BorrowMutError {
cdc7bbd5
XL
652 #[cfg(feature = "debug_refcell")]
653 location: &'static crate::panic::Location<'static>,
5bcae85e
SL
654}
655
9e0c209e
SL
656#[stable(feature = "try_borrow", since = "1.13.0")]
657impl Debug for BorrowMutError {
48663c56 658 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cdc7bbd5
XL
659 let mut builder = f.debug_struct("BorrowMutError");
660
661 #[cfg(feature = "debug_refcell")]
662 builder.field("location", self.location);
663
664 builder.finish()
5bcae85e
SL
665 }
666}
667
9e0c209e
SL
668#[stable(feature = "try_borrow", since = "1.13.0")]
669impl Display for BorrowMutError {
48663c56 670 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
671 Display::fmt("already borrowed", f)
672 }
673}
674
8faf50e0
XL
675// Positive values represent the number of `Ref` active. Negative values
676// represent the number of `RefMut` active. Multiple `RefMut`s can only be
677// active at a time if they refer to distinct, nonoverlapping components of a
678// `RefCell` (e.g., different ranges of a slice).
94b46f34
XL
679//
680// `Ref` and `RefMut` are both two words in size, and so there will likely never
681// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
8faf50e0
XL
682// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
683// However, this is not a guarantee, as a pathological program could repeatedly
684// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
685// explicitly check for overflow and underflow in order to avoid unsafety, or at
686// least behave correctly in the event that overflow or underflow happens (e.g.,
687// see BorrowRef::new).
688type BorrowFlag = isize;
1a4d82fc 689const UNUSED: BorrowFlag = 0;
8faf50e0
XL
690
691#[inline(always)]
692fn is_writing(x: BorrowFlag) -> bool {
693 x < UNUSED
694}
695
696#[inline(always)]
697fn is_reading(x: BorrowFlag) -> bool {
698 x > UNUSED
699}
1a4d82fc
JJ
700
701impl<T> RefCell<T> {
85aaf69f
SL
702 /// Creates a new `RefCell` containing `value`.
703 ///
704 /// # Examples
705 ///
706 /// ```
707 /// use std::cell::RefCell;
708 ///
709 /// let c = RefCell::new(5);
710 /// ```
711 #[stable(feature = "rust1", since = "1.0.0")]
cdc7bbd5 712 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
c34b1796 713 #[inline]
62682a34 714 pub const fn new(value: T) -> RefCell<T> {
cdc7bbd5
XL
715 RefCell {
716 value: UnsafeCell::new(value),
717 borrow: Cell::new(UNUSED),
718 #[cfg(feature = "debug_refcell")]
719 borrowed_at: Cell::new(None),
720 }
1a4d82fc
JJ
721 }
722
723 /// Consumes the `RefCell`, returning the wrapped value.
85aaf69f
SL
724 ///
725 /// # Examples
726 ///
727 /// ```
728 /// use std::cell::RefCell;
729 ///
730 /// let c = RefCell::new(5);
731 ///
732 /// let five = c.into_inner();
733 /// ```
734 #[stable(feature = "rust1", since = "1.0.0")]
29967ef6 735 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
c34b1796 736 #[inline]
29967ef6 737 pub const fn into_inner(self) -> T {
1a4d82fc
JJ
738 // Since this function takes `self` (the `RefCell`) by value, the
739 // compiler statically verifies that it is not currently borrowed.
2c00a5a8 740 self.value.into_inner()
1a4d82fc 741 }
3b2f2976
XL
742
743 /// Replaces the wrapped value with a new one, returning the old value,
744 /// without deinitializing either one.
745 ///
746 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
747 ///
abe05a73
XL
748 /// # Panics
749 ///
750 /// Panics if the value is currently borrowed.
751 ///
3b2f2976
XL
752 /// # Examples
753 ///
754 /// ```
3b2f2976 755 /// use std::cell::RefCell;
abe05a73
XL
756 /// let cell = RefCell::new(5);
757 /// let old_value = cell.replace(6);
758 /// assert_eq!(old_value, 5);
759 /// assert_eq!(cell, RefCell::new(6));
3b2f2976 760 /// ```
abe05a73 761 #[inline]
dfeec247 762 #[stable(feature = "refcell_replace", since = "1.24.0")]
1b1a35ee 763 #[track_caller]
abe05a73
XL
764 pub fn replace(&self, t: T) -> T {
765 mem::replace(&mut *self.borrow_mut(), t)
766 }
767
768 /// Replaces the wrapped value with a new one computed from `f`, returning
769 /// the old value, without deinitializing either one.
770 ///
3b2f2976
XL
771 /// # Panics
772 ///
abe05a73
XL
773 /// Panics if the value is currently borrowed.
774 ///
775 /// # Examples
776 ///
777 /// ```
abe05a73
XL
778 /// use std::cell::RefCell;
779 /// let cell = RefCell::new(5);
780 /// let old_value = cell.replace_with(|&mut old| old + 1);
781 /// assert_eq!(old_value, 5);
782 /// assert_eq!(cell, RefCell::new(6));
783 /// ```
3b2f2976 784 #[inline]
dfeec247 785 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1b1a35ee 786 #[track_caller]
abe05a73
XL
787 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
788 let mut_borrow = &mut *self.borrow_mut();
789 let replacement = f(mut_borrow);
790 mem::replace(mut_borrow, replacement)
3b2f2976
XL
791 }
792
793 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
794 /// without deinitializing either one.
795 ///
796 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
797 ///
abe05a73
XL
798 /// # Panics
799 ///
800 /// Panics if the value in either `RefCell` is currently borrowed.
801 ///
3b2f2976
XL
802 /// # Examples
803 ///
804 /// ```
3b2f2976
XL
805 /// use std::cell::RefCell;
806 /// let c = RefCell::new(5);
807 /// let d = RefCell::new(6);
808 /// c.swap(&d);
809 /// assert_eq!(c, RefCell::new(6));
810 /// assert_eq!(d, RefCell::new(5));
811 /// ```
3b2f2976 812 #[inline]
dfeec247 813 #[stable(feature = "refcell_swap", since = "1.24.0")]
3b2f2976
XL
814 pub fn swap(&self, other: &Self) {
815 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
816 }
d9579d0f 817}
1a4d82fc 818
d9579d0f 819impl<T: ?Sized> RefCell<T> {
1a4d82fc
JJ
820 /// Immutably borrows the wrapped value.
821 ///
822 /// The borrow lasts until the returned `Ref` exits scope. Multiple
823 /// immutable borrows can be taken out at the same time.
824 ///
825 /// # Panics
826 ///
5bcae85e
SL
827 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
828 /// [`try_borrow`](#method.try_borrow).
85aaf69f
SL
829 ///
830 /// # Examples
831 ///
832 /// ```
833 /// use std::cell::RefCell;
834 ///
835 /// let c = RefCell::new(5);
836 ///
837 /// let borrowed_five = c.borrow();
838 /// let borrowed_five2 = c.borrow();
839 /// ```
840 ///
841 /// An example of panic:
842 ///
f035d41b 843 /// ```should_panic
85aaf69f 844 /// use std::cell::RefCell;
85aaf69f 845 ///
f035d41b 846 /// let c = RefCell::new(5);
85aaf69f 847 ///
f035d41b
XL
848 /// let m = c.borrow_mut();
849 /// let b = c.borrow(); // this causes a panic
85aaf69f
SL
850 /// ```
851 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 852 #[inline]
3dfed10e 853 #[track_caller]
48663c56 854 pub fn borrow(&self) -> Ref<'_, T> {
5bcae85e
SL
855 self.try_borrow().expect("already mutably borrowed")
856 }
857
858 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
859 /// borrowed.
860 ///
861 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
862 /// taken out at the same time.
863 ///
864 /// This is the non-panicking variant of [`borrow`](#method.borrow).
865 ///
866 /// # Examples
867 ///
868 /// ```
5bcae85e
SL
869 /// use std::cell::RefCell;
870 ///
871 /// let c = RefCell::new(5);
872 ///
873 /// {
874 /// let m = c.borrow_mut();
875 /// assert!(c.try_borrow().is_err());
876 /// }
877 ///
878 /// {
879 /// let m = c.borrow();
880 /// assert!(c.try_borrow().is_ok());
881 /// }
882 /// ```
9e0c209e 883 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 884 #[inline]
cdc7bbd5 885 #[cfg_attr(feature = "debug_refcell", track_caller)]
48663c56 886 pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
85aaf69f 887 match BorrowRef::new(&self.borrow) {
cdc7bbd5
XL
888 Some(b) => {
889 #[cfg(feature = "debug_refcell")]
890 {
891 // `borrowed_at` is always the *first* active borrow
892 if b.borrow.get() == 1 {
893 self.borrowed_at.set(Some(crate::panic::Location::caller()));
894 }
895 }
896
897 // SAFETY: `BorrowRef` ensures that there is only immutable access
898 // to the value while borrowed.
899 Ok(Ref { value: unsafe { &*self.value.get() }, borrow: b })
900 }
901 None => Err(BorrowError {
a2a8927a 902 // If a borrow occurred, then we must already have an outstanding borrow,
cdc7bbd5
XL
903 // so `borrowed_at` will be `Some`
904 #[cfg(feature = "debug_refcell")]
905 location: self.borrowed_at.get().unwrap(),
906 }),
1a4d82fc
JJ
907 }
908 }
909
1a4d82fc
JJ
910 /// Mutably borrows the wrapped value.
911 ///
94b46f34
XL
912 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
913 /// from it exit scope. The value cannot be borrowed while this borrow is
914 /// active.
1a4d82fc
JJ
915 ///
916 /// # Panics
917 ///
5bcae85e
SL
918 /// Panics if the value is currently borrowed. For a non-panicking variant, use
919 /// [`try_borrow_mut`](#method.try_borrow_mut).
85aaf69f
SL
920 ///
921 /// # Examples
922 ///
923 /// ```
924 /// use std::cell::RefCell;
925 ///
f9f354fc 926 /// let c = RefCell::new("hello".to_owned());
85aaf69f 927 ///
f9f354fc 928 /// *c.borrow_mut() = "bonjour".to_owned();
7453a54e 929 ///
f9f354fc 930 /// assert_eq!(&*c.borrow(), "bonjour");
85aaf69f
SL
931 /// ```
932 ///
933 /// An example of panic:
934 ///
f035d41b 935 /// ```should_panic
85aaf69f 936 /// use std::cell::RefCell;
85aaf69f 937 ///
f035d41b
XL
938 /// let c = RefCell::new(5);
939 /// let m = c.borrow();
85aaf69f 940 ///
f035d41b 941 /// let b = c.borrow_mut(); // this causes a panic
85aaf69f
SL
942 /// ```
943 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 944 #[inline]
3dfed10e 945 #[track_caller]
48663c56 946 pub fn borrow_mut(&self) -> RefMut<'_, T> {
5bcae85e
SL
947 self.try_borrow_mut().expect("already borrowed")
948 }
949
950 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
951 ///
94b46f34
XL
952 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
953 /// from it exit scope. The value cannot be borrowed while this borrow is
954 /// active.
5bcae85e
SL
955 ///
956 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
957 ///
958 /// # Examples
959 ///
960 /// ```
5bcae85e
SL
961 /// use std::cell::RefCell;
962 ///
963 /// let c = RefCell::new(5);
964 ///
965 /// {
966 /// let m = c.borrow();
967 /// assert!(c.try_borrow_mut().is_err());
968 /// }
969 ///
970 /// assert!(c.try_borrow_mut().is_ok());
971 /// ```
9e0c209e 972 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 973 #[inline]
cdc7bbd5 974 #[cfg_attr(feature = "debug_refcell", track_caller)]
48663c56 975 pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
85aaf69f 976 match BorrowRefMut::new(&self.borrow) {
cdc7bbd5
XL
977 Some(b) => {
978 #[cfg(feature = "debug_refcell")]
979 {
980 self.borrowed_at.set(Some(crate::panic::Location::caller()));
981 }
982
983 // SAFETY: `BorrowRef` guarantees unique access.
984 Ok(RefMut { value: unsafe { &mut *self.value.get() }, borrow: b })
985 }
986 None => Err(BorrowMutError {
a2a8927a 987 // If a borrow occurred, then we must already have an outstanding borrow,
cdc7bbd5
XL
988 // so `borrowed_at` will be `Some`
989 #[cfg(feature = "debug_refcell")]
990 location: self.borrowed_at.get().unwrap(),
991 }),
1a4d82fc
JJ
992 }
993 }
994
5bcae85e
SL
995 /// Returns a raw pointer to the underlying data in this cell.
996 ///
997 /// # Examples
998 ///
999 /// ```
1000 /// use std::cell::RefCell;
1001 ///
1002 /// let c = RefCell::new(5);
1003 ///
1004 /// let ptr = c.as_ptr();
1005 /// ```
1006 #[inline]
1007 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1008 pub fn as_ptr(&self) -> *mut T {
1009 self.value.get()
1010 }
1011
a7813a04
XL
1012 /// Returns a mutable reference to the underlying data.
1013 ///
1014 /// This call borrows `RefCell` mutably (at compile-time) so there is no
1015 /// need for dynamic checks.
5bcae85e 1016 ///
cc61c64b
XL
1017 /// However be cautious: this method expects `self` to be mutable, which is
1018 /// generally not the case when using a `RefCell`. Take a look at the
1019 /// [`borrow_mut`] method instead if `self` isn't mutable.
1020 ///
1021 /// Also, please be aware that this method is only for special circumstances and is usually
3b2f2976 1022 /// not what you want. In case of doubt, use [`borrow_mut`] instead.
cc61c64b 1023 ///
fc512014 1024 /// [`borrow_mut`]: RefCell::borrow_mut()
cc61c64b 1025 ///
5bcae85e
SL
1026 /// # Examples
1027 ///
1028 /// ```
1029 /// use std::cell::RefCell;
1030 ///
1031 /// let mut c = RefCell::new(5);
1032 /// *c.get_mut() += 1;
1033 ///
1034 /// assert_eq!(c, RefCell::new(6));
1035 /// ```
a7813a04 1036 #[inline]
3157f602 1037 #[stable(feature = "cell_get_mut", since = "1.11.0")]
a7813a04 1038 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 1039 self.value.get_mut()
a7813a04 1040 }
48663c56 1041
ba9703b0
XL
1042 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1043 ///
1044 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1045 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1046 /// if some `Ref` or `RefMut` borrows have been leaked.
1047 ///
fc512014 1048 /// [`get_mut`]: RefCell::get_mut()
ba9703b0
XL
1049 ///
1050 /// # Examples
1051 ///
1052 /// ```
1053 /// #![feature(cell_leak)]
1054 /// use std::cell::RefCell;
1055 ///
1056 /// let mut c = RefCell::new(0);
1057 /// std::mem::forget(c.borrow_mut());
1058 ///
1059 /// assert!(c.try_borrow().is_err());
1060 /// c.undo_leak();
1061 /// assert!(c.try_borrow().is_ok());
1062 /// ```
1063 #[unstable(feature = "cell_leak", issue = "69099")]
1064 pub fn undo_leak(&mut self) -> &mut T {
1065 *self.borrow.get_mut() = UNUSED;
1066 self.get_mut()
1067 }
1068
48663c56
XL
1069 /// Immutably borrows the wrapped value, returning an error if the value is
1070 /// currently mutably borrowed.
1071 ///
1072 /// # Safety
1073 ///
1074 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1075 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1076 /// borrowing the `RefCell` while the reference returned by this method
1077 /// is alive is undefined behaviour.
1078 ///
1079 /// # Examples
1080 ///
1081 /// ```
48663c56
XL
1082 /// use std::cell::RefCell;
1083 ///
1084 /// let c = RefCell::new(5);
1085 ///
1086 /// {
1087 /// let m = c.borrow_mut();
1088 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1089 /// }
1090 ///
1091 /// {
1092 /// let m = c.borrow();
1093 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1094 /// }
1095 /// ```
dc9dc135 1096 #[stable(feature = "borrow_state", since = "1.37.0")]
48663c56
XL
1097 #[inline]
1098 pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1099 if !is_writing(self.borrow.get()) {
f035d41b
XL
1100 // SAFETY: We check that nobody is actively writing now, but it is
1101 // the caller's responsibility to ensure that nobody writes until
1102 // the returned reference is no longer in use.
1103 // Also, `self.value.get()` refers to the value owned by `self`
1104 // and is thus guaranteed to be valid for the lifetime of `self`.
1105 Ok(unsafe { &*self.value.get() })
48663c56 1106 } else {
cdc7bbd5 1107 Err(BorrowError {
a2a8927a 1108 // If a borrow occurred, then we must already have an outstanding borrow,
cdc7bbd5
XL
1109 // so `borrowed_at` will be `Some`
1110 #[cfg(feature = "debug_refcell")]
1111 location: self.borrowed_at.get().unwrap(),
1112 })
48663c56
XL
1113 }
1114 }
1a4d82fc
JJ
1115}
1116
f9f354fc
XL
1117impl<T: Default> RefCell<T> {
1118 /// Takes the wrapped value, leaving `Default::default()` in its place.
1119 ///
1120 /// # Panics
1121 ///
1122 /// Panics if the value is currently borrowed.
1123 ///
1124 /// # Examples
1125 ///
1126 /// ```
f9f354fc
XL
1127 /// use std::cell::RefCell;
1128 ///
1129 /// let c = RefCell::new(5);
1130 /// let five = c.take();
1131 ///
1132 /// assert_eq!(five, 5);
1133 /// assert_eq!(c.into_inner(), 0);
1134 /// ```
fc512014 1135 #[stable(feature = "refcell_take", since = "1.50.0")]
f9f354fc
XL
1136 pub fn take(&self) -> T {
1137 self.replace(Default::default())
1138 }
1139}
1140
85aaf69f 1141#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1142unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1a4d82fc 1143
54a0048b
SL
1144#[stable(feature = "rust1", since = "1.0.0")]
1145impl<T: ?Sized> !Sync for RefCell<T> {}
1146
85aaf69f 1147#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1148impl<T: Clone> Clone for RefCell<T> {
0531ce1d
XL
1149 /// # Panics
1150 ///
1151 /// Panics if the value is currently mutably borrowed.
c34b1796 1152 #[inline]
1b1a35ee 1153 #[track_caller]
1a4d82fc
JJ
1154 fn clone(&self) -> RefCell<T> {
1155 RefCell::new(self.borrow().clone())
1156 }
17df50a5
XL
1157
1158 /// # Panics
1159 ///
1160 /// Panics if `other` is currently mutably borrowed.
1161 #[inline]
1162 #[track_caller]
1163 fn clone_from(&mut self, other: &Self) {
1164 self.get_mut().clone_from(&other.borrow())
1165 }
1a4d82fc
JJ
1166}
1167
85aaf69f 1168#[stable(feature = "rust1", since = "1.0.0")]
416331ca 1169impl<T: Default> Default for RefCell<T> {
9e0c209e 1170 /// Creates a `RefCell<T>`, with the `Default` value for T.
c34b1796 1171 #[inline]
1a4d82fc
JJ
1172 fn default() -> RefCell<T> {
1173 RefCell::new(Default::default())
1174 }
1175}
1176
85aaf69f 1177#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1178impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
0531ce1d
XL
1179 /// # Panics
1180 ///
1181 /// Panics if the value in either `RefCell` is currently borrowed.
c34b1796 1182 #[inline]
1a4d82fc
JJ
1183 fn eq(&self, other: &RefCell<T>) -> bool {
1184 *self.borrow() == *other.borrow()
1185 }
1186}
1187
62682a34
SL
1188#[stable(feature = "cell_eq", since = "1.2.0")]
1189impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1190
a7813a04
XL
1191#[stable(feature = "cell_ord", since = "1.10.0")]
1192impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
0531ce1d
XL
1193 /// # Panics
1194 ///
1195 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1196 #[inline]
1197 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1198 self.borrow().partial_cmp(&*other.borrow())
1199 }
1200
0531ce1d
XL
1201 /// # Panics
1202 ///
1203 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1204 #[inline]
1205 fn lt(&self, other: &RefCell<T>) -> bool {
1206 *self.borrow() < *other.borrow()
1207 }
1208
0531ce1d
XL
1209 /// # Panics
1210 ///
1211 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1212 #[inline]
1213 fn le(&self, other: &RefCell<T>) -> bool {
1214 *self.borrow() <= *other.borrow()
1215 }
1216
0531ce1d
XL
1217 /// # Panics
1218 ///
1219 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1220 #[inline]
1221 fn gt(&self, other: &RefCell<T>) -> bool {
1222 *self.borrow() > *other.borrow()
1223 }
1224
0531ce1d
XL
1225 /// # Panics
1226 ///
1227 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1228 #[inline]
1229 fn ge(&self, other: &RefCell<T>) -> bool {
1230 *self.borrow() >= *other.borrow()
1231 }
1232}
1233
1234#[stable(feature = "cell_ord", since = "1.10.0")]
1235impl<T: ?Sized + Ord> Ord for RefCell<T> {
0531ce1d
XL
1236 /// # Panics
1237 ///
1238 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1239 #[inline]
1240 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1241 self.borrow().cmp(&*other.borrow())
1242 }
1243}
1244
5bcae85e 1245#[stable(feature = "cell_from", since = "1.12.0")]
3c0e092e
XL
1246#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
1247impl<T> const From<T> for RefCell<T> {
5099ac24 1248 /// Creates a new `RefCell<T>` containing the given value.
5bcae85e
SL
1249 fn from(t: T) -> RefCell<T> {
1250 RefCell::new(t)
1251 }
1252}
1253
9e0c209e
SL
1254#[unstable(feature = "coerce_unsized", issue = "27732")]
1255impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1256
1a4d82fc 1257struct BorrowRef<'b> {
54a0048b 1258 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1259}
1260
1261impl<'b> BorrowRef<'b> {
c34b1796 1262 #[inline]
1a4d82fc 1263 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
416331ca
XL
1264 let b = borrow.get().wrapping_add(1);
1265 if !is_reading(b) {
1266 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1267 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1268 // due to Rust's reference aliasing rules
f035d41b
XL
1269 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1270 // into isize::MIN (the max amount of writing borrows) so we can't allow
416331ca
XL
1271 // an additional read borrow because isize can't represent so many read borrows
1272 // (this can only happen if you mem::forget more than a small constant amount of
1273 // `Ref`s, which is not good practice)
94b46f34
XL
1274 None
1275 } else {
416331ca
XL
1276 // Incrementing borrow can result in a reading value (> 0) in these cases:
1277 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
f035d41b 1278 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
416331ca
XL
1279 // is large enough to represent having one more read borrow
1280 borrow.set(b);
94b46f34 1281 Some(BorrowRef { borrow })
1a4d82fc
JJ
1282 }
1283 }
1284}
1285
0bf4aa26 1286impl Drop for BorrowRef<'_> {
c34b1796 1287 #[inline]
1a4d82fc 1288 fn drop(&mut self) {
54a0048b 1289 let borrow = self.borrow.get();
8faf50e0 1290 debug_assert!(is_reading(borrow));
54a0048b 1291 self.borrow.set(borrow - 1);
1a4d82fc
JJ
1292 }
1293}
1294
0bf4aa26 1295impl Clone for BorrowRef<'_> {
c34b1796 1296 #[inline]
0bf4aa26 1297 fn clone(&self) -> Self {
1a4d82fc 1298 // Since this Ref exists, we know the borrow flag
8faf50e0 1299 // is a reading borrow.
54a0048b 1300 let borrow = self.borrow.get();
8faf50e0 1301 debug_assert!(is_reading(borrow));
94b46f34
XL
1302 // Prevent the borrow counter from overflowing into
1303 // a writing borrow.
f035d41b 1304 assert!(borrow != isize::MAX);
54a0048b
SL
1305 self.borrow.set(borrow + 1);
1306 BorrowRef { borrow: self.borrow }
1a4d82fc
JJ
1307 }
1308}
1309
1310/// Wraps a borrowed reference to a value in a `RefCell` box.
85aaf69f
SL
1311/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1312///
29967ef6 1313/// See the [module-level documentation](self) for more.
85aaf69f 1314#[stable(feature = "rust1", since = "1.0.0")]
5099ac24 1315#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
d9579d0f 1316pub struct Ref<'b, T: ?Sized + 'b> {
54a0048b
SL
1317 value: &'b T,
1318 borrow: BorrowRef<'b>,
1a4d82fc
JJ
1319}
1320
85aaf69f 1321#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1322impl<T: ?Sized> Deref for Ref<'_, T> {
1a4d82fc
JJ
1323 type Target = T;
1324
1325 #[inline]
e9174d1e 1326 fn deref(&self) -> &T {
54a0048b 1327 self.value
1a4d82fc
JJ
1328 }
1329}
1330
62682a34
SL
1331impl<'b, T: ?Sized> Ref<'b, T> {
1332 /// Copies a `Ref`.
1333 ///
1334 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1335 ///
1336 /// This is an associated function that needs to be used as
9fa01778 1337 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
62682a34
SL
1338 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1339 /// a `RefCell`.
476ff2be 1340 #[stable(feature = "cell_extras", since = "1.15.0")]
3c0e092e 1341 #[must_use]
62682a34
SL
1342 #[inline]
1343 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
dfeec247 1344 Ref { value: orig.value, borrow: orig.borrow.clone() }
62682a34
SL
1345 }
1346
9fa01778 1347 /// Makes a new `Ref` for a component of the borrowed data.
62682a34
SL
1348 ///
1349 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1350 ///
1351 /// This is an associated function that needs to be used as `Ref::map(...)`.
1352 /// A method would interfere with methods of the same name on the contents
1353 /// of a `RefCell` used through `Deref`.
1354 ///
3b2f2976 1355 /// # Examples
62682a34
SL
1356 ///
1357 /// ```
62682a34
SL
1358 /// use std::cell::{RefCell, Ref};
1359 ///
1360 /// let c = RefCell::new((5, 'b'));
1361 /// let b1: Ref<(u32, char)> = c.borrow();
1362 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
1363 /// assert_eq!(*b2, 5)
1364 /// ```
7453a54e 1365 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34
SL
1366 #[inline]
1367 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
dfeec247
XL
1368 where
1369 F: FnOnce(&T) -> &U,
62682a34 1370 {
dfeec247 1371 Ref { value: f(orig.value), borrow: orig.borrow }
62682a34 1372 }
94b46f34 1373
5869c6ff
XL
1374 /// Makes a new `Ref` for an optional component of the borrowed data. The
1375 /// original guard is returned as an `Err(..)` if the closure returns
1376 /// `None`.
1377 ///
1378 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1379 ///
1380 /// This is an associated function that needs to be used as
1381 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1382 /// name on the contents of a `RefCell` used through `Deref`.
1383 ///
1384 /// # Examples
1385 ///
1386 /// ```
1387 /// #![feature(cell_filter_map)]
1388 ///
1389 /// use std::cell::{RefCell, Ref};
1390 ///
1391 /// let c = RefCell::new(vec![1, 2, 3]);
1392 /// let b1: Ref<Vec<u32>> = c.borrow();
1393 /// let b2: Result<Ref<u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1394 /// assert_eq!(*b2.unwrap(), 2);
1395 /// ```
1396 #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
1397 #[inline]
1398 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1399 where
1400 F: FnOnce(&T) -> Option<&U>,
1401 {
1402 match f(orig.value) {
1403 Some(value) => Ok(Ref { value, borrow: orig.borrow }),
1404 None => Err(orig),
1405 }
1406 }
1407
9fa01778 1408 /// Splits a `Ref` into multiple `Ref`s for different components of the
94b46f34
XL
1409 /// borrowed data.
1410 ///
1411 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1412 ///
1413 /// This is an associated function that needs to be used as
1414 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1415 /// name on the contents of a `RefCell` used through `Deref`.
1416 ///
1417 /// # Examples
1418 ///
1419 /// ```
94b46f34
XL
1420 /// use std::cell::{Ref, RefCell};
1421 ///
1422 /// let cell = RefCell::new([1, 2, 3, 4]);
1423 /// let borrow = cell.borrow();
1424 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1425 /// assert_eq!(*begin, [1, 2]);
1426 /// assert_eq!(*end, [3, 4]);
1427 /// ```
532ac7d7 1428 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1429 #[inline]
1430 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
dfeec247
XL
1431 where
1432 F: FnOnce(&T) -> (&U, &V),
94b46f34
XL
1433 {
1434 let (a, b) = f(orig.value);
1435 let borrow = orig.borrow.clone();
1436 (Ref { value: a, borrow }, Ref { value: b, borrow: orig.borrow })
1437 }
74b04a01
XL
1438
1439 /// Convert into a reference to the underlying data.
1440 ///
1441 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1442 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1443 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1444 /// have occurred in total.
1445 ///
1446 /// This is an associated function that needs to be used as
1447 /// `Ref::leak(...)`. A method would interfere with methods of the
1448 /// same name on the contents of a `RefCell` used through `Deref`.
1449 ///
1450 /// # Examples
1451 ///
1452 /// ```
1453 /// #![feature(cell_leak)]
1454 /// use std::cell::{RefCell, Ref};
1455 /// let cell = RefCell::new(0);
1456 ///
1457 /// let value = Ref::leak(cell.borrow());
1458 /// assert_eq!(*value, 0);
1459 ///
1460 /// assert!(cell.try_borrow().is_ok());
1461 /// assert!(cell.try_borrow_mut().is_err());
1462 /// ```
1463 #[unstable(feature = "cell_leak", issue = "69099")]
1464 pub fn leak(orig: Ref<'b, T>) -> &'b T {
ba9703b0
XL
1465 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1466 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1467 // unique reference to the borrowed RefCell. No further mutable references can be created
1468 // from the original cell.
74b04a01
XL
1469 mem::forget(orig.borrow);
1470 orig.value
1471 }
62682a34
SL
1472}
1473
54a0048b
SL
1474#[unstable(feature = "coerce_unsized", issue = "27732")]
1475impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1476
041b39d2 1477#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1478impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
48663c56 1479 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
041b39d2
XL
1480 self.value.fmt(f)
1481 }
1482}
1483
62682a34 1484impl<'b, T: ?Sized> RefMut<'b, T> {
9fa01778 1485 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
62682a34
SL
1486 /// variant.
1487 ///
1488 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1489 ///
1490 /// This is an associated function that needs to be used as
9fa01778 1491 /// `RefMut::map(...)`. A method would interfere with methods of the same
62682a34
SL
1492 /// name on the contents of a `RefCell` used through `Deref`.
1493 ///
3b2f2976 1494 /// # Examples
62682a34
SL
1495 ///
1496 /// ```
62682a34
SL
1497 /// use std::cell::{RefCell, RefMut};
1498 ///
1499 /// let c = RefCell::new((5, 'b'));
1500 /// {
1501 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
1502 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
1503 /// assert_eq!(*b2, 5);
1504 /// *b2 = 42;
1505 /// }
1506 /// assert_eq!(*c.borrow(), (42, 'b'));
1507 /// ```
7453a54e 1508 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34
SL
1509 #[inline]
1510 pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
dfeec247
XL
1511 where
1512 F: FnOnce(&mut T) -> &mut U,
62682a34 1513 {
ff7c6d11
XL
1514 // FIXME(nll-rfc#40): fix borrow-check
1515 let RefMut { value, borrow } = orig;
dfeec247 1516 RefMut { value: f(value), borrow }
62682a34 1517 }
94b46f34 1518
5869c6ff
XL
1519 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1520 /// original guard is returned as an `Err(..)` if the closure returns
1521 /// `None`.
1522 ///
1523 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1524 ///
1525 /// This is an associated function that needs to be used as
1526 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1527 /// same name on the contents of a `RefCell` used through `Deref`.
1528 ///
1529 /// # Examples
1530 ///
1531 /// ```
1532 /// #![feature(cell_filter_map)]
1533 ///
1534 /// use std::cell::{RefCell, RefMut};
1535 ///
1536 /// let c = RefCell::new(vec![1, 2, 3]);
1537 ///
1538 /// {
1539 /// let b1: RefMut<Vec<u32>> = c.borrow_mut();
1540 /// let mut b2: Result<RefMut<u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1541 ///
1542 /// if let Ok(mut b2) = b2 {
1543 /// *b2 += 2;
1544 /// }
1545 /// }
1546 ///
1547 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1548 /// ```
1549 #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
1550 #[inline]
1551 pub fn filter_map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1552 where
1553 F: FnOnce(&mut T) -> Option<&mut U>,
1554 {
1555 // FIXME(nll-rfc#40): fix borrow-check
1556 let RefMut { value, borrow } = orig;
1557 let value = value as *mut T;
1558 // SAFETY: function holds onto an exclusive reference for the duration
1559 // of its call through `orig`, and the pointer is only de-referenced
1560 // inside of the function call never allowing the exclusive reference to
1561 // escape.
1562 match f(unsafe { &mut *value }) {
1563 Some(value) => Ok(RefMut { value, borrow }),
1564 None => {
1565 // SAFETY: same as above.
1566 Err(RefMut { value: unsafe { &mut *value }, borrow })
1567 }
1568 }
1569 }
1570
9fa01778 1571 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
94b46f34
XL
1572 /// borrowed data.
1573 ///
1574 /// The underlying `RefCell` will remain mutably borrowed until both
1575 /// returned `RefMut`s go out of scope.
1576 ///
1577 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1578 ///
1579 /// This is an associated function that needs to be used as
1580 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1581 /// same name on the contents of a `RefCell` used through `Deref`.
1582 ///
1583 /// # Examples
1584 ///
1585 /// ```
94b46f34
XL
1586 /// use std::cell::{RefCell, RefMut};
1587 ///
1588 /// let cell = RefCell::new([1, 2, 3, 4]);
1589 /// let borrow = cell.borrow_mut();
1590 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1591 /// assert_eq!(*begin, [1, 2]);
1592 /// assert_eq!(*end, [3, 4]);
1593 /// begin.copy_from_slice(&[4, 3]);
1594 /// end.copy_from_slice(&[2, 1]);
1595 /// ```
532ac7d7 1596 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1597 #[inline]
1598 pub fn map_split<U: ?Sized, V: ?Sized, F>(
dfeec247
XL
1599 orig: RefMut<'b, T>,
1600 f: F,
94b46f34 1601 ) -> (RefMut<'b, U>, RefMut<'b, V>)
dfeec247
XL
1602 where
1603 F: FnOnce(&mut T) -> (&mut U, &mut V),
94b46f34
XL
1604 {
1605 let (a, b) = f(orig.value);
1606 let borrow = orig.borrow.clone();
1607 (RefMut { value: a, borrow }, RefMut { value: b, borrow: orig.borrow })
1608 }
74b04a01
XL
1609
1610 /// Convert into a mutable reference to the underlying data.
1611 ///
1612 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1613 /// mutably borrowed, making the returned reference the only to the interior.
1614 ///
1615 /// This is an associated function that needs to be used as
1616 /// `RefMut::leak(...)`. A method would interfere with methods of the
1617 /// same name on the contents of a `RefCell` used through `Deref`.
1618 ///
1619 /// # Examples
1620 ///
1621 /// ```
1622 /// #![feature(cell_leak)]
1623 /// use std::cell::{RefCell, RefMut};
1624 /// let cell = RefCell::new(0);
1625 ///
1626 /// let value = RefMut::leak(cell.borrow_mut());
1627 /// assert_eq!(*value, 0);
1628 /// *value = 1;
1629 ///
1630 /// assert!(cell.try_borrow_mut().is_err());
1631 /// ```
1632 #[unstable(feature = "cell_leak", issue = "69099")]
1633 pub fn leak(orig: RefMut<'b, T>) -> &'b mut T {
ba9703b0
XL
1634 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1635 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1636 // require a unique reference to the borrowed RefCell. No further references can be created
1637 // from the original cell within that lifetime, making the current borrow the only
1638 // reference for the remaining lifetime.
74b04a01
XL
1639 mem::forget(orig.borrow);
1640 orig.value
1641 }
1a4d82fc
JJ
1642}
1643
1644struct BorrowRefMut<'b> {
54a0048b 1645 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1646}
1647
0bf4aa26 1648impl Drop for BorrowRefMut<'_> {
c34b1796 1649 #[inline]
1a4d82fc 1650 fn drop(&mut self) {
54a0048b 1651 let borrow = self.borrow.get();
8faf50e0
XL
1652 debug_assert!(is_writing(borrow));
1653 self.borrow.set(borrow + 1);
1a4d82fc
JJ
1654 }
1655}
1656
1657impl<'b> BorrowRefMut<'b> {
c34b1796 1658 #[inline]
1a4d82fc 1659 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
94b46f34
XL
1660 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1661 // mutable reference, and so there must currently be no existing
1662 // references. Thus, while clone increments the mutable refcount, here
8faf50e0 1663 // we explicitly only allow going from UNUSED to UNUSED - 1.
1a4d82fc
JJ
1664 match borrow.get() {
1665 UNUSED => {
8faf50e0 1666 borrow.set(UNUSED - 1);
b7449926 1667 Some(BorrowRefMut { borrow })
dfeec247 1668 }
1a4d82fc
JJ
1669 _ => None,
1670 }
1671 }
94b46f34 1672
dc9dc135 1673 // Clones a `BorrowRefMut`.
94b46f34
XL
1674 //
1675 // This is only valid if each `BorrowRefMut` is used to track a mutable
1676 // reference to a distinct, nonoverlapping range of the original object.
1677 // This isn't in a Clone impl so that code doesn't call this implicitly.
1678 #[inline]
1679 fn clone(&self) -> BorrowRefMut<'b> {
1680 let borrow = self.borrow.get();
8faf50e0
XL
1681 debug_assert!(is_writing(borrow));
1682 // Prevent the borrow counter from underflowing.
f035d41b 1683 assert!(borrow != isize::MIN);
8faf50e0 1684 self.borrow.set(borrow - 1);
94b46f34
XL
1685 BorrowRefMut { borrow: self.borrow }
1686 }
1a4d82fc
JJ
1687}
1688
85aaf69f
SL
1689/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1690///
29967ef6 1691/// See the [module-level documentation](self) for more.
85aaf69f 1692#[stable(feature = "rust1", since = "1.0.0")]
5099ac24 1693#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
d9579d0f 1694pub struct RefMut<'b, T: ?Sized + 'b> {
54a0048b
SL
1695 value: &'b mut T,
1696 borrow: BorrowRefMut<'b>,
1a4d82fc
JJ
1697}
1698
85aaf69f 1699#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1700impl<T: ?Sized> Deref for RefMut<'_, T> {
1a4d82fc
JJ
1701 type Target = T;
1702
1703 #[inline]
e9174d1e 1704 fn deref(&self) -> &T {
54a0048b 1705 self.value
1a4d82fc
JJ
1706 }
1707}
1708
85aaf69f 1709#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1710impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1a4d82fc 1711 #[inline]
e9174d1e 1712 fn deref_mut(&mut self) -> &mut T {
54a0048b 1713 self.value
1a4d82fc
JJ
1714 }
1715}
1716
54a0048b
SL
1717#[unstable(feature = "coerce_unsized", issue = "27732")]
1718impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1719
041b39d2 1720#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1721impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
48663c56 1722 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
041b39d2
XL
1723 self.value.fmt(f)
1724 }
1725}
1726
1a4d82fc
JJ
1727/// The core primitive for interior mutability in Rust.
1728///
6a06907d
XL
1729/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1730/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1731/// alias or by transmuting an `&T` into an `&mut T`, is considered undefined behavior.
1732/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1733/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1a4d82fc 1734///
6a06907d
XL
1735/// All other types that allow internal mutability, such as `Cell<T>` and `RefCell<T>`, internally
1736/// use `UnsafeCell` to wrap their data.
1737///
1738/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1739/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1740/// aliasing `&mut`, not even with `UnsafeCell<T>`.
5bcae85e 1741///
1b1a35ee
XL
1742/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1743/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1744/// correctly.
1745///
1746/// [`.get()`]: `UnsafeCell::get`
0531ce1d
XL
1747///
1748/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1749///
94b46f34
XL
1750/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T`
1751/// reference) that is accessible by safe code (for example, because you returned it),
1752/// then you must not access the data in any way that contradicts that reference for the
1753/// remainder of `'a`. For example, this means that if you take the `*mut T` from an
1754/// `UnsafeCell<T>` and cast it to an `&T`, then the data in `T` must remain immutable
1755/// (modulo any `UnsafeCell` data found within `T`, of course) until that reference's
1756/// lifetime expires. Similarly, if you create a `&mut T` reference that is released to
1757/// safe code, then you must not access the data within the `UnsafeCell` until that
1758/// reference expires.
0531ce1d 1759///
94b46f34 1760/// - At all times, you must avoid data races. If multiple threads have access to
0531ce1d
XL
1761/// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
1762/// accesses (or use atomics).
5bcae85e 1763///
0531ce1d
XL
1764/// To assist with proper design, the following scenarios are explicitly declared legal
1765/// for single-threaded code:
5bcae85e 1766///
94b46f34 1767/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
0531ce1d
XL
1768/// references, but not with a `&mut T`
1769///
94b46f34 1770/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
0531ce1d
XL
1771/// co-exist with it. A `&mut T` must always be unique.
1772///
1b1a35ee
XL
1773/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1774/// `&UnsafeCell<T>` references alias the cell) is
1775/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1776/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1777/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1778/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1779/// accesses (_e.g._, through an `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1780/// may be aliased for the duration of that `&mut` borrow.
fc512014 1781/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1b1a35ee
XL
1782/// a `&mut T`.
1783///
1784/// [`.get_mut()`]: `UnsafeCell::get_mut`
1a4d82fc 1785///
85aaf69f 1786/// # Examples
1a4d82fc 1787///
1b1a35ee
XL
1788/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
1789/// there being multiple references aliasing the cell:
1790///
85aaf69f 1791/// ```
1a4d82fc 1792/// use std::cell::UnsafeCell;
1a4d82fc 1793///
1b1a35ee
XL
1794/// let x: UnsafeCell<i32> = 42.into();
1795/// // Get multiple / concurrent / shared references to the same `x`.
1796/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
1797///
1798/// unsafe {
1799/// // SAFETY: within this scope there are no other references to `x`'s contents,
1800/// // so ours is effectively unique.
1801/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
1802/// *p1_exclusive += 27; // |
1803/// } // <---------- cannot go beyond this point -------------------+
1804///
1805/// unsafe {
1806/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
1807/// // so we can have multiple shared accesses concurrently.
1808/// let p2_shared: &i32 = &*p2.get();
1809/// assert_eq!(*p2_shared, 42 + 27);
1810/// let p1_shared: &i32 = &*p1.get();
1811/// assert_eq!(*p1_shared, *p2_shared);
1a4d82fc 1812/// }
1b1a35ee
XL
1813/// ```
1814///
1815/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
1816/// implies exclusive access to its `T`:
1817///
1818/// ```rust
1b1a35ee
XL
1819/// #![forbid(unsafe_code)] // with exclusive accesses,
1820/// // `UnsafeCell` is a transparent no-op wrapper,
1821/// // so no need for `unsafe` here.
1822/// use std::cell::UnsafeCell;
1823///
1824/// let mut x: UnsafeCell<i32> = 42.into();
1825///
1826/// // Get a compile-time-checked unique reference to `x`.
1827/// let p_unique: &mut UnsafeCell<i32> = &mut x;
1828/// // With an exclusive reference, we can mutate the contents for free.
1829/// *p_unique.get_mut() = 0;
1830/// // Or, equivalently:
1831/// x = UnsafeCell::new(0);
85aaf69f 1832///
1b1a35ee
XL
1833/// // When we own the value, we can extract the contents for free.
1834/// let contents: i32 = x.into_inner();
1835/// assert_eq!(contents, 0);
1a4d82fc 1836/// ```
d9579d0f 1837#[lang = "unsafe_cell"]
85aaf69f 1838#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 1839#[repr(transparent)]
ba9703b0 1840#[repr(no_niche)] // rust-lang/rust#68303.
d9579d0f 1841pub struct UnsafeCell<T: ?Sized> {
e9174d1e 1842 value: T,
1a4d82fc
JJ
1843}
1844
92a42be0 1845#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1846impl<T: ?Sized> !Sync for UnsafeCell<T> {}
c34b1796 1847
1a4d82fc 1848impl<T> UnsafeCell<T> {
9346a6ac 1849 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
1a4d82fc
JJ
1850 /// value.
1851 ///
b039eaaf 1852 /// All access to the inner value through methods is `unsafe`.
85aaf69f
SL
1853 ///
1854 /// # Examples
1855 ///
1856 /// ```
1857 /// use std::cell::UnsafeCell;
1858 ///
1859 /// let uc = UnsafeCell::new(5);
1860 /// ```
1861 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1862 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
cdc7bbd5 1863 #[inline(always)]
62682a34 1864 pub const fn new(value: T) -> UnsafeCell<T> {
b7449926 1865 UnsafeCell { value }
1a4d82fc
JJ
1866 }
1867
d9579d0f
AL
1868 /// Unwraps the value.
1869 ///
85aaf69f
SL
1870 /// # Examples
1871 ///
1872 /// ```
1873 /// use std::cell::UnsafeCell;
1874 ///
1875 /// let uc = UnsafeCell::new(5);
1876 ///
2c00a5a8 1877 /// let five = uc.into_inner();
85aaf69f 1878 /// ```
cdc7bbd5 1879 #[inline(always)]
85aaf69f 1880 #[stable(feature = "rust1", since = "1.0.0")]
29967ef6
XL
1881 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
1882 pub const fn into_inner(self) -> T {
62682a34
SL
1883 self.value
1884 }
d9579d0f 1885}
1a4d82fc 1886
d9579d0f
AL
1887impl<T: ?Sized> UnsafeCell<T> {
1888 /// Gets a mutable pointer to the wrapped value.
85aaf69f 1889 ///
5bcae85e 1890 /// This can be cast to a pointer of any kind.
0531ce1d
XL
1891 /// Ensure that the access is unique (no active references, mutable or not)
1892 /// when casting to `&mut T`, and ensure that there are no mutations
1893 /// or mutable aliases going on when casting to `&T`
5bcae85e 1894 ///
85aaf69f
SL
1895 /// # Examples
1896 ///
1897 /// ```
1898 /// use std::cell::UnsafeCell;
1899 ///
1900 /// let uc = UnsafeCell::new(5);
1901 ///
d9579d0f 1902 /// let five = uc.get();
85aaf69f 1903 /// ```
cdc7bbd5 1904 #[inline(always)]
85aaf69f 1905 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1906 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
a1dfa0c6
XL
1907 pub const fn get(&self) -> *mut T {
1908 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
60c5eb7d
XL
1909 // #[repr(transparent)]. This exploits libstd's special status, there is
1910 // no guarantee for user code that this will work in future versions of the compiler!
a1dfa0c6 1911 self as *const UnsafeCell<T> as *const T as *mut T
d9579d0f 1912 }
60c5eb7d 1913
1b1a35ee
XL
1914 /// Returns a mutable reference to the underlying data.
1915 ///
1916 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1917 /// guarantees that we possess the only reference.
1918 ///
1919 /// # Examples
1920 ///
1921 /// ```
1b1a35ee
XL
1922 /// use std::cell::UnsafeCell;
1923 ///
1924 /// let mut c = UnsafeCell::new(5);
1925 /// *c.get_mut() += 1;
1926 ///
1927 /// assert_eq!(*c.get_mut(), 6);
1928 /// ```
cdc7bbd5 1929 #[inline(always)]
fc512014 1930 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
c295e0f8
XL
1931 #[rustc_const_unstable(feature = "const_unsafecell_get_mut", issue = "88836")]
1932 pub const fn get_mut(&mut self) -> &mut T {
29967ef6 1933 &mut self.value
1b1a35ee
XL
1934 }
1935
60c5eb7d 1936 /// Gets a mutable pointer to the wrapped value.
94222f64 1937 /// The difference from [`get`] is that this function accepts a raw pointer,
60c5eb7d
XL
1938 /// which is useful to avoid the creation of temporary references.
1939 ///
1940 /// The result can be cast to a pointer of any kind.
1941 /// Ensure that the access is unique (no active references, mutable or not)
1942 /// when casting to `&mut T`, and ensure that there are no mutations
1943 /// or mutable aliases going on when casting to `&T`.
1944 ///
fc512014 1945 /// [`get`]: UnsafeCell::get()
60c5eb7d
XL
1946 ///
1947 /// # Examples
1948 ///
1949 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
1950 /// calling `get` would require creating a reference to uninitialized data:
1951 ///
1952 /// ```
60c5eb7d
XL
1953 /// use std::cell::UnsafeCell;
1954 /// use std::mem::MaybeUninit;
1955 ///
1956 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
1957 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
1958 /// let uc = unsafe { m.assume_init() };
1959 ///
1960 /// assert_eq!(uc.into_inner(), 5);
1961 /// ```
cdc7bbd5 1962 #[inline(always)]
94222f64 1963 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
5099ac24 1964 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
60c5eb7d
XL
1965 pub const fn raw_get(this: *const Self) -> *mut T {
1966 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
1967 // #[repr(transparent)]. This exploits libstd's special status, there is
1968 // no guarantee for user code that this will work in future versions of the compiler!
1969 this as *const T as *mut T
1970 }
1a4d82fc 1971}
a7813a04 1972
7cac9316 1973#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
a7813a04 1974impl<T: Default> Default for UnsafeCell<T> {
9e0c209e 1975 /// Creates an `UnsafeCell`, with the `Default` value for T.
a7813a04
XL
1976 fn default() -> UnsafeCell<T> {
1977 UnsafeCell::new(Default::default())
1978 }
1979}
5bcae85e
SL
1980
1981#[stable(feature = "cell_from", since = "1.12.0")]
3c0e092e
XL
1982#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
1983impl<T> const From<T> for UnsafeCell<T> {
5099ac24 1984 /// Creates a new `UnsafeCell<T>` containing the given value.
5bcae85e
SL
1985 fn from(t: T) -> UnsafeCell<T> {
1986 UnsafeCell::new(t)
1987 }
1988}
9e0c209e
SL
1989
1990#[unstable(feature = "coerce_unsized", issue = "27732")]
1991impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
1992
04454e1e
FG
1993/// [`UnsafeCell`], but [`Sync`].
1994///
1995/// This is just an `UnsafeCell`, except it implements `Sync`
1996/// if `T` implements `Sync`.
1997///
1998/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
1999/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2000/// shared between threads, if that's intentional.
2001/// Providing proper synchronization is still the task of the user,
2002/// making this type just as unsafe to use.
2003///
2004/// See [`UnsafeCell`] for details.
2005#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2006#[repr(transparent)]
2007pub struct SyncUnsafeCell<T: ?Sized> {
2008 value: UnsafeCell<T>,
2009}
2010
2011#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2012unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2013
2014#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2015impl<T> SyncUnsafeCell<T> {
2016 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2017 #[inline]
2018 pub const fn new(value: T) -> Self {
2019 Self { value: UnsafeCell { value } }
2020 }
2021
2022 /// Unwraps the value.
2023 #[inline]
2024 pub const fn into_inner(self) -> T {
2025 self.value.into_inner()
2026 }
2027}
2028
2029#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2030impl<T: ?Sized> SyncUnsafeCell<T> {
2031 /// Gets a mutable pointer to the wrapped value.
2032 ///
2033 /// This can be cast to a pointer of any kind.
2034 /// Ensure that the access is unique (no active references, mutable or not)
2035 /// when casting to `&mut T`, and ensure that there are no mutations
2036 /// or mutable aliases going on when casting to `&T`
2037 #[inline]
2038 pub const fn get(&self) -> *mut T {
2039 self.value.get()
2040 }
2041
2042 /// Returns a mutable reference to the underlying data.
2043 ///
2044 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2045 /// guarantees that we possess the only reference.
2046 #[inline]
2047 pub const fn get_mut(&mut self) -> &mut T {
2048 self.value.get_mut()
2049 }
2050
2051 /// Gets a mutable pointer to the wrapped value.
2052 ///
2053 /// See [`UnsafeCell::get`] for details.
2054 #[inline]
2055 pub const fn raw_get(this: *const Self) -> *mut T {
2056 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2057 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2058 // See UnsafeCell::raw_get.
2059 this as *const T as *mut T
2060 }
2061}
2062
2063#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2064impl<T: Default> Default for SyncUnsafeCell<T> {
2065 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2066 fn default() -> SyncUnsafeCell<T> {
2067 SyncUnsafeCell::new(Default::default())
2068 }
2069}
2070
2071#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2072#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
2073impl<T> const From<T> for SyncUnsafeCell<T> {
2074 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2075 fn from(t: T) -> SyncUnsafeCell<T> {
2076 SyncUnsafeCell::new(t)
2077 }
2078}
2079
2080#[unstable(feature = "coerce_unsized", issue = "27732")]
2081//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2082impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2083
9e0c209e 2084#[allow(unused)]
04454e1e
FG
2085fn assert_coerce_unsized(
2086 a: UnsafeCell<&i32>,
2087 b: SyncUnsafeCell<&i32>,
2088 c: Cell<&i32>,
2089 d: RefCell<&i32>,
2090) {
8faf50e0 2091 let _: UnsafeCell<&dyn Send> = a;
04454e1e
FG
2092 let _: SyncUnsafeCell<&dyn Send> = b;
2093 let _: Cell<&dyn Send> = c;
2094 let _: RefCell<&dyn Send> = d;
9e0c209e 2095}