]> git.proxmox.com Git - rustc.git/blame - library/core/src/cell.rs
New upstream version 1.55.0+dfsg1
[rustc.git] / library / core / src / cell.rs
CommitLineData
1a4d82fc
JJ
1//! Shareable mutable containers.
2//!
0531ce1d
XL
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
5869c6ff 14//! presence of aliasing. Both [`Cell<T>`] and [`RefCell<T>`] allow doing this in a single-threaded
0531ce1d 15//! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
5869c6ff
XL
16//! [`Sync`]). If you need to do aliasing and mutation between multiple threads it is possible to
17//! use [`Mutex<T>`], [`RwLock<T>`] or [`atomic`] types.
0531ce1d 18//!
85aaf69f
SL
19//! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
20//! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
21//! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
22//! with typical Rust types that exhibit 'inherited mutability'.
1a4d82fc 23//!
8bb4bdeb
XL
24//! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
25//! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
26//! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
27//! methods to retrieve and change the current interior value:
28//!
5869c6ff
XL
29//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
30//! interior value.
31//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
32//! interior value with [`Default::default()`] and returns the replaced value.
33//! - For all types, the [`replace`](Cell::replace) method replaces the current interior value and
34//! returns the replaced value and the [`into_inner`](Cell::into_inner) method consumes the
35//! `Cell<T>` and returns the interior value. Additionally, the [`set`](Cell::set) method
36//! replaces the interior value, dropping the replaced value.
1a4d82fc 37//!
85aaf69f
SL
38//! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
39//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
40//! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
41//! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
bd371182
AL
42//! to borrow a value that is already mutably borrowed; when this happens it results in thread
43//! panic.
1a4d82fc
JJ
44//!
45//! # When to choose interior mutability
46//!
85aaf69f
SL
47//! The more common inherited mutability, where one must have unique access to mutate a value, is
48//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
49//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
50//! interior mutability is something of a last resort. Since cell types enable mutation where it
51//! would otherwise be disallowed though, there are occasions when interior mutability might be
52//! appropriate, or even *must* be used, e.g.
1a4d82fc 53//!
c1a9b12d 54//! * Introducing mutability 'inside' of something immutable
1a4d82fc 55//! * Implementation details of logically-immutable methods.
5869c6ff 56//! * Mutating implementations of [`Clone`].
1a4d82fc 57//!
c1a9b12d 58//! ## Introducing mutability 'inside' of something immutable
1a4d82fc 59//!
5869c6ff
XL
60//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
61//! be cloned and shared between multiple parties. Because the contained values may be
c1a9b12d
SL
62//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
63//! impossible to mutate data inside of these smart pointers at all.
1a4d82fc 64//!
85aaf69f
SL
65//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
66//! mutability:
1a4d82fc
JJ
67//!
68//! ```
dc9dc135 69//! use std::cell::{RefCell, RefMut};
1a4d82fc 70//! use std::collections::HashMap;
1a4d82fc
JJ
71//! use std::rc::Rc;
72//!
73//! fn main() {
74//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
dc9dc135
XL
75//! // Create a new block to limit the scope of the dynamic borrow
76//! {
77//! let mut map: RefMut<_> = shared_map.borrow_mut();
78//! map.insert("africa", 92388);
79//! map.insert("kyoto", 11837);
80//! map.insert("piccadilly", 11826);
81//! map.insert("marbles", 38);
82//! }
83//!
84//! // Note that if we had not let the previous borrow of the cache fall out
85//! // of scope then the subsequent borrow would cause a dynamic thread panic.
86//! // This is the major hazard of using `RefCell`.
87//! let total: i32 = shared_map.borrow().values().sum();
88//! println!("{}", total);
1a4d82fc
JJ
89//! }
90//! ```
91//!
85aaf69f 92//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
5869c6ff 93//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
c1a9b12d 94//! multi-threaded situation.
85aaf69f 95//!
1a4d82fc
JJ
96//! ## Implementation details of logically-immutable methods
97//!
85aaf69f 98//! Occasionally it may be desirable not to expose in an API that there is mutation happening
0731742a 99//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
85aaf69f
SL
100//! forces the implementation to perform mutation; or because you must employ mutation to implement
101//! a trait method that was originally defined to take `&self`.
1a4d82fc
JJ
102//!
103//! ```
92a42be0 104//! # #![allow(dead_code)]
1a4d82fc
JJ
105//! use std::cell::RefCell;
106//!
107//! struct Graph {
85aaf69f
SL
108//! edges: Vec<(i32, i32)>,
109//! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
1a4d82fc
JJ
110//! }
111//!
112//! impl Graph {
85aaf69f 113//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
dc9dc135
XL
114//! self.span_tree_cache.borrow_mut()
115//! .get_or_insert_with(|| self.calc_span_tree())
116//! .clone()
117//! }
1a4d82fc 118//!
dc9dc135
XL
119//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
120//! // Expensive computation goes here
121//! vec![]
1a4d82fc 122//! }
1a4d82fc 123//! }
1a4d82fc
JJ
124//! ```
125//!
62682a34 126//! ## Mutating implementations of `Clone`
1a4d82fc 127//!
85aaf69f 128//! This is simply a special - but common - case of the previous: hiding mutability for operations
5869c6ff
XL
129//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
130//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
131//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
132//! reference counts within a `Cell<T>`.
1a4d82fc
JJ
133//!
134//! ```
135//! use std::cell::Cell;
0531ce1d 136//! use std::ptr::NonNull;
f9f354fc 137//! use std::process::abort;
60c5eb7d 138//! use std::marker::PhantomData;
1a4d82fc 139//!
9e0c209e 140//! struct Rc<T: ?Sized> {
60c5eb7d
XL
141//! ptr: NonNull<RcBox<T>>,
142//! phantom: PhantomData<RcBox<T>>,
1a4d82fc
JJ
143//! }
144//!
9e0c209e
SL
145//! struct RcBox<T: ?Sized> {
146//! strong: Cell<usize>,
147//! refcount: Cell<usize>,
1a4d82fc 148//! value: T,
1a4d82fc
JJ
149//! }
150//!
9e0c209e 151//! impl<T: ?Sized> Clone for Rc<T> {
1a4d82fc 152//! fn clone(&self) -> Rc<T> {
9e0c209e 153//! self.inc_strong();
60c5eb7d
XL
154//! Rc {
155//! ptr: self.ptr,
156//! phantom: PhantomData,
157//! }
9e0c209e
SL
158//! }
159//! }
160//!
161//! trait RcBoxPtr<T: ?Sized> {
162//!
163//! fn inner(&self) -> &RcBox<T>;
164//!
165//! fn strong(&self) -> usize {
166//! self.inner().strong.get()
167//! }
168//!
169//! fn inc_strong(&self) {
170//! self.inner()
171//! .strong
172//! .set(self.strong()
173//! .checked_add(1)
f9f354fc 174//! .unwrap_or_else(|| abort() ));
1a4d82fc
JJ
175//! }
176//! }
9e0c209e
SL
177//!
178//! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
179//! fn inner(&self) -> &RcBox<T> {
180//! unsafe {
7cac9316 181//! self.ptr.as_ref()
9e0c209e
SL
182//! }
183//! }
184//! }
1a4d82fc
JJ
185//! ```
186//!
5869c6ff
XL
187//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
188//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
189//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
190//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
cdc7bbd5 191//! [`atomic`]: crate::sync::atomic
1a4d82fc 192
85aaf69f 193#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 194
48663c56
XL
195use crate::cmp::Ordering;
196use crate::fmt::{self, Debug, Display};
197use crate::marker::Unsize;
198use crate::mem;
dfeec247 199use crate::ops::{CoerceUnsized, Deref, DerefMut};
48663c56 200use crate::ptr;
1a4d82fc 201
8bb4bdeb 202/// A mutable memory location.
85aaf69f 203///
3b2f2976
XL
204/// # Examples
205///
a1dfa0c6
XL
206/// In this example, you can see that `Cell<T>` enables mutation inside an
207/// immutable struct. In other words, it enables "interior mutability".
3b2f2976
XL
208///
209/// ```
210/// use std::cell::Cell;
211///
212/// struct SomeStruct {
213/// regular_field: u8,
214/// special_field: Cell<u8>,
215/// }
216///
217/// let my_struct = SomeStruct {
218/// regular_field: 0,
219/// special_field: Cell::new(1),
220/// };
221///
222/// let new_value = 100;
223///
a1dfa0c6 224/// // ERROR: `my_struct` is immutable
3b2f2976
XL
225/// // my_struct.regular_field = new_value;
226///
a1dfa0c6
XL
227/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
228/// // which can always be mutated
3b2f2976
XL
229/// my_struct.special_field.set(new_value);
230/// assert_eq!(my_struct.special_field.get(), new_value);
231/// ```
232///
29967ef6 233/// See the [module-level documentation](self) for more.
85aaf69f 234#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0
XL
235#[repr(transparent)]
236pub struct Cell<T: ?Sized> {
1a4d82fc
JJ
237 value: UnsafeCell<T>,
238}
239
8bb4bdeb 240#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 241unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
8bb4bdeb
XL
242
243#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 244impl<T: ?Sized> !Sync for Cell<T> {}
8bb4bdeb
XL
245
246#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 247impl<T: Copy> Clone for Cell<T> {
8bb4bdeb
XL
248 #[inline]
249 fn clone(&self) -> Cell<T> {
250 Cell::new(self.get())
251 }
252}
253
254#[stable(feature = "rust1", since = "1.0.0")]
416331ca 255impl<T: Default> Default for Cell<T> {
8bb4bdeb
XL
256 /// Creates a `Cell<T>`, with the `Default` value for T.
257 #[inline]
258 fn default() -> Cell<T> {
259 Cell::new(Default::default())
260 }
261}
262
263#[stable(feature = "rust1", since = "1.0.0")]
416331ca 264impl<T: PartialEq + Copy> PartialEq for Cell<T> {
8bb4bdeb
XL
265 #[inline]
266 fn eq(&self, other: &Cell<T>) -> bool {
267 self.get() == other.get()
268 }
269}
270
271#[stable(feature = "cell_eq", since = "1.2.0")]
416331ca 272impl<T: Eq + Copy> Eq for Cell<T> {}
8bb4bdeb
XL
273
274#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 275impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
8bb4bdeb
XL
276 #[inline]
277 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
278 self.get().partial_cmp(&other.get())
279 }
280
281 #[inline]
282 fn lt(&self, other: &Cell<T>) -> bool {
283 self.get() < other.get()
284 }
285
286 #[inline]
287 fn le(&self, other: &Cell<T>) -> bool {
288 self.get() <= other.get()
289 }
290
291 #[inline]
292 fn gt(&self, other: &Cell<T>) -> bool {
293 self.get() > other.get()
294 }
295
296 #[inline]
297 fn ge(&self, other: &Cell<T>) -> bool {
298 self.get() >= other.get()
299 }
300}
301
302#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 303impl<T: Ord + Copy> Ord for Cell<T> {
8bb4bdeb
XL
304 #[inline]
305 fn cmp(&self, other: &Cell<T>) -> Ordering {
306 self.get().cmp(&other.get())
307 }
308}
309
310#[stable(feature = "cell_from", since = "1.12.0")]
311impl<T> From<T> for Cell<T> {
312 fn from(t: T) -> Cell<T> {
313 Cell::new(t)
314 }
315}
316
317impl<T> Cell<T> {
318 /// Creates a new `Cell` containing the given value.
85aaf69f
SL
319 ///
320 /// # Examples
321 ///
322 /// ```
323 /// use std::cell::Cell;
324 ///
325 /// let c = Cell::new(5);
85aaf69f 326 /// ```
85aaf69f 327 #[stable(feature = "rust1", since = "1.0.0")]
cdc7bbd5 328 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
8bb4bdeb
XL
329 #[inline]
330 pub const fn new(value: T) -> Cell<T> {
dfeec247 331 Cell { value: UnsafeCell::new(value) }
1a4d82fc
JJ
332 }
333
8bb4bdeb
XL
334 /// Sets the contained value.
335 ///
336 /// # Examples
337 ///
338 /// ```
339 /// use std::cell::Cell;
340 ///
341 /// let c = Cell::new(5);
342 ///
343 /// c.set(10);
344 /// ```
a7813a04 345 #[inline]
8bb4bdeb
XL
346 #[stable(feature = "rust1", since = "1.0.0")]
347 pub fn set(&self, val: T) {
348 let old = self.replace(val);
349 drop(old);
a7813a04
XL
350 }
351
8bb4bdeb
XL
352 /// Swaps the values of two Cells.
353 /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
354 ///
355 /// # Examples
356 ///
357 /// ```
358 /// use std::cell::Cell;
359 ///
360 /// let c1 = Cell::new(5i32);
361 /// let c2 = Cell::new(10i32);
362 /// c1.swap(&c2);
363 /// assert_eq!(10, c1.get());
364 /// assert_eq!(5, c2.get());
365 /// ```
a7813a04 366 #[inline]
8bb4bdeb
XL
367 #[stable(feature = "move_cell", since = "1.17.0")]
368 pub fn swap(&self, other: &Self) {
369 if ptr::eq(self, other) {
370 return;
371 }
dfeec247
XL
372 // SAFETY: This can be risky if called from separate threads, but `Cell`
373 // is `!Sync` so this won't happen. This also won't invalidate any
374 // pointers since `Cell` makes sure nothing else will be pointing into
375 // either of these `Cell`s.
8bb4bdeb
XL
376 unsafe {
377 ptr::swap(self.value.get(), other.value.get());
378 }
a7813a04
XL
379 }
380
6a06907d 381 /// Replaces the contained value with `val`, and returns the old contained value.
8bb4bdeb
XL
382 ///
383 /// # Examples
384 ///
385 /// ```
386 /// use std::cell::Cell;
387 ///
041b39d2
XL
388 /// let cell = Cell::new(5);
389 /// assert_eq!(cell.get(), 5);
390 /// assert_eq!(cell.replace(10), 5);
391 /// assert_eq!(cell.get(), 10);
8bb4bdeb
XL
392 /// ```
393 #[stable(feature = "move_cell", since = "1.17.0")]
394 pub fn replace(&self, val: T) -> T {
dfeec247
XL
395 // SAFETY: This can cause data races if called from a separate thread,
396 // but `Cell` is `!Sync` so this won't happen.
8bb4bdeb 397 mem::replace(unsafe { &mut *self.value.get() }, val)
a7813a04 398 }
a7813a04 399
8bb4bdeb
XL
400 /// Unwraps the value.
401 ///
402 /// # Examples
403 ///
404 /// ```
405 /// use std::cell::Cell;
406 ///
407 /// let c = Cell::new(5);
408 /// let five = c.into_inner();
409 ///
410 /// assert_eq!(five, 5);
411 /// ```
412 #[stable(feature = "move_cell", since = "1.17.0")]
29967ef6
XL
413 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
414 pub const fn into_inner(self) -> T {
2c00a5a8 415 self.value.into_inner()
a7813a04 416 }
e74abb32
XL
417}
418
dfeec247 419impl<T: Copy> Cell<T> {
e74abb32
XL
420 /// Returns a copy of the contained value.
421 ///
422 /// # Examples
423 ///
424 /// ```
425 /// use std::cell::Cell;
426 ///
427 /// let c = Cell::new(5);
428 ///
429 /// let five = c.get();
430 /// ```
431 #[inline]
432 #[stable(feature = "rust1", since = "1.0.0")]
433 pub fn get(&self) -> T {
dfeec247
XL
434 // SAFETY: This can cause data races if called from a separate thread,
435 // but `Cell` is `!Sync` so this won't happen.
436 unsafe { *self.value.get() }
e74abb32
XL
437 }
438
439 /// Updates the contained value using a function and returns the new value.
440 ///
441 /// # Examples
442 ///
443 /// ```
444 /// #![feature(cell_update)]
445 ///
446 /// use std::cell::Cell;
447 ///
448 /// let c = Cell::new(5);
449 /// let new = c.update(|x| x + 1);
450 ///
451 /// assert_eq!(new, 6);
452 /// assert_eq!(c.get(), 6);
453 /// ```
454 #[inline]
455 #[unstable(feature = "cell_update", issue = "50186")]
456 pub fn update<F>(&self, f: F) -> T
457 where
458 F: FnOnce(T) -> T,
459 {
460 let old = self.get();
461 let new = f(old);
462 self.set(new);
463 new
464 }
a7813a04
XL
465}
466
8faf50e0
XL
467impl<T: ?Sized> Cell<T> {
468 /// Returns a raw pointer to the underlying data in this cell.
469 ///
470 /// # Examples
471 ///
472 /// ```
473 /// use std::cell::Cell;
474 ///
475 /// let c = Cell::new(5);
476 ///
477 /// let ptr = c.as_ptr();
478 /// ```
479 #[inline]
480 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
dfeec247 481 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
a1dfa0c6 482 pub const fn as_ptr(&self) -> *mut T {
8faf50e0
XL
483 self.value.get()
484 }
485
486 /// Returns a mutable reference to the underlying data.
487 ///
488 /// This call borrows `Cell` mutably (at compile-time) which guarantees
489 /// that we possess the only reference.
490 ///
136023e0
XL
491 /// However be cautious: this method expects `self` to be mutable, which is
492 /// generally not the case when using a `Cell`. If you require interior
493 /// mutability by reference, consider using `RefCell` which provides
494 /// run-time checked mutable borrows through its [`borrow_mut`] method.
495 ///
496 /// [`borrow_mut`]: RefCell::borrow_mut()
497 ///
8faf50e0
XL
498 /// # Examples
499 ///
500 /// ```
501 /// use std::cell::Cell;
502 ///
503 /// let mut c = Cell::new(5);
504 /// *c.get_mut() += 1;
505 ///
506 /// assert_eq!(c.get(), 6);
507 /// ```
508 #[inline]
509 #[stable(feature = "cell_get_mut", since = "1.11.0")]
510 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 511 self.value.get_mut()
8faf50e0
XL
512 }
513
514 /// Returns a `&Cell<T>` from a `&mut T`
515 ///
516 /// # Examples
517 ///
518 /// ```
8faf50e0
XL
519 /// use std::cell::Cell;
520 ///
521 /// let slice: &mut [i32] = &mut [1, 2, 3];
522 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
523 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
524 ///
525 /// assert_eq!(slice_cell.len(), 3);
526 /// ```
527 #[inline]
dc9dc135 528 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 529 pub fn from_mut(t: &mut T) -> &Cell<T> {
dfeec247
XL
530 // SAFETY: `&mut` ensures unique access.
531 unsafe { &*(t as *mut T as *const Cell<T>) }
8faf50e0
XL
532 }
533}
534
8bb4bdeb
XL
535impl<T: Default> Cell<T> {
536 /// Takes the value of the cell, leaving `Default::default()` in its place.
537 ///
538 /// # Examples
539 ///
540 /// ```
541 /// use std::cell::Cell;
542 ///
543 /// let c = Cell::new(5);
544 /// let five = c.take();
545 ///
546 /// assert_eq!(five, 5);
547 /// assert_eq!(c.into_inner(), 0);
548 /// ```
549 #[stable(feature = "move_cell", since = "1.17.0")]
550 pub fn take(&self) -> T {
551 self.replace(Default::default())
5bcae85e
SL
552 }
553}
554
9e0c209e
SL
555#[unstable(feature = "coerce_unsized", issue = "27732")]
556impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
557
8faf50e0
XL
558impl<T> Cell<[T]> {
559 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
560 ///
561 /// # Examples
562 ///
563 /// ```
8faf50e0
XL
564 /// use std::cell::Cell;
565 ///
566 /// let slice: &mut [i32] = &mut [1, 2, 3];
567 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
568 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
569 ///
570 /// assert_eq!(slice_cell.len(), 3);
571 /// ```
dc9dc135 572 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 573 pub fn as_slice_of_cells(&self) -> &[Cell<T>] {
dfeec247
XL
574 // SAFETY: `Cell<T>` has the same memory layout as `T`.
575 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
8faf50e0
XL
576 }
577}
578
1a4d82fc 579/// A mutable memory location with dynamically checked borrow rules
85aaf69f 580///
29967ef6 581/// See the [module-level documentation](self) for more.
85aaf69f 582#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 583pub struct RefCell<T: ?Sized> {
1a4d82fc 584 borrow: Cell<BorrowFlag>,
cdc7bbd5
XL
585 // Stores the location of the earliest currently active borrow.
586 // This gets updated whenver we go from having zero borrows
587 // to having a single borrow. When a borrow occurs, this gets included
136023e0 588 // in the generated `BorrowError/`BorrowMutError`
cdc7bbd5
XL
589 #[cfg(feature = "debug_refcell")]
590 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
d9579d0f 591 value: UnsafeCell<T>,
1a4d82fc
JJ
592}
593
29967ef6 594/// An error returned by [`RefCell::try_borrow`].
9e0c209e 595#[stable(feature = "try_borrow", since = "1.13.0")]
136023e0 596#[non_exhaustive]
9e0c209e 597pub struct BorrowError {
cdc7bbd5
XL
598 #[cfg(feature = "debug_refcell")]
599 location: &'static crate::panic::Location<'static>,
5bcae85e
SL
600}
601
9e0c209e
SL
602#[stable(feature = "try_borrow", since = "1.13.0")]
603impl Debug for BorrowError {
48663c56 604 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cdc7bbd5
XL
605 let mut builder = f.debug_struct("BorrowError");
606
607 #[cfg(feature = "debug_refcell")]
608 builder.field("location", self.location);
609
610 builder.finish()
5bcae85e
SL
611 }
612}
613
9e0c209e
SL
614#[stable(feature = "try_borrow", since = "1.13.0")]
615impl Display for BorrowError {
48663c56 616 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
617 Display::fmt("already mutably borrowed", f)
618 }
619}
620
29967ef6 621/// An error returned by [`RefCell::try_borrow_mut`].
9e0c209e 622#[stable(feature = "try_borrow", since = "1.13.0")]
136023e0 623#[non_exhaustive]
9e0c209e 624pub struct BorrowMutError {
cdc7bbd5
XL
625 #[cfg(feature = "debug_refcell")]
626 location: &'static crate::panic::Location<'static>,
5bcae85e
SL
627}
628
9e0c209e
SL
629#[stable(feature = "try_borrow", since = "1.13.0")]
630impl Debug for BorrowMutError {
48663c56 631 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cdc7bbd5
XL
632 let mut builder = f.debug_struct("BorrowMutError");
633
634 #[cfg(feature = "debug_refcell")]
635 builder.field("location", self.location);
636
637 builder.finish()
5bcae85e
SL
638 }
639}
640
9e0c209e
SL
641#[stable(feature = "try_borrow", since = "1.13.0")]
642impl Display for BorrowMutError {
48663c56 643 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
644 Display::fmt("already borrowed", f)
645 }
646}
647
8faf50e0
XL
648// Positive values represent the number of `Ref` active. Negative values
649// represent the number of `RefMut` active. Multiple `RefMut`s can only be
650// active at a time if they refer to distinct, nonoverlapping components of a
651// `RefCell` (e.g., different ranges of a slice).
94b46f34
XL
652//
653// `Ref` and `RefMut` are both two words in size, and so there will likely never
654// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
8faf50e0
XL
655// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
656// However, this is not a guarantee, as a pathological program could repeatedly
657// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
658// explicitly check for overflow and underflow in order to avoid unsafety, or at
659// least behave correctly in the event that overflow or underflow happens (e.g.,
660// see BorrowRef::new).
661type BorrowFlag = isize;
1a4d82fc 662const UNUSED: BorrowFlag = 0;
8faf50e0
XL
663
664#[inline(always)]
665fn is_writing(x: BorrowFlag) -> bool {
666 x < UNUSED
667}
668
669#[inline(always)]
670fn is_reading(x: BorrowFlag) -> bool {
671 x > UNUSED
672}
1a4d82fc
JJ
673
674impl<T> RefCell<T> {
85aaf69f
SL
675 /// Creates a new `RefCell` containing `value`.
676 ///
677 /// # Examples
678 ///
679 /// ```
680 /// use std::cell::RefCell;
681 ///
682 /// let c = RefCell::new(5);
683 /// ```
684 #[stable(feature = "rust1", since = "1.0.0")]
cdc7bbd5 685 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
c34b1796 686 #[inline]
62682a34 687 pub const fn new(value: T) -> RefCell<T> {
cdc7bbd5
XL
688 RefCell {
689 value: UnsafeCell::new(value),
690 borrow: Cell::new(UNUSED),
691 #[cfg(feature = "debug_refcell")]
692 borrowed_at: Cell::new(None),
693 }
1a4d82fc
JJ
694 }
695
696 /// Consumes the `RefCell`, returning the wrapped value.
85aaf69f
SL
697 ///
698 /// # Examples
699 ///
700 /// ```
701 /// use std::cell::RefCell;
702 ///
703 /// let c = RefCell::new(5);
704 ///
705 /// let five = c.into_inner();
706 /// ```
707 #[stable(feature = "rust1", since = "1.0.0")]
29967ef6 708 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
c34b1796 709 #[inline]
29967ef6 710 pub const fn into_inner(self) -> T {
1a4d82fc
JJ
711 // Since this function takes `self` (the `RefCell`) by value, the
712 // compiler statically verifies that it is not currently borrowed.
2c00a5a8 713 self.value.into_inner()
1a4d82fc 714 }
3b2f2976
XL
715
716 /// Replaces the wrapped value with a new one, returning the old value,
717 /// without deinitializing either one.
718 ///
719 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
720 ///
abe05a73
XL
721 /// # Panics
722 ///
723 /// Panics if the value is currently borrowed.
724 ///
3b2f2976
XL
725 /// # Examples
726 ///
727 /// ```
3b2f2976 728 /// use std::cell::RefCell;
abe05a73
XL
729 /// let cell = RefCell::new(5);
730 /// let old_value = cell.replace(6);
731 /// assert_eq!(old_value, 5);
732 /// assert_eq!(cell, RefCell::new(6));
3b2f2976 733 /// ```
abe05a73 734 #[inline]
dfeec247 735 #[stable(feature = "refcell_replace", since = "1.24.0")]
1b1a35ee 736 #[track_caller]
abe05a73
XL
737 pub fn replace(&self, t: T) -> T {
738 mem::replace(&mut *self.borrow_mut(), t)
739 }
740
741 /// Replaces the wrapped value with a new one computed from `f`, returning
742 /// the old value, without deinitializing either one.
743 ///
3b2f2976
XL
744 /// # Panics
745 ///
abe05a73
XL
746 /// Panics if the value is currently borrowed.
747 ///
748 /// # Examples
749 ///
750 /// ```
abe05a73
XL
751 /// use std::cell::RefCell;
752 /// let cell = RefCell::new(5);
753 /// let old_value = cell.replace_with(|&mut old| old + 1);
754 /// assert_eq!(old_value, 5);
755 /// assert_eq!(cell, RefCell::new(6));
756 /// ```
3b2f2976 757 #[inline]
dfeec247 758 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1b1a35ee 759 #[track_caller]
abe05a73
XL
760 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
761 let mut_borrow = &mut *self.borrow_mut();
762 let replacement = f(mut_borrow);
763 mem::replace(mut_borrow, replacement)
3b2f2976
XL
764 }
765
766 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
767 /// without deinitializing either one.
768 ///
769 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
770 ///
abe05a73
XL
771 /// # Panics
772 ///
773 /// Panics if the value in either `RefCell` is currently borrowed.
774 ///
3b2f2976
XL
775 /// # Examples
776 ///
777 /// ```
3b2f2976
XL
778 /// use std::cell::RefCell;
779 /// let c = RefCell::new(5);
780 /// let d = RefCell::new(6);
781 /// c.swap(&d);
782 /// assert_eq!(c, RefCell::new(6));
783 /// assert_eq!(d, RefCell::new(5));
784 /// ```
3b2f2976 785 #[inline]
dfeec247 786 #[stable(feature = "refcell_swap", since = "1.24.0")]
3b2f2976
XL
787 pub fn swap(&self, other: &Self) {
788 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
789 }
d9579d0f 790}
1a4d82fc 791
d9579d0f 792impl<T: ?Sized> RefCell<T> {
1a4d82fc
JJ
793 /// Immutably borrows the wrapped value.
794 ///
795 /// The borrow lasts until the returned `Ref` exits scope. Multiple
796 /// immutable borrows can be taken out at the same time.
797 ///
798 /// # Panics
799 ///
5bcae85e
SL
800 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
801 /// [`try_borrow`](#method.try_borrow).
85aaf69f
SL
802 ///
803 /// # Examples
804 ///
805 /// ```
806 /// use std::cell::RefCell;
807 ///
808 /// let c = RefCell::new(5);
809 ///
810 /// let borrowed_five = c.borrow();
811 /// let borrowed_five2 = c.borrow();
812 /// ```
813 ///
814 /// An example of panic:
815 ///
f035d41b 816 /// ```should_panic
85aaf69f 817 /// use std::cell::RefCell;
85aaf69f 818 ///
f035d41b 819 /// let c = RefCell::new(5);
85aaf69f 820 ///
f035d41b
XL
821 /// let m = c.borrow_mut();
822 /// let b = c.borrow(); // this causes a panic
85aaf69f
SL
823 /// ```
824 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 825 #[inline]
3dfed10e 826 #[track_caller]
48663c56 827 pub fn borrow(&self) -> Ref<'_, T> {
5bcae85e
SL
828 self.try_borrow().expect("already mutably borrowed")
829 }
830
831 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
832 /// borrowed.
833 ///
834 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
835 /// taken out at the same time.
836 ///
837 /// This is the non-panicking variant of [`borrow`](#method.borrow).
838 ///
839 /// # Examples
840 ///
841 /// ```
5bcae85e
SL
842 /// use std::cell::RefCell;
843 ///
844 /// let c = RefCell::new(5);
845 ///
846 /// {
847 /// let m = c.borrow_mut();
848 /// assert!(c.try_borrow().is_err());
849 /// }
850 ///
851 /// {
852 /// let m = c.borrow();
853 /// assert!(c.try_borrow().is_ok());
854 /// }
855 /// ```
9e0c209e 856 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 857 #[inline]
cdc7bbd5 858 #[cfg_attr(feature = "debug_refcell", track_caller)]
48663c56 859 pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
85aaf69f 860 match BorrowRef::new(&self.borrow) {
cdc7bbd5
XL
861 Some(b) => {
862 #[cfg(feature = "debug_refcell")]
863 {
864 // `borrowed_at` is always the *first* active borrow
865 if b.borrow.get() == 1 {
866 self.borrowed_at.set(Some(crate::panic::Location::caller()));
867 }
868 }
869
870 // SAFETY: `BorrowRef` ensures that there is only immutable access
871 // to the value while borrowed.
872 Ok(Ref { value: unsafe { &*self.value.get() }, borrow: b })
873 }
874 None => Err(BorrowError {
cdc7bbd5
XL
875 // If a borrow occured, then we must already have an outstanding borrow,
876 // so `borrowed_at` will be `Some`
877 #[cfg(feature = "debug_refcell")]
878 location: self.borrowed_at.get().unwrap(),
879 }),
1a4d82fc
JJ
880 }
881 }
882
1a4d82fc
JJ
883 /// Mutably borrows the wrapped value.
884 ///
94b46f34
XL
885 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
886 /// from it exit scope. The value cannot be borrowed while this borrow is
887 /// active.
1a4d82fc
JJ
888 ///
889 /// # Panics
890 ///
5bcae85e
SL
891 /// Panics if the value is currently borrowed. For a non-panicking variant, use
892 /// [`try_borrow_mut`](#method.try_borrow_mut).
85aaf69f
SL
893 ///
894 /// # Examples
895 ///
896 /// ```
897 /// use std::cell::RefCell;
898 ///
f9f354fc 899 /// let c = RefCell::new("hello".to_owned());
85aaf69f 900 ///
f9f354fc 901 /// *c.borrow_mut() = "bonjour".to_owned();
7453a54e 902 ///
f9f354fc 903 /// assert_eq!(&*c.borrow(), "bonjour");
85aaf69f
SL
904 /// ```
905 ///
906 /// An example of panic:
907 ///
f035d41b 908 /// ```should_panic
85aaf69f 909 /// use std::cell::RefCell;
85aaf69f 910 ///
f035d41b
XL
911 /// let c = RefCell::new(5);
912 /// let m = c.borrow();
85aaf69f 913 ///
f035d41b 914 /// let b = c.borrow_mut(); // this causes a panic
85aaf69f
SL
915 /// ```
916 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 917 #[inline]
3dfed10e 918 #[track_caller]
48663c56 919 pub fn borrow_mut(&self) -> RefMut<'_, T> {
5bcae85e
SL
920 self.try_borrow_mut().expect("already borrowed")
921 }
922
923 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
924 ///
94b46f34
XL
925 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
926 /// from it exit scope. The value cannot be borrowed while this borrow is
927 /// active.
5bcae85e
SL
928 ///
929 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
930 ///
931 /// # Examples
932 ///
933 /// ```
5bcae85e
SL
934 /// use std::cell::RefCell;
935 ///
936 /// let c = RefCell::new(5);
937 ///
938 /// {
939 /// let m = c.borrow();
940 /// assert!(c.try_borrow_mut().is_err());
941 /// }
942 ///
943 /// assert!(c.try_borrow_mut().is_ok());
944 /// ```
9e0c209e 945 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 946 #[inline]
cdc7bbd5 947 #[cfg_attr(feature = "debug_refcell", track_caller)]
48663c56 948 pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
85aaf69f 949 match BorrowRefMut::new(&self.borrow) {
cdc7bbd5
XL
950 Some(b) => {
951 #[cfg(feature = "debug_refcell")]
952 {
953 self.borrowed_at.set(Some(crate::panic::Location::caller()));
954 }
955
956 // SAFETY: `BorrowRef` guarantees unique access.
957 Ok(RefMut { value: unsafe { &mut *self.value.get() }, borrow: b })
958 }
959 None => Err(BorrowMutError {
cdc7bbd5
XL
960 // If a borrow occured, then we must already have an outstanding borrow,
961 // so `borrowed_at` will be `Some`
962 #[cfg(feature = "debug_refcell")]
963 location: self.borrowed_at.get().unwrap(),
964 }),
1a4d82fc
JJ
965 }
966 }
967
5bcae85e
SL
968 /// Returns a raw pointer to the underlying data in this cell.
969 ///
970 /// # Examples
971 ///
972 /// ```
973 /// use std::cell::RefCell;
974 ///
975 /// let c = RefCell::new(5);
976 ///
977 /// let ptr = c.as_ptr();
978 /// ```
979 #[inline]
980 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
981 pub fn as_ptr(&self) -> *mut T {
982 self.value.get()
983 }
984
a7813a04
XL
985 /// Returns a mutable reference to the underlying data.
986 ///
987 /// This call borrows `RefCell` mutably (at compile-time) so there is no
988 /// need for dynamic checks.
5bcae85e 989 ///
cc61c64b
XL
990 /// However be cautious: this method expects `self` to be mutable, which is
991 /// generally not the case when using a `RefCell`. Take a look at the
992 /// [`borrow_mut`] method instead if `self` isn't mutable.
993 ///
994 /// Also, please be aware that this method is only for special circumstances and is usually
3b2f2976 995 /// not what you want. In case of doubt, use [`borrow_mut`] instead.
cc61c64b 996 ///
fc512014 997 /// [`borrow_mut`]: RefCell::borrow_mut()
cc61c64b 998 ///
5bcae85e
SL
999 /// # Examples
1000 ///
1001 /// ```
1002 /// use std::cell::RefCell;
1003 ///
1004 /// let mut c = RefCell::new(5);
1005 /// *c.get_mut() += 1;
1006 ///
1007 /// assert_eq!(c, RefCell::new(6));
1008 /// ```
a7813a04 1009 #[inline]
3157f602 1010 #[stable(feature = "cell_get_mut", since = "1.11.0")]
a7813a04 1011 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 1012 self.value.get_mut()
a7813a04 1013 }
48663c56 1014
ba9703b0
XL
1015 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1016 ///
1017 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1018 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1019 /// if some `Ref` or `RefMut` borrows have been leaked.
1020 ///
fc512014 1021 /// [`get_mut`]: RefCell::get_mut()
ba9703b0
XL
1022 ///
1023 /// # Examples
1024 ///
1025 /// ```
1026 /// #![feature(cell_leak)]
1027 /// use std::cell::RefCell;
1028 ///
1029 /// let mut c = RefCell::new(0);
1030 /// std::mem::forget(c.borrow_mut());
1031 ///
1032 /// assert!(c.try_borrow().is_err());
1033 /// c.undo_leak();
1034 /// assert!(c.try_borrow().is_ok());
1035 /// ```
1036 #[unstable(feature = "cell_leak", issue = "69099")]
1037 pub fn undo_leak(&mut self) -> &mut T {
1038 *self.borrow.get_mut() = UNUSED;
1039 self.get_mut()
1040 }
1041
48663c56
XL
1042 /// Immutably borrows the wrapped value, returning an error if the value is
1043 /// currently mutably borrowed.
1044 ///
1045 /// # Safety
1046 ///
1047 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1048 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1049 /// borrowing the `RefCell` while the reference returned by this method
1050 /// is alive is undefined behaviour.
1051 ///
1052 /// # Examples
1053 ///
1054 /// ```
48663c56
XL
1055 /// use std::cell::RefCell;
1056 ///
1057 /// let c = RefCell::new(5);
1058 ///
1059 /// {
1060 /// let m = c.borrow_mut();
1061 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1062 /// }
1063 ///
1064 /// {
1065 /// let m = c.borrow();
1066 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1067 /// }
1068 /// ```
dc9dc135 1069 #[stable(feature = "borrow_state", since = "1.37.0")]
48663c56
XL
1070 #[inline]
1071 pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1072 if !is_writing(self.borrow.get()) {
f035d41b
XL
1073 // SAFETY: We check that nobody is actively writing now, but it is
1074 // the caller's responsibility to ensure that nobody writes until
1075 // the returned reference is no longer in use.
1076 // Also, `self.value.get()` refers to the value owned by `self`
1077 // and is thus guaranteed to be valid for the lifetime of `self`.
1078 Ok(unsafe { &*self.value.get() })
48663c56 1079 } else {
cdc7bbd5 1080 Err(BorrowError {
cdc7bbd5
XL
1081 // If a borrow occured, then we must already have an outstanding borrow,
1082 // so `borrowed_at` will be `Some`
1083 #[cfg(feature = "debug_refcell")]
1084 location: self.borrowed_at.get().unwrap(),
1085 })
48663c56
XL
1086 }
1087 }
1a4d82fc
JJ
1088}
1089
f9f354fc
XL
1090impl<T: Default> RefCell<T> {
1091 /// Takes the wrapped value, leaving `Default::default()` in its place.
1092 ///
1093 /// # Panics
1094 ///
1095 /// Panics if the value is currently borrowed.
1096 ///
1097 /// # Examples
1098 ///
1099 /// ```
f9f354fc
XL
1100 /// use std::cell::RefCell;
1101 ///
1102 /// let c = RefCell::new(5);
1103 /// let five = c.take();
1104 ///
1105 /// assert_eq!(five, 5);
1106 /// assert_eq!(c.into_inner(), 0);
1107 /// ```
fc512014 1108 #[stable(feature = "refcell_take", since = "1.50.0")]
f9f354fc
XL
1109 pub fn take(&self) -> T {
1110 self.replace(Default::default())
1111 }
1112}
1113
85aaf69f 1114#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1115unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1a4d82fc 1116
54a0048b
SL
1117#[stable(feature = "rust1", since = "1.0.0")]
1118impl<T: ?Sized> !Sync for RefCell<T> {}
1119
85aaf69f 1120#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1121impl<T: Clone> Clone for RefCell<T> {
0531ce1d
XL
1122 /// # Panics
1123 ///
1124 /// Panics if the value is currently mutably borrowed.
c34b1796 1125 #[inline]
1b1a35ee 1126 #[track_caller]
1a4d82fc
JJ
1127 fn clone(&self) -> RefCell<T> {
1128 RefCell::new(self.borrow().clone())
1129 }
17df50a5
XL
1130
1131 /// # Panics
1132 ///
1133 /// Panics if `other` is currently mutably borrowed.
1134 #[inline]
1135 #[track_caller]
1136 fn clone_from(&mut self, other: &Self) {
1137 self.get_mut().clone_from(&other.borrow())
1138 }
1a4d82fc
JJ
1139}
1140
85aaf69f 1141#[stable(feature = "rust1", since = "1.0.0")]
416331ca 1142impl<T: Default> Default for RefCell<T> {
9e0c209e 1143 /// Creates a `RefCell<T>`, with the `Default` value for T.
c34b1796 1144 #[inline]
1a4d82fc
JJ
1145 fn default() -> RefCell<T> {
1146 RefCell::new(Default::default())
1147 }
1148}
1149
85aaf69f 1150#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1151impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
0531ce1d
XL
1152 /// # Panics
1153 ///
1154 /// Panics if the value in either `RefCell` is currently borrowed.
c34b1796 1155 #[inline]
1a4d82fc
JJ
1156 fn eq(&self, other: &RefCell<T>) -> bool {
1157 *self.borrow() == *other.borrow()
1158 }
1159}
1160
62682a34
SL
1161#[stable(feature = "cell_eq", since = "1.2.0")]
1162impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1163
a7813a04
XL
1164#[stable(feature = "cell_ord", since = "1.10.0")]
1165impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
0531ce1d
XL
1166 /// # Panics
1167 ///
1168 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1169 #[inline]
1170 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1171 self.borrow().partial_cmp(&*other.borrow())
1172 }
1173
0531ce1d
XL
1174 /// # Panics
1175 ///
1176 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1177 #[inline]
1178 fn lt(&self, other: &RefCell<T>) -> bool {
1179 *self.borrow() < *other.borrow()
1180 }
1181
0531ce1d
XL
1182 /// # Panics
1183 ///
1184 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1185 #[inline]
1186 fn le(&self, other: &RefCell<T>) -> bool {
1187 *self.borrow() <= *other.borrow()
1188 }
1189
0531ce1d
XL
1190 /// # Panics
1191 ///
1192 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1193 #[inline]
1194 fn gt(&self, other: &RefCell<T>) -> bool {
1195 *self.borrow() > *other.borrow()
1196 }
1197
0531ce1d
XL
1198 /// # Panics
1199 ///
1200 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1201 #[inline]
1202 fn ge(&self, other: &RefCell<T>) -> bool {
1203 *self.borrow() >= *other.borrow()
1204 }
1205}
1206
1207#[stable(feature = "cell_ord", since = "1.10.0")]
1208impl<T: ?Sized + Ord> Ord for RefCell<T> {
0531ce1d
XL
1209 /// # Panics
1210 ///
1211 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1212 #[inline]
1213 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1214 self.borrow().cmp(&*other.borrow())
1215 }
1216}
1217
5bcae85e
SL
1218#[stable(feature = "cell_from", since = "1.12.0")]
1219impl<T> From<T> for RefCell<T> {
1220 fn from(t: T) -> RefCell<T> {
1221 RefCell::new(t)
1222 }
1223}
1224
9e0c209e
SL
1225#[unstable(feature = "coerce_unsized", issue = "27732")]
1226impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1227
1a4d82fc 1228struct BorrowRef<'b> {
54a0048b 1229 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1230}
1231
1232impl<'b> BorrowRef<'b> {
c34b1796 1233 #[inline]
1a4d82fc 1234 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
416331ca
XL
1235 let b = borrow.get().wrapping_add(1);
1236 if !is_reading(b) {
1237 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1238 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1239 // due to Rust's reference aliasing rules
f035d41b
XL
1240 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1241 // into isize::MIN (the max amount of writing borrows) so we can't allow
416331ca
XL
1242 // an additional read borrow because isize can't represent so many read borrows
1243 // (this can only happen if you mem::forget more than a small constant amount of
1244 // `Ref`s, which is not good practice)
94b46f34
XL
1245 None
1246 } else {
416331ca
XL
1247 // Incrementing borrow can result in a reading value (> 0) in these cases:
1248 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
f035d41b 1249 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
416331ca
XL
1250 // is large enough to represent having one more read borrow
1251 borrow.set(b);
94b46f34 1252 Some(BorrowRef { borrow })
1a4d82fc
JJ
1253 }
1254 }
1255}
1256
0bf4aa26 1257impl Drop for BorrowRef<'_> {
c34b1796 1258 #[inline]
1a4d82fc 1259 fn drop(&mut self) {
54a0048b 1260 let borrow = self.borrow.get();
8faf50e0 1261 debug_assert!(is_reading(borrow));
54a0048b 1262 self.borrow.set(borrow - 1);
1a4d82fc
JJ
1263 }
1264}
1265
0bf4aa26 1266impl Clone for BorrowRef<'_> {
c34b1796 1267 #[inline]
0bf4aa26 1268 fn clone(&self) -> Self {
1a4d82fc 1269 // Since this Ref exists, we know the borrow flag
8faf50e0 1270 // is a reading borrow.
54a0048b 1271 let borrow = self.borrow.get();
8faf50e0 1272 debug_assert!(is_reading(borrow));
94b46f34
XL
1273 // Prevent the borrow counter from overflowing into
1274 // a writing borrow.
f035d41b 1275 assert!(borrow != isize::MAX);
54a0048b
SL
1276 self.borrow.set(borrow + 1);
1277 BorrowRef { borrow: self.borrow }
1a4d82fc
JJ
1278 }
1279}
1280
1281/// Wraps a borrowed reference to a value in a `RefCell` box.
85aaf69f
SL
1282/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1283///
29967ef6 1284/// See the [module-level documentation](self) for more.
85aaf69f 1285#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1286pub struct Ref<'b, T: ?Sized + 'b> {
54a0048b
SL
1287 value: &'b T,
1288 borrow: BorrowRef<'b>,
1a4d82fc
JJ
1289}
1290
85aaf69f 1291#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1292impl<T: ?Sized> Deref for Ref<'_, T> {
1a4d82fc
JJ
1293 type Target = T;
1294
1295 #[inline]
e9174d1e 1296 fn deref(&self) -> &T {
54a0048b 1297 self.value
1a4d82fc
JJ
1298 }
1299}
1300
62682a34
SL
1301impl<'b, T: ?Sized> Ref<'b, T> {
1302 /// Copies a `Ref`.
1303 ///
1304 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1305 ///
1306 /// This is an associated function that needs to be used as
9fa01778 1307 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
62682a34
SL
1308 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1309 /// a `RefCell`.
476ff2be 1310 #[stable(feature = "cell_extras", since = "1.15.0")]
62682a34
SL
1311 #[inline]
1312 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
dfeec247 1313 Ref { value: orig.value, borrow: orig.borrow.clone() }
62682a34
SL
1314 }
1315
9fa01778 1316 /// Makes a new `Ref` for a component of the borrowed data.
62682a34
SL
1317 ///
1318 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1319 ///
1320 /// This is an associated function that needs to be used as `Ref::map(...)`.
1321 /// A method would interfere with methods of the same name on the contents
1322 /// of a `RefCell` used through `Deref`.
1323 ///
3b2f2976 1324 /// # Examples
62682a34
SL
1325 ///
1326 /// ```
62682a34
SL
1327 /// use std::cell::{RefCell, Ref};
1328 ///
1329 /// let c = RefCell::new((5, 'b'));
1330 /// let b1: Ref<(u32, char)> = c.borrow();
1331 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
1332 /// assert_eq!(*b2, 5)
1333 /// ```
7453a54e 1334 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34
SL
1335 #[inline]
1336 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
dfeec247
XL
1337 where
1338 F: FnOnce(&T) -> &U,
62682a34 1339 {
dfeec247 1340 Ref { value: f(orig.value), borrow: orig.borrow }
62682a34 1341 }
94b46f34 1342
5869c6ff
XL
1343 /// Makes a new `Ref` for an optional component of the borrowed data. The
1344 /// original guard is returned as an `Err(..)` if the closure returns
1345 /// `None`.
1346 ///
1347 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1348 ///
1349 /// This is an associated function that needs to be used as
1350 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1351 /// name on the contents of a `RefCell` used through `Deref`.
1352 ///
1353 /// # Examples
1354 ///
1355 /// ```
1356 /// #![feature(cell_filter_map)]
1357 ///
1358 /// use std::cell::{RefCell, Ref};
1359 ///
1360 /// let c = RefCell::new(vec![1, 2, 3]);
1361 /// let b1: Ref<Vec<u32>> = c.borrow();
1362 /// let b2: Result<Ref<u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1363 /// assert_eq!(*b2.unwrap(), 2);
1364 /// ```
1365 #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
1366 #[inline]
1367 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1368 where
1369 F: FnOnce(&T) -> Option<&U>,
1370 {
1371 match f(orig.value) {
1372 Some(value) => Ok(Ref { value, borrow: orig.borrow }),
1373 None => Err(orig),
1374 }
1375 }
1376
9fa01778 1377 /// Splits a `Ref` into multiple `Ref`s for different components of the
94b46f34
XL
1378 /// borrowed data.
1379 ///
1380 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1381 ///
1382 /// This is an associated function that needs to be used as
1383 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1384 /// name on the contents of a `RefCell` used through `Deref`.
1385 ///
1386 /// # Examples
1387 ///
1388 /// ```
94b46f34
XL
1389 /// use std::cell::{Ref, RefCell};
1390 ///
1391 /// let cell = RefCell::new([1, 2, 3, 4]);
1392 /// let borrow = cell.borrow();
1393 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1394 /// assert_eq!(*begin, [1, 2]);
1395 /// assert_eq!(*end, [3, 4]);
1396 /// ```
532ac7d7 1397 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1398 #[inline]
1399 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
dfeec247
XL
1400 where
1401 F: FnOnce(&T) -> (&U, &V),
94b46f34
XL
1402 {
1403 let (a, b) = f(orig.value);
1404 let borrow = orig.borrow.clone();
1405 (Ref { value: a, borrow }, Ref { value: b, borrow: orig.borrow })
1406 }
74b04a01
XL
1407
1408 /// Convert into a reference to the underlying data.
1409 ///
1410 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1411 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1412 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1413 /// have occurred in total.
1414 ///
1415 /// This is an associated function that needs to be used as
1416 /// `Ref::leak(...)`. A method would interfere with methods of the
1417 /// same name on the contents of a `RefCell` used through `Deref`.
1418 ///
1419 /// # Examples
1420 ///
1421 /// ```
1422 /// #![feature(cell_leak)]
1423 /// use std::cell::{RefCell, Ref};
1424 /// let cell = RefCell::new(0);
1425 ///
1426 /// let value = Ref::leak(cell.borrow());
1427 /// assert_eq!(*value, 0);
1428 ///
1429 /// assert!(cell.try_borrow().is_ok());
1430 /// assert!(cell.try_borrow_mut().is_err());
1431 /// ```
1432 #[unstable(feature = "cell_leak", issue = "69099")]
1433 pub fn leak(orig: Ref<'b, T>) -> &'b T {
ba9703b0
XL
1434 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1435 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1436 // unique reference to the borrowed RefCell. No further mutable references can be created
1437 // from the original cell.
74b04a01
XL
1438 mem::forget(orig.borrow);
1439 orig.value
1440 }
62682a34
SL
1441}
1442
54a0048b
SL
1443#[unstable(feature = "coerce_unsized", issue = "27732")]
1444impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1445
041b39d2 1446#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1447impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
48663c56 1448 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
041b39d2
XL
1449 self.value.fmt(f)
1450 }
1451}
1452
62682a34 1453impl<'b, T: ?Sized> RefMut<'b, T> {
9fa01778 1454 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
62682a34
SL
1455 /// variant.
1456 ///
1457 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1458 ///
1459 /// This is an associated function that needs to be used as
9fa01778 1460 /// `RefMut::map(...)`. A method would interfere with methods of the same
62682a34
SL
1461 /// name on the contents of a `RefCell` used through `Deref`.
1462 ///
3b2f2976 1463 /// # Examples
62682a34
SL
1464 ///
1465 /// ```
62682a34
SL
1466 /// use std::cell::{RefCell, RefMut};
1467 ///
1468 /// let c = RefCell::new((5, 'b'));
1469 /// {
1470 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
1471 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
1472 /// assert_eq!(*b2, 5);
1473 /// *b2 = 42;
1474 /// }
1475 /// assert_eq!(*c.borrow(), (42, 'b'));
1476 /// ```
7453a54e 1477 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34
SL
1478 #[inline]
1479 pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
dfeec247
XL
1480 where
1481 F: FnOnce(&mut T) -> &mut U,
62682a34 1482 {
ff7c6d11
XL
1483 // FIXME(nll-rfc#40): fix borrow-check
1484 let RefMut { value, borrow } = orig;
dfeec247 1485 RefMut { value: f(value), borrow }
62682a34 1486 }
94b46f34 1487
5869c6ff
XL
1488 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1489 /// original guard is returned as an `Err(..)` if the closure returns
1490 /// `None`.
1491 ///
1492 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1493 ///
1494 /// This is an associated function that needs to be used as
1495 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1496 /// same name on the contents of a `RefCell` used through `Deref`.
1497 ///
1498 /// # Examples
1499 ///
1500 /// ```
1501 /// #![feature(cell_filter_map)]
1502 ///
1503 /// use std::cell::{RefCell, RefMut};
1504 ///
1505 /// let c = RefCell::new(vec![1, 2, 3]);
1506 ///
1507 /// {
1508 /// let b1: RefMut<Vec<u32>> = c.borrow_mut();
1509 /// let mut b2: Result<RefMut<u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1510 ///
1511 /// if let Ok(mut b2) = b2 {
1512 /// *b2 += 2;
1513 /// }
1514 /// }
1515 ///
1516 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1517 /// ```
1518 #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
1519 #[inline]
1520 pub fn filter_map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1521 where
1522 F: FnOnce(&mut T) -> Option<&mut U>,
1523 {
1524 // FIXME(nll-rfc#40): fix borrow-check
1525 let RefMut { value, borrow } = orig;
1526 let value = value as *mut T;
1527 // SAFETY: function holds onto an exclusive reference for the duration
1528 // of its call through `orig`, and the pointer is only de-referenced
1529 // inside of the function call never allowing the exclusive reference to
1530 // escape.
1531 match f(unsafe { &mut *value }) {
1532 Some(value) => Ok(RefMut { value, borrow }),
1533 None => {
1534 // SAFETY: same as above.
1535 Err(RefMut { value: unsafe { &mut *value }, borrow })
1536 }
1537 }
1538 }
1539
9fa01778 1540 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
94b46f34
XL
1541 /// borrowed data.
1542 ///
1543 /// The underlying `RefCell` will remain mutably borrowed until both
1544 /// returned `RefMut`s go out of scope.
1545 ///
1546 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1547 ///
1548 /// This is an associated function that needs to be used as
1549 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1550 /// same name on the contents of a `RefCell` used through `Deref`.
1551 ///
1552 /// # Examples
1553 ///
1554 /// ```
94b46f34
XL
1555 /// use std::cell::{RefCell, RefMut};
1556 ///
1557 /// let cell = RefCell::new([1, 2, 3, 4]);
1558 /// let borrow = cell.borrow_mut();
1559 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1560 /// assert_eq!(*begin, [1, 2]);
1561 /// assert_eq!(*end, [3, 4]);
1562 /// begin.copy_from_slice(&[4, 3]);
1563 /// end.copy_from_slice(&[2, 1]);
1564 /// ```
532ac7d7 1565 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1566 #[inline]
1567 pub fn map_split<U: ?Sized, V: ?Sized, F>(
dfeec247
XL
1568 orig: RefMut<'b, T>,
1569 f: F,
94b46f34 1570 ) -> (RefMut<'b, U>, RefMut<'b, V>)
dfeec247
XL
1571 where
1572 F: FnOnce(&mut T) -> (&mut U, &mut V),
94b46f34
XL
1573 {
1574 let (a, b) = f(orig.value);
1575 let borrow = orig.borrow.clone();
1576 (RefMut { value: a, borrow }, RefMut { value: b, borrow: orig.borrow })
1577 }
74b04a01
XL
1578
1579 /// Convert into a mutable reference to the underlying data.
1580 ///
1581 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1582 /// mutably borrowed, making the returned reference the only to the interior.
1583 ///
1584 /// This is an associated function that needs to be used as
1585 /// `RefMut::leak(...)`. A method would interfere with methods of the
1586 /// same name on the contents of a `RefCell` used through `Deref`.
1587 ///
1588 /// # Examples
1589 ///
1590 /// ```
1591 /// #![feature(cell_leak)]
1592 /// use std::cell::{RefCell, RefMut};
1593 /// let cell = RefCell::new(0);
1594 ///
1595 /// let value = RefMut::leak(cell.borrow_mut());
1596 /// assert_eq!(*value, 0);
1597 /// *value = 1;
1598 ///
1599 /// assert!(cell.try_borrow_mut().is_err());
1600 /// ```
1601 #[unstable(feature = "cell_leak", issue = "69099")]
1602 pub fn leak(orig: RefMut<'b, T>) -> &'b mut T {
ba9703b0
XL
1603 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1604 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1605 // require a unique reference to the borrowed RefCell. No further references can be created
1606 // from the original cell within that lifetime, making the current borrow the only
1607 // reference for the remaining lifetime.
74b04a01
XL
1608 mem::forget(orig.borrow);
1609 orig.value
1610 }
1a4d82fc
JJ
1611}
1612
1613struct BorrowRefMut<'b> {
54a0048b 1614 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1615}
1616
0bf4aa26 1617impl Drop for BorrowRefMut<'_> {
c34b1796 1618 #[inline]
1a4d82fc 1619 fn drop(&mut self) {
54a0048b 1620 let borrow = self.borrow.get();
8faf50e0
XL
1621 debug_assert!(is_writing(borrow));
1622 self.borrow.set(borrow + 1);
1a4d82fc
JJ
1623 }
1624}
1625
1626impl<'b> BorrowRefMut<'b> {
c34b1796 1627 #[inline]
1a4d82fc 1628 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
94b46f34
XL
1629 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1630 // mutable reference, and so there must currently be no existing
1631 // references. Thus, while clone increments the mutable refcount, here
8faf50e0 1632 // we explicitly only allow going from UNUSED to UNUSED - 1.
1a4d82fc
JJ
1633 match borrow.get() {
1634 UNUSED => {
8faf50e0 1635 borrow.set(UNUSED - 1);
b7449926 1636 Some(BorrowRefMut { borrow })
dfeec247 1637 }
1a4d82fc
JJ
1638 _ => None,
1639 }
1640 }
94b46f34 1641
dc9dc135 1642 // Clones a `BorrowRefMut`.
94b46f34
XL
1643 //
1644 // This is only valid if each `BorrowRefMut` is used to track a mutable
1645 // reference to a distinct, nonoverlapping range of the original object.
1646 // This isn't in a Clone impl so that code doesn't call this implicitly.
1647 #[inline]
1648 fn clone(&self) -> BorrowRefMut<'b> {
1649 let borrow = self.borrow.get();
8faf50e0
XL
1650 debug_assert!(is_writing(borrow));
1651 // Prevent the borrow counter from underflowing.
f035d41b 1652 assert!(borrow != isize::MIN);
8faf50e0 1653 self.borrow.set(borrow - 1);
94b46f34
XL
1654 BorrowRefMut { borrow: self.borrow }
1655 }
1a4d82fc
JJ
1656}
1657
85aaf69f
SL
1658/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1659///
29967ef6 1660/// See the [module-level documentation](self) for more.
85aaf69f 1661#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1662pub struct RefMut<'b, T: ?Sized + 'b> {
54a0048b
SL
1663 value: &'b mut T,
1664 borrow: BorrowRefMut<'b>,
1a4d82fc
JJ
1665}
1666
85aaf69f 1667#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1668impl<T: ?Sized> Deref for RefMut<'_, T> {
1a4d82fc
JJ
1669 type Target = T;
1670
1671 #[inline]
e9174d1e 1672 fn deref(&self) -> &T {
54a0048b 1673 self.value
1a4d82fc
JJ
1674 }
1675}
1676
85aaf69f 1677#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1678impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1a4d82fc 1679 #[inline]
e9174d1e 1680 fn deref_mut(&mut self) -> &mut T {
54a0048b 1681 self.value
1a4d82fc
JJ
1682 }
1683}
1684
54a0048b
SL
1685#[unstable(feature = "coerce_unsized", issue = "27732")]
1686impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1687
041b39d2 1688#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1689impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
48663c56 1690 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
041b39d2
XL
1691 self.value.fmt(f)
1692 }
1693}
1694
1a4d82fc
JJ
1695/// The core primitive for interior mutability in Rust.
1696///
6a06907d
XL
1697/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1698/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1699/// alias or by transmuting an `&T` into an `&mut T`, is considered undefined behavior.
1700/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1701/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1a4d82fc 1702///
6a06907d
XL
1703/// All other types that allow internal mutability, such as `Cell<T>` and `RefCell<T>`, internally
1704/// use `UnsafeCell` to wrap their data.
1705///
1706/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1707/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1708/// aliasing `&mut`, not even with `UnsafeCell<T>`.
5bcae85e 1709///
1b1a35ee
XL
1710/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1711/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1712/// correctly.
1713///
1714/// [`.get()`]: `UnsafeCell::get`
0531ce1d
XL
1715///
1716/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1717///
94b46f34
XL
1718/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T`
1719/// reference) that is accessible by safe code (for example, because you returned it),
1720/// then you must not access the data in any way that contradicts that reference for the
1721/// remainder of `'a`. For example, this means that if you take the `*mut T` from an
1722/// `UnsafeCell<T>` and cast it to an `&T`, then the data in `T` must remain immutable
1723/// (modulo any `UnsafeCell` data found within `T`, of course) until that reference's
1724/// lifetime expires. Similarly, if you create a `&mut T` reference that is released to
1725/// safe code, then you must not access the data within the `UnsafeCell` until that
1726/// reference expires.
0531ce1d 1727///
94b46f34 1728/// - At all times, you must avoid data races. If multiple threads have access to
0531ce1d
XL
1729/// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
1730/// accesses (or use atomics).
5bcae85e 1731///
0531ce1d
XL
1732/// To assist with proper design, the following scenarios are explicitly declared legal
1733/// for single-threaded code:
5bcae85e 1734///
94b46f34 1735/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
0531ce1d
XL
1736/// references, but not with a `&mut T`
1737///
94b46f34 1738/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
0531ce1d
XL
1739/// co-exist with it. A `&mut T` must always be unique.
1740///
1b1a35ee
XL
1741/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1742/// `&UnsafeCell<T>` references alias the cell) is
1743/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1744/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1745/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1746/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1747/// accesses (_e.g._, through an `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1748/// may be aliased for the duration of that `&mut` borrow.
fc512014 1749/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1b1a35ee
XL
1750/// a `&mut T`.
1751///
1752/// [`.get_mut()`]: `UnsafeCell::get_mut`
1a4d82fc 1753///
85aaf69f 1754/// # Examples
1a4d82fc 1755///
1b1a35ee
XL
1756/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
1757/// there being multiple references aliasing the cell:
1758///
85aaf69f 1759/// ```
1a4d82fc 1760/// use std::cell::UnsafeCell;
1a4d82fc 1761///
1b1a35ee
XL
1762/// let x: UnsafeCell<i32> = 42.into();
1763/// // Get multiple / concurrent / shared references to the same `x`.
1764/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
1765///
1766/// unsafe {
1767/// // SAFETY: within this scope there are no other references to `x`'s contents,
1768/// // so ours is effectively unique.
1769/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
1770/// *p1_exclusive += 27; // |
1771/// } // <---------- cannot go beyond this point -------------------+
1772///
1773/// unsafe {
1774/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
1775/// // so we can have multiple shared accesses concurrently.
1776/// let p2_shared: &i32 = &*p2.get();
1777/// assert_eq!(*p2_shared, 42 + 27);
1778/// let p1_shared: &i32 = &*p1.get();
1779/// assert_eq!(*p1_shared, *p2_shared);
1a4d82fc 1780/// }
1b1a35ee
XL
1781/// ```
1782///
1783/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
1784/// implies exclusive access to its `T`:
1785///
1786/// ```rust
1b1a35ee
XL
1787/// #![forbid(unsafe_code)] // with exclusive accesses,
1788/// // `UnsafeCell` is a transparent no-op wrapper,
1789/// // so no need for `unsafe` here.
1790/// use std::cell::UnsafeCell;
1791///
1792/// let mut x: UnsafeCell<i32> = 42.into();
1793///
1794/// // Get a compile-time-checked unique reference to `x`.
1795/// let p_unique: &mut UnsafeCell<i32> = &mut x;
1796/// // With an exclusive reference, we can mutate the contents for free.
1797/// *p_unique.get_mut() = 0;
1798/// // Or, equivalently:
1799/// x = UnsafeCell::new(0);
85aaf69f 1800///
1b1a35ee
XL
1801/// // When we own the value, we can extract the contents for free.
1802/// let contents: i32 = x.into_inner();
1803/// assert_eq!(contents, 0);
1a4d82fc 1804/// ```
d9579d0f 1805#[lang = "unsafe_cell"]
85aaf69f 1806#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 1807#[repr(transparent)]
ba9703b0 1808#[repr(no_niche)] // rust-lang/rust#68303.
d9579d0f 1809pub struct UnsafeCell<T: ?Sized> {
e9174d1e 1810 value: T,
1a4d82fc
JJ
1811}
1812
92a42be0 1813#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1814impl<T: ?Sized> !Sync for UnsafeCell<T> {}
c34b1796 1815
1a4d82fc 1816impl<T> UnsafeCell<T> {
9346a6ac 1817 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
1a4d82fc
JJ
1818 /// value.
1819 ///
b039eaaf 1820 /// All access to the inner value through methods is `unsafe`.
85aaf69f
SL
1821 ///
1822 /// # Examples
1823 ///
1824 /// ```
1825 /// use std::cell::UnsafeCell;
1826 ///
1827 /// let uc = UnsafeCell::new(5);
1828 /// ```
1829 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1830 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
cdc7bbd5 1831 #[inline(always)]
62682a34 1832 pub const fn new(value: T) -> UnsafeCell<T> {
b7449926 1833 UnsafeCell { value }
1a4d82fc
JJ
1834 }
1835
d9579d0f
AL
1836 /// Unwraps the value.
1837 ///
85aaf69f
SL
1838 /// # Examples
1839 ///
1840 /// ```
1841 /// use std::cell::UnsafeCell;
1842 ///
1843 /// let uc = UnsafeCell::new(5);
1844 ///
2c00a5a8 1845 /// let five = uc.into_inner();
85aaf69f 1846 /// ```
cdc7bbd5 1847 #[inline(always)]
85aaf69f 1848 #[stable(feature = "rust1", since = "1.0.0")]
29967ef6
XL
1849 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
1850 pub const fn into_inner(self) -> T {
62682a34
SL
1851 self.value
1852 }
d9579d0f 1853}
1a4d82fc 1854
d9579d0f
AL
1855impl<T: ?Sized> UnsafeCell<T> {
1856 /// Gets a mutable pointer to the wrapped value.
85aaf69f 1857 ///
5bcae85e 1858 /// This can be cast to a pointer of any kind.
0531ce1d
XL
1859 /// Ensure that the access is unique (no active references, mutable or not)
1860 /// when casting to `&mut T`, and ensure that there are no mutations
1861 /// or mutable aliases going on when casting to `&T`
5bcae85e 1862 ///
85aaf69f
SL
1863 /// # Examples
1864 ///
1865 /// ```
1866 /// use std::cell::UnsafeCell;
1867 ///
1868 /// let uc = UnsafeCell::new(5);
1869 ///
d9579d0f 1870 /// let five = uc.get();
85aaf69f 1871 /// ```
cdc7bbd5 1872 #[inline(always)]
85aaf69f 1873 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1874 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
a1dfa0c6
XL
1875 pub const fn get(&self) -> *mut T {
1876 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
60c5eb7d
XL
1877 // #[repr(transparent)]. This exploits libstd's special status, there is
1878 // no guarantee for user code that this will work in future versions of the compiler!
a1dfa0c6 1879 self as *const UnsafeCell<T> as *const T as *mut T
d9579d0f 1880 }
60c5eb7d 1881
1b1a35ee
XL
1882 /// Returns a mutable reference to the underlying data.
1883 ///
1884 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1885 /// guarantees that we possess the only reference.
1886 ///
1887 /// # Examples
1888 ///
1889 /// ```
1b1a35ee
XL
1890 /// use std::cell::UnsafeCell;
1891 ///
1892 /// let mut c = UnsafeCell::new(5);
1893 /// *c.get_mut() += 1;
1894 ///
1895 /// assert_eq!(*c.get_mut(), 6);
1896 /// ```
cdc7bbd5 1897 #[inline(always)]
fc512014 1898 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
1b1a35ee 1899 pub fn get_mut(&mut self) -> &mut T {
29967ef6 1900 &mut self.value
1b1a35ee
XL
1901 }
1902
60c5eb7d
XL
1903 /// Gets a mutable pointer to the wrapped value.
1904 /// The difference to [`get`] is that this function accepts a raw pointer,
1905 /// which is useful to avoid the creation of temporary references.
1906 ///
1907 /// The result can be cast to a pointer of any kind.
1908 /// Ensure that the access is unique (no active references, mutable or not)
1909 /// when casting to `&mut T`, and ensure that there are no mutations
1910 /// or mutable aliases going on when casting to `&T`.
1911 ///
fc512014 1912 /// [`get`]: UnsafeCell::get()
60c5eb7d
XL
1913 ///
1914 /// # Examples
1915 ///
1916 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
1917 /// calling `get` would require creating a reference to uninitialized data:
1918 ///
1919 /// ```
1920 /// #![feature(unsafe_cell_raw_get)]
1921 /// use std::cell::UnsafeCell;
1922 /// use std::mem::MaybeUninit;
1923 ///
1924 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
1925 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
1926 /// let uc = unsafe { m.assume_init() };
1927 ///
1928 /// assert_eq!(uc.into_inner(), 5);
1929 /// ```
cdc7bbd5 1930 #[inline(always)]
60c5eb7d
XL
1931 #[unstable(feature = "unsafe_cell_raw_get", issue = "66358")]
1932 pub const fn raw_get(this: *const Self) -> *mut T {
1933 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
1934 // #[repr(transparent)]. This exploits libstd's special status, there is
1935 // no guarantee for user code that this will work in future versions of the compiler!
1936 this as *const T as *mut T
1937 }
1a4d82fc 1938}
a7813a04 1939
7cac9316 1940#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
a7813a04 1941impl<T: Default> Default for UnsafeCell<T> {
9e0c209e 1942 /// Creates an `UnsafeCell`, with the `Default` value for T.
a7813a04
XL
1943 fn default() -> UnsafeCell<T> {
1944 UnsafeCell::new(Default::default())
1945 }
1946}
5bcae85e
SL
1947
1948#[stable(feature = "cell_from", since = "1.12.0")]
1949impl<T> From<T> for UnsafeCell<T> {
1950 fn from(t: T) -> UnsafeCell<T> {
1951 UnsafeCell::new(t)
1952 }
1953}
9e0c209e
SL
1954
1955#[unstable(feature = "coerce_unsized", issue = "27732")]
1956impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
1957
1958#[allow(unused)]
1959fn assert_coerce_unsized(a: UnsafeCell<&i32>, b: Cell<&i32>, c: RefCell<&i32>) {
8faf50e0
XL
1960 let _: UnsafeCell<&dyn Send> = a;
1961 let _: Cell<&dyn Send> = b;
1962 let _: RefCell<&dyn Send> = c;
9e0c209e 1963}