]> git.proxmox.com Git - rustc.git/blame - library/core/src/ffi/c_str.rs
New upstream version 1.63.0+dfsg1
[rustc.git] / library / core / src / ffi / c_str.rs
CommitLineData
04454e1e
FG
1use crate::ascii;
2use crate::cmp::Ordering;
3use crate::ffi::c_char;
4use crate::fmt::{self, Write};
5use crate::ops;
6use crate::slice;
7use crate::slice::memchr;
8use crate::str;
9
10/// Representation of a borrowed C string.
11///
12/// This type represents a borrowed reference to a nul-terminated
13/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
14/// slice, or unsafely from a raw `*const c_char`. It can then be
15/// converted to a Rust <code>&[str]</code> by performing UTF-8 validation, or
16/// into an owned `CString`.
17///
18/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
19/// in each pair are borrowed references; the latter are owned
20/// strings.
21///
22/// Note that this structure is **not** `repr(C)` and is not recommended to be
23/// placed in the signatures of FFI functions. Instead, safe wrappers of FFI
24/// functions may leverage the unsafe [`CStr::from_ptr`] constructor to provide
25/// a safe interface to other consumers.
26///
27/// # Examples
28///
29/// Inspecting a foreign C string:
30///
31/// ```ignore (extern-declaration)
32/// use std::ffi::CStr;
33/// use std::os::raw::c_char;
34///
35/// extern "C" { fn my_string() -> *const c_char; }
36///
37/// unsafe {
38/// let slice = CStr::from_ptr(my_string());
39/// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
40/// }
41/// ```
42///
43/// Passing a Rust-originating C string:
44///
45/// ```ignore (extern-declaration)
46/// use std::ffi::{CString, CStr};
47/// use std::os::raw::c_char;
48///
49/// fn work(data: &CStr) {
50/// extern "C" { fn work_with(data: *const c_char); }
51///
52/// unsafe { work_with(data.as_ptr()) }
53/// }
54///
55/// let s = CString::new("data data data data").expect("CString::new failed");
56/// work(&s);
57/// ```
58///
59/// Converting a foreign C string into a Rust `String`:
60///
61/// ```ignore (extern-declaration)
62/// use std::ffi::CStr;
63/// use std::os::raw::c_char;
64///
65/// extern "C" { fn my_string() -> *const c_char; }
66///
67/// fn my_string_safe() -> String {
68/// unsafe {
69/// CStr::from_ptr(my_string()).to_string_lossy().into_owned()
70/// }
71/// }
72///
73/// println!("string: {}", my_string_safe());
74/// ```
75///
76/// [str]: prim@str "str"
77#[derive(Hash)]
78#[cfg_attr(not(test), rustc_diagnostic_item = "CStr")]
79#[unstable(feature = "core_c_str", issue = "94079")]
923072b8 80#[rustc_has_incoherent_inherent_impls]
04454e1e
FG
81// FIXME:
82// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
83// on `CStr` being layout-compatible with `[u8]`.
84// When attribute privacy is implemented, `CStr` should be annotated as `#[repr(transparent)]`.
85// Anyway, `CStr` representation and layout are considered implementation detail, are
86// not documented and must not be relied upon.
87pub struct CStr {
88 // FIXME: this should not be represented with a DST slice but rather with
89 // just a raw `c_char` along with some form of marker to make
90 // this an unsized type. Essentially `sizeof(&CStr)` should be the
91 // same as `sizeof(&c_char)` but `CStr` should be an unsized type.
92 inner: [c_char],
93}
94
95/// An error indicating that a nul byte was not in the expected position.
96///
97/// The slice used to create a [`CStr`] must have one and only one nul byte,
98/// positioned at the end.
99///
100/// This error is created by the [`CStr::from_bytes_with_nul`] method.
101/// See its documentation for more.
102///
103/// # Examples
104///
105/// ```
106/// use std::ffi::{CStr, FromBytesWithNulError};
107///
108/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
109/// ```
110#[derive(Clone, PartialEq, Eq, Debug)]
111#[unstable(feature = "core_c_str", issue = "94079")]
112pub struct FromBytesWithNulError {
113 kind: FromBytesWithNulErrorKind,
114}
115
116#[derive(Clone, PartialEq, Eq, Debug)]
117enum FromBytesWithNulErrorKind {
118 InteriorNul(usize),
119 NotNulTerminated,
120}
121
122impl FromBytesWithNulError {
123 fn interior_nul(pos: usize) -> FromBytesWithNulError {
124 FromBytesWithNulError { kind: FromBytesWithNulErrorKind::InteriorNul(pos) }
125 }
126 fn not_nul_terminated() -> FromBytesWithNulError {
127 FromBytesWithNulError { kind: FromBytesWithNulErrorKind::NotNulTerminated }
128 }
129
130 #[doc(hidden)]
131 #[unstable(feature = "cstr_internals", issue = "none")]
132 pub fn __description(&self) -> &str {
133 match self.kind {
134 FromBytesWithNulErrorKind::InteriorNul(..) => {
135 "data provided contains an interior nul byte"
136 }
137 FromBytesWithNulErrorKind::NotNulTerminated => "data provided is not nul terminated",
138 }
139 }
140}
141
142/// An error indicating that no nul byte was present.
143///
144/// A slice used to create a [`CStr`] must contain a nul byte somewhere
145/// within the slice.
146///
147/// This error is created by the [`CStr::from_bytes_until_nul`] method.
148///
149#[derive(Clone, PartialEq, Eq, Debug)]
150#[unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
151pub struct FromBytesUntilNulError(());
152
153#[unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
154impl fmt::Display for FromBytesUntilNulError {
155 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
156 write!(f, "data provided does not contain a nul")
157 }
158}
159
160#[stable(feature = "cstr_debug", since = "1.3.0")]
161impl fmt::Debug for CStr {
162 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
163 write!(f, "\"")?;
164 for byte in self.to_bytes().iter().flat_map(|&b| ascii::escape_default(b)) {
165 f.write_char(byte as char)?;
166 }
167 write!(f, "\"")
168 }
169}
170
171#[stable(feature = "cstr_default", since = "1.10.0")]
172impl Default for &CStr {
173 fn default() -> Self {
174 const SLICE: &[c_char] = &[0];
175 // SAFETY: `SLICE` is indeed pointing to a valid nul-terminated string.
176 unsafe { CStr::from_ptr(SLICE.as_ptr()) }
177 }
178}
179
180#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
181impl fmt::Display for FromBytesWithNulError {
182 #[allow(deprecated, deprecated_in_future)]
183 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
184 f.write_str(self.__description())?;
185 if let FromBytesWithNulErrorKind::InteriorNul(pos) = self.kind {
186 write!(f, " at byte pos {pos}")?;
187 }
188 Ok(())
189 }
190}
191
192impl CStr {
193 /// Wraps a raw C string with a safe C string wrapper.
194 ///
195 /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
196 /// allows inspection and interoperation of non-owned C strings. The total
197 /// size of the raw C string must be smaller than `isize::MAX` **bytes**
198 /// in memory due to calling the `slice::from_raw_parts` function.
04454e1e 199 ///
923072b8
FG
200 /// # Safety
201 ///
202 /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
203 /// end of the string.
204 ///
205 /// * `ptr` must be [valid] for reads of bytes up to and including the null terminator.
206 /// This means in particular:
207 ///
208 /// * The entire memory range of this `CStr` must be contained within a single allocated object!
209 /// * `ptr` must be non-null even for a zero-length cstr.
210 ///
211 /// * The memory referenced by the returned `CStr` must not be mutated for
212 /// the duration of lifetime `'a`.
04454e1e
FG
213 ///
214 /// > **Note**: This operation is intended to be a 0-cost cast but it is
215 /// > currently implemented with an up-front calculation of the length of
216 /// > the string. This is not guaranteed to always be the case.
217 ///
923072b8
FG
218 /// # Caveat
219 ///
220 /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
221 /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
222 /// such as by providing a helper function taking the lifetime of a host value for the slice,
223 /// or by explicit annotation.
224 ///
04454e1e
FG
225 /// # Examples
226 ///
227 /// ```ignore (extern-declaration)
228 /// # fn main() {
229 /// use std::ffi::CStr;
230 /// use std::os::raw::c_char;
231 ///
232 /// extern "C" {
233 /// fn my_string() -> *const c_char;
234 /// }
235 ///
236 /// unsafe {
237 /// let slice = CStr::from_ptr(my_string());
238 /// println!("string returned: {}", slice.to_str().unwrap());
239 /// }
240 /// # }
241 /// ```
923072b8
FG
242 ///
243 /// [valid]: core::ptr#safety
04454e1e
FG
244 #[inline]
245 #[must_use]
246 #[stable(feature = "rust1", since = "1.0.0")]
247 pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
248 // SAFETY: The caller has provided a pointer that points to a valid C
249 // string with a NUL terminator of size less than `isize::MAX`, whose
250 // content remain valid and doesn't change for the lifetime of the
251 // returned `CStr`.
252 //
253 // Thus computing the length is fine (a NUL byte exists), the call to
254 // from_raw_parts is safe because we know the length is at most `isize::MAX`, meaning
255 // the call to `from_bytes_with_nul_unchecked` is correct.
256 //
257 // The cast from c_char to u8 is ok because a c_char is always one byte.
258 unsafe {
259 extern "C" {
260 /// Provided by libc or compiler_builtins.
261 fn strlen(s: *const c_char) -> usize;
262 }
263 let len = strlen(ptr);
264 let ptr = ptr as *const u8;
265 CStr::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr, len as usize + 1))
266 }
267 }
268
269 /// Creates a C string wrapper from a byte slice.
270 ///
271 /// This method will create a `CStr` from any byte slice that contains at
272 /// least one nul byte. The caller does not need to know or specify where
273 /// the nul byte is located.
274 ///
275 /// If the first byte is a nul character, this method will return an
276 /// empty `CStr`. If multiple nul characters are present, the `CStr` will
277 /// end at the first one.
278 ///
279 /// If the slice only has a single nul byte at the end, this method is
280 /// equivalent to [`CStr::from_bytes_with_nul`].
281 ///
282 /// # Examples
283 /// ```
284 /// #![feature(cstr_from_bytes_until_nul)]
285 ///
286 /// use std::ffi::CStr;
287 ///
288 /// let mut buffer = [0u8; 16];
289 /// unsafe {
290 /// // Here we might call an unsafe C function that writes a string
291 /// // into the buffer.
292 /// let buf_ptr = buffer.as_mut_ptr();
293 /// buf_ptr.write_bytes(b'A', 8);
294 /// }
295 /// // Attempt to extract a C nul-terminated string from the buffer.
296 /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
297 /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
298 /// ```
299 ///
300 #[unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
301 pub fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
302 let nul_pos = memchr::memchr(0, bytes);
303 match nul_pos {
304 Some(nul_pos) => {
305 let subslice = &bytes[..nul_pos + 1];
306 // SAFETY: We know there is a nul byte at nul_pos, so this slice
307 // (ending at the nul byte) is a well-formed C string.
308 Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
309 }
310 None => Err(FromBytesUntilNulError(())),
311 }
312 }
313
314 /// Creates a C string wrapper from a byte slice.
315 ///
316 /// This function will cast the provided `bytes` to a `CStr`
317 /// wrapper after ensuring that the byte slice is nul-terminated
318 /// and does not contain any interior nul bytes.
319 ///
320 /// If the nul byte may not be at the end,
321 /// [`CStr::from_bytes_until_nul`] can be used instead.
322 ///
323 /// # Examples
324 ///
325 /// ```
326 /// use std::ffi::CStr;
327 ///
328 /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
329 /// assert!(cstr.is_ok());
330 /// ```
331 ///
332 /// Creating a `CStr` without a trailing nul terminator is an error:
333 ///
334 /// ```
335 /// use std::ffi::CStr;
336 ///
337 /// let cstr = CStr::from_bytes_with_nul(b"hello");
338 /// assert!(cstr.is_err());
339 /// ```
340 ///
341 /// Creating a `CStr` with an interior nul byte is an error:
342 ///
343 /// ```
344 /// use std::ffi::CStr;
345 ///
346 /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
347 /// assert!(cstr.is_err());
348 /// ```
349 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
350 pub fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
351 let nul_pos = memchr::memchr(0, bytes);
352 match nul_pos {
353 Some(nul_pos) if nul_pos + 1 == bytes.len() => {
354 // SAFETY: We know there is only one nul byte, at the end
355 // of the byte slice.
356 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
357 }
358 Some(nul_pos) => Err(FromBytesWithNulError::interior_nul(nul_pos)),
359 None => Err(FromBytesWithNulError::not_nul_terminated()),
360 }
361 }
362
363 /// Unsafely creates a C string wrapper from a byte slice.
364 ///
365 /// This function will cast the provided `bytes` to a `CStr` wrapper without
923072b8
FG
366 /// performing any sanity checks.
367 ///
368 /// # Safety
369 /// The provided slice **must** be nul-terminated and not contain any interior
370 /// nul bytes.
04454e1e
FG
371 ///
372 /// # Examples
373 ///
374 /// ```
375 /// use std::ffi::{CStr, CString};
376 ///
377 /// unsafe {
378 /// let cstring = CString::new("hello").expect("CString::new failed");
379 /// let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul());
380 /// assert_eq!(cstr, &*cstring);
381 /// }
382 /// ```
383 #[inline]
384 #[must_use]
385 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
386 #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
387 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
388 // We're in a const fn, so this is the best we can do
389 debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
390 // SAFETY: Calling an inner function with the same prerequisites.
391 unsafe { Self::_from_bytes_with_nul_unchecked(bytes) }
392 }
393
394 #[inline]
395 const unsafe fn _from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
396 // SAFETY: Casting to CStr is safe because its internal representation
397 // is a [u8] too (safe only inside std).
398 // Dereferencing the obtained pointer is safe because it comes from a
399 // reference. Making a reference is then safe because its lifetime
400 // is bound by the lifetime of the given `bytes`.
401 unsafe { &*(bytes as *const [u8] as *const CStr) }
402 }
403
404 /// Returns the inner pointer to this C string.
405 ///
406 /// The returned pointer will be valid for as long as `self` is, and points
407 /// to a contiguous region of memory terminated with a 0 byte to represent
408 /// the end of the string.
409 ///
410 /// **WARNING**
411 ///
412 /// The returned pointer is read-only; writing to it (including passing it
413 /// to C code that writes to it) causes undefined behavior.
414 ///
415 /// It is your responsibility to make sure that the underlying memory is not
416 /// freed too early. For example, the following code will cause undefined
417 /// behavior when `ptr` is used inside the `unsafe` block:
418 ///
419 /// ```no_run
420 /// # #![allow(unused_must_use)] #![allow(temporary_cstring_as_ptr)]
421 /// use std::ffi::CString;
422 ///
423 /// let ptr = CString::new("Hello").expect("CString::new failed").as_ptr();
424 /// unsafe {
425 /// // `ptr` is dangling
426 /// *ptr;
427 /// }
428 /// ```
429 ///
430 /// This happens because the pointer returned by `as_ptr` does not carry any
431 /// lifetime information and the `CString` is deallocated immediately after
432 /// the `CString::new("Hello").expect("CString::new failed").as_ptr()`
433 /// expression is evaluated.
434 /// To fix the problem, bind the `CString` to a local variable:
435 ///
436 /// ```no_run
437 /// # #![allow(unused_must_use)]
438 /// use std::ffi::CString;
439 ///
440 /// let hello = CString::new("Hello").expect("CString::new failed");
441 /// let ptr = hello.as_ptr();
442 /// unsafe {
443 /// // `ptr` is valid because `hello` is in scope
444 /// *ptr;
445 /// }
446 /// ```
447 ///
448 /// This way, the lifetime of the `CString` in `hello` encompasses
449 /// the lifetime of `ptr` and the `unsafe` block.
450 #[inline]
451 #[must_use]
452 #[stable(feature = "rust1", since = "1.0.0")]
453 #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
454 pub const fn as_ptr(&self) -> *const c_char {
455 self.inner.as_ptr()
456 }
457
458 /// Converts this C string to a byte slice.
459 ///
460 /// The returned slice will **not** contain the trailing nul terminator that this C
461 /// string has.
462 ///
463 /// > **Note**: This method is currently implemented as a constant-time
464 /// > cast, but it is planned to alter its definition in the future to
465 /// > perform the length calculation whenever this method is called.
466 ///
467 /// # Examples
468 ///
469 /// ```
470 /// use std::ffi::CStr;
471 ///
472 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
473 /// assert_eq!(cstr.to_bytes(), b"foo");
474 /// ```
475 #[inline]
476 #[must_use = "this returns the result of the operation, \
477 without modifying the original"]
478 #[stable(feature = "rust1", since = "1.0.0")]
479 pub fn to_bytes(&self) -> &[u8] {
480 let bytes = self.to_bytes_with_nul();
481 // SAFETY: to_bytes_with_nul returns slice with length at least 1
482 unsafe { bytes.get_unchecked(..bytes.len() - 1) }
483 }
484
485 /// Converts this C string to a byte slice containing the trailing 0 byte.
486 ///
487 /// This function is the equivalent of [`CStr::to_bytes`] except that it
488 /// will retain the trailing nul terminator instead of chopping it off.
489 ///
490 /// > **Note**: This method is currently implemented as a 0-cost cast, but
491 /// > it is planned to alter its definition in the future to perform the
492 /// > length calculation whenever this method is called.
493 ///
494 /// # Examples
495 ///
496 /// ```
497 /// use std::ffi::CStr;
498 ///
499 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
500 /// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
501 /// ```
502 #[inline]
503 #[must_use = "this returns the result of the operation, \
504 without modifying the original"]
505 #[stable(feature = "rust1", since = "1.0.0")]
506 pub fn to_bytes_with_nul(&self) -> &[u8] {
507 // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
508 // is safe on all supported targets.
509 unsafe { &*(&self.inner as *const [c_char] as *const [u8]) }
510 }
511
512 /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
513 ///
514 /// If the contents of the `CStr` are valid UTF-8 data, this
515 /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
516 /// it will return an error with details of where UTF-8 validation failed.
517 ///
518 /// [str]: prim@str "str"
519 ///
520 /// # Examples
521 ///
522 /// ```
523 /// use std::ffi::CStr;
524 ///
525 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
526 /// assert_eq!(cstr.to_str(), Ok("foo"));
527 /// ```
528 #[stable(feature = "cstr_to_str", since = "1.4.0")]
529 pub fn to_str(&self) -> Result<&str, str::Utf8Error> {
530 // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
531 // instead of in `from_ptr()`, it may be worth considering if this should
532 // be rewritten to do the UTF-8 check inline with the length calculation
533 // instead of doing it afterwards.
534 str::from_utf8(self.to_bytes())
535 }
536}
537
538#[stable(feature = "rust1", since = "1.0.0")]
539impl PartialEq for CStr {
540 fn eq(&self, other: &CStr) -> bool {
541 self.to_bytes().eq(other.to_bytes())
542 }
543}
544#[stable(feature = "rust1", since = "1.0.0")]
545impl Eq for CStr {}
546#[stable(feature = "rust1", since = "1.0.0")]
547impl PartialOrd for CStr {
548 fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
549 self.to_bytes().partial_cmp(&other.to_bytes())
550 }
551}
552#[stable(feature = "rust1", since = "1.0.0")]
553impl Ord for CStr {
554 fn cmp(&self, other: &CStr) -> Ordering {
555 self.to_bytes().cmp(&other.to_bytes())
556 }
557}
558
559#[stable(feature = "cstr_range_from", since = "1.47.0")]
560impl ops::Index<ops::RangeFrom<usize>> for CStr {
561 type Output = CStr;
562
563 fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
564 let bytes = self.to_bytes_with_nul();
565 // we need to manually check the starting index to account for the null
566 // byte, since otherwise we could get an empty string that doesn't end
567 // in a null.
568 if index.start < bytes.len() {
569 // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
570 unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
571 } else {
572 panic!(
573 "index out of bounds: the len is {} but the index is {}",
574 bytes.len(),
575 index.start
576 );
577 }
578 }
579}
580
581#[stable(feature = "cstring_asref", since = "1.7.0")]
582impl AsRef<CStr> for CStr {
583 #[inline]
584 fn as_ref(&self) -> &CStr {
585 self
586 }
587}