]> git.proxmox.com Git - rustc.git/blame - library/core/src/cell.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / library / core / src / cell.rs
CommitLineData
1a4d82fc
JJ
1//! Shareable mutable containers.
2//!
0531ce1d
XL
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
dc9dc135 14//! presence of aliasing. Both `Cell<T>` and `RefCell<T>` allow doing this in a single-threaded
0531ce1d
XL
15//! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
16//! `Sync`). If you need to do aliasing and mutation between multiple threads it is possible to
17//! use [`Mutex`](../../std/sync/struct.Mutex.html),
18//! [`RwLock`](../../std/sync/struct.RwLock.html) or
19//! [`atomic`](../../core/sync/atomic/index.html) types.
20//!
85aaf69f
SL
21//! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
22//! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
23//! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
24//! with typical Rust types that exhibit 'inherited mutability'.
1a4d82fc 25//!
8bb4bdeb
XL
26//! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
27//! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
28//! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
29//! methods to retrieve and change the current interior value:
30//!
31//! - For types that implement `Copy`, the `get` method retrieves the current interior value.
32//! - For types that implement `Default`, the `take` method replaces the current interior value
33//! with `Default::default()` and returns the replaced value.
34//! - For all types, the `replace` method replaces the current interior value and returns the
35//! replaced value and the `into_inner` method consumes the `Cell<T>` and returns the interior
36//! value. Additionally, the `set` method replaces the interior value, dropping the replaced
37//! value.
1a4d82fc 38//!
85aaf69f
SL
39//! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
40//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
41//! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
42//! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
bd371182
AL
43//! to borrow a value that is already mutably borrowed; when this happens it results in thread
44//! panic.
1a4d82fc
JJ
45//!
46//! # When to choose interior mutability
47//!
85aaf69f
SL
48//! The more common inherited mutability, where one must have unique access to mutate a value, is
49//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
50//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
51//! interior mutability is something of a last resort. Since cell types enable mutation where it
52//! would otherwise be disallowed though, there are occasions when interior mutability might be
53//! appropriate, or even *must* be used, e.g.
1a4d82fc 54//!
c1a9b12d 55//! * Introducing mutability 'inside' of something immutable
1a4d82fc 56//! * Implementation details of logically-immutable methods.
62682a34 57//! * Mutating implementations of `Clone`.
1a4d82fc 58//!
c1a9b12d 59//! ## Introducing mutability 'inside' of something immutable
1a4d82fc 60//!
c1a9b12d 61//! Many shared smart pointer types, including `Rc<T>` and `Arc<T>`, provide containers that can be
85aaf69f 62//! cloned and shared between multiple parties. Because the contained values may be
c1a9b12d
SL
63//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
64//! impossible to mutate data inside of these smart pointers at all.
1a4d82fc 65//!
85aaf69f
SL
66//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
67//! mutability:
1a4d82fc
JJ
68//!
69//! ```
dc9dc135 70//! use std::cell::{RefCell, RefMut};
1a4d82fc 71//! use std::collections::HashMap;
1a4d82fc
JJ
72//! use std::rc::Rc;
73//!
74//! fn main() {
75//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
dc9dc135
XL
76//! // Create a new block to limit the scope of the dynamic borrow
77//! {
78//! let mut map: RefMut<_> = shared_map.borrow_mut();
79//! map.insert("africa", 92388);
80//! map.insert("kyoto", 11837);
81//! map.insert("piccadilly", 11826);
82//! map.insert("marbles", 38);
83//! }
84//!
85//! // Note that if we had not let the previous borrow of the cache fall out
86//! // of scope then the subsequent borrow would cause a dynamic thread panic.
87//! // This is the major hazard of using `RefCell`.
88//! let total: i32 = shared_map.borrow().values().sum();
89//! println!("{}", total);
1a4d82fc
JJ
90//! }
91//! ```
92//!
85aaf69f 93//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
c1a9b12d
SL
94//! scenarios. Consider using `RwLock<T>` or `Mutex<T>` if you need shared mutability in a
95//! multi-threaded situation.
85aaf69f 96//!
1a4d82fc
JJ
97//! ## Implementation details of logically-immutable methods
98//!
85aaf69f 99//! Occasionally it may be desirable not to expose in an API that there is mutation happening
0731742a 100//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
85aaf69f
SL
101//! forces the implementation to perform mutation; or because you must employ mutation to implement
102//! a trait method that was originally defined to take `&self`.
1a4d82fc
JJ
103//!
104//! ```
92a42be0 105//! # #![allow(dead_code)]
1a4d82fc
JJ
106//! use std::cell::RefCell;
107//!
108//! struct Graph {
85aaf69f
SL
109//! edges: Vec<(i32, i32)>,
110//! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
1a4d82fc
JJ
111//! }
112//!
113//! impl Graph {
85aaf69f 114//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
dc9dc135
XL
115//! self.span_tree_cache.borrow_mut()
116//! .get_or_insert_with(|| self.calc_span_tree())
117//! .clone()
118//! }
1a4d82fc 119//!
dc9dc135
XL
120//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
121//! // Expensive computation goes here
122//! vec![]
1a4d82fc 123//! }
1a4d82fc 124//! }
1a4d82fc
JJ
125//! ```
126//!
62682a34 127//! ## Mutating implementations of `Clone`
1a4d82fc 128//!
85aaf69f
SL
129//! This is simply a special - but common - case of the previous: hiding mutability for operations
130//! that appear to be immutable. The `clone` method is expected to not change the source value, and
9fa01778 131//! is declared to take `&self`, not `&mut self`. Therefore, any mutation that happens in the
85aaf69f
SL
132//! `clone` method must use cell types. For example, `Rc<T>` maintains its reference counts within a
133//! `Cell<T>`.
1a4d82fc
JJ
134//!
135//! ```
136//! use std::cell::Cell;
0531ce1d 137//! use std::ptr::NonNull;
f9f354fc 138//! use std::process::abort;
60c5eb7d 139//! use std::marker::PhantomData;
1a4d82fc 140//!
9e0c209e 141//! struct Rc<T: ?Sized> {
60c5eb7d
XL
142//! ptr: NonNull<RcBox<T>>,
143//! phantom: PhantomData<RcBox<T>>,
1a4d82fc
JJ
144//! }
145//!
9e0c209e
SL
146//! struct RcBox<T: ?Sized> {
147//! strong: Cell<usize>,
148//! refcount: Cell<usize>,
1a4d82fc 149//! value: T,
1a4d82fc
JJ
150//! }
151//!
9e0c209e 152//! impl<T: ?Sized> Clone for Rc<T> {
1a4d82fc 153//! fn clone(&self) -> Rc<T> {
9e0c209e 154//! self.inc_strong();
60c5eb7d
XL
155//! Rc {
156//! ptr: self.ptr,
157//! phantom: PhantomData,
158//! }
9e0c209e
SL
159//! }
160//! }
161//!
162//! trait RcBoxPtr<T: ?Sized> {
163//!
164//! fn inner(&self) -> &RcBox<T>;
165//!
166//! fn strong(&self) -> usize {
167//! self.inner().strong.get()
168//! }
169//!
170//! fn inc_strong(&self) {
171//! self.inner()
172//! .strong
173//! .set(self.strong()
174//! .checked_add(1)
f9f354fc 175//! .unwrap_or_else(|| abort() ));
1a4d82fc
JJ
176//! }
177//! }
9e0c209e
SL
178//!
179//! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
180//! fn inner(&self) -> &RcBox<T> {
181//! unsafe {
7cac9316 182//! self.ptr.as_ref()
9e0c209e
SL
183//! }
184//! }
185//! }
1a4d82fc
JJ
186//! ```
187//!
1a4d82fc 188
85aaf69f 189#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 190
48663c56
XL
191use crate::cmp::Ordering;
192use crate::fmt::{self, Debug, Display};
193use crate::marker::Unsize;
194use crate::mem;
dfeec247 195use crate::ops::{CoerceUnsized, Deref, DerefMut};
48663c56 196use crate::ptr;
1a4d82fc 197
8bb4bdeb 198/// A mutable memory location.
85aaf69f 199///
3b2f2976
XL
200/// # Examples
201///
a1dfa0c6
XL
202/// In this example, you can see that `Cell<T>` enables mutation inside an
203/// immutable struct. In other words, it enables "interior mutability".
3b2f2976
XL
204///
205/// ```
206/// use std::cell::Cell;
207///
208/// struct SomeStruct {
209/// regular_field: u8,
210/// special_field: Cell<u8>,
211/// }
212///
213/// let my_struct = SomeStruct {
214/// regular_field: 0,
215/// special_field: Cell::new(1),
216/// };
217///
218/// let new_value = 100;
219///
a1dfa0c6 220/// // ERROR: `my_struct` is immutable
3b2f2976
XL
221/// // my_struct.regular_field = new_value;
222///
a1dfa0c6
XL
223/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
224/// // which can always be mutated
3b2f2976
XL
225/// my_struct.special_field.set(new_value);
226/// assert_eq!(my_struct.special_field.get(), new_value);
227/// ```
228///
85aaf69f
SL
229/// See the [module-level documentation](index.html) for more.
230#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0
XL
231#[repr(transparent)]
232pub struct Cell<T: ?Sized> {
1a4d82fc
JJ
233 value: UnsafeCell<T>,
234}
235
8bb4bdeb 236#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 237unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
8bb4bdeb
XL
238
239#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 240impl<T: ?Sized> !Sync for Cell<T> {}
8bb4bdeb
XL
241
242#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 243impl<T: Copy> Clone for Cell<T> {
8bb4bdeb
XL
244 #[inline]
245 fn clone(&self) -> Cell<T> {
246 Cell::new(self.get())
247 }
248}
249
250#[stable(feature = "rust1", since = "1.0.0")]
416331ca 251impl<T: Default> Default for Cell<T> {
8bb4bdeb
XL
252 /// Creates a `Cell<T>`, with the `Default` value for T.
253 #[inline]
254 fn default() -> Cell<T> {
255 Cell::new(Default::default())
256 }
257}
258
259#[stable(feature = "rust1", since = "1.0.0")]
416331ca 260impl<T: PartialEq + Copy> PartialEq for Cell<T> {
8bb4bdeb
XL
261 #[inline]
262 fn eq(&self, other: &Cell<T>) -> bool {
263 self.get() == other.get()
264 }
265}
266
267#[stable(feature = "cell_eq", since = "1.2.0")]
416331ca 268impl<T: Eq + Copy> Eq for Cell<T> {}
8bb4bdeb
XL
269
270#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 271impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
8bb4bdeb
XL
272 #[inline]
273 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
274 self.get().partial_cmp(&other.get())
275 }
276
277 #[inline]
278 fn lt(&self, other: &Cell<T>) -> bool {
279 self.get() < other.get()
280 }
281
282 #[inline]
283 fn le(&self, other: &Cell<T>) -> bool {
284 self.get() <= other.get()
285 }
286
287 #[inline]
288 fn gt(&self, other: &Cell<T>) -> bool {
289 self.get() > other.get()
290 }
291
292 #[inline]
293 fn ge(&self, other: &Cell<T>) -> bool {
294 self.get() >= other.get()
295 }
296}
297
298#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 299impl<T: Ord + Copy> Ord for Cell<T> {
8bb4bdeb
XL
300 #[inline]
301 fn cmp(&self, other: &Cell<T>) -> Ordering {
302 self.get().cmp(&other.get())
303 }
304}
305
306#[stable(feature = "cell_from", since = "1.12.0")]
307impl<T> From<T> for Cell<T> {
308 fn from(t: T) -> Cell<T> {
309 Cell::new(t)
310 }
311}
312
313impl<T> Cell<T> {
314 /// Creates a new `Cell` containing the given value.
85aaf69f
SL
315 ///
316 /// # Examples
317 ///
318 /// ```
319 /// use std::cell::Cell;
320 ///
321 /// let c = Cell::new(5);
85aaf69f 322 /// ```
85aaf69f 323 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 324 #[rustc_const_stable(feature = "const_cell_new", since = "1.32.0")]
8bb4bdeb
XL
325 #[inline]
326 pub const fn new(value: T) -> Cell<T> {
dfeec247 327 Cell { value: UnsafeCell::new(value) }
1a4d82fc
JJ
328 }
329
8bb4bdeb
XL
330 /// Sets the contained value.
331 ///
332 /// # Examples
333 ///
334 /// ```
335 /// use std::cell::Cell;
336 ///
337 /// let c = Cell::new(5);
338 ///
339 /// c.set(10);
340 /// ```
a7813a04 341 #[inline]
8bb4bdeb
XL
342 #[stable(feature = "rust1", since = "1.0.0")]
343 pub fn set(&self, val: T) {
344 let old = self.replace(val);
345 drop(old);
a7813a04
XL
346 }
347
8bb4bdeb
XL
348 /// Swaps the values of two Cells.
349 /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
350 ///
351 /// # Examples
352 ///
353 /// ```
354 /// use std::cell::Cell;
355 ///
356 /// let c1 = Cell::new(5i32);
357 /// let c2 = Cell::new(10i32);
358 /// c1.swap(&c2);
359 /// assert_eq!(10, c1.get());
360 /// assert_eq!(5, c2.get());
361 /// ```
a7813a04 362 #[inline]
8bb4bdeb
XL
363 #[stable(feature = "move_cell", since = "1.17.0")]
364 pub fn swap(&self, other: &Self) {
365 if ptr::eq(self, other) {
366 return;
367 }
dfeec247
XL
368 // SAFETY: This can be risky if called from separate threads, but `Cell`
369 // is `!Sync` so this won't happen. This also won't invalidate any
370 // pointers since `Cell` makes sure nothing else will be pointing into
371 // either of these `Cell`s.
8bb4bdeb
XL
372 unsafe {
373 ptr::swap(self.value.get(), other.value.get());
374 }
a7813a04
XL
375 }
376
041b39d2 377 /// Replaces the contained value, and returns it.
8bb4bdeb
XL
378 ///
379 /// # Examples
380 ///
381 /// ```
382 /// use std::cell::Cell;
383 ///
041b39d2
XL
384 /// let cell = Cell::new(5);
385 /// assert_eq!(cell.get(), 5);
386 /// assert_eq!(cell.replace(10), 5);
387 /// assert_eq!(cell.get(), 10);
8bb4bdeb
XL
388 /// ```
389 #[stable(feature = "move_cell", since = "1.17.0")]
390 pub fn replace(&self, val: T) -> T {
dfeec247
XL
391 // SAFETY: This can cause data races if called from a separate thread,
392 // but `Cell` is `!Sync` so this won't happen.
8bb4bdeb 393 mem::replace(unsafe { &mut *self.value.get() }, val)
a7813a04 394 }
a7813a04 395
8bb4bdeb
XL
396 /// Unwraps the value.
397 ///
398 /// # Examples
399 ///
400 /// ```
401 /// use std::cell::Cell;
402 ///
403 /// let c = Cell::new(5);
404 /// let five = c.into_inner();
405 ///
406 /// assert_eq!(five, 5);
407 /// ```
408 #[stable(feature = "move_cell", since = "1.17.0")]
409 pub fn into_inner(self) -> T {
2c00a5a8 410 self.value.into_inner()
a7813a04 411 }
e74abb32
XL
412}
413
dfeec247 414impl<T: Copy> Cell<T> {
e74abb32
XL
415 /// Returns a copy of the contained value.
416 ///
417 /// # Examples
418 ///
419 /// ```
420 /// use std::cell::Cell;
421 ///
422 /// let c = Cell::new(5);
423 ///
424 /// let five = c.get();
425 /// ```
426 #[inline]
427 #[stable(feature = "rust1", since = "1.0.0")]
428 pub fn get(&self) -> T {
dfeec247
XL
429 // SAFETY: This can cause data races if called from a separate thread,
430 // but `Cell` is `!Sync` so this won't happen.
431 unsafe { *self.value.get() }
e74abb32
XL
432 }
433
434 /// Updates the contained value using a function and returns the new value.
435 ///
436 /// # Examples
437 ///
438 /// ```
439 /// #![feature(cell_update)]
440 ///
441 /// use std::cell::Cell;
442 ///
443 /// let c = Cell::new(5);
444 /// let new = c.update(|x| x + 1);
445 ///
446 /// assert_eq!(new, 6);
447 /// assert_eq!(c.get(), 6);
448 /// ```
449 #[inline]
450 #[unstable(feature = "cell_update", issue = "50186")]
451 pub fn update<F>(&self, f: F) -> T
452 where
453 F: FnOnce(T) -> T,
454 {
455 let old = self.get();
456 let new = f(old);
457 self.set(new);
458 new
459 }
a7813a04
XL
460}
461
8faf50e0
XL
462impl<T: ?Sized> Cell<T> {
463 /// Returns a raw pointer to the underlying data in this cell.
464 ///
465 /// # Examples
466 ///
467 /// ```
468 /// use std::cell::Cell;
469 ///
470 /// let c = Cell::new(5);
471 ///
472 /// let ptr = c.as_ptr();
473 /// ```
474 #[inline]
475 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
dfeec247 476 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
a1dfa0c6 477 pub const fn as_ptr(&self) -> *mut T {
8faf50e0
XL
478 self.value.get()
479 }
480
481 /// Returns a mutable reference to the underlying data.
482 ///
483 /// This call borrows `Cell` mutably (at compile-time) which guarantees
484 /// that we possess the only reference.
485 ///
486 /// # Examples
487 ///
488 /// ```
489 /// use std::cell::Cell;
490 ///
491 /// let mut c = Cell::new(5);
492 /// *c.get_mut() += 1;
493 ///
494 /// assert_eq!(c.get(), 6);
495 /// ```
496 #[inline]
497 #[stable(feature = "cell_get_mut", since = "1.11.0")]
498 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 499 self.value.get_mut()
8faf50e0
XL
500 }
501
502 /// Returns a `&Cell<T>` from a `&mut T`
503 ///
504 /// # Examples
505 ///
506 /// ```
8faf50e0
XL
507 /// use std::cell::Cell;
508 ///
509 /// let slice: &mut [i32] = &mut [1, 2, 3];
510 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
511 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
512 ///
513 /// assert_eq!(slice_cell.len(), 3);
514 /// ```
515 #[inline]
dc9dc135 516 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 517 pub fn from_mut(t: &mut T) -> &Cell<T> {
dfeec247
XL
518 // SAFETY: `&mut` ensures unique access.
519 unsafe { &*(t as *mut T as *const Cell<T>) }
8faf50e0
XL
520 }
521}
522
8bb4bdeb
XL
523impl<T: Default> Cell<T> {
524 /// Takes the value of the cell, leaving `Default::default()` in its place.
525 ///
526 /// # Examples
527 ///
528 /// ```
529 /// use std::cell::Cell;
530 ///
531 /// let c = Cell::new(5);
532 /// let five = c.take();
533 ///
534 /// assert_eq!(five, 5);
535 /// assert_eq!(c.into_inner(), 0);
536 /// ```
537 #[stable(feature = "move_cell", since = "1.17.0")]
538 pub fn take(&self) -> T {
539 self.replace(Default::default())
5bcae85e
SL
540 }
541}
542
9e0c209e
SL
543#[unstable(feature = "coerce_unsized", issue = "27732")]
544impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
545
8faf50e0
XL
546impl<T> Cell<[T]> {
547 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
548 ///
549 /// # Examples
550 ///
551 /// ```
8faf50e0
XL
552 /// use std::cell::Cell;
553 ///
554 /// let slice: &mut [i32] = &mut [1, 2, 3];
555 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
556 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
557 ///
558 /// assert_eq!(slice_cell.len(), 3);
559 /// ```
dc9dc135 560 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 561 pub fn as_slice_of_cells(&self) -> &[Cell<T>] {
dfeec247
XL
562 // SAFETY: `Cell<T>` has the same memory layout as `T`.
563 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
8faf50e0
XL
564 }
565}
566
1a4d82fc 567/// A mutable memory location with dynamically checked borrow rules
85aaf69f
SL
568///
569/// See the [module-level documentation](index.html) for more.
570#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 571pub struct RefCell<T: ?Sized> {
1a4d82fc 572 borrow: Cell<BorrowFlag>,
d9579d0f 573 value: UnsafeCell<T>,
1a4d82fc
JJ
574}
575
5bcae85e 576/// An error returned by [`RefCell::try_borrow`](struct.RefCell.html#method.try_borrow).
9e0c209e
SL
577#[stable(feature = "try_borrow", since = "1.13.0")]
578pub struct BorrowError {
579 _private: (),
5bcae85e
SL
580}
581
9e0c209e
SL
582#[stable(feature = "try_borrow", since = "1.13.0")]
583impl Debug for BorrowError {
48663c56 584 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
585 f.debug_struct("BorrowError").finish()
586 }
587}
588
9e0c209e
SL
589#[stable(feature = "try_borrow", since = "1.13.0")]
590impl Display for BorrowError {
48663c56 591 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
592 Display::fmt("already mutably borrowed", f)
593 }
594}
595
596/// An error returned by [`RefCell::try_borrow_mut`](struct.RefCell.html#method.try_borrow_mut).
9e0c209e
SL
597#[stable(feature = "try_borrow", since = "1.13.0")]
598pub struct BorrowMutError {
599 _private: (),
5bcae85e
SL
600}
601
9e0c209e
SL
602#[stable(feature = "try_borrow", since = "1.13.0")]
603impl Debug for BorrowMutError {
48663c56 604 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
605 f.debug_struct("BorrowMutError").finish()
606 }
607}
608
9e0c209e
SL
609#[stable(feature = "try_borrow", since = "1.13.0")]
610impl Display for BorrowMutError {
48663c56 611 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
612 Display::fmt("already borrowed", f)
613 }
614}
615
8faf50e0
XL
616// Positive values represent the number of `Ref` active. Negative values
617// represent the number of `RefMut` active. Multiple `RefMut`s can only be
618// active at a time if they refer to distinct, nonoverlapping components of a
619// `RefCell` (e.g., different ranges of a slice).
94b46f34
XL
620//
621// `Ref` and `RefMut` are both two words in size, and so there will likely never
622// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
8faf50e0
XL
623// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
624// However, this is not a guarantee, as a pathological program could repeatedly
625// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
626// explicitly check for overflow and underflow in order to avoid unsafety, or at
627// least behave correctly in the event that overflow or underflow happens (e.g.,
628// see BorrowRef::new).
629type BorrowFlag = isize;
1a4d82fc 630const UNUSED: BorrowFlag = 0;
8faf50e0
XL
631
632#[inline(always)]
633fn is_writing(x: BorrowFlag) -> bool {
634 x < UNUSED
635}
636
637#[inline(always)]
638fn is_reading(x: BorrowFlag) -> bool {
639 x > UNUSED
640}
1a4d82fc
JJ
641
642impl<T> RefCell<T> {
85aaf69f
SL
643 /// Creates a new `RefCell` containing `value`.
644 ///
645 /// # Examples
646 ///
647 /// ```
648 /// use std::cell::RefCell;
649 ///
650 /// let c = RefCell::new(5);
651 /// ```
652 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 653 #[rustc_const_stable(feature = "const_refcell_new", since = "1.32.0")]
c34b1796 654 #[inline]
62682a34 655 pub const fn new(value: T) -> RefCell<T> {
dfeec247 656 RefCell { value: UnsafeCell::new(value), borrow: Cell::new(UNUSED) }
1a4d82fc
JJ
657 }
658
659 /// Consumes the `RefCell`, returning the wrapped value.
85aaf69f
SL
660 ///
661 /// # Examples
662 ///
663 /// ```
664 /// use std::cell::RefCell;
665 ///
666 /// let c = RefCell::new(5);
667 ///
668 /// let five = c.into_inner();
669 /// ```
670 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 671 #[inline]
1a4d82fc
JJ
672 pub fn into_inner(self) -> T {
673 // Since this function takes `self` (the `RefCell`) by value, the
674 // compiler statically verifies that it is not currently borrowed.
675 // Therefore the following assertion is just a `debug_assert!`.
676 debug_assert!(self.borrow.get() == UNUSED);
2c00a5a8 677 self.value.into_inner()
1a4d82fc 678 }
3b2f2976
XL
679
680 /// Replaces the wrapped value with a new one, returning the old value,
681 /// without deinitializing either one.
682 ///
683 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
684 ///
abe05a73
XL
685 /// # Panics
686 ///
687 /// Panics if the value is currently borrowed.
688 ///
3b2f2976
XL
689 /// # Examples
690 ///
691 /// ```
3b2f2976 692 /// use std::cell::RefCell;
abe05a73
XL
693 /// let cell = RefCell::new(5);
694 /// let old_value = cell.replace(6);
695 /// assert_eq!(old_value, 5);
696 /// assert_eq!(cell, RefCell::new(6));
3b2f2976 697 /// ```
abe05a73 698 #[inline]
dfeec247 699 #[stable(feature = "refcell_replace", since = "1.24.0")]
1b1a35ee 700 #[track_caller]
abe05a73
XL
701 pub fn replace(&self, t: T) -> T {
702 mem::replace(&mut *self.borrow_mut(), t)
703 }
704
705 /// Replaces the wrapped value with a new one computed from `f`, returning
706 /// the old value, without deinitializing either one.
707 ///
3b2f2976
XL
708 /// # Panics
709 ///
abe05a73
XL
710 /// Panics if the value is currently borrowed.
711 ///
712 /// # Examples
713 ///
714 /// ```
abe05a73
XL
715 /// use std::cell::RefCell;
716 /// let cell = RefCell::new(5);
717 /// let old_value = cell.replace_with(|&mut old| old + 1);
718 /// assert_eq!(old_value, 5);
719 /// assert_eq!(cell, RefCell::new(6));
720 /// ```
3b2f2976 721 #[inline]
dfeec247 722 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1b1a35ee 723 #[track_caller]
abe05a73
XL
724 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
725 let mut_borrow = &mut *self.borrow_mut();
726 let replacement = f(mut_borrow);
727 mem::replace(mut_borrow, replacement)
3b2f2976
XL
728 }
729
730 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
731 /// without deinitializing either one.
732 ///
733 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
734 ///
abe05a73
XL
735 /// # Panics
736 ///
737 /// Panics if the value in either `RefCell` is currently borrowed.
738 ///
3b2f2976
XL
739 /// # Examples
740 ///
741 /// ```
3b2f2976
XL
742 /// use std::cell::RefCell;
743 /// let c = RefCell::new(5);
744 /// let d = RefCell::new(6);
745 /// c.swap(&d);
746 /// assert_eq!(c, RefCell::new(6));
747 /// assert_eq!(d, RefCell::new(5));
748 /// ```
3b2f2976 749 #[inline]
dfeec247 750 #[stable(feature = "refcell_swap", since = "1.24.0")]
3b2f2976
XL
751 pub fn swap(&self, other: &Self) {
752 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
753 }
d9579d0f 754}
1a4d82fc 755
d9579d0f 756impl<T: ?Sized> RefCell<T> {
1a4d82fc
JJ
757 /// Immutably borrows the wrapped value.
758 ///
759 /// The borrow lasts until the returned `Ref` exits scope. Multiple
760 /// immutable borrows can be taken out at the same time.
761 ///
762 /// # Panics
763 ///
5bcae85e
SL
764 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
765 /// [`try_borrow`](#method.try_borrow).
85aaf69f
SL
766 ///
767 /// # Examples
768 ///
769 /// ```
770 /// use std::cell::RefCell;
771 ///
772 /// let c = RefCell::new(5);
773 ///
774 /// let borrowed_five = c.borrow();
775 /// let borrowed_five2 = c.borrow();
776 /// ```
777 ///
778 /// An example of panic:
779 ///
f035d41b 780 /// ```should_panic
85aaf69f 781 /// use std::cell::RefCell;
85aaf69f 782 ///
f035d41b 783 /// let c = RefCell::new(5);
85aaf69f 784 ///
f035d41b
XL
785 /// let m = c.borrow_mut();
786 /// let b = c.borrow(); // this causes a panic
85aaf69f
SL
787 /// ```
788 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 789 #[inline]
3dfed10e 790 #[track_caller]
48663c56 791 pub fn borrow(&self) -> Ref<'_, T> {
5bcae85e
SL
792 self.try_borrow().expect("already mutably borrowed")
793 }
794
795 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
796 /// borrowed.
797 ///
798 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
799 /// taken out at the same time.
800 ///
801 /// This is the non-panicking variant of [`borrow`](#method.borrow).
802 ///
803 /// # Examples
804 ///
805 /// ```
5bcae85e
SL
806 /// use std::cell::RefCell;
807 ///
808 /// let c = RefCell::new(5);
809 ///
810 /// {
811 /// let m = c.borrow_mut();
812 /// assert!(c.try_borrow().is_err());
813 /// }
814 ///
815 /// {
816 /// let m = c.borrow();
817 /// assert!(c.try_borrow().is_ok());
818 /// }
819 /// ```
9e0c209e 820 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 821 #[inline]
48663c56 822 pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
85aaf69f 823 match BorrowRef::new(&self.borrow) {
dfeec247
XL
824 // SAFETY: `BorrowRef` ensures that there is only immutable access
825 // to the value while borrowed.
826 Some(b) => Ok(Ref { value: unsafe { &*self.value.get() }, borrow: b }),
9e0c209e 827 None => Err(BorrowError { _private: () }),
1a4d82fc
JJ
828 }
829 }
830
1a4d82fc
JJ
831 /// Mutably borrows the wrapped value.
832 ///
94b46f34
XL
833 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
834 /// from it exit scope. The value cannot be borrowed while this borrow is
835 /// active.
1a4d82fc
JJ
836 ///
837 /// # Panics
838 ///
5bcae85e
SL
839 /// Panics if the value is currently borrowed. For a non-panicking variant, use
840 /// [`try_borrow_mut`](#method.try_borrow_mut).
85aaf69f
SL
841 ///
842 /// # Examples
843 ///
844 /// ```
845 /// use std::cell::RefCell;
846 ///
f9f354fc 847 /// let c = RefCell::new("hello".to_owned());
85aaf69f 848 ///
f9f354fc 849 /// *c.borrow_mut() = "bonjour".to_owned();
7453a54e 850 ///
f9f354fc 851 /// assert_eq!(&*c.borrow(), "bonjour");
85aaf69f
SL
852 /// ```
853 ///
854 /// An example of panic:
855 ///
f035d41b 856 /// ```should_panic
85aaf69f 857 /// use std::cell::RefCell;
85aaf69f 858 ///
f035d41b
XL
859 /// let c = RefCell::new(5);
860 /// let m = c.borrow();
85aaf69f 861 ///
f035d41b 862 /// let b = c.borrow_mut(); // this causes a panic
85aaf69f
SL
863 /// ```
864 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 865 #[inline]
3dfed10e 866 #[track_caller]
48663c56 867 pub fn borrow_mut(&self) -> RefMut<'_, T> {
5bcae85e
SL
868 self.try_borrow_mut().expect("already borrowed")
869 }
870
871 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
872 ///
94b46f34
XL
873 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
874 /// from it exit scope. The value cannot be borrowed while this borrow is
875 /// active.
5bcae85e
SL
876 ///
877 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
878 ///
879 /// # Examples
880 ///
881 /// ```
5bcae85e
SL
882 /// use std::cell::RefCell;
883 ///
884 /// let c = RefCell::new(5);
885 ///
886 /// {
887 /// let m = c.borrow();
888 /// assert!(c.try_borrow_mut().is_err());
889 /// }
890 ///
891 /// assert!(c.try_borrow_mut().is_ok());
892 /// ```
9e0c209e 893 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 894 #[inline]
48663c56 895 pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
85aaf69f 896 match BorrowRefMut::new(&self.borrow) {
dfeec247
XL
897 // SAFETY: `BorrowRef` guarantees unique access.
898 Some(b) => Ok(RefMut { value: unsafe { &mut *self.value.get() }, borrow: b }),
9e0c209e 899 None => Err(BorrowMutError { _private: () }),
1a4d82fc
JJ
900 }
901 }
902
5bcae85e
SL
903 /// Returns a raw pointer to the underlying data in this cell.
904 ///
905 /// # Examples
906 ///
907 /// ```
908 /// use std::cell::RefCell;
909 ///
910 /// let c = RefCell::new(5);
911 ///
912 /// let ptr = c.as_ptr();
913 /// ```
914 #[inline]
915 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
916 pub fn as_ptr(&self) -> *mut T {
917 self.value.get()
918 }
919
a7813a04
XL
920 /// Returns a mutable reference to the underlying data.
921 ///
922 /// This call borrows `RefCell` mutably (at compile-time) so there is no
923 /// need for dynamic checks.
5bcae85e 924 ///
cc61c64b
XL
925 /// However be cautious: this method expects `self` to be mutable, which is
926 /// generally not the case when using a `RefCell`. Take a look at the
927 /// [`borrow_mut`] method instead if `self` isn't mutable.
928 ///
929 /// Also, please be aware that this method is only for special circumstances and is usually
3b2f2976 930 /// not what you want. In case of doubt, use [`borrow_mut`] instead.
cc61c64b
XL
931 ///
932 /// [`borrow_mut`]: #method.borrow_mut
933 ///
5bcae85e
SL
934 /// # Examples
935 ///
936 /// ```
937 /// use std::cell::RefCell;
938 ///
939 /// let mut c = RefCell::new(5);
940 /// *c.get_mut() += 1;
941 ///
942 /// assert_eq!(c, RefCell::new(6));
943 /// ```
a7813a04 944 #[inline]
3157f602 945 #[stable(feature = "cell_get_mut", since = "1.11.0")]
a7813a04 946 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 947 self.value.get_mut()
a7813a04 948 }
48663c56 949
ba9703b0
XL
950 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
951 ///
952 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
953 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
954 /// if some `Ref` or `RefMut` borrows have been leaked.
955 ///
956 /// [`get_mut`]: #method.get_mut
957 ///
958 /// # Examples
959 ///
960 /// ```
961 /// #![feature(cell_leak)]
962 /// use std::cell::RefCell;
963 ///
964 /// let mut c = RefCell::new(0);
965 /// std::mem::forget(c.borrow_mut());
966 ///
967 /// assert!(c.try_borrow().is_err());
968 /// c.undo_leak();
969 /// assert!(c.try_borrow().is_ok());
970 /// ```
971 #[unstable(feature = "cell_leak", issue = "69099")]
972 pub fn undo_leak(&mut self) -> &mut T {
973 *self.borrow.get_mut() = UNUSED;
974 self.get_mut()
975 }
976
48663c56
XL
977 /// Immutably borrows the wrapped value, returning an error if the value is
978 /// currently mutably borrowed.
979 ///
980 /// # Safety
981 ///
982 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
983 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
984 /// borrowing the `RefCell` while the reference returned by this method
985 /// is alive is undefined behaviour.
986 ///
987 /// # Examples
988 ///
989 /// ```
48663c56
XL
990 /// use std::cell::RefCell;
991 ///
992 /// let c = RefCell::new(5);
993 ///
994 /// {
995 /// let m = c.borrow_mut();
996 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
997 /// }
998 ///
999 /// {
1000 /// let m = c.borrow();
1001 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1002 /// }
1003 /// ```
dc9dc135 1004 #[stable(feature = "borrow_state", since = "1.37.0")]
48663c56
XL
1005 #[inline]
1006 pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1007 if !is_writing(self.borrow.get()) {
f035d41b
XL
1008 // SAFETY: We check that nobody is actively writing now, but it is
1009 // the caller's responsibility to ensure that nobody writes until
1010 // the returned reference is no longer in use.
1011 // Also, `self.value.get()` refers to the value owned by `self`
1012 // and is thus guaranteed to be valid for the lifetime of `self`.
1013 Ok(unsafe { &*self.value.get() })
48663c56
XL
1014 } else {
1015 Err(BorrowError { _private: () })
1016 }
1017 }
1a4d82fc
JJ
1018}
1019
f9f354fc
XL
1020impl<T: Default> RefCell<T> {
1021 /// Takes the wrapped value, leaving `Default::default()` in its place.
1022 ///
1023 /// # Panics
1024 ///
1025 /// Panics if the value is currently borrowed.
1026 ///
1027 /// # Examples
1028 ///
1029 /// ```
1030 /// #![feature(refcell_take)]
1031 /// use std::cell::RefCell;
1032 ///
1033 /// let c = RefCell::new(5);
1034 /// let five = c.take();
1035 ///
1036 /// assert_eq!(five, 5);
1037 /// assert_eq!(c.into_inner(), 0);
1038 /// ```
1039 #[unstable(feature = "refcell_take", issue = "71395")]
1040 pub fn take(&self) -> T {
1041 self.replace(Default::default())
1042 }
1043}
1044
85aaf69f 1045#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1046unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1a4d82fc 1047
54a0048b
SL
1048#[stable(feature = "rust1", since = "1.0.0")]
1049impl<T: ?Sized> !Sync for RefCell<T> {}
1050
85aaf69f 1051#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1052impl<T: Clone> Clone for RefCell<T> {
0531ce1d
XL
1053 /// # Panics
1054 ///
1055 /// Panics if the value is currently mutably borrowed.
c34b1796 1056 #[inline]
1b1a35ee 1057 #[track_caller]
1a4d82fc
JJ
1058 fn clone(&self) -> RefCell<T> {
1059 RefCell::new(self.borrow().clone())
1060 }
1061}
1062
85aaf69f 1063#[stable(feature = "rust1", since = "1.0.0")]
416331ca 1064impl<T: Default> Default for RefCell<T> {
9e0c209e 1065 /// Creates a `RefCell<T>`, with the `Default` value for T.
c34b1796 1066 #[inline]
1a4d82fc
JJ
1067 fn default() -> RefCell<T> {
1068 RefCell::new(Default::default())
1069 }
1070}
1071
85aaf69f 1072#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1073impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
0531ce1d
XL
1074 /// # Panics
1075 ///
1076 /// Panics if the value in either `RefCell` is currently borrowed.
c34b1796 1077 #[inline]
1a4d82fc
JJ
1078 fn eq(&self, other: &RefCell<T>) -> bool {
1079 *self.borrow() == *other.borrow()
1080 }
1081}
1082
62682a34
SL
1083#[stable(feature = "cell_eq", since = "1.2.0")]
1084impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1085
a7813a04
XL
1086#[stable(feature = "cell_ord", since = "1.10.0")]
1087impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
0531ce1d
XL
1088 /// # Panics
1089 ///
1090 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1091 #[inline]
1092 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1093 self.borrow().partial_cmp(&*other.borrow())
1094 }
1095
0531ce1d
XL
1096 /// # Panics
1097 ///
1098 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1099 #[inline]
1100 fn lt(&self, other: &RefCell<T>) -> bool {
1101 *self.borrow() < *other.borrow()
1102 }
1103
0531ce1d
XL
1104 /// # Panics
1105 ///
1106 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1107 #[inline]
1108 fn le(&self, other: &RefCell<T>) -> bool {
1109 *self.borrow() <= *other.borrow()
1110 }
1111
0531ce1d
XL
1112 /// # Panics
1113 ///
1114 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1115 #[inline]
1116 fn gt(&self, other: &RefCell<T>) -> bool {
1117 *self.borrow() > *other.borrow()
1118 }
1119
0531ce1d
XL
1120 /// # Panics
1121 ///
1122 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1123 #[inline]
1124 fn ge(&self, other: &RefCell<T>) -> bool {
1125 *self.borrow() >= *other.borrow()
1126 }
1127}
1128
1129#[stable(feature = "cell_ord", since = "1.10.0")]
1130impl<T: ?Sized + Ord> Ord for RefCell<T> {
0531ce1d
XL
1131 /// # Panics
1132 ///
1133 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1134 #[inline]
1135 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1136 self.borrow().cmp(&*other.borrow())
1137 }
1138}
1139
5bcae85e
SL
1140#[stable(feature = "cell_from", since = "1.12.0")]
1141impl<T> From<T> for RefCell<T> {
1142 fn from(t: T) -> RefCell<T> {
1143 RefCell::new(t)
1144 }
1145}
1146
9e0c209e
SL
1147#[unstable(feature = "coerce_unsized", issue = "27732")]
1148impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1149
1a4d82fc 1150struct BorrowRef<'b> {
54a0048b 1151 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1152}
1153
1154impl<'b> BorrowRef<'b> {
c34b1796 1155 #[inline]
1a4d82fc 1156 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
416331ca
XL
1157 let b = borrow.get().wrapping_add(1);
1158 if !is_reading(b) {
1159 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1160 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1161 // due to Rust's reference aliasing rules
f035d41b
XL
1162 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1163 // into isize::MIN (the max amount of writing borrows) so we can't allow
416331ca
XL
1164 // an additional read borrow because isize can't represent so many read borrows
1165 // (this can only happen if you mem::forget more than a small constant amount of
1166 // `Ref`s, which is not good practice)
94b46f34
XL
1167 None
1168 } else {
416331ca
XL
1169 // Incrementing borrow can result in a reading value (> 0) in these cases:
1170 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
f035d41b 1171 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
416331ca
XL
1172 // is large enough to represent having one more read borrow
1173 borrow.set(b);
94b46f34 1174 Some(BorrowRef { borrow })
1a4d82fc
JJ
1175 }
1176 }
1177}
1178
0bf4aa26 1179impl Drop for BorrowRef<'_> {
c34b1796 1180 #[inline]
1a4d82fc 1181 fn drop(&mut self) {
54a0048b 1182 let borrow = self.borrow.get();
8faf50e0 1183 debug_assert!(is_reading(borrow));
54a0048b 1184 self.borrow.set(borrow - 1);
1a4d82fc
JJ
1185 }
1186}
1187
0bf4aa26 1188impl Clone for BorrowRef<'_> {
c34b1796 1189 #[inline]
0bf4aa26 1190 fn clone(&self) -> Self {
1a4d82fc 1191 // Since this Ref exists, we know the borrow flag
8faf50e0 1192 // is a reading borrow.
54a0048b 1193 let borrow = self.borrow.get();
8faf50e0 1194 debug_assert!(is_reading(borrow));
94b46f34
XL
1195 // Prevent the borrow counter from overflowing into
1196 // a writing borrow.
f035d41b 1197 assert!(borrow != isize::MAX);
54a0048b
SL
1198 self.borrow.set(borrow + 1);
1199 BorrowRef { borrow: self.borrow }
1a4d82fc
JJ
1200 }
1201}
1202
1203/// Wraps a borrowed reference to a value in a `RefCell` box.
85aaf69f
SL
1204/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1205///
1206/// See the [module-level documentation](index.html) for more.
1207#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1208pub struct Ref<'b, T: ?Sized + 'b> {
54a0048b
SL
1209 value: &'b T,
1210 borrow: BorrowRef<'b>,
1a4d82fc
JJ
1211}
1212
85aaf69f 1213#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1214impl<T: ?Sized> Deref for Ref<'_, T> {
1a4d82fc
JJ
1215 type Target = T;
1216
1217 #[inline]
e9174d1e 1218 fn deref(&self) -> &T {
54a0048b 1219 self.value
1a4d82fc
JJ
1220 }
1221}
1222
62682a34
SL
1223impl<'b, T: ?Sized> Ref<'b, T> {
1224 /// Copies a `Ref`.
1225 ///
1226 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1227 ///
1228 /// This is an associated function that needs to be used as
9fa01778 1229 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
62682a34
SL
1230 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1231 /// a `RefCell`.
476ff2be 1232 #[stable(feature = "cell_extras", since = "1.15.0")]
62682a34
SL
1233 #[inline]
1234 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
dfeec247 1235 Ref { value: orig.value, borrow: orig.borrow.clone() }
62682a34
SL
1236 }
1237
9fa01778 1238 /// Makes a new `Ref` for a component of the borrowed data.
62682a34
SL
1239 ///
1240 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1241 ///
1242 /// This is an associated function that needs to be used as `Ref::map(...)`.
1243 /// A method would interfere with methods of the same name on the contents
1244 /// of a `RefCell` used through `Deref`.
1245 ///
3b2f2976 1246 /// # Examples
62682a34
SL
1247 ///
1248 /// ```
62682a34
SL
1249 /// use std::cell::{RefCell, Ref};
1250 ///
1251 /// let c = RefCell::new((5, 'b'));
1252 /// let b1: Ref<(u32, char)> = c.borrow();
1253 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
1254 /// assert_eq!(*b2, 5)
1255 /// ```
7453a54e 1256 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34
SL
1257 #[inline]
1258 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
dfeec247
XL
1259 where
1260 F: FnOnce(&T) -> &U,
62682a34 1261 {
dfeec247 1262 Ref { value: f(orig.value), borrow: orig.borrow }
62682a34 1263 }
94b46f34 1264
9fa01778 1265 /// Splits a `Ref` into multiple `Ref`s for different components of the
94b46f34
XL
1266 /// borrowed data.
1267 ///
1268 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1269 ///
1270 /// This is an associated function that needs to be used as
1271 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1272 /// name on the contents of a `RefCell` used through `Deref`.
1273 ///
1274 /// # Examples
1275 ///
1276 /// ```
94b46f34
XL
1277 /// use std::cell::{Ref, RefCell};
1278 ///
1279 /// let cell = RefCell::new([1, 2, 3, 4]);
1280 /// let borrow = cell.borrow();
1281 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1282 /// assert_eq!(*begin, [1, 2]);
1283 /// assert_eq!(*end, [3, 4]);
1284 /// ```
532ac7d7 1285 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1286 #[inline]
1287 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
dfeec247
XL
1288 where
1289 F: FnOnce(&T) -> (&U, &V),
94b46f34
XL
1290 {
1291 let (a, b) = f(orig.value);
1292 let borrow = orig.borrow.clone();
1293 (Ref { value: a, borrow }, Ref { value: b, borrow: orig.borrow })
1294 }
74b04a01
XL
1295
1296 /// Convert into a reference to the underlying data.
1297 ///
1298 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1299 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1300 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1301 /// have occurred in total.
1302 ///
1303 /// This is an associated function that needs to be used as
1304 /// `Ref::leak(...)`. A method would interfere with methods of the
1305 /// same name on the contents of a `RefCell` used through `Deref`.
1306 ///
1307 /// # Examples
1308 ///
1309 /// ```
1310 /// #![feature(cell_leak)]
1311 /// use std::cell::{RefCell, Ref};
1312 /// let cell = RefCell::new(0);
1313 ///
1314 /// let value = Ref::leak(cell.borrow());
1315 /// assert_eq!(*value, 0);
1316 ///
1317 /// assert!(cell.try_borrow().is_ok());
1318 /// assert!(cell.try_borrow_mut().is_err());
1319 /// ```
1320 #[unstable(feature = "cell_leak", issue = "69099")]
1321 pub fn leak(orig: Ref<'b, T>) -> &'b T {
ba9703b0
XL
1322 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1323 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1324 // unique reference to the borrowed RefCell. No further mutable references can be created
1325 // from the original cell.
74b04a01
XL
1326 mem::forget(orig.borrow);
1327 orig.value
1328 }
62682a34
SL
1329}
1330
54a0048b
SL
1331#[unstable(feature = "coerce_unsized", issue = "27732")]
1332impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1333
041b39d2 1334#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1335impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
48663c56 1336 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
041b39d2
XL
1337 self.value.fmt(f)
1338 }
1339}
1340
62682a34 1341impl<'b, T: ?Sized> RefMut<'b, T> {
9fa01778 1342 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
62682a34
SL
1343 /// variant.
1344 ///
1345 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1346 ///
1347 /// This is an associated function that needs to be used as
9fa01778 1348 /// `RefMut::map(...)`. A method would interfere with methods of the same
62682a34
SL
1349 /// name on the contents of a `RefCell` used through `Deref`.
1350 ///
3b2f2976 1351 /// # Examples
62682a34
SL
1352 ///
1353 /// ```
62682a34
SL
1354 /// use std::cell::{RefCell, RefMut};
1355 ///
1356 /// let c = RefCell::new((5, 'b'));
1357 /// {
1358 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
1359 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
1360 /// assert_eq!(*b2, 5);
1361 /// *b2 = 42;
1362 /// }
1363 /// assert_eq!(*c.borrow(), (42, 'b'));
1364 /// ```
7453a54e 1365 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34
SL
1366 #[inline]
1367 pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
dfeec247
XL
1368 where
1369 F: FnOnce(&mut T) -> &mut U,
62682a34 1370 {
ff7c6d11
XL
1371 // FIXME(nll-rfc#40): fix borrow-check
1372 let RefMut { value, borrow } = orig;
dfeec247 1373 RefMut { value: f(value), borrow }
62682a34 1374 }
94b46f34 1375
9fa01778 1376 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
94b46f34
XL
1377 /// borrowed data.
1378 ///
1379 /// The underlying `RefCell` will remain mutably borrowed until both
1380 /// returned `RefMut`s go out of scope.
1381 ///
1382 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1383 ///
1384 /// This is an associated function that needs to be used as
1385 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1386 /// same name on the contents of a `RefCell` used through `Deref`.
1387 ///
1388 /// # Examples
1389 ///
1390 /// ```
94b46f34
XL
1391 /// use std::cell::{RefCell, RefMut};
1392 ///
1393 /// let cell = RefCell::new([1, 2, 3, 4]);
1394 /// let borrow = cell.borrow_mut();
1395 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1396 /// assert_eq!(*begin, [1, 2]);
1397 /// assert_eq!(*end, [3, 4]);
1398 /// begin.copy_from_slice(&[4, 3]);
1399 /// end.copy_from_slice(&[2, 1]);
1400 /// ```
532ac7d7 1401 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1402 #[inline]
1403 pub fn map_split<U: ?Sized, V: ?Sized, F>(
dfeec247
XL
1404 orig: RefMut<'b, T>,
1405 f: F,
94b46f34 1406 ) -> (RefMut<'b, U>, RefMut<'b, V>)
dfeec247
XL
1407 where
1408 F: FnOnce(&mut T) -> (&mut U, &mut V),
94b46f34
XL
1409 {
1410 let (a, b) = f(orig.value);
1411 let borrow = orig.borrow.clone();
1412 (RefMut { value: a, borrow }, RefMut { value: b, borrow: orig.borrow })
1413 }
74b04a01
XL
1414
1415 /// Convert into a mutable reference to the underlying data.
1416 ///
1417 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1418 /// mutably borrowed, making the returned reference the only to the interior.
1419 ///
1420 /// This is an associated function that needs to be used as
1421 /// `RefMut::leak(...)`. A method would interfere with methods of the
1422 /// same name on the contents of a `RefCell` used through `Deref`.
1423 ///
1424 /// # Examples
1425 ///
1426 /// ```
1427 /// #![feature(cell_leak)]
1428 /// use std::cell::{RefCell, RefMut};
1429 /// let cell = RefCell::new(0);
1430 ///
1431 /// let value = RefMut::leak(cell.borrow_mut());
1432 /// assert_eq!(*value, 0);
1433 /// *value = 1;
1434 ///
1435 /// assert!(cell.try_borrow_mut().is_err());
1436 /// ```
1437 #[unstable(feature = "cell_leak", issue = "69099")]
1438 pub fn leak(orig: RefMut<'b, T>) -> &'b mut T {
ba9703b0
XL
1439 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1440 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1441 // require a unique reference to the borrowed RefCell. No further references can be created
1442 // from the original cell within that lifetime, making the current borrow the only
1443 // reference for the remaining lifetime.
74b04a01
XL
1444 mem::forget(orig.borrow);
1445 orig.value
1446 }
1a4d82fc
JJ
1447}
1448
1449struct BorrowRefMut<'b> {
54a0048b 1450 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1451}
1452
0bf4aa26 1453impl Drop for BorrowRefMut<'_> {
c34b1796 1454 #[inline]
1a4d82fc 1455 fn drop(&mut self) {
54a0048b 1456 let borrow = self.borrow.get();
8faf50e0
XL
1457 debug_assert!(is_writing(borrow));
1458 self.borrow.set(borrow + 1);
1a4d82fc
JJ
1459 }
1460}
1461
1462impl<'b> BorrowRefMut<'b> {
c34b1796 1463 #[inline]
1a4d82fc 1464 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
94b46f34
XL
1465 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1466 // mutable reference, and so there must currently be no existing
1467 // references. Thus, while clone increments the mutable refcount, here
8faf50e0 1468 // we explicitly only allow going from UNUSED to UNUSED - 1.
1a4d82fc
JJ
1469 match borrow.get() {
1470 UNUSED => {
8faf50e0 1471 borrow.set(UNUSED - 1);
b7449926 1472 Some(BorrowRefMut { borrow })
dfeec247 1473 }
1a4d82fc
JJ
1474 _ => None,
1475 }
1476 }
94b46f34 1477
dc9dc135 1478 // Clones a `BorrowRefMut`.
94b46f34
XL
1479 //
1480 // This is only valid if each `BorrowRefMut` is used to track a mutable
1481 // reference to a distinct, nonoverlapping range of the original object.
1482 // This isn't in a Clone impl so that code doesn't call this implicitly.
1483 #[inline]
1484 fn clone(&self) -> BorrowRefMut<'b> {
1485 let borrow = self.borrow.get();
8faf50e0
XL
1486 debug_assert!(is_writing(borrow));
1487 // Prevent the borrow counter from underflowing.
f035d41b 1488 assert!(borrow != isize::MIN);
8faf50e0 1489 self.borrow.set(borrow - 1);
94b46f34
XL
1490 BorrowRefMut { borrow: self.borrow }
1491 }
1a4d82fc
JJ
1492}
1493
85aaf69f
SL
1494/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1495///
1496/// See the [module-level documentation](index.html) for more.
1497#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1498pub struct RefMut<'b, T: ?Sized + 'b> {
54a0048b
SL
1499 value: &'b mut T,
1500 borrow: BorrowRefMut<'b>,
1a4d82fc
JJ
1501}
1502
85aaf69f 1503#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1504impl<T: ?Sized> Deref for RefMut<'_, T> {
1a4d82fc
JJ
1505 type Target = T;
1506
1507 #[inline]
e9174d1e 1508 fn deref(&self) -> &T {
54a0048b 1509 self.value
1a4d82fc
JJ
1510 }
1511}
1512
85aaf69f 1513#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1514impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1a4d82fc 1515 #[inline]
e9174d1e 1516 fn deref_mut(&mut self) -> &mut T {
54a0048b 1517 self.value
1a4d82fc
JJ
1518 }
1519}
1520
54a0048b
SL
1521#[unstable(feature = "coerce_unsized", issue = "27732")]
1522impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1523
041b39d2 1524#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1525impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
48663c56 1526 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
041b39d2
XL
1527 self.value.fmt(f)
1528 }
1529}
1530
1a4d82fc
JJ
1531/// The core primitive for interior mutability in Rust.
1532///
85aaf69f
SL
1533/// `UnsafeCell<T>` is a type that wraps some `T` and indicates unsafe interior operations on the
1534/// wrapped type. Types with an `UnsafeCell<T>` field are considered to have an 'unsafe interior'.
1535/// The `UnsafeCell<T>` type is the only legal way to obtain aliasable data that is considered
1536/// mutable. In general, transmuting an `&T` type into an `&mut T` is considered undefined behavior.
1a4d82fc 1537///
0531ce1d
XL
1538/// If you have a reference `&SomeStruct`, then normally in Rust all fields of `SomeStruct` are
1539/// immutable. The compiler makes optimizations based on the knowledge that `&T` is not mutably
94b46f34 1540/// aliased or mutated, and that `&mut T` is unique. `UnsafeCell<T>` is the only core language
416331ca
XL
1541/// feature to work around the restriction that `&T` may not be mutated. All other types that
1542/// allow internal mutability, such as `Cell<T>` and `RefCell<T>`, use `UnsafeCell` to wrap their
1543/// internal data. There is *no* legal way to obtain aliasing `&mut`, not even with `UnsafeCell<T>`.
5bcae85e 1544///
1b1a35ee
XL
1545/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1546/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1547/// correctly.
1548///
1549/// [`.get()`]: `UnsafeCell::get`
0531ce1d
XL
1550///
1551/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1552///
94b46f34
XL
1553/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T`
1554/// reference) that is accessible by safe code (for example, because you returned it),
1555/// then you must not access the data in any way that contradicts that reference for the
1556/// remainder of `'a`. For example, this means that if you take the `*mut T` from an
1557/// `UnsafeCell<T>` and cast it to an `&T`, then the data in `T` must remain immutable
1558/// (modulo any `UnsafeCell` data found within `T`, of course) until that reference's
1559/// lifetime expires. Similarly, if you create a `&mut T` reference that is released to
1560/// safe code, then you must not access the data within the `UnsafeCell` until that
1561/// reference expires.
0531ce1d 1562///
94b46f34 1563/// - At all times, you must avoid data races. If multiple threads have access to
0531ce1d
XL
1564/// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
1565/// accesses (or use atomics).
5bcae85e 1566///
0531ce1d
XL
1567/// To assist with proper design, the following scenarios are explicitly declared legal
1568/// for single-threaded code:
5bcae85e 1569///
94b46f34 1570/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
0531ce1d
XL
1571/// references, but not with a `&mut T`
1572///
94b46f34 1573/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
0531ce1d
XL
1574/// co-exist with it. A `&mut T` must always be unique.
1575///
1b1a35ee
XL
1576/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1577/// `&UnsafeCell<T>` references alias the cell) is
1578/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1579/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1580/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1581/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1582/// accesses (_e.g._, through an `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1583/// may be aliased for the duration of that `&mut` borrow.
1584/// This is showcased by the [`.get_mut()`] accessor, which is a non-`unsafe` getter that yields
1585/// a `&mut T`.
1586///
1587/// [`.get_mut()`]: `UnsafeCell::get_mut`
1a4d82fc 1588///
85aaf69f 1589/// # Examples
1a4d82fc 1590///
1b1a35ee
XL
1591/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
1592/// there being multiple references aliasing the cell:
1593///
85aaf69f 1594/// ```
1a4d82fc 1595/// use std::cell::UnsafeCell;
1a4d82fc 1596///
1b1a35ee
XL
1597/// let x: UnsafeCell<i32> = 42.into();
1598/// // Get multiple / concurrent / shared references to the same `x`.
1599/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
1600///
1601/// unsafe {
1602/// // SAFETY: within this scope there are no other references to `x`'s contents,
1603/// // so ours is effectively unique.
1604/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
1605/// *p1_exclusive += 27; // |
1606/// } // <---------- cannot go beyond this point -------------------+
1607///
1608/// unsafe {
1609/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
1610/// // so we can have multiple shared accesses concurrently.
1611/// let p2_shared: &i32 = &*p2.get();
1612/// assert_eq!(*p2_shared, 42 + 27);
1613/// let p1_shared: &i32 = &*p1.get();
1614/// assert_eq!(*p1_shared, *p2_shared);
1a4d82fc 1615/// }
1b1a35ee
XL
1616/// ```
1617///
1618/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
1619/// implies exclusive access to its `T`:
1620///
1621/// ```rust
1622/// #![feature(unsafe_cell_get_mut)]
1623/// #![forbid(unsafe_code)] // with exclusive accesses,
1624/// // `UnsafeCell` is a transparent no-op wrapper,
1625/// // so no need for `unsafe` here.
1626/// use std::cell::UnsafeCell;
1627///
1628/// let mut x: UnsafeCell<i32> = 42.into();
1629///
1630/// // Get a compile-time-checked unique reference to `x`.
1631/// let p_unique: &mut UnsafeCell<i32> = &mut x;
1632/// // With an exclusive reference, we can mutate the contents for free.
1633/// *p_unique.get_mut() = 0;
1634/// // Or, equivalently:
1635/// x = UnsafeCell::new(0);
85aaf69f 1636///
1b1a35ee
XL
1637/// // When we own the value, we can extract the contents for free.
1638/// let contents: i32 = x.into_inner();
1639/// assert_eq!(contents, 0);
1a4d82fc 1640/// ```
d9579d0f 1641#[lang = "unsafe_cell"]
85aaf69f 1642#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 1643#[repr(transparent)]
ba9703b0 1644#[repr(no_niche)] // rust-lang/rust#68303.
d9579d0f 1645pub struct UnsafeCell<T: ?Sized> {
e9174d1e 1646 value: T,
1a4d82fc
JJ
1647}
1648
92a42be0 1649#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1650impl<T: ?Sized> !Sync for UnsafeCell<T> {}
c34b1796 1651
1a4d82fc 1652impl<T> UnsafeCell<T> {
9346a6ac 1653 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
1a4d82fc
JJ
1654 /// value.
1655 ///
b039eaaf 1656 /// All access to the inner value through methods is `unsafe`.
85aaf69f
SL
1657 ///
1658 /// # Examples
1659 ///
1660 /// ```
1661 /// use std::cell::UnsafeCell;
1662 ///
1663 /// let uc = UnsafeCell::new(5);
1664 /// ```
1665 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1666 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
c34b1796 1667 #[inline]
62682a34 1668 pub const fn new(value: T) -> UnsafeCell<T> {
b7449926 1669 UnsafeCell { value }
1a4d82fc
JJ
1670 }
1671
d9579d0f
AL
1672 /// Unwraps the value.
1673 ///
85aaf69f
SL
1674 /// # Examples
1675 ///
1676 /// ```
1677 /// use std::cell::UnsafeCell;
1678 ///
1679 /// let uc = UnsafeCell::new(5);
1680 ///
2c00a5a8 1681 /// let five = uc.into_inner();
85aaf69f 1682 /// ```
1a4d82fc 1683 #[inline]
85aaf69f 1684 #[stable(feature = "rust1", since = "1.0.0")]
2c00a5a8 1685 pub fn into_inner(self) -> T {
62682a34
SL
1686 self.value
1687 }
d9579d0f 1688}
1a4d82fc 1689
d9579d0f
AL
1690impl<T: ?Sized> UnsafeCell<T> {
1691 /// Gets a mutable pointer to the wrapped value.
85aaf69f 1692 ///
5bcae85e 1693 /// This can be cast to a pointer of any kind.
0531ce1d
XL
1694 /// Ensure that the access is unique (no active references, mutable or not)
1695 /// when casting to `&mut T`, and ensure that there are no mutations
1696 /// or mutable aliases going on when casting to `&T`
5bcae85e 1697 ///
85aaf69f
SL
1698 /// # Examples
1699 ///
1700 /// ```
1701 /// use std::cell::UnsafeCell;
1702 ///
1703 /// let uc = UnsafeCell::new(5);
1704 ///
d9579d0f 1705 /// let five = uc.get();
85aaf69f 1706 /// ```
1a4d82fc 1707 #[inline]
85aaf69f 1708 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1709 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
a1dfa0c6
XL
1710 pub const fn get(&self) -> *mut T {
1711 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
60c5eb7d
XL
1712 // #[repr(transparent)]. This exploits libstd's special status, there is
1713 // no guarantee for user code that this will work in future versions of the compiler!
a1dfa0c6 1714 self as *const UnsafeCell<T> as *const T as *mut T
d9579d0f 1715 }
60c5eb7d 1716
1b1a35ee
XL
1717 /// Returns a mutable reference to the underlying data.
1718 ///
1719 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1720 /// guarantees that we possess the only reference.
1721 ///
1722 /// # Examples
1723 ///
1724 /// ```
1725 /// #![feature(unsafe_cell_get_mut)]
1726 /// use std::cell::UnsafeCell;
1727 ///
1728 /// let mut c = UnsafeCell::new(5);
1729 /// *c.get_mut() += 1;
1730 ///
1731 /// assert_eq!(*c.get_mut(), 6);
1732 /// ```
1733 #[inline]
1734 #[unstable(feature = "unsafe_cell_get_mut", issue = "76943")]
1735 pub fn get_mut(&mut self) -> &mut T {
1736 // SAFETY: (outer) `&mut` guarantees unique access.
1737 unsafe { &mut *self.get() }
1738 }
1739
60c5eb7d
XL
1740 /// Gets a mutable pointer to the wrapped value.
1741 /// The difference to [`get`] is that this function accepts a raw pointer,
1742 /// which is useful to avoid the creation of temporary references.
1743 ///
1744 /// The result can be cast to a pointer of any kind.
1745 /// Ensure that the access is unique (no active references, mutable or not)
1746 /// when casting to `&mut T`, and ensure that there are no mutations
1747 /// or mutable aliases going on when casting to `&T`.
1748 ///
1749 /// [`get`]: #method.get
1750 ///
1751 /// # Examples
1752 ///
1753 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
1754 /// calling `get` would require creating a reference to uninitialized data:
1755 ///
1756 /// ```
1757 /// #![feature(unsafe_cell_raw_get)]
1758 /// use std::cell::UnsafeCell;
1759 /// use std::mem::MaybeUninit;
1760 ///
1761 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
1762 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
1763 /// let uc = unsafe { m.assume_init() };
1764 ///
1765 /// assert_eq!(uc.into_inner(), 5);
1766 /// ```
1767 #[inline]
1768 #[unstable(feature = "unsafe_cell_raw_get", issue = "66358")]
1769 pub const fn raw_get(this: *const Self) -> *mut T {
1770 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
1771 // #[repr(transparent)]. This exploits libstd's special status, there is
1772 // no guarantee for user code that this will work in future versions of the compiler!
1773 this as *const T as *mut T
1774 }
1a4d82fc 1775}
a7813a04 1776
7cac9316 1777#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
a7813a04 1778impl<T: Default> Default for UnsafeCell<T> {
9e0c209e 1779 /// Creates an `UnsafeCell`, with the `Default` value for T.
a7813a04
XL
1780 fn default() -> UnsafeCell<T> {
1781 UnsafeCell::new(Default::default())
1782 }
1783}
5bcae85e
SL
1784
1785#[stable(feature = "cell_from", since = "1.12.0")]
1786impl<T> From<T> for UnsafeCell<T> {
1787 fn from(t: T) -> UnsafeCell<T> {
1788 UnsafeCell::new(t)
1789 }
1790}
9e0c209e
SL
1791
1792#[unstable(feature = "coerce_unsized", issue = "27732")]
1793impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
1794
1795#[allow(unused)]
1796fn assert_coerce_unsized(a: UnsafeCell<&i32>, b: Cell<&i32>, c: RefCell<&i32>) {
8faf50e0
XL
1797 let _: UnsafeCell<&dyn Send> = a;
1798 let _: Cell<&dyn Send> = b;
1799 let _: RefCell<&dyn Send> = c;
9e0c209e 1800}