]> git.proxmox.com Git - rustc.git/blame - library/core/src/iter/traits/iterator.rs
Merge tag 'debian/1.52.1+dfsg1-1_exp2' into proxmox/buster
[rustc.git] / library / core / src / iter / traits / iterator.rs
CommitLineData
dfeec247 1// ignore-tidy-filelength
74b04a01
XL
2// This file almost exclusively consists of the definition of `Iterator`. We
3// can't split that into multiple files.
dfeec247 4
e1599b0c 5use crate::cmp::{self, Ordering};
6a06907d 6use crate::ops::{ControlFlow, Try};
a7813a04 7
3dfed10e 8use super::super::TrustedRandomAccess;
dfeec247
XL
9use super::super::{Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, Fuse};
10use super::super::{FlatMap, Flatten};
5869c6ff 11use super::super::{FromIterator, Intersperse, IntersperseWith, Product, Sum, Zip};
74b04a01
XL
12use super::super::{
13 Inspect, Map, MapWhile, Peekable, Rev, Scan, Skip, SkipWhile, StepBy, Take, TakeWhile,
14};
a7813a04 15
dfeec247 16fn _assert_is_object_safe(_: &dyn Iterator<Item = ()>) {}
a7813a04
XL
17
18/// An interface for dealing with iterators.
19///
20/// This is the main iterator trait. For more about the concept of iterators
21/// generally, please see the [module-level documentation]. In particular, you
22/// may want to know how to [implement `Iterator`][impl].
23///
1b1a35ee
XL
24/// [module-level documentation]: crate::iter
25/// [impl]: crate::iter#implementing-iterator
a7813a04 26#[stable(feature = "rust1", since = "1.0.0")]
2c00a5a8 27#[rustc_on_unimplemented(
0bf4aa26 28 on(
dfeec247
XL
29 _Self = "[std::ops::Range<Idx>; 1]",
30 label = "if you meant to iterate between two values, remove the square brackets",
31 note = "`[start..end]` is an array of one `Range`; you might have meant to have a `Range` \
32 without the brackets: `start..end`"
0bf4aa26
XL
33 ),
34 on(
dfeec247
XL
35 _Self = "[std::ops::RangeFrom<Idx>; 1]",
36 label = "if you meant to iterate from a value onwards, remove the square brackets",
37 note = "`[start..]` is an array of one `RangeFrom`; you might have meant to have a \
0bf4aa26
XL
38 `RangeFrom` without the brackets: `start..`, keeping in mind that iterating over an \
39 unbounded iterator will run forever unless you `break` or `return` from within the \
40 loop"
41 ),
42 on(
dfeec247
XL
43 _Self = "[std::ops::RangeTo<Idx>; 1]",
44 label = "if you meant to iterate until a value, remove the square brackets and add a \
45 starting value",
46 note = "`[..end]` is an array of one `RangeTo`; you might have meant to have a bounded \
47 `Range` without the brackets: `0..end`"
0bf4aa26
XL
48 ),
49 on(
dfeec247
XL
50 _Self = "[std::ops::RangeInclusive<Idx>; 1]",
51 label = "if you meant to iterate between two values, remove the square brackets",
52 note = "`[start..=end]` is an array of one `RangeInclusive`; you might have meant to have a \
0bf4aa26
XL
53 `RangeInclusive` without the brackets: `start..=end`"
54 ),
55 on(
dfeec247
XL
56 _Self = "[std::ops::RangeToInclusive<Idx>; 1]",
57 label = "if you meant to iterate until a value (including it), remove the square brackets \
58 and add a starting value",
59 note = "`[..=end]` is an array of one `RangeToInclusive`; you might have meant to have a \
60 bounded `RangeInclusive` without the brackets: `0..=end`"
0bf4aa26
XL
61 ),
62 on(
dfeec247
XL
63 _Self = "std::ops::RangeTo<Idx>",
64 label = "if you meant to iterate until a value, add a starting value",
65 note = "`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \
0bf4aa26
XL
66 bounded `Range`: `0..end`"
67 ),
68 on(
dfeec247
XL
69 _Self = "std::ops::RangeToInclusive<Idx>",
70 label = "if you meant to iterate until a value (including it), add a starting value",
71 note = "`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \
0bf4aa26
XL
72 to have a bounded `RangeInclusive`: `0..=end`"
73 ),
2c00a5a8 74 on(
dfeec247
XL
75 _Self = "&str",
76 label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
2c00a5a8 77 ),
0bf4aa26 78 on(
dfeec247
XL
79 _Self = "std::string::String",
80 label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
0bf4aa26
XL
81 ),
82 on(
dfeec247
XL
83 _Self = "[]",
84 label = "borrow the array with `&` or call `.iter()` on it to iterate over it",
85 note = "arrays are not iterators, but slices like the following are: `&[1, 2, 3]`"
0bf4aa26
XL
86 ),
87 on(
dfeec247
XL
88 _Self = "{integral}",
89 note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
0bf4aa26
XL
90 syntax `start..end` or the inclusive range syntax `start..=end`"
91 ),
dfeec247
XL
92 label = "`{Self}` is not an iterator",
93 message = "`{Self}` is not an iterator"
2c00a5a8 94)]
3dfed10e 95#[doc(spotlight)]
6a06907d 96#[rustc_diagnostic_item = "Iterator"]
0731742a 97#[must_use = "iterators are lazy and do nothing unless consumed"]
a7813a04
XL
98pub trait Iterator {
99 /// The type of the elements being iterated over.
100 #[stable(feature = "rust1", since = "1.0.0")]
101 type Item;
102
103 /// Advances the iterator and returns the next value.
104 ///
476ff2be 105 /// Returns [`None`] when iteration is finished. Individual iterator
a7813a04 106 /// implementations may choose to resume iteration, and so calling `next()`
476ff2be 107 /// again may or may not eventually start returning [`Some(Item)`] again at some
a7813a04
XL
108 /// point.
109 ///
3dfed10e 110 /// [`Some(Item)`]: Some
476ff2be 111 ///
a7813a04
XL
112 /// # Examples
113 ///
114 /// Basic usage:
115 ///
116 /// ```
117 /// let a = [1, 2, 3];
118 ///
119 /// let mut iter = a.iter();
120 ///
121 /// // A call to next() returns the next value...
122 /// assert_eq!(Some(&1), iter.next());
123 /// assert_eq!(Some(&2), iter.next());
124 /// assert_eq!(Some(&3), iter.next());
125 ///
126 /// // ... and then None once it's over.
127 /// assert_eq!(None, iter.next());
128 ///
9fa01778 129 /// // More calls may or may not return `None`. Here, they always will.
a7813a04
XL
130 /// assert_eq!(None, iter.next());
131 /// assert_eq!(None, iter.next());
132 /// ```
1b1a35ee 133 #[lang = "next"]
a7813a04
XL
134 #[stable(feature = "rust1", since = "1.0.0")]
135 fn next(&mut self) -> Option<Self::Item>;
136
137 /// Returns the bounds on the remaining length of the iterator.
138 ///
139 /// Specifically, `size_hint()` returns a tuple where the first element
140 /// is the lower bound, and the second element is the upper bound.
141 ///
476ff2be
SL
142 /// The second half of the tuple that is returned is an [`Option`]`<`[`usize`]`>`.
143 /// A [`None`] here means that either there is no known upper bound, or the
144 /// upper bound is larger than [`usize`].
a7813a04
XL
145 ///
146 /// # Implementation notes
147 ///
148 /// It is not enforced that an iterator implementation yields the declared
149 /// number of elements. A buggy iterator may yield less than the lower bound
150 /// or more than the upper bound of elements.
151 ///
152 /// `size_hint()` is primarily intended to be used for optimizations such as
153 /// reserving space for the elements of the iterator, but must not be
0731742a 154 /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
a7813a04
XL
155 /// implementation of `size_hint()` should not lead to memory safety
156 /// violations.
157 ///
158 /// That said, the implementation should provide a correct estimation,
159 /// because otherwise it would be a violation of the trait's protocol.
160 ///
0731742a 161 /// The default implementation returns `(0, `[`None`]`)` which is correct for any
a7813a04
XL
162 /// iterator.
163 ///
3dfed10e 164 /// [`usize`]: type@usize
476ff2be 165 ///
a7813a04
XL
166 /// # Examples
167 ///
168 /// Basic usage:
169 ///
170 /// ```
171 /// let a = [1, 2, 3];
172 /// let iter = a.iter();
173 ///
174 /// assert_eq!((3, Some(3)), iter.size_hint());
175 /// ```
176 ///
177 /// A more complex example:
178 ///
179 /// ```
180 /// // The even numbers from zero to ten.
181 /// let iter = (0..10).filter(|x| x % 2 == 0);
182 ///
183 /// // We might iterate from zero to ten times. Knowing that it's five
184 /// // exactly wouldn't be possible without executing filter().
185 /// assert_eq!((0, Some(10)), iter.size_hint());
186 ///
7cac9316 187 /// // Let's add five more numbers with chain()
a7813a04
XL
188 /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
189 ///
190 /// // now both bounds are increased by five
191 /// assert_eq!((5, Some(15)), iter.size_hint());
192 /// ```
193 ///
194 /// Returning `None` for an upper bound:
195 ///
196 /// ```
197 /// // an infinite iterator has no upper bound
7cac9316 198 /// // and the maximum possible lower bound
a7813a04
XL
199 /// let iter = 0..;
200 ///
ba9703b0 201 /// assert_eq!((usize::MAX, None), iter.size_hint());
a7813a04
XL
202 /// ```
203 #[inline]
204 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
205 fn size_hint(&self) -> (usize, Option<usize>) {
206 (0, None)
207 }
a7813a04
XL
208
209 /// Consumes the iterator, counting the number of iterations and returning it.
210 ///
60c5eb7d
XL
211 /// This method will call [`next`] repeatedly until [`None`] is encountered,
212 /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
213 /// called at least once even if the iterator does not have any elements.
a7813a04 214 ///
1b1a35ee 215 /// [`next`]: Iterator::next
a7813a04
XL
216 ///
217 /// # Overflow Behavior
218 ///
219 /// The method does no guarding against overflows, so counting elements of
476ff2be 220 /// an iterator with more than [`usize::MAX`] elements either produces the
a7813a04
XL
221 /// wrong result or panics. If debug assertions are enabled, a panic is
222 /// guaranteed.
223 ///
224 /// # Panics
225 ///
476ff2be 226 /// This function might panic if the iterator has more than [`usize::MAX`]
a7813a04
XL
227 /// elements.
228 ///
229 /// # Examples
230 ///
231 /// Basic usage:
232 ///
233 /// ```
234 /// let a = [1, 2, 3];
235 /// assert_eq!(a.iter().count(), 3);
236 ///
237 /// let a = [1, 2, 3, 4, 5];
238 /// assert_eq!(a.iter().count(), 5);
239 /// ```
240 #[inline]
241 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
242 fn count(self) -> usize
243 where
244 Self: Sized,
245 {
6a06907d
XL
246 self.fold(
247 0,
248 #[rustc_inherit_overflow_checks]
249 |count, _| count + 1,
250 )
a7813a04
XL
251 }
252
253 /// Consumes the iterator, returning the last element.
254 ///
476ff2be
SL
255 /// This method will evaluate the iterator until it returns [`None`]. While
256 /// doing so, it keeps track of the current element. After [`None`] is
a7813a04
XL
257 /// returned, `last()` will then return the last element it saw.
258 ///
259 /// # Examples
260 ///
261 /// Basic usage:
262 ///
263 /// ```
264 /// let a = [1, 2, 3];
265 /// assert_eq!(a.iter().last(), Some(&3));
266 ///
267 /// let a = [1, 2, 3, 4, 5];
268 /// assert_eq!(a.iter().last(), Some(&5));
269 /// ```
270 #[inline]
271 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
272 fn last(self) -> Option<Self::Item>
273 where
274 Self: Sized,
275 {
e1599b0c
XL
276 #[inline]
277 fn some<T>(_: Option<T>, x: T) -> Option<T> {
278 Some(x)
279 }
280
281 self.fold(None, some)
a7813a04
XL
282 }
283
1b1a35ee
XL
284 /// Advances the iterator by `n` elements.
285 ///
286 /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
287 /// times until [`None`] is encountered.
288 ///
29967ef6
XL
289 /// `advance_by(n)` will return [`Ok(())`][Ok] if the iterator successfully advances by
290 /// `n` elements, or [`Err(k)`][Err] if [`None`] is encountered, where `k` is the number
1b1a35ee
XL
291 /// of elements the iterator is advanced by before running out of elements (i.e. the
292 /// length of the iterator). Note that `k` is always less than `n`.
293 ///
29967ef6 294 /// Calling `advance_by(0)` does not consume any elements and always returns [`Ok(())`][Ok].
1b1a35ee
XL
295 ///
296 /// [`next`]: Iterator::next
297 ///
298 /// # Examples
299 ///
300 /// Basic usage:
301 ///
302 /// ```
303 /// #![feature(iter_advance_by)]
304 ///
305 /// let a = [1, 2, 3, 4];
306 /// let mut iter = a.iter();
307 ///
308 /// assert_eq!(iter.advance_by(2), Ok(()));
309 /// assert_eq!(iter.next(), Some(&3));
310 /// assert_eq!(iter.advance_by(0), Ok(()));
311 /// assert_eq!(iter.advance_by(100), Err(1)); // only `&4` was skipped
312 /// ```
313 #[inline]
314 #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
315 fn advance_by(&mut self, n: usize) -> Result<(), usize> {
316 for i in 0..n {
317 self.next().ok_or(i)?;
318 }
319 Ok(())
320 }
321
c30ab7b3 322 /// Returns the `n`th element of the iterator.
a7813a04 323 ///
a7813a04
XL
324 /// Like most indexing operations, the count starts from zero, so `nth(0)`
325 /// returns the first value, `nth(1)` the second, and so on.
326 ///
8bb4bdeb
XL
327 /// Note that all preceding elements, as well as the returned element, will be
328 /// consumed from the iterator. That means that the preceding elements will be
329 /// discarded, and also that calling `nth(0)` multiple times on the same iterator
330 /// will return different elements.
331 ///
476ff2be 332 /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
a7813a04
XL
333 /// iterator.
334 ///
335 /// # Examples
336 ///
337 /// Basic usage:
338 ///
339 /// ```
340 /// let a = [1, 2, 3];
341 /// assert_eq!(a.iter().nth(1), Some(&2));
342 /// ```
343 ///
344 /// Calling `nth()` multiple times doesn't rewind the iterator:
345 ///
346 /// ```
347 /// let a = [1, 2, 3];
348 ///
349 /// let mut iter = a.iter();
350 ///
351 /// assert_eq!(iter.nth(1), Some(&2));
352 /// assert_eq!(iter.nth(1), None);
353 /// ```
354 ///
355 /// Returning `None` if there are less than `n + 1` elements:
356 ///
357 /// ```
358 /// let a = [1, 2, 3];
359 /// assert_eq!(a.iter().nth(10), None);
360 /// ```
361 #[inline]
362 #[stable(feature = "rust1", since = "1.0.0")]
1b1a35ee
XL
363 fn nth(&mut self, n: usize) -> Option<Self::Item> {
364 self.advance_by(n).ok()?;
365 self.next()
a7813a04
XL
366 }
367
7cac9316
XL
368 /// Creates an iterator starting at the same point, but stepping by
369 /// the given amount at each iteration.
370 ///
94b46f34 371 /// Note 1: The first element of the iterator will always be returned,
7cac9316
XL
372 /// regardless of the step given.
373 ///
94b46f34
XL
374 /// Note 2: The time at which ignored elements are pulled is not fixed.
375 /// `StepBy` behaves like the sequence `next(), nth(step-1), nth(step-1), …`,
376 /// but is also free to behave like the sequence
377 /// `advance_n_and_return_first(step), advance_n_and_return_first(step), …`
378 /// Which way is used may change for some iterators for performance reasons.
379 /// The second way will advance the iterator earlier and may consume more items.
380 ///
381 /// `advance_n_and_return_first` is the equivalent of:
382 /// ```
383 /// fn advance_n_and_return_first<I>(iter: &mut I, total_step: usize) -> Option<I::Item>
384 /// where
385 /// I: Iterator,
386 /// {
387 /// let next = iter.next();
388 /// if total_step > 1 {
389 /// iter.nth(total_step-2);
390 /// }
391 /// next
392 /// }
393 /// ```
394 ///
7cac9316
XL
395 /// # Panics
396 ///
397 /// The method will panic if the given step is `0`.
398 ///
399 /// # Examples
400 ///
401 /// Basic usage:
402 ///
403 /// ```
7cac9316 404 /// let a = [0, 1, 2, 3, 4, 5];
48663c56 405 /// let mut iter = a.iter().step_by(2);
7cac9316
XL
406 ///
407 /// assert_eq!(iter.next(), Some(&0));
408 /// assert_eq!(iter.next(), Some(&2));
409 /// assert_eq!(iter.next(), Some(&4));
410 /// assert_eq!(iter.next(), None);
411 /// ```
412 #[inline]
94b46f34 413 #[stable(feature = "iterator_step_by", since = "1.28.0")]
dfeec247
XL
414 fn step_by(self, step: usize) -> StepBy<Self>
415 where
416 Self: Sized,
417 {
9fa01778 418 StepBy::new(self, step)
7cac9316
XL
419 }
420
a7813a04
XL
421 /// Takes two iterators and creates a new iterator over both in sequence.
422 ///
423 /// `chain()` will return a new iterator which will first iterate over
424 /// values from the first iterator and then over values from the second
425 /// iterator.
426 ///
427 /// In other words, it links two iterators together, in a chain. 🔗
428 ///
e74abb32
XL
429 /// [`once`] is commonly used to adapt a single value into a chain of
430 /// other kinds of iteration.
431 ///
a7813a04
XL
432 /// # Examples
433 ///
434 /// Basic usage:
435 ///
436 /// ```
437 /// let a1 = [1, 2, 3];
438 /// let a2 = [4, 5, 6];
439 ///
440 /// let mut iter = a1.iter().chain(a2.iter());
441 ///
442 /// assert_eq!(iter.next(), Some(&1));
443 /// assert_eq!(iter.next(), Some(&2));
444 /// assert_eq!(iter.next(), Some(&3));
445 /// assert_eq!(iter.next(), Some(&4));
446 /// assert_eq!(iter.next(), Some(&5));
447 /// assert_eq!(iter.next(), Some(&6));
448 /// assert_eq!(iter.next(), None);
449 /// ```
450 ///
451 /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
452 /// anything that can be converted into an [`Iterator`], not just an
453 /// [`Iterator`] itself. For example, slices (`&[T]`) implement
454 /// [`IntoIterator`], and so can be passed to `chain()` directly:
455 ///
a7813a04
XL
456 /// ```
457 /// let s1 = &[1, 2, 3];
458 /// let s2 = &[4, 5, 6];
459 ///
460 /// let mut iter = s1.iter().chain(s2);
461 ///
462 /// assert_eq!(iter.next(), Some(&1));
463 /// assert_eq!(iter.next(), Some(&2));
464 /// assert_eq!(iter.next(), Some(&3));
465 /// assert_eq!(iter.next(), Some(&4));
466 /// assert_eq!(iter.next(), Some(&5));
467 /// assert_eq!(iter.next(), Some(&6));
468 /// assert_eq!(iter.next(), None);
469 /// ```
e74abb32
XL
470 ///
471 /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
472 ///
473 /// ```
474 /// #[cfg(windows)]
475 /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
476 /// use std::os::windows::ffi::OsStrExt;
477 /// s.encode_wide().chain(std::iter::once(0)).collect()
478 /// }
479 /// ```
480 ///
1b1a35ee 481 /// [`once`]: crate::iter::once
e74abb32 482 /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
a7813a04
XL
483 #[inline]
484 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
485 fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
486 where
487 Self: Sized,
488 U: IntoIterator<Item = Self::Item>,
a7813a04 489 {
9fa01778 490 Chain::new(self, other.into_iter())
a7813a04
XL
491 }
492
493 /// 'Zips up' two iterators into a single iterator of pairs.
494 ///
495 /// `zip()` returns a new iterator that will iterate over two other
496 /// iterators, returning a tuple where the first element comes from the
497 /// first iterator, and the second element comes from the second iterator.
498 ///
499 /// In other words, it zips two iterators together, into a single one.
500 ///
8faf50e0
XL
501 /// If either iterator returns [`None`], [`next`] from the zipped iterator
502 /// will return [`None`]. If the first iterator returns [`None`], `zip` will
503 /// short-circuit and `next` will not be called on the second iterator.
a7813a04
XL
504 ///
505 /// # Examples
506 ///
507 /// Basic usage:
508 ///
509 /// ```
510 /// let a1 = [1, 2, 3];
511 /// let a2 = [4, 5, 6];
512 ///
513 /// let mut iter = a1.iter().zip(a2.iter());
514 ///
515 /// assert_eq!(iter.next(), Some((&1, &4)));
516 /// assert_eq!(iter.next(), Some((&2, &5)));
517 /// assert_eq!(iter.next(), Some((&3, &6)));
518 /// assert_eq!(iter.next(), None);
519 /// ```
520 ///
521 /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
522 /// anything that can be converted into an [`Iterator`], not just an
523 /// [`Iterator`] itself. For example, slices (`&[T]`) implement
524 /// [`IntoIterator`], and so can be passed to `zip()` directly:
525 ///
a7813a04
XL
526 /// ```
527 /// let s1 = &[1, 2, 3];
528 /// let s2 = &[4, 5, 6];
529 ///
530 /// let mut iter = s1.iter().zip(s2);
531 ///
532 /// assert_eq!(iter.next(), Some((&1, &4)));
533 /// assert_eq!(iter.next(), Some((&2, &5)));
534 /// assert_eq!(iter.next(), Some((&3, &6)));
535 /// assert_eq!(iter.next(), None);
536 /// ```
537 ///
538 /// `zip()` is often used to zip an infinite iterator to a finite one.
476ff2be 539 /// This works because the finite iterator will eventually return [`None`],
cc61c64b 540 /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
a7813a04
XL
541 ///
542 /// ```
543 /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
544 ///
545 /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
546 ///
547 /// assert_eq!((0, 'f'), enumerate[0]);
548 /// assert_eq!((0, 'f'), zipper[0]);
549 ///
550 /// assert_eq!((1, 'o'), enumerate[1]);
551 /// assert_eq!((1, 'o'), zipper[1]);
552 ///
553 /// assert_eq!((2, 'o'), enumerate[2]);
554 /// assert_eq!((2, 'o'), zipper[2]);
555 /// ```
556 ///
1b1a35ee
XL
557 /// [`enumerate`]: Iterator::enumerate
558 /// [`next`]: Iterator::next
a7813a04
XL
559 #[inline]
560 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
561 fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
562 where
563 Self: Sized,
564 U: IntoIterator,
a7813a04 565 {
3157f602 566 Zip::new(self, other.into_iter())
a7813a04
XL
567 }
568
5869c6ff
XL
569 /// Creates a new iterator which places a copy of `separator` between adjacent
570 /// items of the original iterator.
571 ///
572 /// In case `separator` does not implement [`Clone`] or needs to be
573 /// computed every time, use [`intersperse_with`].
574 ///
575 /// # Examples
576 ///
577 /// Basic usage:
578 ///
579 /// ```
580 /// #![feature(iter_intersperse)]
581 ///
582 /// let mut a = [0, 1, 2].iter().intersperse(&100);
583 /// assert_eq!(a.next(), Some(&0)); // The first element from `a`.
584 /// assert_eq!(a.next(), Some(&100)); // The separator.
585 /// assert_eq!(a.next(), Some(&1)); // The next element from `a`.
586 /// assert_eq!(a.next(), Some(&100)); // The separator.
587 /// assert_eq!(a.next(), Some(&2)); // The last element from `a`.
588 /// assert_eq!(a.next(), None); // The iterator is finished.
589 /// ```
590 ///
591 /// `intersperse` can be very useful to join an iterator's items using a common element:
592 /// ```
593 /// #![feature(iter_intersperse)]
594 ///
595 /// let hello = ["Hello", "World", "!"].iter().copied().intersperse(" ").collect::<String>();
596 /// assert_eq!(hello, "Hello World !");
597 /// ```
598 ///
599 /// [`Clone`]: crate::clone::Clone
600 /// [`intersperse_with`]: Iterator::intersperse_with
601 #[inline]
602 #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
603 fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
604 where
605 Self: Sized,
606 Self::Item: Clone,
607 {
608 Intersperse::new(self, separator)
609 }
610
611 /// Creates a new iterator which places an item generated by `separator`
612 /// between adjacent items of the original iterator.
613 ///
614 /// The closure will be called exactly once each time an item is placed
615 /// between two adjacent items from the underlying iterator; specifically,
616 /// the closure is not called if the underlying iterator yields less than
617 /// two items and after the last item is yielded.
618 ///
619 /// If the iterator's item implements [`Clone`], it may be easier to use
620 /// [`intersperse`].
621 ///
622 /// # Examples
623 ///
624 /// Basic usage:
625 ///
626 /// ```
627 /// #![feature(iter_intersperse)]
628 ///
629 /// #[derive(PartialEq, Debug)]
630 /// struct NotClone(usize);
631 ///
632 /// let v = vec![NotClone(0), NotClone(1), NotClone(2)];
633 /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
634 ///
635 /// assert_eq!(it.next(), Some(NotClone(0))); // The first element from `v`.
636 /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
637 /// assert_eq!(it.next(), Some(NotClone(1))); // The next element from `v`.
638 /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
639 /// assert_eq!(it.next(), Some(NotClone(2))); // The last element from from `v`.
640 /// assert_eq!(it.next(), None); // The iterator is finished.
641 /// ```
642 ///
643 /// `intersperse_with` can be used in situations where the separator needs
644 /// to be computed:
645 /// ```
646 /// #![feature(iter_intersperse)]
647 ///
648 /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
649 ///
650 /// // The closure mutably borrows its context to generate an item.
651 /// let mut happy_emojis = [" ❤️ ", " 😀 "].iter().copied();
652 /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
653 ///
654 /// let result = src.intersperse_with(separator).collect::<String>();
655 /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
656 /// ```
657 /// [`Clone`]: crate::clone::Clone
658 /// [`intersperse`]: Iterator::intersperse
659 #[inline]
660 #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
661 fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
662 where
663 Self: Sized,
664 G: FnMut() -> Self::Item,
665 {
666 IntersperseWith::new(self, separator)
667 }
668
a7813a04
XL
669 /// Takes a closure and creates an iterator which calls that closure on each
670 /// element.
671 ///
672 /// `map()` transforms one iterator into another, by means of its argument:
a1dfa0c6 673 /// something that implements [`FnMut`]. It produces a new iterator which
a7813a04
XL
674 /// calls this closure on each element of the original iterator.
675 ///
676 /// If you are good at thinking in types, you can think of `map()` like this:
677 /// If you have an iterator that gives you elements of some type `A`, and
678 /// you want an iterator of some other type `B`, you can use `map()`,
679 /// passing a closure that takes an `A` and returns a `B`.
680 ///
681 /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
682 /// lazy, it is best used when you're already working with other iterators.
683 /// If you're doing some sort of looping for a side effect, it's considered
684 /// more idiomatic to use [`for`] than `map()`.
685 ///
13cf67c4 686 /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
3dfed10e 687 /// [`FnMut`]: crate::ops::FnMut
a7813a04
XL
688 ///
689 /// # Examples
690 ///
691 /// Basic usage:
692 ///
693 /// ```
694 /// let a = [1, 2, 3];
695 ///
48663c56 696 /// let mut iter = a.iter().map(|x| 2 * x);
a7813a04
XL
697 ///
698 /// assert_eq!(iter.next(), Some(2));
699 /// assert_eq!(iter.next(), Some(4));
700 /// assert_eq!(iter.next(), Some(6));
701 /// assert_eq!(iter.next(), None);
702 /// ```
703 ///
704 /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
705 ///
706 /// ```
707 /// # #![allow(unused_must_use)]
708 /// // don't do this:
709 /// (0..5).map(|x| println!("{}", x));
710 ///
711 /// // it won't even execute, as it is lazy. Rust will warn you about this.
712 ///
713 /// // Instead, use for:
714 /// for x in 0..5 {
715 /// println!("{}", x);
716 /// }
717 /// ```
718 #[inline]
719 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
720 fn map<B, F>(self, f: F) -> Map<Self, F>
721 where
722 Self: Sized,
723 F: FnMut(Self::Item) -> B,
a7813a04 724 {
9fa01778 725 Map::new(self, f)
a7813a04
XL
726 }
727
041b39d2
XL
728 /// Calls a closure on each element of an iterator.
729 ///
730 /// This is equivalent to using a [`for`] loop on the iterator, although
9fa01778 731 /// `break` and `continue` are not possible from a closure. It's generally
041b39d2 732 /// more idiomatic to use a `for` loop, but `for_each` may be more legible
9fa01778 733 /// when processing items at the end of longer iterator chains. In some
041b39d2
XL
734 /// cases `for_each` may also be faster than a loop, because it will use
735 /// internal iteration on adaptors like `Chain`.
736 ///
13cf67c4 737 /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
041b39d2
XL
738 ///
739 /// # Examples
740 ///
741 /// Basic usage:
742 ///
743 /// ```
041b39d2
XL
744 /// use std::sync::mpsc::channel;
745 ///
746 /// let (tx, rx) = channel();
747 /// (0..5).map(|x| x * 2 + 1)
748 /// .for_each(move |x| tx.send(x).unwrap());
749 ///
750 /// let v: Vec<_> = rx.iter().collect();
751 /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
752 /// ```
753 ///
754 /// For such a small example, a `for` loop may be cleaner, but `for_each`
755 /// might be preferable to keep a functional style with longer iterators:
756 ///
757 /// ```
041b39d2
XL
758 /// (0..5).flat_map(|x| x * 100 .. x * 110)
759 /// .enumerate()
760 /// .filter(|&(i, x)| (i + x) % 3 == 0)
761 /// .for_each(|(i, x)| println!("{}:{}", i, x));
762 /// ```
763 #[inline]
3b2f2976 764 #[stable(feature = "iterator_for_each", since = "1.21.0")]
dfeec247
XL
765 fn for_each<F>(self, f: F)
766 where
767 Self: Sized,
768 F: FnMut(Self::Item),
041b39d2 769 {
e1599b0c
XL
770 #[inline]
771 fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
772 move |(), item| f(item)
773 }
774
775 self.fold((), call(f));
041b39d2
XL
776 }
777
a7813a04
XL
778 /// Creates an iterator which uses a closure to determine if an element
779 /// should be yielded.
780 ///
1b1a35ee
XL
781 /// Given an element the closure must return `true` or `false`. The returned
782 /// iterator will yield only the elements for which the closure returns
783 /// true.
a7813a04
XL
784 ///
785 /// # Examples
786 ///
787 /// Basic usage:
788 ///
789 /// ```
790 /// let a = [0i32, 1, 2];
791 ///
48663c56 792 /// let mut iter = a.iter().filter(|x| x.is_positive());
a7813a04
XL
793 ///
794 /// assert_eq!(iter.next(), Some(&1));
795 /// assert_eq!(iter.next(), Some(&2));
796 /// assert_eq!(iter.next(), None);
797 /// ```
798 ///
799 /// Because the closure passed to `filter()` takes a reference, and many
800 /// iterators iterate over references, this leads to a possibly confusing
801 /// situation, where the type of the closure is a double reference:
802 ///
803 /// ```
804 /// let a = [0, 1, 2];
805 ///
48663c56 806 /// let mut iter = a.iter().filter(|x| **x > 1); // need two *s!
a7813a04
XL
807 ///
808 /// assert_eq!(iter.next(), Some(&2));
809 /// assert_eq!(iter.next(), None);
810 /// ```
811 ///
812 /// It's common to instead use destructuring on the argument to strip away
813 /// one:
814 ///
815 /// ```
816 /// let a = [0, 1, 2];
817 ///
48663c56 818 /// let mut iter = a.iter().filter(|&x| *x > 1); // both & and *
a7813a04
XL
819 ///
820 /// assert_eq!(iter.next(), Some(&2));
821 /// assert_eq!(iter.next(), None);
822 /// ```
823 ///
824 /// or both:
825 ///
826 /// ```
827 /// let a = [0, 1, 2];
828 ///
48663c56 829 /// let mut iter = a.iter().filter(|&&x| x > 1); // two &s
a7813a04
XL
830 ///
831 /// assert_eq!(iter.next(), Some(&2));
832 /// assert_eq!(iter.next(), None);
833 /// ```
834 ///
835 /// of these layers.
74b04a01
XL
836 ///
837 /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
a7813a04
XL
838 #[inline]
839 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
840 fn filter<P>(self, predicate: P) -> Filter<Self, P>
841 where
842 Self: Sized,
843 P: FnMut(&Self::Item) -> bool,
a7813a04 844 {
9fa01778 845 Filter::new(self, predicate)
a7813a04
XL
846 }
847
848 /// Creates an iterator that both filters and maps.
849 ///
1b1a35ee
XL
850 /// The returned iterator yields only the `value`s for which the supplied
851 /// closure returns `Some(value)`.
a7813a04 852 ///
1b1a35ee
XL
853 /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
854 /// concise. The example below shows how a `map().filter().map()` can be
855 /// shortened to a single call to `filter_map`.
a7813a04 856 ///
1b1a35ee
XL
857 /// [`filter`]: Iterator::filter
858 /// [`map`]: Iterator::map
a7813a04
XL
859 ///
860 /// # Examples
861 ///
862 /// Basic usage:
863 ///
864 /// ```
3dfed10e 865 /// let a = ["1", "two", "NaN", "four", "5"];
a7813a04
XL
866 ///
867 /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
868 ///
869 /// assert_eq!(iter.next(), Some(1));
ff7c6d11 870 /// assert_eq!(iter.next(), Some(5));
a7813a04
XL
871 /// assert_eq!(iter.next(), None);
872 /// ```
873 ///
cc61c64b 874 /// Here's the same example, but with [`filter`] and [`map`]:
a7813a04
XL
875 ///
876 /// ```
3dfed10e 877 /// let a = ["1", "two", "NaN", "four", "5"];
ff7c6d11 878 /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
3b2f2976 879 /// assert_eq!(iter.next(), Some(1));
ff7c6d11 880 /// assert_eq!(iter.next(), Some(5));
a7813a04
XL
881 /// assert_eq!(iter.next(), None);
882 /// ```
a7813a04
XL
883 #[inline]
884 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
885 fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
886 where
887 Self: Sized,
888 F: FnMut(Self::Item) -> Option<B>,
a7813a04 889 {
9fa01778 890 FilterMap::new(self, f)
a7813a04
XL
891 }
892
893 /// Creates an iterator which gives the current iteration count as well as
894 /// the next value.
895 ///
896 /// The iterator returned yields pairs `(i, val)`, where `i` is the
897 /// current index of iteration and `val` is the value returned by the
898 /// iterator.
899 ///
900 /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
cc61c64b 901 /// different sized integer, the [`zip`] function provides similar
a7813a04
XL
902 /// functionality.
903 ///
a7813a04
XL
904 /// # Overflow Behavior
905 ///
906 /// The method does no guarding against overflows, so enumerating more than
907 /// [`usize::MAX`] elements either produces the wrong result or panics. If
908 /// debug assertions are enabled, a panic is guaranteed.
909 ///
a7813a04
XL
910 /// # Panics
911 ///
912 /// The returned iterator might panic if the to-be-returned index would
476ff2be
SL
913 /// overflow a [`usize`].
914 ///
3dfed10e 915 /// [`usize`]: type@usize
1b1a35ee 916 /// [`zip`]: Iterator::zip
a7813a04
XL
917 ///
918 /// # Examples
919 ///
920 /// ```
921 /// let a = ['a', 'b', 'c'];
922 ///
923 /// let mut iter = a.iter().enumerate();
924 ///
925 /// assert_eq!(iter.next(), Some((0, &'a')));
926 /// assert_eq!(iter.next(), Some((1, &'b')));
927 /// assert_eq!(iter.next(), Some((2, &'c')));
928 /// assert_eq!(iter.next(), None);
929 /// ```
930 #[inline]
931 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
932 fn enumerate(self) -> Enumerate<Self>
933 where
934 Self: Sized,
935 {
9fa01778 936 Enumerate::new(self)
a7813a04
XL
937 }
938
1b1a35ee 939 /// Creates an iterator which can use [`peek`] to look at the next element of
a7813a04
XL
940 /// the iterator without consuming it.
941 ///
cc61c64b 942 /// Adds a [`peek`] method to an iterator. See its documentation for
a7813a04
XL
943 /// more information.
944 ///
cc61c64b 945 /// Note that the underlying iterator is still advanced when [`peek`] is
a7813a04 946 /// called for the first time: In order to retrieve the next element,
7cac9316
XL
947 /// [`next`] is called on the underlying iterator, hence any side effects (i.e.
948 /// anything other than fetching the next value) of the [`next`] method
949 /// will occur.
a7813a04 950 ///
1b1a35ee
XL
951 /// [`peek`]: Peekable::peek
952 /// [`next`]: Iterator::next
a7813a04
XL
953 ///
954 /// # Examples
955 ///
956 /// Basic usage:
957 ///
958 /// ```
959 /// let xs = [1, 2, 3];
960 ///
961 /// let mut iter = xs.iter().peekable();
962 ///
963 /// // peek() lets us see into the future
964 /// assert_eq!(iter.peek(), Some(&&1));
965 /// assert_eq!(iter.next(), Some(&1));
966 ///
967 /// assert_eq!(iter.next(), Some(&2));
968 ///
969 /// // we can peek() multiple times, the iterator won't advance
970 /// assert_eq!(iter.peek(), Some(&&3));
971 /// assert_eq!(iter.peek(), Some(&&3));
972 ///
973 /// assert_eq!(iter.next(), Some(&3));
974 ///
975 /// // after the iterator is finished, so is peek()
976 /// assert_eq!(iter.peek(), None);
977 /// assert_eq!(iter.next(), None);
978 /// ```
979 #[inline]
980 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
981 fn peekable(self) -> Peekable<Self>
982 where
983 Self: Sized,
984 {
9fa01778 985 Peekable::new(self)
a7813a04
XL
986 }
987
cc61c64b 988 /// Creates an iterator that [`skip`]s elements based on a predicate.
a7813a04 989 ///
1b1a35ee 990 /// [`skip`]: Iterator::skip
a7813a04
XL
991 ///
992 /// `skip_while()` takes a closure as an argument. It will call this
993 /// closure on each element of the iterator, and ignore elements
994 /// until it returns `false`.
995 ///
996 /// After `false` is returned, `skip_while()`'s job is over, and the
997 /// rest of the elements are yielded.
998 ///
999 /// # Examples
1000 ///
1001 /// Basic usage:
1002 ///
1003 /// ```
1004 /// let a = [-1i32, 0, 1];
1005 ///
48663c56 1006 /// let mut iter = a.iter().skip_while(|x| x.is_negative());
a7813a04
XL
1007 ///
1008 /// assert_eq!(iter.next(), Some(&0));
1009 /// assert_eq!(iter.next(), Some(&1));
1010 /// assert_eq!(iter.next(), None);
1011 /// ```
1012 ///
1013 /// Because the closure passed to `skip_while()` takes a reference, and many
1014 /// iterators iterate over references, this leads to a possibly confusing
6a06907d 1015 /// situation, where the type of the closure argument is a double reference:
a7813a04
XL
1016 ///
1017 /// ```
1018 /// let a = [-1, 0, 1];
1019 ///
48663c56 1020 /// let mut iter = a.iter().skip_while(|x| **x < 0); // need two *s!
a7813a04
XL
1021 ///
1022 /// assert_eq!(iter.next(), Some(&0));
1023 /// assert_eq!(iter.next(), Some(&1));
1024 /// assert_eq!(iter.next(), None);
1025 /// ```
1026 ///
1027 /// Stopping after an initial `false`:
1028 ///
1029 /// ```
1030 /// let a = [-1, 0, 1, -2];
1031 ///
48663c56 1032 /// let mut iter = a.iter().skip_while(|x| **x < 0);
a7813a04
XL
1033 ///
1034 /// assert_eq!(iter.next(), Some(&0));
1035 /// assert_eq!(iter.next(), Some(&1));
1036 ///
1037 /// // while this would have been false, since we already got a false,
1038 /// // skip_while() isn't used any more
1039 /// assert_eq!(iter.next(), Some(&-2));
1040 ///
1041 /// assert_eq!(iter.next(), None);
1042 /// ```
1043 #[inline]
1044 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1045 fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1046 where
1047 Self: Sized,
1048 P: FnMut(&Self::Item) -> bool,
a7813a04 1049 {
9fa01778 1050 SkipWhile::new(self, predicate)
a7813a04
XL
1051 }
1052
1053 /// Creates an iterator that yields elements based on a predicate.
1054 ///
1055 /// `take_while()` takes a closure as an argument. It will call this
1056 /// closure on each element of the iterator, and yield elements
1057 /// while it returns `true`.
1058 ///
1059 /// After `false` is returned, `take_while()`'s job is over, and the
1060 /// rest of the elements are ignored.
1061 ///
1062 /// # Examples
1063 ///
1064 /// Basic usage:
1065 ///
1066 /// ```
1067 /// let a = [-1i32, 0, 1];
1068 ///
48663c56 1069 /// let mut iter = a.iter().take_while(|x| x.is_negative());
a7813a04
XL
1070 ///
1071 /// assert_eq!(iter.next(), Some(&-1));
1072 /// assert_eq!(iter.next(), None);
1073 /// ```
1074 ///
1075 /// Because the closure passed to `take_while()` takes a reference, and many
1076 /// iterators iterate over references, this leads to a possibly confusing
1077 /// situation, where the type of the closure is a double reference:
1078 ///
1079 /// ```
1080 /// let a = [-1, 0, 1];
1081 ///
48663c56 1082 /// let mut iter = a.iter().take_while(|x| **x < 0); // need two *s!
a7813a04
XL
1083 ///
1084 /// assert_eq!(iter.next(), Some(&-1));
1085 /// assert_eq!(iter.next(), None);
1086 /// ```
1087 ///
1088 /// Stopping after an initial `false`:
1089 ///
1090 /// ```
1091 /// let a = [-1, 0, 1, -2];
1092 ///
48663c56 1093 /// let mut iter = a.iter().take_while(|x| **x < 0);
a7813a04
XL
1094 ///
1095 /// assert_eq!(iter.next(), Some(&-1));
1096 ///
1097 /// // We have more elements that are less than zero, but since we already
1098 /// // got a false, take_while() isn't used any more
1099 /// assert_eq!(iter.next(), None);
1100 /// ```
1101 ///
1102 /// Because `take_while()` needs to look at the value in order to see if it
1103 /// should be included or not, consuming iterators will see that it is
1104 /// removed:
1105 ///
1106 /// ```
1107 /// let a = [1, 2, 3, 4];
48663c56 1108 /// let mut iter = a.iter();
a7813a04
XL
1109 ///
1110 /// let result: Vec<i32> = iter.by_ref()
1111 /// .take_while(|n| **n != 3)
1112 /// .cloned()
1113 /// .collect();
1114 ///
1115 /// assert_eq!(result, &[1, 2]);
1116 ///
1117 /// let result: Vec<i32> = iter.cloned().collect();
1118 ///
1119 /// assert_eq!(result, &[4]);
1120 /// ```
1121 ///
1122 /// The `3` is no longer there, because it was consumed in order to see if
9fa01778 1123 /// the iteration should stop, but wasn't placed back into the iterator.
a7813a04
XL
1124 #[inline]
1125 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1126 fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1127 where
1128 Self: Sized,
1129 P: FnMut(&Self::Item) -> bool,
a7813a04 1130 {
9fa01778 1131 TakeWhile::new(self, predicate)
a7813a04
XL
1132 }
1133
74b04a01
XL
1134 /// Creates an iterator that both yields elements based on a predicate and maps.
1135 ///
1136 /// `map_while()` takes a closure as an argument. It will call this
1137 /// closure on each element of the iterator, and yield elements
1138 /// while it returns [`Some(_)`][`Some`].
1139 ///
74b04a01
XL
1140 /// # Examples
1141 ///
1142 /// Basic usage:
1143 ///
1144 /// ```
1145 /// #![feature(iter_map_while)]
1146 /// let a = [-1i32, 4, 0, 1];
1147 ///
1148 /// let mut iter = a.iter().map_while(|x| 16i32.checked_div(*x));
1149 ///
1150 /// assert_eq!(iter.next(), Some(-16));
1151 /// assert_eq!(iter.next(), Some(4));
1152 /// assert_eq!(iter.next(), None);
1153 /// ```
1154 ///
1155 /// Here's the same example, but with [`take_while`] and [`map`]:
1156 ///
1b1a35ee
XL
1157 /// [`take_while`]: Iterator::take_while
1158 /// [`map`]: Iterator::map
74b04a01
XL
1159 ///
1160 /// ```
1161 /// let a = [-1i32, 4, 0, 1];
1162 ///
1163 /// let mut iter = a.iter()
1164 /// .map(|x| 16i32.checked_div(*x))
1165 /// .take_while(|x| x.is_some())
1166 /// .map(|x| x.unwrap());
1167 ///
1168 /// assert_eq!(iter.next(), Some(-16));
1169 /// assert_eq!(iter.next(), Some(4));
1170 /// assert_eq!(iter.next(), None);
1171 /// ```
1172 ///
1173 /// Stopping after an initial [`None`]:
1174 ///
1175 /// ```
1176 /// #![feature(iter_map_while)]
1177 /// use std::convert::TryFrom;
1178 ///
ba9703b0 1179 /// let a = [0, 1, 2, -3, 4, 5, -6];
74b04a01 1180 ///
ba9703b0
XL
1181 /// let iter = a.iter().map_while(|x| u32::try_from(*x).ok());
1182 /// let vec = iter.collect::<Vec<_>>();
74b04a01 1183 ///
ba9703b0 1184 /// // We have more elements which could fit in u32 (4, 5), but `map_while` returned `None` for `-3`
3dfed10e 1185 /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
ba9703b0 1186 /// assert_eq!(vec, vec![0, 1, 2]);
74b04a01
XL
1187 /// ```
1188 ///
1189 /// Because `map_while()` needs to look at the value in order to see if it
1190 /// should be included or not, consuming iterators will see that it is
1191 /// removed:
1192 ///
1193 /// ```
1194 /// #![feature(iter_map_while)]
1195 /// use std::convert::TryFrom;
1196 ///
1197 /// let a = [1, 2, -3, 4];
1198 /// let mut iter = a.iter();
1199 ///
1200 /// let result: Vec<u32> = iter.by_ref()
1201 /// .map_while(|n| u32::try_from(*n).ok())
1202 /// .collect();
1203 ///
1204 /// assert_eq!(result, &[1, 2]);
1205 ///
1206 /// let result: Vec<i32> = iter.cloned().collect();
1207 ///
1208 /// assert_eq!(result, &[4]);
1209 /// ```
1210 ///
1211 /// The `-3` is no longer there, because it was consumed in order to see if
1212 /// the iteration should stop, but wasn't placed back into the iterator.
1213 ///
ba9703b0 1214 /// Note that unlike [`take_while`] this iterator is **not** fused.
5869c6ff 1215 /// It is also not specified what this iterator returns after the first [`None`] is returned.
ba9703b0
XL
1216 /// If you need fused iterator, use [`fuse`].
1217 ///
1b1a35ee 1218 /// [`fuse`]: Iterator::fuse
74b04a01
XL
1219 #[inline]
1220 #[unstable(feature = "iter_map_while", reason = "recently added", issue = "68537")]
1221 fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1222 where
1223 Self: Sized,
1224 P: FnMut(Self::Item) -> Option<B>,
1225 {
1226 MapWhile::new(self, predicate)
1227 }
1228
a7813a04
XL
1229 /// Creates an iterator that skips the first `n` elements.
1230 ///
1231 /// After they have been consumed, the rest of the elements are yielded.
dc9dc135 1232 /// Rather than overriding this method directly, instead override the `nth` method.
a7813a04
XL
1233 ///
1234 /// # Examples
1235 ///
1236 /// Basic usage:
1237 ///
1238 /// ```
1239 /// let a = [1, 2, 3];
1240 ///
1241 /// let mut iter = a.iter().skip(2);
1242 ///
1243 /// assert_eq!(iter.next(), Some(&3));
1244 /// assert_eq!(iter.next(), None);
1245 /// ```
1246 #[inline]
1247 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1248 fn skip(self, n: usize) -> Skip<Self>
1249 where
1250 Self: Sized,
1251 {
9fa01778 1252 Skip::new(self, n)
a7813a04
XL
1253 }
1254
1255 /// Creates an iterator that yields its first `n` elements.
1256 ///
1257 /// # Examples
1258 ///
1259 /// Basic usage:
1260 ///
1261 /// ```
1262 /// let a = [1, 2, 3];
1263 ///
1264 /// let mut iter = a.iter().take(2);
1265 ///
1266 /// assert_eq!(iter.next(), Some(&1));
1267 /// assert_eq!(iter.next(), Some(&2));
1268 /// assert_eq!(iter.next(), None);
1269 /// ```
1270 ///
1271 /// `take()` is often used with an infinite iterator, to make it finite:
1272 ///
1273 /// ```
1274 /// let mut iter = (0..).take(3);
1275 ///
1276 /// assert_eq!(iter.next(), Some(0));
1277 /// assert_eq!(iter.next(), Some(1));
1278 /// assert_eq!(iter.next(), Some(2));
1279 /// assert_eq!(iter.next(), None);
1280 /// ```
f9f354fc
XL
1281 ///
1282 /// If less than `n` elements are available,
1283 /// `take` will limit itself to the size of the underlying iterator:
1284 ///
1285 /// ```
1286 /// let v = vec![1, 2];
1287 /// let mut iter = v.into_iter().take(5);
1288 /// assert_eq!(iter.next(), Some(1));
1289 /// assert_eq!(iter.next(), Some(2));
1290 /// assert_eq!(iter.next(), None);
1291 /// ```
a7813a04
XL
1292 #[inline]
1293 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1294 fn take(self, n: usize) -> Take<Self>
1295 where
1296 Self: Sized,
1297 {
9fa01778 1298 Take::new(self, n)
a7813a04
XL
1299 }
1300
cc61c64b 1301 /// An iterator adaptor similar to [`fold`] that holds internal state and
a7813a04
XL
1302 /// produces a new iterator.
1303 ///
1b1a35ee 1304 /// [`fold`]: Iterator::fold
a7813a04
XL
1305 ///
1306 /// `scan()` takes two arguments: an initial value which seeds the internal
1307 /// state, and a closure with two arguments, the first being a mutable
1308 /// reference to the internal state and the second an iterator element.
1309 /// The closure can assign to the internal state to share state between
1310 /// iterations.
1311 ///
1312 /// On iteration, the closure will be applied to each element of the
1313 /// iterator and the return value from the closure, an [`Option`], is
1314 /// yielded by the iterator.
1315 ///
a7813a04
XL
1316 /// # Examples
1317 ///
1318 /// Basic usage:
1319 ///
1320 /// ```
1321 /// let a = [1, 2, 3];
1322 ///
1323 /// let mut iter = a.iter().scan(1, |state, &x| {
1324 /// // each iteration, we'll multiply the state by the element
1325 /// *state = *state * x;
1326 ///
0531ce1d
XL
1327 /// // then, we'll yield the negation of the state
1328 /// Some(-*state)
a7813a04
XL
1329 /// });
1330 ///
0531ce1d
XL
1331 /// assert_eq!(iter.next(), Some(-1));
1332 /// assert_eq!(iter.next(), Some(-2));
1333 /// assert_eq!(iter.next(), Some(-6));
a7813a04
XL
1334 /// assert_eq!(iter.next(), None);
1335 /// ```
1336 #[inline]
1337 #[stable(feature = "rust1", since = "1.0.0")]
1338 fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
dfeec247
XL
1339 where
1340 Self: Sized,
1341 F: FnMut(&mut St, Self::Item) -> Option<B>,
a7813a04 1342 {
9fa01778 1343 Scan::new(self, initial_state, f)
a7813a04
XL
1344 }
1345
1346 /// Creates an iterator that works like map, but flattens nested structure.
1347 ///
cc61c64b 1348 /// The [`map`] adapter is very useful, but only when the closure
a7813a04
XL
1349 /// argument produces values. If it produces an iterator instead, there's
1350 /// an extra layer of indirection. `flat_map()` will remove this extra layer
1351 /// on its own.
1352 ///
83c7162d 1353 /// You can think of `flat_map(f)` as the semantic equivalent
0531ce1d
XL
1354 /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1355 ///
cc61c64b 1356 /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
a7813a04
XL
1357 /// one item for each element, and `flat_map()`'s closure returns an
1358 /// iterator for each element.
1359 ///
1b1a35ee
XL
1360 /// [`map`]: Iterator::map
1361 /// [`flatten`]: Iterator::flatten
476ff2be 1362 ///
a7813a04
XL
1363 /// # Examples
1364 ///
1365 /// Basic usage:
1366 ///
1367 /// ```
1368 /// let words = ["alpha", "beta", "gamma"];
1369 ///
1370 /// // chars() returns an iterator
1371 /// let merged: String = words.iter()
1372 /// .flat_map(|s| s.chars())
1373 /// .collect();
1374 /// assert_eq!(merged, "alphabetagamma");
1375 /// ```
1376 #[inline]
1377 #[stable(feature = "rust1", since = "1.0.0")]
1378 fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
dfeec247
XL
1379 where
1380 Self: Sized,
1381 U: IntoIterator,
1382 F: FnMut(Self::Item) -> U,
a7813a04 1383 {
9fa01778 1384 FlatMap::new(self, f)
0531ce1d
XL
1385 }
1386
1387 /// Creates an iterator that flattens nested structure.
1388 ///
1389 /// This is useful when you have an iterator of iterators or an iterator of
1390 /// things that can be turned into iterators and you want to remove one
1391 /// level of indirection.
1392 ///
1393 /// # Examples
1394 ///
1395 /// Basic usage:
1396 ///
1397 /// ```
0531ce1d
XL
1398 /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1399 /// let flattened = data.into_iter().flatten().collect::<Vec<u8>>();
1400 /// assert_eq!(flattened, &[1, 2, 3, 4, 5, 6]);
1401 /// ```
1402 ///
1403 /// Mapping and then flattening:
1404 ///
1405 /// ```
0531ce1d
XL
1406 /// let words = ["alpha", "beta", "gamma"];
1407 ///
1408 /// // chars() returns an iterator
1409 /// let merged: String = words.iter()
1410 /// .map(|s| s.chars())
1411 /// .flatten()
1412 /// .collect();
1413 /// assert_eq!(merged, "alphabetagamma");
1414 /// ```
1415 ///
1416 /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1417 /// in this case since it conveys intent more clearly:
1418 ///
1419 /// ```
1420 /// let words = ["alpha", "beta", "gamma"];
1421 ///
1422 /// // chars() returns an iterator
1423 /// let merged: String = words.iter()
1424 /// .flat_map(|s| s.chars())
1425 /// .collect();
1426 /// assert_eq!(merged, "alphabetagamma");
1427 /// ```
1428 ///
fc512014 1429 /// Flattening only removes one level of nesting at a time:
0531ce1d
XL
1430 ///
1431 /// ```
0531ce1d
XL
1432 /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1433 ///
1434 /// let d2 = d3.iter().flatten().collect::<Vec<_>>();
1435 /// assert_eq!(d2, [&[1, 2], &[3, 4], &[5, 6], &[7, 8]]);
1436 ///
1437 /// let d1 = d3.iter().flatten().flatten().collect::<Vec<_>>();
1438 /// assert_eq!(d1, [&1, &2, &3, &4, &5, &6, &7, &8]);
1439 /// ```
1440 ///
1441 /// Here we see that `flatten()` does not perform a "deep" flatten.
1442 /// Instead, only one level of nesting is removed. That is, if you
fc512014 1443 /// `flatten()` a three-dimensional array, the result will be
0531ce1d
XL
1444 /// two-dimensional and not one-dimensional. To get a one-dimensional
1445 /// structure, you have to `flatten()` again.
83c7162d 1446 ///
1b1a35ee 1447 /// [`flat_map()`]: Iterator::flat_map
0531ce1d 1448 #[inline]
b7449926 1449 #[stable(feature = "iterator_flatten", since = "1.29.0")]
0531ce1d 1450 fn flatten(self) -> Flatten<Self>
dfeec247
XL
1451 where
1452 Self: Sized,
1453 Self::Item: IntoIterator,
1454 {
9fa01778 1455 Flatten::new(self)
a7813a04
XL
1456 }
1457
476ff2be
SL
1458 /// Creates an iterator which ends after the first [`None`].
1459 ///
1460 /// After an iterator returns [`None`], future calls may or may not yield
1461 /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1462 /// [`None`] is given, it will always return [`None`] forever.
a7813a04 1463 ///
3dfed10e 1464 /// [`Some(T)`]: Some
a7813a04
XL
1465 ///
1466 /// # Examples
1467 ///
1468 /// Basic usage:
1469 ///
1470 /// ```
1471 /// // an iterator which alternates between Some and None
1472 /// struct Alternate {
1473 /// state: i32,
1474 /// }
1475 ///
1476 /// impl Iterator for Alternate {
1477 /// type Item = i32;
1478 ///
1479 /// fn next(&mut self) -> Option<i32> {
1480 /// let val = self.state;
1481 /// self.state = self.state + 1;
1482 ///
1483 /// // if it's even, Some(i32), else None
1484 /// if val % 2 == 0 {
1485 /// Some(val)
1486 /// } else {
1487 /// None
1488 /// }
1489 /// }
1490 /// }
1491 ///
1492 /// let mut iter = Alternate { state: 0 };
1493 ///
1494 /// // we can see our iterator going back and forth
1495 /// assert_eq!(iter.next(), Some(0));
1496 /// assert_eq!(iter.next(), None);
1497 /// assert_eq!(iter.next(), Some(2));
1498 /// assert_eq!(iter.next(), None);
1499 ///
1500 /// // however, once we fuse it...
1501 /// let mut iter = iter.fuse();
1502 ///
1503 /// assert_eq!(iter.next(), Some(4));
1504 /// assert_eq!(iter.next(), None);
1505 ///
9fa01778 1506 /// // it will always return `None` after the first time.
a7813a04
XL
1507 /// assert_eq!(iter.next(), None);
1508 /// assert_eq!(iter.next(), None);
1509 /// assert_eq!(iter.next(), None);
1510 /// ```
1511 #[inline]
1512 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1513 fn fuse(self) -> Fuse<Self>
1514 where
1515 Self: Sized,
1516 {
9fa01778 1517 Fuse::new(self)
a7813a04
XL
1518 }
1519
60c5eb7d 1520 /// Does something with each element of an iterator, passing the value on.
a7813a04
XL
1521 ///
1522 /// When using iterators, you'll often chain several of them together.
1523 /// While working on such code, you might want to check out what's
1524 /// happening at various parts in the pipeline. To do that, insert
1525 /// a call to `inspect()`.
1526 ///
94b46f34
XL
1527 /// It's more common for `inspect()` to be used as a debugging tool than to
1528 /// exist in your final code, but applications may find it useful in certain
1529 /// situations when errors need to be logged before being discarded.
a7813a04
XL
1530 ///
1531 /// # Examples
1532 ///
1533 /// Basic usage:
1534 ///
1535 /// ```
1536 /// let a = [1, 4, 2, 3];
1537 ///
1538 /// // this iterator sequence is complex.
1539 /// let sum = a.iter()
0531ce1d
XL
1540 /// .cloned()
1541 /// .filter(|x| x % 2 == 0)
1542 /// .fold(0, |sum, i| sum + i);
a7813a04
XL
1543 ///
1544 /// println!("{}", sum);
1545 ///
1546 /// // let's add some inspect() calls to investigate what's happening
1547 /// let sum = a.iter()
0531ce1d
XL
1548 /// .cloned()
1549 /// .inspect(|x| println!("about to filter: {}", x))
1550 /// .filter(|x| x % 2 == 0)
1551 /// .inspect(|x| println!("made it through filter: {}", x))
1552 /// .fold(0, |sum, i| sum + i);
a7813a04
XL
1553 ///
1554 /// println!("{}", sum);
1555 /// ```
1556 ///
1557 /// This will print:
1558 ///
1559 /// ```text
0531ce1d 1560 /// 6
a7813a04
XL
1561 /// about to filter: 1
1562 /// about to filter: 4
1563 /// made it through filter: 4
1564 /// about to filter: 2
1565 /// made it through filter: 2
1566 /// about to filter: 3
1567 /// 6
1568 /// ```
94b46f34
XL
1569 ///
1570 /// Logging errors before discarding them:
1571 ///
1572 /// ```
1573 /// let lines = ["1", "2", "a"];
1574 ///
1575 /// let sum: i32 = lines
1576 /// .iter()
1577 /// .map(|line| line.parse::<i32>())
1578 /// .inspect(|num| {
1579 /// if let Err(ref e) = *num {
1580 /// println!("Parsing error: {}", e);
1581 /// }
1582 /// })
1583 /// .filter_map(Result::ok)
1584 /// .sum();
1585 ///
1586 /// println!("Sum: {}", sum);
1587 /// ```
1588 ///
1589 /// This will print:
1590 ///
1591 /// ```text
1592 /// Parsing error: invalid digit found in string
1593 /// Sum: 3
1594 /// ```
a7813a04
XL
1595 #[inline]
1596 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1597 fn inspect<F>(self, f: F) -> Inspect<Self, F>
1598 where
1599 Self: Sized,
1600 F: FnMut(&Self::Item),
a7813a04 1601 {
9fa01778 1602 Inspect::new(self, f)
a7813a04
XL
1603 }
1604
1605 /// Borrows an iterator, rather than consuming it.
1606 ///
1607 /// This is useful to allow applying iterator adaptors while still
1608 /// retaining ownership of the original iterator.
1609 ///
1610 /// # Examples
1611 ///
1612 /// Basic usage:
1613 ///
1614 /// ```
1615 /// let a = [1, 2, 3];
1616 ///
48663c56 1617 /// let iter = a.iter();
a7813a04 1618 ///
f035d41b 1619 /// let sum: i32 = iter.take(5).fold(0, |acc, i| acc + i);
a7813a04
XL
1620 ///
1621 /// assert_eq!(sum, 6);
1622 ///
1623 /// // if we try to use iter again, it won't work. The following line
1624 /// // gives "error: use of moved value: `iter`
1625 /// // assert_eq!(iter.next(), None);
1626 ///
1627 /// // let's try that again
1628 /// let a = [1, 2, 3];
1629 ///
48663c56 1630 /// let mut iter = a.iter();
a7813a04
XL
1631 ///
1632 /// // instead, we add in a .by_ref()
f035d41b 1633 /// let sum: i32 = iter.by_ref().take(2).fold(0, |acc, i| acc + i);
a7813a04
XL
1634 ///
1635 /// assert_eq!(sum, 3);
1636 ///
1637 /// // now this is just fine:
1638 /// assert_eq!(iter.next(), Some(&3));
1639 /// assert_eq!(iter.next(), None);
1640 /// ```
1641 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1642 fn by_ref(&mut self) -> &mut Self
1643 where
1644 Self: Sized,
1645 {
1646 self
1647 }
a7813a04
XL
1648
1649 /// Transforms an iterator into a collection.
1650 ///
1651 /// `collect()` can take anything iterable, and turn it into a relevant
1652 /// collection. This is one of the more powerful methods in the standard
1653 /// library, used in a variety of contexts.
1654 ///
1655 /// The most basic pattern in which `collect()` is used is to turn one
cc61c64b 1656 /// collection into another. You take a collection, call [`iter`] on it,
a7813a04
XL
1657 /// do a bunch of transformations, and then `collect()` at the end.
1658 ///
3dfed10e
XL
1659 /// `collect()` can also create instances of types that are not typical
1660 /// collections. For example, a [`String`] can be built from [`char`]s,
1661 /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1662 /// into `Result<Collection<T>, E>`. See the examples below for more.
a7813a04 1663 ///
a7813a04
XL
1664 /// Because `collect()` is so general, it can cause problems with type
1665 /// inference. As such, `collect()` is one of the few times you'll see
1666 /// the syntax affectionately known as the 'turbofish': `::<>`. This
1667 /// helps the inference algorithm understand specifically which collection
1668 /// you're trying to collect into.
1669 ///
1670 /// # Examples
1671 ///
1672 /// Basic usage:
1673 ///
1674 /// ```
1675 /// let a = [1, 2, 3];
1676 ///
1677 /// let doubled: Vec<i32> = a.iter()
1678 /// .map(|&x| x * 2)
1679 /// .collect();
1680 ///
1681 /// assert_eq!(vec![2, 4, 6], doubled);
1682 /// ```
1683 ///
1684 /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1685 /// we could collect into, for example, a [`VecDeque<T>`] instead:
1686 ///
1687 /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1688 ///
1689 /// ```
1690 /// use std::collections::VecDeque;
1691 ///
1692 /// let a = [1, 2, 3];
1693 ///
0531ce1d 1694 /// let doubled: VecDeque<i32> = a.iter().map(|&x| x * 2).collect();
a7813a04
XL
1695 ///
1696 /// assert_eq!(2, doubled[0]);
1697 /// assert_eq!(4, doubled[1]);
1698 /// assert_eq!(6, doubled[2]);
1699 /// ```
1700 ///
1701 /// Using the 'turbofish' instead of annotating `doubled`:
1702 ///
1703 /// ```
1704 /// let a = [1, 2, 3];
1705 ///
0531ce1d 1706 /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
a7813a04
XL
1707 ///
1708 /// assert_eq!(vec![2, 4, 6], doubled);
1709 /// ```
1710 ///
3b2f2976 1711 /// Because `collect()` only cares about what you're collecting into, you can
a7813a04
XL
1712 /// still use a partial type hint, `_`, with the turbofish:
1713 ///
1714 /// ```
1715 /// let a = [1, 2, 3];
1716 ///
0531ce1d 1717 /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
a7813a04
XL
1718 ///
1719 /// assert_eq!(vec![2, 4, 6], doubled);
1720 /// ```
1721 ///
1722 /// Using `collect()` to make a [`String`]:
1723 ///
1724 /// ```
1725 /// let chars = ['g', 'd', 'k', 'k', 'n'];
1726 ///
1727 /// let hello: String = chars.iter()
0531ce1d
XL
1728 /// .map(|&x| x as u8)
1729 /// .map(|x| (x + 1) as char)
1730 /// .collect();
a7813a04
XL
1731 ///
1732 /// assert_eq!("hello", hello);
1733 /// ```
1734 ///
476ff2be 1735 /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
a7813a04
XL
1736 /// see if any of them failed:
1737 ///
1738 /// ```
1739 /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
1740 ///
1741 /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
1742 ///
1743 /// // gives us the first error
1744 /// assert_eq!(Err("nope"), result);
1745 ///
1746 /// let results = [Ok(1), Ok(3)];
1747 ///
1748 /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
1749 ///
1750 /// // gives us the list of answers
1751 /// assert_eq!(Ok(vec![1, 3]), result);
1752 /// ```
476ff2be 1753 ///
1b1a35ee 1754 /// [`iter`]: Iterator::next
476ff2be 1755 /// [`String`]: ../../std/string/struct.String.html
3dfed10e 1756 /// [`char`]: type@char
a7813a04
XL
1757 #[inline]
1758 #[stable(feature = "rust1", since = "1.0.0")]
83c7162d 1759 #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
dfeec247
XL
1760 fn collect<B: FromIterator<Self::Item>>(self) -> B
1761 where
1762 Self: Sized,
1763 {
a7813a04
XL
1764 FromIterator::from_iter(self)
1765 }
1766
1767 /// Consumes an iterator, creating two collections from it.
1768 ///
1769 /// The predicate passed to `partition()` can return `true`, or `false`.
1770 /// `partition()` returns a pair, all of the elements for which it returned
1771 /// `true`, and all of the elements for which it returned `false`.
1772 ///
416331ca
XL
1773 /// See also [`is_partitioned()`] and [`partition_in_place()`].
1774 ///
1b1a35ee
XL
1775 /// [`is_partitioned()`]: Iterator::is_partitioned
1776 /// [`partition_in_place()`]: Iterator::partition_in_place
416331ca 1777 ///
a7813a04
XL
1778 /// # Examples
1779 ///
1780 /// Basic usage:
1781 ///
1782 /// ```
1783 /// let a = [1, 2, 3];
1784 ///
0531ce1d 1785 /// let (even, odd): (Vec<i32>, Vec<i32>) = a
48663c56 1786 /// .iter()
0531ce1d 1787 /// .partition(|&n| n % 2 == 0);
a7813a04
XL
1788 ///
1789 /// assert_eq!(even, vec![2]);
1790 /// assert_eq!(odd, vec![1, 3]);
1791 /// ```
1792 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1793 fn partition<B, F>(self, f: F) -> (B, B)
1794 where
a7813a04
XL
1795 Self: Sized,
1796 B: Default + Extend<Self::Item>,
dfeec247 1797 F: FnMut(&Self::Item) -> bool,
a7813a04 1798 {
e1599b0c
XL
1799 #[inline]
1800 fn extend<'a, T, B: Extend<T>>(
1801 mut f: impl FnMut(&T) -> bool + 'a,
1802 left: &'a mut B,
1803 right: &'a mut B,
f9f354fc
XL
1804 ) -> impl FnMut((), T) + 'a {
1805 move |(), x| {
e1599b0c 1806 if f(&x) {
f9f354fc 1807 left.extend_one(x);
e1599b0c 1808 } else {
f9f354fc 1809 right.extend_one(x);
e1599b0c
XL
1810 }
1811 }
1812 }
1813
a7813a04
XL
1814 let mut left: B = Default::default();
1815 let mut right: B = Default::default();
1816
f9f354fc 1817 self.fold((), extend(f, &mut left, &mut right));
a7813a04
XL
1818
1819 (left, right)
1820 }
1821
60c5eb7d 1822 /// Reorders the elements of this iterator *in-place* according to the given predicate,
416331ca
XL
1823 /// such that all those that return `true` precede all those that return `false`.
1824 /// Returns the number of `true` elements found.
1825 ///
1826 /// The relative order of partitioned items is not maintained.
1827 ///
1828 /// See also [`is_partitioned()`] and [`partition()`].
1829 ///
1b1a35ee
XL
1830 /// [`is_partitioned()`]: Iterator::is_partitioned
1831 /// [`partition()`]: Iterator::partition
416331ca
XL
1832 ///
1833 /// # Examples
1834 ///
1835 /// ```
1836 /// #![feature(iter_partition_in_place)]
1837 ///
1838 /// let mut a = [1, 2, 3, 4, 5, 6, 7];
1839 ///
1840 /// // Partition in-place between evens and odds
1841 /// let i = a.iter_mut().partition_in_place(|&n| n % 2 == 0);
1842 ///
1843 /// assert_eq!(i, 3);
1844 /// assert!(a[..i].iter().all(|&n| n % 2 == 0)); // evens
1845 /// assert!(a[i..].iter().all(|&n| n % 2 == 1)); // odds
1846 /// ```
1847 #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
1848 fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
1849 where
1850 Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
1851 P: FnMut(&T) -> bool,
1852 {
1853 // FIXME: should we worry about the count overflowing? The only way to have more than
1854 // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
1855
1856 // These closure "factory" functions exist to avoid genericity in `Self`.
1857
1858 #[inline]
1859 fn is_false<'a, T>(
1860 predicate: &'a mut impl FnMut(&T) -> bool,
1861 true_count: &'a mut usize,
1862 ) -> impl FnMut(&&mut T) -> bool + 'a {
1863 move |x| {
1864 let p = predicate(&**x);
1865 *true_count += p as usize;
1866 !p
1867 }
1868 }
1869
1870 #[inline]
dfeec247 1871 fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
416331ca
XL
1872 move |x| predicate(&**x)
1873 }
1874
1875 // Repeatedly find the first `false` and swap it with the last `true`.
1876 let mut true_count = 0;
1877 while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
1878 if let Some(tail) = self.rfind(is_true(predicate)) {
1879 crate::mem::swap(head, tail);
1880 true_count += 1;
1881 } else {
1882 break;
1883 }
1884 }
1885 true_count
1886 }
1887
1888 /// Checks if the elements of this iterator are partitioned according to the given predicate,
1889 /// such that all those that return `true` precede all those that return `false`.
1890 ///
1891 /// See also [`partition()`] and [`partition_in_place()`].
1892 ///
1b1a35ee
XL
1893 /// [`partition()`]: Iterator::partition
1894 /// [`partition_in_place()`]: Iterator::partition_in_place
416331ca
XL
1895 ///
1896 /// # Examples
1897 ///
1898 /// ```
1899 /// #![feature(iter_is_partitioned)]
1900 ///
1901 /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
1902 /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
1903 /// ```
1904 #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
1905 fn is_partitioned<P>(mut self, mut predicate: P) -> bool
1906 where
1907 Self: Sized,
1908 P: FnMut(Self::Item) -> bool,
1909 {
1910 // Either all items test `true`, or the first clause stops at `false`
1911 // and we check that there are no more `true` items after that.
1912 self.all(&mut predicate) || !self.any(predicate)
1913 }
1914
abe05a73
XL
1915 /// An iterator method that applies a function as long as it returns
1916 /// successfully, producing a single, final value.
1917 ///
1918 /// `try_fold()` takes two arguments: an initial value, and a closure with
1919 /// two arguments: an 'accumulator', and an element. The closure either
1920 /// returns successfully, with the value that the accumulator should have
1921 /// for the next iteration, or it returns failure, with an error value that
1922 /// is propagated back to the caller immediately (short-circuiting).
1923 ///
1924 /// The initial value is the value the accumulator will have on the first
9fa01778 1925 /// call. If applying the closure succeeded against every element of the
abe05a73
XL
1926 /// iterator, `try_fold()` returns the final accumulator as success.
1927 ///
1928 /// Folding is useful whenever you have a collection of something, and want
1929 /// to produce a single value from it.
1930 ///
1931 /// # Note to Implementors
1932 ///
f9f354fc 1933 /// Several of the other (forward) methods have default implementations in
abe05a73
XL
1934 /// terms of this one, so try to implement this explicitly if it can
1935 /// do something better than the default `for` loop implementation.
1936 ///
1937 /// In particular, try to have this call `try_fold()` on the internal parts
9fa01778 1938 /// from which this iterator is composed. If multiple calls are needed,
0531ce1d
XL
1939 /// the `?` operator may be convenient for chaining the accumulator value
1940 /// along, but beware any invariants that need to be upheld before those
9fa01778 1941 /// early returns. This is a `&mut self` method, so iteration needs to be
abe05a73
XL
1942 /// resumable after hitting an error here.
1943 ///
1944 /// # Examples
1945 ///
1946 /// Basic usage:
1947 ///
1948 /// ```
abe05a73
XL
1949 /// let a = [1, 2, 3];
1950 ///
1951 /// // the checked sum of all of the elements of the array
0531ce1d 1952 /// let sum = a.iter().try_fold(0i8, |acc, &x| acc.checked_add(x));
abe05a73
XL
1953 ///
1954 /// assert_eq!(sum, Some(6));
1955 /// ```
1956 ///
1957 /// Short-circuiting:
1958 ///
1959 /// ```
abe05a73
XL
1960 /// let a = [10, 20, 30, 100, 40, 50];
1961 /// let mut it = a.iter();
1962 ///
1963 /// // This sum overflows when adding the 100 element
1964 /// let sum = it.try_fold(0i8, |acc, &x| acc.checked_add(x));
1965 /// assert_eq!(sum, None);
1966 ///
1967 /// // Because it short-circuited, the remaining elements are still
1968 /// // available through the iterator.
1969 /// assert_eq!(it.len(), 2);
1970 /// assert_eq!(it.next(), Some(&40));
1971 /// ```
1972 #[inline]
83c7162d 1973 #[stable(feature = "iterator_try_fold", since = "1.27.0")]
dfeec247
XL
1974 fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
1975 where
1976 Self: Sized,
1977 F: FnMut(B, Self::Item) -> R,
1978 R: Try<Ok = B>,
abe05a73
XL
1979 {
1980 let mut accum = init;
1981 while let Some(x) = self.next() {
1982 accum = f(accum, x)?;
1983 }
29967ef6 1984 try { accum }
abe05a73
XL
1985 }
1986
0531ce1d
XL
1987 /// An iterator method that applies a fallible function to each item in the
1988 /// iterator, stopping at the first error and returning that error.
1989 ///
1990 /// This can also be thought of as the fallible form of [`for_each()`]
1991 /// or as the stateless version of [`try_fold()`].
1992 ///
1b1a35ee
XL
1993 /// [`for_each()`]: Iterator::for_each
1994 /// [`try_fold()`]: Iterator::try_fold
0531ce1d
XL
1995 ///
1996 /// # Examples
1997 ///
1998 /// ```
0531ce1d
XL
1999 /// use std::fs::rename;
2000 /// use std::io::{stdout, Write};
2001 /// use std::path::Path;
2002 ///
2003 /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2004 ///
2005 /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{}", x));
2006 /// assert!(res.is_ok());
2007 ///
2008 /// let mut it = data.iter().cloned();
2009 /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2010 /// assert!(res.is_err());
2011 /// // It short-circuited, so the remaining items are still in the iterator:
2012 /// assert_eq!(it.next(), Some("stale_bread.json"));
2013 /// ```
2014 #[inline]
83c7162d 2015 #[stable(feature = "iterator_try_fold", since = "1.27.0")]
dfeec247
XL
2016 fn try_for_each<F, R>(&mut self, f: F) -> R
2017 where
2018 Self: Sized,
2019 F: FnMut(Self::Item) -> R,
2020 R: Try<Ok = ()>,
0531ce1d 2021 {
e1599b0c
XL
2022 #[inline]
2023 fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2024 move |(), x| f(x)
2025 }
2026
2027 self.try_fold((), call(f))
0531ce1d
XL
2028 }
2029
5869c6ff
XL
2030 /// Folds every element into an accumulator by applying an operation,
2031 /// returning the final result.
a7813a04
XL
2032 ///
2033 /// `fold()` takes two arguments: an initial value, and a closure with two
2034 /// arguments: an 'accumulator', and an element. The closure returns the value that
2035 /// the accumulator should have for the next iteration.
2036 ///
2037 /// The initial value is the value the accumulator will have on the first
2038 /// call.
2039 ///
2040 /// After applying this closure to every element of the iterator, `fold()`
2041 /// returns the accumulator.
2042 ///
2043 /// This operation is sometimes called 'reduce' or 'inject'.
2044 ///
2045 /// Folding is useful whenever you have a collection of something, and want
2046 /// to produce a single value from it.
2047 ///
2c00a5a8
XL
2048 /// Note: `fold()`, and similar methods that traverse the entire iterator,
2049 /// may not terminate for infinite iterators, even on traits for which a
2050 /// result is determinable in finite time.
2051 ///
5869c6ff
XL
2052 /// Note: [`reduce()`] can be used to use the first element as the initial
2053 /// value, if the accumulator type and item type is the same.
2054 ///
f9f354fc
XL
2055 /// # Note to Implementors
2056 ///
2057 /// Several of the other (forward) methods have default implementations in
2058 /// terms of this one, so try to implement this explicitly if it can
2059 /// do something better than the default `for` loop implementation.
2060 ///
2061 /// In particular, try to have this call `fold()` on the internal parts
2062 /// from which this iterator is composed.
2063 ///
a7813a04
XL
2064 /// # Examples
2065 ///
2066 /// Basic usage:
2067 ///
2068 /// ```
2069 /// let a = [1, 2, 3];
2070 ///
abe05a73 2071 /// // the sum of all of the elements of the array
0531ce1d 2072 /// let sum = a.iter().fold(0, |acc, x| acc + x);
a7813a04
XL
2073 ///
2074 /// assert_eq!(sum, 6);
2075 /// ```
2076 ///
2077 /// Let's walk through each step of the iteration here:
2078 ///
2079 /// | element | acc | x | result |
2080 /// |---------|-----|---|--------|
2081 /// | | 0 | | |
2082 /// | 1 | 0 | 1 | 1 |
2083 /// | 2 | 1 | 2 | 3 |
2084 /// | 3 | 3 | 3 | 6 |
2085 ///
2086 /// And so, our final result, `6`.
2087 ///
2088 /// It's common for people who haven't used iterators a lot to
2089 /// use a `for` loop with a list of things to build up a result. Those
2090 /// can be turned into `fold()`s:
2091 ///
13cf67c4 2092 /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
476ff2be 2093 ///
a7813a04
XL
2094 /// ```
2095 /// let numbers = [1, 2, 3, 4, 5];
2096 ///
2097 /// let mut result = 0;
2098 ///
2099 /// // for loop:
2100 /// for i in &numbers {
2101 /// result = result + i;
2102 /// }
2103 ///
2104 /// // fold:
2105 /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2106 ///
2107 /// // they're the same
2108 /// assert_eq!(result, result2);
2109 /// ```
5869c6ff
XL
2110 ///
2111 /// [`reduce()`]: Iterator::reduce
1b1a35ee
XL
2112 #[doc(alias = "reduce")]
2113 #[doc(alias = "inject")]
a7813a04
XL
2114 #[inline]
2115 #[stable(feature = "rust1", since = "1.0.0")]
f9f354fc 2116 fn fold<B, F>(mut self, init: B, mut f: F) -> B
dfeec247
XL
2117 where
2118 Self: Sized,
2119 F: FnMut(B, Self::Item) -> B,
a7813a04 2120 {
f9f354fc
XL
2121 let mut accum = init;
2122 while let Some(x) = self.next() {
2123 accum = f(accum, x);
e1599b0c 2124 }
f9f354fc 2125 accum
a7813a04
XL
2126 }
2127
5869c6ff
XL
2128 /// Reduces the elements to a single one, by repeatedly applying a reducing
2129 /// operation.
2130 ///
2131 /// If the iterator is empty, returns [`None`]; otherwise, returns the
2132 /// result of the reduction.
2133 ///
2134 /// For iterators with at least one element, this is the same as [`fold()`]
2135 /// with the first element of the iterator as the initial value, folding
2136 /// every subsequent element into it.
ba9703b0 2137 ///
1b1a35ee
XL
2138 /// [`fold()`]: Iterator::fold
2139 ///
ba9703b0
XL
2140 /// # Example
2141 ///
2142 /// Find the maximum value:
2143 ///
2144 /// ```
ba9703b0
XL
2145 /// fn find_max<I>(iter: I) -> Option<I::Item>
2146 /// where I: Iterator,
2147 /// I::Item: Ord,
2148 /// {
5869c6ff 2149 /// iter.reduce(|a, b| {
ba9703b0
XL
2150 /// if a >= b { a } else { b }
2151 /// })
2152 /// }
2153 /// let a = [10, 20, 5, -23, 0];
2154 /// let b: [u32; 0] = [];
2155 ///
2156 /// assert_eq!(find_max(a.iter()), Some(&20));
2157 /// assert_eq!(find_max(b.iter()), None);
2158 /// ```
2159 #[inline]
5869c6ff
XL
2160 #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2161 fn reduce<F>(mut self, f: F) -> Option<Self::Item>
ba9703b0
XL
2162 where
2163 Self: Sized,
2164 F: FnMut(Self::Item, Self::Item) -> Self::Item,
2165 {
2166 let first = self.next()?;
2167 Some(self.fold(first, f))
2168 }
2169
a7813a04
XL
2170 /// Tests if every element of the iterator matches a predicate.
2171 ///
2172 /// `all()` takes a closure that returns `true` or `false`. It applies
2173 /// this closure to each element of the iterator, and if they all return
2174 /// `true`, then so does `all()`. If any of them return `false`, it
2175 /// returns `false`.
2176 ///
2177 /// `all()` is short-circuiting; in other words, it will stop processing
2178 /// as soon as it finds a `false`, given that no matter what else happens,
2179 /// the result will also be `false`.
2180 ///
2181 /// An empty iterator returns `true`.
2182 ///
2183 /// # Examples
2184 ///
2185 /// Basic usage:
2186 ///
2187 /// ```
2188 /// let a = [1, 2, 3];
2189 ///
2190 /// assert!(a.iter().all(|&x| x > 0));
2191 ///
2192 /// assert!(!a.iter().all(|&x| x > 2));
2193 /// ```
2194 ///
2195 /// Stopping at the first `false`:
2196 ///
2197 /// ```
2198 /// let a = [1, 2, 3];
2199 ///
2200 /// let mut iter = a.iter();
2201 ///
2202 /// assert!(!iter.all(|&x| x != 2));
2203 ///
2204 /// // we can still use `iter`, as there are more elements.
2205 /// assert_eq!(iter.next(), Some(&3));
2206 /// ```
6a06907d 2207 #[doc(alias = "every")]
a7813a04
XL
2208 #[inline]
2209 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2210 fn all<F>(&mut self, f: F) -> bool
2211 where
2212 Self: Sized,
2213 F: FnMut(Self::Item) -> bool,
a7813a04 2214 {
e1599b0c 2215 #[inline]
2a314972 2216 fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
e74abb32 2217 move |(), x| {
1b1a35ee 2218 if f(x) { ControlFlow::CONTINUE } else { ControlFlow::BREAK }
e1599b0c
XL
2219 }
2220 }
1b1a35ee 2221 self.try_fold((), check(f)) == ControlFlow::CONTINUE
a7813a04
XL
2222 }
2223
2224 /// Tests if any element of the iterator matches a predicate.
2225 ///
2226 /// `any()` takes a closure that returns `true` or `false`. It applies
2227 /// this closure to each element of the iterator, and if any of them return
2228 /// `true`, then so does `any()`. If they all return `false`, it
2229 /// returns `false`.
2230 ///
2231 /// `any()` is short-circuiting; in other words, it will stop processing
2232 /// as soon as it finds a `true`, given that no matter what else happens,
2233 /// the result will also be `true`.
2234 ///
2235 /// An empty iterator returns `false`.
2236 ///
2237 /// # Examples
2238 ///
2239 /// Basic usage:
2240 ///
2241 /// ```
2242 /// let a = [1, 2, 3];
2243 ///
2244 /// assert!(a.iter().any(|&x| x > 0));
2245 ///
2246 /// assert!(!a.iter().any(|&x| x > 5));
2247 /// ```
2248 ///
2249 /// Stopping at the first `true`:
2250 ///
2251 /// ```
2252 /// let a = [1, 2, 3];
2253 ///
2254 /// let mut iter = a.iter();
2255 ///
2256 /// assert!(iter.any(|&x| x != 2));
2257 ///
2258 /// // we can still use `iter`, as there are more elements.
2259 /// assert_eq!(iter.next(), Some(&2));
2260 /// ```
2261 #[inline]
2262 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2263 fn any<F>(&mut self, f: F) -> bool
2264 where
a7813a04 2265 Self: Sized,
dfeec247 2266 F: FnMut(Self::Item) -> bool,
a7813a04 2267 {
e1599b0c 2268 #[inline]
2a314972 2269 fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
e74abb32 2270 move |(), x| {
1b1a35ee 2271 if f(x) { ControlFlow::BREAK } else { ControlFlow::CONTINUE }
e1599b0c
XL
2272 }
2273 }
2274
1b1a35ee 2275 self.try_fold((), check(f)) == ControlFlow::BREAK
a7813a04
XL
2276 }
2277
2278 /// Searches for an element of an iterator that satisfies a predicate.
2279 ///
2280 /// `find()` takes a closure that returns `true` or `false`. It applies
2281 /// this closure to each element of the iterator, and if any of them return
476ff2be
SL
2282 /// `true`, then `find()` returns [`Some(element)`]. If they all return
2283 /// `false`, it returns [`None`].
a7813a04
XL
2284 ///
2285 /// `find()` is short-circuiting; in other words, it will stop processing
2286 /// as soon as the closure returns `true`.
2287 ///
2288 /// Because `find()` takes a reference, and many iterators iterate over
2289 /// references, this leads to a possibly confusing situation where the
2290 /// argument is a double reference. You can see this effect in the
2291 /// examples below, with `&&x`.
2292 ///
3dfed10e 2293 /// [`Some(element)`]: Some
476ff2be 2294 ///
a7813a04
XL
2295 /// # Examples
2296 ///
2297 /// Basic usage:
2298 ///
2299 /// ```
2300 /// let a = [1, 2, 3];
2301 ///
2302 /// assert_eq!(a.iter().find(|&&x| x == 2), Some(&2));
2303 ///
2304 /// assert_eq!(a.iter().find(|&&x| x == 5), None);
2305 /// ```
2306 ///
2307 /// Stopping at the first `true`:
2308 ///
2309 /// ```
2310 /// let a = [1, 2, 3];
2311 ///
2312 /// let mut iter = a.iter();
2313 ///
2314 /// assert_eq!(iter.find(|&&x| x == 2), Some(&2));
2315 ///
2316 /// // we can still use `iter`, as there are more elements.
2317 /// assert_eq!(iter.next(), Some(&3));
2318 /// ```
74b04a01
XL
2319 ///
2320 /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
a7813a04
XL
2321 #[inline]
2322 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2323 fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2324 where
a7813a04
XL
2325 Self: Sized,
2326 P: FnMut(&Self::Item) -> bool,
2327 {
e1599b0c 2328 #[inline]
2a314972 2329 fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
e74abb32 2330 move |(), x| {
1b1a35ee 2331 if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::CONTINUE }
e1599b0c
XL
2332 }
2333 }
2334
e74abb32 2335 self.try_fold((), check(predicate)).break_value()
a7813a04
XL
2336 }
2337
83c7162d
XL
2338 /// Applies function to the elements of iterator and returns
2339 /// the first non-none result.
2340 ///
2341 /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2342 ///
83c7162d
XL
2343 /// # Examples
2344 ///
2345 /// ```
83c7162d
XL
2346 /// let a = ["lol", "NaN", "2", "5"];
2347 ///
a1dfa0c6 2348 /// let first_number = a.iter().find_map(|s| s.parse().ok());
83c7162d
XL
2349 ///
2350 /// assert_eq!(first_number, Some(2));
2351 /// ```
2352 #[inline]
b7449926 2353 #[stable(feature = "iterator_find_map", since = "1.30.0")]
dfeec247
XL
2354 fn find_map<B, F>(&mut self, f: F) -> Option<B>
2355 where
83c7162d
XL
2356 Self: Sized,
2357 F: FnMut(Self::Item) -> Option<B>,
2358 {
e1599b0c 2359 #[inline]
2a314972 2360 fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
e74abb32 2361 move |(), x| match f(x) {
1b1a35ee
XL
2362 Some(x) => ControlFlow::Break(x),
2363 None => ControlFlow::CONTINUE,
83c7162d 2364 }
e1599b0c
XL
2365 }
2366
e74abb32 2367 self.try_fold((), check(f)).break_value()
83c7162d
XL
2368 }
2369
dfeec247 2370 /// Applies function to the elements of iterator and returns
f035d41b 2371 /// the first true result or the first error.
dfeec247
XL
2372 ///
2373 /// # Examples
2374 ///
2375 /// ```
2376 /// #![feature(try_find)]
2377 ///
2378 /// let a = ["1", "2", "lol", "NaN", "5"];
2379 ///
2380 /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2381 /// Ok(s.parse::<i32>()? == search)
2382 /// };
2383 ///
2384 /// let result = a.iter().try_find(|&&s| is_my_num(s, 2));
2385 /// assert_eq!(result, Ok(Some(&"2")));
2386 ///
2387 /// let result = a.iter().try_find(|&&s| is_my_num(s, 5));
2388 /// assert!(result.is_err());
2389 /// ```
2390 #[inline]
2391 #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
f035d41b 2392 fn try_find<F, R>(&mut self, f: F) -> Result<Option<Self::Item>, R::Error>
dfeec247
XL
2393 where
2394 Self: Sized,
2395 F: FnMut(&Self::Item) -> R,
f035d41b 2396 R: Try<Ok = bool>,
dfeec247 2397 {
f035d41b 2398 #[inline]
2a314972 2399 fn check<F, T, R>(mut f: F) -> impl FnMut((), T) -> ControlFlow<Result<T, R::Error>>
f035d41b
XL
2400 where
2401 F: FnMut(&T) -> R,
2402 R: Try<Ok = bool>,
2403 {
2404 move |(), x| match f(&x).into_result() {
1b1a35ee
XL
2405 Ok(false) => ControlFlow::CONTINUE,
2406 Ok(true) => ControlFlow::Break(Ok(x)),
2407 Err(x) => ControlFlow::Break(Err(x)),
f035d41b
XL
2408 }
2409 }
2410
2411 self.try_fold((), check(f)).break_value().transpose()
dfeec247
XL
2412 }
2413
a7813a04
XL
2414 /// Searches for an element in an iterator, returning its index.
2415 ///
2416 /// `position()` takes a closure that returns `true` or `false`. It applies
2417 /// this closure to each element of the iterator, and if one of them
476ff2be
SL
2418 /// returns `true`, then `position()` returns [`Some(index)`]. If all of
2419 /// them return `false`, it returns [`None`].
a7813a04
XL
2420 ///
2421 /// `position()` is short-circuiting; in other words, it will stop
2422 /// processing as soon as it finds a `true`.
2423 ///
2424 /// # Overflow Behavior
2425 ///
2426 /// The method does no guarding against overflows, so if there are more
476ff2be 2427 /// than [`usize::MAX`] non-matching elements, it either produces the wrong
a7813a04
XL
2428 /// result or panics. If debug assertions are enabled, a panic is
2429 /// guaranteed.
2430 ///
2431 /// # Panics
2432 ///
2433 /// This function might panic if the iterator has more than `usize::MAX`
2434 /// non-matching elements.
2435 ///
3dfed10e 2436 /// [`Some(index)`]: Some
476ff2be 2437 ///
a7813a04
XL
2438 /// # Examples
2439 ///
2440 /// Basic usage:
2441 ///
2442 /// ```
2443 /// let a = [1, 2, 3];
2444 ///
2445 /// assert_eq!(a.iter().position(|&x| x == 2), Some(1));
2446 ///
2447 /// assert_eq!(a.iter().position(|&x| x == 5), None);
2448 /// ```
2449 ///
2450 /// Stopping at the first `true`:
2451 ///
2452 /// ```
cc61c64b 2453 /// let a = [1, 2, 3, 4];
a7813a04
XL
2454 ///
2455 /// let mut iter = a.iter();
2456 ///
cc61c64b 2457 /// assert_eq!(iter.position(|&x| x >= 2), Some(1));
a7813a04
XL
2458 ///
2459 /// // we can still use `iter`, as there are more elements.
2460 /// assert_eq!(iter.next(), Some(&3));
cc61c64b
XL
2461 ///
2462 /// // The returned index depends on iterator state
2463 /// assert_eq!(iter.position(|&x| x == 4), Some(0));
2464 ///
a7813a04
XL
2465 /// ```
2466 #[inline]
2467 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2468 fn position<P>(&mut self, predicate: P) -> Option<usize>
2469 where
a7813a04
XL
2470 Self: Sized,
2471 P: FnMut(Self::Item) -> bool,
2472 {
e1599b0c
XL
2473 #[inline]
2474 fn check<T>(
2475 mut predicate: impl FnMut(T) -> bool,
1b1a35ee 2476 ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
6a06907d 2477 #[rustc_inherit_overflow_checks]
e1599b0c 2478 move |i, x| {
6a06907d 2479 if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i + 1) }
e1599b0c
XL
2480 }
2481 }
2482
2483 self.try_fold(0, check(predicate)).break_value()
a7813a04
XL
2484 }
2485
2486 /// Searches for an element in an iterator from the right, returning its
2487 /// index.
2488 ///
2489 /// `rposition()` takes a closure that returns `true` or `false`. It applies
2490 /// this closure to each element of the iterator, starting from the end,
2491 /// and if one of them returns `true`, then `rposition()` returns
476ff2be 2492 /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
a7813a04
XL
2493 ///
2494 /// `rposition()` is short-circuiting; in other words, it will stop
2495 /// processing as soon as it finds a `true`.
2496 ///
3dfed10e 2497 /// [`Some(index)`]: Some
476ff2be 2498 ///
a7813a04
XL
2499 /// # Examples
2500 ///
2501 /// Basic usage:
2502 ///
2503 /// ```
2504 /// let a = [1, 2, 3];
2505 ///
2506 /// assert_eq!(a.iter().rposition(|&x| x == 3), Some(2));
2507 ///
2508 /// assert_eq!(a.iter().rposition(|&x| x == 5), None);
2509 /// ```
2510 ///
2511 /// Stopping at the first `true`:
2512 ///
2513 /// ```
2514 /// let a = [1, 2, 3];
2515 ///
2516 /// let mut iter = a.iter();
2517 ///
2518 /// assert_eq!(iter.rposition(|&x| x == 2), Some(1));
2519 ///
2520 /// // we can still use `iter`, as there are more elements.
2521 /// assert_eq!(iter.next(), Some(&1));
2522 /// ```
2523 #[inline]
2524 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2525 fn rposition<P>(&mut self, predicate: P) -> Option<usize>
2526 where
a7813a04 2527 P: FnMut(Self::Item) -> bool,
dfeec247 2528 Self: Sized + ExactSizeIterator + DoubleEndedIterator,
a7813a04 2529 {
abe05a73
XL
2530 // No need for an overflow check here, because `ExactSizeIterator`
2531 // implies that the number of elements fits into a `usize`.
e1599b0c
XL
2532 #[inline]
2533 fn check<T>(
2534 mut predicate: impl FnMut(T) -> bool,
1b1a35ee 2535 ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
e1599b0c
XL
2536 move |i, x| {
2537 let i = i - 1;
1b1a35ee 2538 if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
e1599b0c
XL
2539 }
2540 }
2541
abe05a73 2542 let n = self.len();
e1599b0c 2543 self.try_rfold(n, check(predicate)).break_value()
a7813a04
XL
2544 }
2545
2546 /// Returns the maximum element of an iterator.
2547 ///
32a655c1 2548 /// If several elements are equally maximum, the last element is
8bb4bdeb
XL
2549 /// returned. If the iterator is empty, [`None`] is returned.
2550 ///
a7813a04
XL
2551 /// # Examples
2552 ///
2553 /// Basic usage:
2554 ///
2555 /// ```
2556 /// let a = [1, 2, 3];
8bb4bdeb 2557 /// let b: Vec<u32> = Vec::new();
a7813a04
XL
2558 ///
2559 /// assert_eq!(a.iter().max(), Some(&3));
8bb4bdeb 2560 /// assert_eq!(b.iter().max(), None);
a7813a04
XL
2561 /// ```
2562 #[inline]
2563 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2564 fn max(self) -> Option<Self::Item>
2565 where
2566 Self: Sized,
2567 Self::Item: Ord,
a7813a04 2568 {
532ac7d7 2569 self.max_by(Ord::cmp)
a7813a04
XL
2570 }
2571
2572 /// Returns the minimum element of an iterator.
2573 ///
32a655c1 2574 /// If several elements are equally minimum, the first element is
8bb4bdeb
XL
2575 /// returned. If the iterator is empty, [`None`] is returned.
2576 ///
a7813a04
XL
2577 /// # Examples
2578 ///
2579 /// Basic usage:
2580 ///
2581 /// ```
2582 /// let a = [1, 2, 3];
8bb4bdeb 2583 /// let b: Vec<u32> = Vec::new();
a7813a04
XL
2584 ///
2585 /// assert_eq!(a.iter().min(), Some(&1));
8bb4bdeb 2586 /// assert_eq!(b.iter().min(), None);
a7813a04
XL
2587 /// ```
2588 #[inline]
2589 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2590 fn min(self) -> Option<Self::Item>
2591 where
2592 Self: Sized,
2593 Self::Item: Ord,
a7813a04 2594 {
532ac7d7 2595 self.min_by(Ord::cmp)
a7813a04
XL
2596 }
2597
2598 /// Returns the element that gives the maximum value from the
2599 /// specified function.
2600 ///
32a655c1 2601 /// If several elements are equally maximum, the last element is
8bb4bdeb
XL
2602 /// returned. If the iterator is empty, [`None`] is returned.
2603 ///
a7813a04
XL
2604 /// # Examples
2605 ///
2606 /// ```
2607 /// let a = [-3_i32, 0, 1, 5, -10];
2608 /// assert_eq!(*a.iter().max_by_key(|x| x.abs()).unwrap(), -10);
2609 /// ```
2610 #[inline]
2611 #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
e1599b0c 2612 fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
dfeec247
XL
2613 where
2614 Self: Sized,
2615 F: FnMut(&Self::Item) -> B,
a7813a04 2616 {
e1599b0c
XL
2617 #[inline]
2618 fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
2619 move |x| (f(&x), x)
2620 }
2621
2622 #[inline]
2623 fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
2624 x_p.cmp(y_p)
2625 }
2626
2627 let (_, x) = self.map(key(f)).max_by(compare)?;
2628 Some(x)
a7813a04
XL
2629 }
2630
9e0c209e
SL
2631 /// Returns the element that gives the maximum value with respect to the
2632 /// specified comparison function.
2633 ///
32a655c1 2634 /// If several elements are equally maximum, the last element is
8bb4bdeb
XL
2635 /// returned. If the iterator is empty, [`None`] is returned.
2636 ///
9e0c209e
SL
2637 /// # Examples
2638 ///
2639 /// ```
9e0c209e
SL
2640 /// let a = [-3_i32, 0, 1, 5, -10];
2641 /// assert_eq!(*a.iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
2642 /// ```
2643 #[inline]
476ff2be 2644 #[stable(feature = "iter_max_by", since = "1.15.0")]
e1599b0c 2645 fn max_by<F>(self, compare: F) -> Option<Self::Item>
dfeec247
XL
2646 where
2647 Self: Sized,
2648 F: FnMut(&Self::Item, &Self::Item) -> Ordering,
9e0c209e 2649 {
e1599b0c
XL
2650 #[inline]
2651 fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
2652 move |x, y| cmp::max_by(x, y, &mut compare)
2653 }
2654
5869c6ff 2655 self.reduce(fold(compare))
9e0c209e
SL
2656 }
2657
a7813a04
XL
2658 /// Returns the element that gives the minimum value from the
2659 /// specified function.
2660 ///
32a655c1 2661 /// If several elements are equally minimum, the first element is
8bb4bdeb
XL
2662 /// returned. If the iterator is empty, [`None`] is returned.
2663 ///
a7813a04
XL
2664 /// # Examples
2665 ///
2666 /// ```
2667 /// let a = [-3_i32, 0, 1, 5, -10];
2668 /// assert_eq!(*a.iter().min_by_key(|x| x.abs()).unwrap(), 0);
2669 /// ```
e1599b0c 2670 #[inline]
a7813a04 2671 #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
e1599b0c 2672 fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
dfeec247
XL
2673 where
2674 Self: Sized,
2675 F: FnMut(&Self::Item) -> B,
a7813a04 2676 {
e1599b0c
XL
2677 #[inline]
2678 fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
2679 move |x| (f(&x), x)
2680 }
2681
2682 #[inline]
2683 fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
2684 x_p.cmp(y_p)
2685 }
2686
2687 let (_, x) = self.map(key(f)).min_by(compare)?;
2688 Some(x)
a7813a04
XL
2689 }
2690
9e0c209e
SL
2691 /// Returns the element that gives the minimum value with respect to the
2692 /// specified comparison function.
2693 ///
32a655c1 2694 /// If several elements are equally minimum, the first element is
8bb4bdeb
XL
2695 /// returned. If the iterator is empty, [`None`] is returned.
2696 ///
9e0c209e
SL
2697 /// # Examples
2698 ///
2699 /// ```
9e0c209e
SL
2700 /// let a = [-3_i32, 0, 1, 5, -10];
2701 /// assert_eq!(*a.iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
2702 /// ```
2703 #[inline]
476ff2be 2704 #[stable(feature = "iter_min_by", since = "1.15.0")]
e1599b0c 2705 fn min_by<F>(self, compare: F) -> Option<Self::Item>
dfeec247
XL
2706 where
2707 Self: Sized,
2708 F: FnMut(&Self::Item, &Self::Item) -> Ordering,
9e0c209e 2709 {
e1599b0c
XL
2710 #[inline]
2711 fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
2712 move |x, y| cmp::min_by(x, y, &mut compare)
2713 }
2714
5869c6ff 2715 self.reduce(fold(compare))
9e0c209e
SL
2716 }
2717
a7813a04
XL
2718 /// Reverses an iterator's direction.
2719 ///
2720 /// Usually, iterators iterate from left to right. After using `rev()`,
2721 /// an iterator will instead iterate from right to left.
2722 ///
2723 /// This is only possible if the iterator has an end, so `rev()` only
2724 /// works on [`DoubleEndedIterator`]s.
2725 ///
a7813a04
XL
2726 /// # Examples
2727 ///
2728 /// ```
2729 /// let a = [1, 2, 3];
2730 ///
2731 /// let mut iter = a.iter().rev();
2732 ///
2733 /// assert_eq!(iter.next(), Some(&3));
2734 /// assert_eq!(iter.next(), Some(&2));
2735 /// assert_eq!(iter.next(), Some(&1));
2736 ///
2737 /// assert_eq!(iter.next(), None);
2738 /// ```
2739 #[inline]
6a06907d 2740 #[doc(alias = "reverse")]
a7813a04 2741 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2742 fn rev(self) -> Rev<Self>
2743 where
2744 Self: Sized + DoubleEndedIterator,
2745 {
9fa01778 2746 Rev::new(self)
a7813a04
XL
2747 }
2748
2749 /// Converts an iterator of pairs into a pair of containers.
2750 ///
2751 /// `unzip()` consumes an entire iterator of pairs, producing two
2752 /// collections: one from the left elements of the pairs, and one
2753 /// from the right elements.
2754 ///
cc61c64b 2755 /// This function is, in some sense, the opposite of [`zip`].
a7813a04 2756 ///
1b1a35ee 2757 /// [`zip`]: Iterator::zip
a7813a04
XL
2758 ///
2759 /// # Examples
2760 ///
2761 /// Basic usage:
2762 ///
2763 /// ```
2764 /// let a = [(1, 2), (3, 4)];
2765 ///
2766 /// let (left, right): (Vec<_>, Vec<_>) = a.iter().cloned().unzip();
2767 ///
2768 /// assert_eq!(left, [1, 3]);
2769 /// assert_eq!(right, [2, 4]);
2770 /// ```
2771 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2772 fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
2773 where
a7813a04
XL
2774 FromA: Default + Extend<A>,
2775 FromB: Default + Extend<B>,
dfeec247 2776 Self: Sized + Iterator<Item = (A, B)>,
a7813a04 2777 {
e1599b0c
XL
2778 fn extend<'a, A, B>(
2779 ts: &'a mut impl Extend<A>,
2780 us: &'a mut impl Extend<B>,
f9f354fc
XL
2781 ) -> impl FnMut((), (A, B)) + 'a {
2782 move |(), (t, u)| {
2783 ts.extend_one(t);
2784 us.extend_one(u);
e1599b0c
XL
2785 }
2786 }
2787
a7813a04
XL
2788 let mut ts: FromA = Default::default();
2789 let mut us: FromB = Default::default();
2790
f9f354fc
XL
2791 let (lower_bound, _) = self.size_hint();
2792 if lower_bound > 0 {
2793 ts.extend_reserve(lower_bound);
2794 us.extend_reserve(lower_bound);
2795 }
2796
2797 self.fold((), extend(&mut ts, &mut us));
a7813a04
XL
2798
2799 (ts, us)
2800 }
2801
0731742a
XL
2802 /// Creates an iterator which copies all of its elements.
2803 ///
2804 /// This is useful when you have an iterator over `&T`, but you need an
2805 /// iterator over `T`.
2806 ///
2807 /// # Examples
2808 ///
2809 /// Basic usage:
2810 ///
2811 /// ```
0731742a
XL
2812 /// let a = [1, 2, 3];
2813 ///
f035d41b 2814 /// let v_copied: Vec<_> = a.iter().copied().collect();
0731742a
XL
2815 ///
2816 /// // copied is the same as .map(|&x| x)
2817 /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
2818 ///
f035d41b 2819 /// assert_eq!(v_copied, vec![1, 2, 3]);
0731742a
XL
2820 /// assert_eq!(v_map, vec![1, 2, 3]);
2821 /// ```
48663c56 2822 #[stable(feature = "iter_copied", since = "1.36.0")]
0731742a 2823 fn copied<'a, T: 'a>(self) -> Copied<Self>
dfeec247
XL
2824 where
2825 Self: Sized + Iterator<Item = &'a T>,
2826 T: Copy,
0731742a 2827 {
9fa01778 2828 Copied::new(self)
0731742a
XL
2829 }
2830
cc61c64b 2831 /// Creates an iterator which [`clone`]s all of its elements.
a7813a04
XL
2832 ///
2833 /// This is useful when you have an iterator over `&T`, but you need an
2834 /// iterator over `T`.
2835 ///
1b1a35ee 2836 /// [`clone`]: Clone::clone
476ff2be 2837 ///
a7813a04
XL
2838 /// # Examples
2839 ///
2840 /// Basic usage:
2841 ///
2842 /// ```
2843 /// let a = [1, 2, 3];
2844 ///
2845 /// let v_cloned: Vec<_> = a.iter().cloned().collect();
2846 ///
2847 /// // cloned is the same as .map(|&x| x), for integers
2848 /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
2849 ///
2850 /// assert_eq!(v_cloned, vec![1, 2, 3]);
2851 /// assert_eq!(v_map, vec![1, 2, 3]);
2852 /// ```
2853 #[stable(feature = "rust1", since = "1.0.0")]
2854 fn cloned<'a, T: 'a>(self) -> Cloned<Self>
dfeec247
XL
2855 where
2856 Self: Sized + Iterator<Item = &'a T>,
2857 T: Clone,
a7813a04 2858 {
9fa01778 2859 Cloned::new(self)
a7813a04
XL
2860 }
2861
2862 /// Repeats an iterator endlessly.
2863 ///
476ff2be 2864 /// Instead of stopping at [`None`], the iterator will instead start again,
a7813a04
XL
2865 /// from the beginning. After iterating again, it will start at the
2866 /// beginning again. And again. And again. Forever.
2867 ///
2868 /// # Examples
2869 ///
2870 /// Basic usage:
2871 ///
2872 /// ```
2873 /// let a = [1, 2, 3];
2874 ///
2875 /// let mut it = a.iter().cycle();
2876 ///
2877 /// assert_eq!(it.next(), Some(&1));
2878 /// assert_eq!(it.next(), Some(&2));
2879 /// assert_eq!(it.next(), Some(&3));
2880 /// assert_eq!(it.next(), Some(&1));
2881 /// assert_eq!(it.next(), Some(&2));
2882 /// assert_eq!(it.next(), Some(&3));
2883 /// assert_eq!(it.next(), Some(&1));
2884 /// ```
2885 #[stable(feature = "rust1", since = "1.0.0")]
2886 #[inline]
dfeec247
XL
2887 fn cycle(self) -> Cycle<Self>
2888 where
2889 Self: Sized + Clone,
2890 {
9fa01778 2891 Cycle::new(self)
a7813a04
XL
2892 }
2893
2894 /// Sums the elements of an iterator.
2895 ///
2896 /// Takes each element, adds them together, and returns the result.
2897 ///
2898 /// An empty iterator returns the zero value of the type.
2899 ///
3157f602
XL
2900 /// # Panics
2901 ///
476ff2be 2902 /// When calling `sum()` and a primitive integer type is being returned, this
9e0c209e
SL
2903 /// method will panic if the computation overflows and debug assertions are
2904 /// enabled.
3157f602 2905 ///
a7813a04
XL
2906 /// # Examples
2907 ///
2908 /// Basic usage:
2909 ///
2910 /// ```
a7813a04
XL
2911 /// let a = [1, 2, 3];
2912 /// let sum: i32 = a.iter().sum();
2913 ///
2914 /// assert_eq!(sum, 6);
2915 /// ```
3157f602
XL
2916 #[stable(feature = "iter_arith", since = "1.11.0")]
2917 fn sum<S>(self) -> S
dfeec247
XL
2918 where
2919 Self: Sized,
2920 S: Sum<Self::Item>,
a7813a04 2921 {
3157f602 2922 Sum::sum(self)
a7813a04
XL
2923 }
2924
2925 /// Iterates over the entire iterator, multiplying all the elements
2926 ///
2927 /// An empty iterator returns the one value of the type.
2928 ///
3157f602
XL
2929 /// # Panics
2930 ///
476ff2be 2931 /// When calling `product()` and a primitive integer type is being returned,
9e0c209e
SL
2932 /// method will panic if the computation overflows and debug assertions are
2933 /// enabled.
3157f602 2934 ///
a7813a04
XL
2935 /// # Examples
2936 ///
2937 /// ```
a7813a04 2938 /// fn factorial(n: u32) -> u32 {
0731742a 2939 /// (1..=n).product()
a7813a04
XL
2940 /// }
2941 /// assert_eq!(factorial(0), 1);
2942 /// assert_eq!(factorial(1), 1);
2943 /// assert_eq!(factorial(5), 120);
2944 /// ```
3157f602
XL
2945 #[stable(feature = "iter_arith", since = "1.11.0")]
2946 fn product<P>(self) -> P
dfeec247
XL
2947 where
2948 Self: Sized,
2949 P: Product<Self::Item>,
a7813a04 2950 {
3157f602 2951 Product::product(self)
a7813a04
XL
2952 }
2953
29967ef6 2954 /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
a7813a04 2955 /// of another.
e1599b0c
XL
2956 ///
2957 /// # Examples
2958 ///
2959 /// ```
2960 /// use std::cmp::Ordering;
2961 ///
2962 /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
2963 /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
2964 /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
2965 /// ```
a7813a04 2966 #[stable(feature = "iter_order", since = "1.5.0")]
e1599b0c
XL
2967 fn cmp<I>(self, other: I) -> Ordering
2968 where
a7813a04
XL
2969 I: IntoIterator<Item = Self::Item>,
2970 Self::Item: Ord,
2971 Self: Sized,
e1599b0c
XL
2972 {
2973 self.cmp_by(other, |x, y| x.cmp(&y))
2974 }
2975
29967ef6 2976 /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
e1599b0c
XL
2977 /// of another with respect to the specified comparison function.
2978 ///
2979 /// # Examples
2980 ///
2981 /// Basic usage:
2982 ///
2983 /// ```
2984 /// #![feature(iter_order_by)]
2985 ///
2986 /// use std::cmp::Ordering;
2987 ///
2988 /// let xs = [1, 2, 3, 4];
2989 /// let ys = [1, 4, 9, 16];
2990 ///
2991 /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| x.cmp(&y)), Ordering::Less);
2992 /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (x * x).cmp(&y)), Ordering::Equal);
2993 /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (2 * x).cmp(&y)), Ordering::Greater);
2994 /// ```
e74abb32 2995 #[unstable(feature = "iter_order_by", issue = "64295")]
e1599b0c
XL
2996 fn cmp_by<I, F>(mut self, other: I, mut cmp: F) -> Ordering
2997 where
2998 Self: Sized,
2999 I: IntoIterator,
3000 F: FnMut(Self::Item, I::Item) -> Ordering,
a7813a04
XL
3001 {
3002 let mut other = other.into_iter();
3003
3004 loop {
abe05a73 3005 let x = match self.next() {
dfeec247
XL
3006 None => {
3007 if other.next().is_none() {
3008 return Ordering::Equal;
3009 } else {
3010 return Ordering::Less;
3011 }
3012 }
abe05a73
XL
3013 Some(val) => val,
3014 };
3015
3016 let y = match other.next() {
3017 None => return Ordering::Greater,
3018 Some(val) => val,
3019 };
3020
e1599b0c 3021 match cmp(x, y) {
abe05a73
XL
3022 Ordering::Equal => (),
3023 non_eq => return non_eq,
a7813a04
XL
3024 }
3025 }
3026 }
3027
29967ef6 3028 /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
a7813a04 3029 /// of another.
e1599b0c
XL
3030 ///
3031 /// # Examples
3032 ///
3033 /// ```
3034 /// use std::cmp::Ordering;
3035 ///
3036 /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3037 /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3038 /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3039 ///
ba9703b0 3040 /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
e1599b0c 3041 /// ```
a7813a04 3042 #[stable(feature = "iter_order", since = "1.5.0")]
e1599b0c
XL
3043 fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3044 where
a7813a04
XL
3045 I: IntoIterator,
3046 Self::Item: PartialOrd<I::Item>,
3047 Self: Sized,
e1599b0c
XL
3048 {
3049 self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3050 }
3051
29967ef6 3052 /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
e1599b0c
XL
3053 /// of another with respect to the specified comparison function.
3054 ///
3055 /// # Examples
3056 ///
3057 /// Basic usage:
3058 ///
3059 /// ```
3060 /// #![feature(iter_order_by)]
3061 ///
3062 /// use std::cmp::Ordering;
3063 ///
3064 /// let xs = [1.0, 2.0, 3.0, 4.0];
3065 /// let ys = [1.0, 4.0, 9.0, 16.0];
3066 ///
3067 /// assert_eq!(
3068 /// xs.iter().partial_cmp_by(&ys, |&x, &y| x.partial_cmp(&y)),
3069 /// Some(Ordering::Less)
3070 /// );
3071 /// assert_eq!(
3072 /// xs.iter().partial_cmp_by(&ys, |&x, &y| (x * x).partial_cmp(&y)),
3073 /// Some(Ordering::Equal)
3074 /// );
3075 /// assert_eq!(
3076 /// xs.iter().partial_cmp_by(&ys, |&x, &y| (2.0 * x).partial_cmp(&y)),
3077 /// Some(Ordering::Greater)
3078 /// );
3079 /// ```
e74abb32 3080 #[unstable(feature = "iter_order_by", issue = "64295")]
e1599b0c
XL
3081 fn partial_cmp_by<I, F>(mut self, other: I, mut partial_cmp: F) -> Option<Ordering>
3082 where
3083 Self: Sized,
3084 I: IntoIterator,
3085 F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
a7813a04
XL
3086 {
3087 let mut other = other.into_iter();
3088
3089 loop {
abe05a73 3090 let x = match self.next() {
dfeec247
XL
3091 None => {
3092 if other.next().is_none() {
3093 return Some(Ordering::Equal);
3094 } else {
3095 return Some(Ordering::Less);
3096 }
3097 }
abe05a73
XL
3098 Some(val) => val,
3099 };
3100
3101 let y = match other.next() {
3102 None => return Some(Ordering::Greater),
3103 Some(val) => val,
3104 };
3105
e1599b0c 3106 match partial_cmp(x, y) {
abe05a73
XL
3107 Some(Ordering::Equal) => (),
3108 non_eq => return non_eq,
a7813a04
XL
3109 }
3110 }
3111 }
3112
1b1a35ee 3113 /// Determines if the elements of this [`Iterator`] are equal to those of
a7813a04 3114 /// another.
e1599b0c
XL
3115 ///
3116 /// # Examples
3117 ///
3118 /// ```
3119 /// assert_eq!([1].iter().eq([1].iter()), true);
3120 /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3121 /// ```
a7813a04 3122 #[stable(feature = "iter_order", since = "1.5.0")]
e1599b0c
XL
3123 fn eq<I>(self, other: I) -> bool
3124 where
a7813a04
XL
3125 I: IntoIterator,
3126 Self::Item: PartialEq<I::Item>,
3127 Self: Sized,
e1599b0c
XL
3128 {
3129 self.eq_by(other, |x, y| x == y)
3130 }
3131
1b1a35ee 3132 /// Determines if the elements of this [`Iterator`] are equal to those of
e1599b0c
XL
3133 /// another with respect to the specified equality function.
3134 ///
3135 /// # Examples
3136 ///
3137 /// Basic usage:
3138 ///
3139 /// ```
3140 /// #![feature(iter_order_by)]
3141 ///
3142 /// let xs = [1, 2, 3, 4];
3143 /// let ys = [1, 4, 9, 16];
3144 ///
3145 /// assert!(xs.iter().eq_by(&ys, |&x, &y| x * x == y));
3146 /// ```
e74abb32 3147 #[unstable(feature = "iter_order_by", issue = "64295")]
e1599b0c
XL
3148 fn eq_by<I, F>(mut self, other: I, mut eq: F) -> bool
3149 where
3150 Self: Sized,
3151 I: IntoIterator,
3152 F: FnMut(Self::Item, I::Item) -> bool,
a7813a04
XL
3153 {
3154 let mut other = other.into_iter();
3155
3156 loop {
abe05a73
XL
3157 let x = match self.next() {
3158 None => return other.next().is_none(),
3159 Some(val) => val,
3160 };
3161
3162 let y = match other.next() {
3163 None => return false,
3164 Some(val) => val,
3165 };
3166
e1599b0c
XL
3167 if !eq(x, y) {
3168 return false;
3169 }
a7813a04
XL
3170 }
3171 }
3172
1b1a35ee 3173 /// Determines if the elements of this [`Iterator`] are unequal to those of
a7813a04 3174 /// another.
e1599b0c
XL
3175 ///
3176 /// # Examples
3177 ///
3178 /// ```
3179 /// assert_eq!([1].iter().ne([1].iter()), false);
3180 /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3181 /// ```
a7813a04 3182 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3183 fn ne<I>(self, other: I) -> bool
3184 where
a7813a04
XL
3185 I: IntoIterator,
3186 Self::Item: PartialEq<I::Item>,
3187 Self: Sized,
3188 {
532ac7d7 3189 !self.eq(other)
a7813a04
XL
3190 }
3191
29967ef6 3192 /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
a7813a04 3193 /// less than those of another.
e1599b0c
XL
3194 ///
3195 /// # Examples
3196 ///
3197 /// ```
3198 /// assert_eq!([1].iter().lt([1].iter()), false);
3199 /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3200 /// assert_eq!([1, 2].iter().lt([1].iter()), false);
1b1a35ee 3201 /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
e1599b0c 3202 /// ```
a7813a04 3203 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3204 fn lt<I>(self, other: I) -> bool
3205 where
a7813a04
XL
3206 I: IntoIterator,
3207 Self::Item: PartialOrd<I::Item>,
3208 Self: Sized,
3209 {
532ac7d7 3210 self.partial_cmp(other) == Some(Ordering::Less)
a7813a04
XL
3211 }
3212
29967ef6 3213 /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
a7813a04 3214 /// less or equal to those of another.
e1599b0c
XL
3215 ///
3216 /// # Examples
3217 ///
3218 /// ```
3219 /// assert_eq!([1].iter().le([1].iter()), true);
3220 /// assert_eq!([1].iter().le([1, 2].iter()), true);
3221 /// assert_eq!([1, 2].iter().le([1].iter()), false);
1b1a35ee 3222 /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
e1599b0c 3223 /// ```
a7813a04 3224 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3225 fn le<I>(self, other: I) -> bool
3226 where
a7813a04
XL
3227 I: IntoIterator,
3228 Self::Item: PartialOrd<I::Item>,
3229 Self: Sized,
3230 {
ba9703b0 3231 matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
a7813a04
XL
3232 }
3233
29967ef6 3234 /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
a7813a04 3235 /// greater than those of another.
e1599b0c
XL
3236 ///
3237 /// # Examples
3238 ///
3239 /// ```
3240 /// assert_eq!([1].iter().gt([1].iter()), false);
3241 /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3242 /// assert_eq!([1, 2].iter().gt([1].iter()), true);
1b1a35ee 3243 /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
e1599b0c 3244 /// ```
a7813a04 3245 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3246 fn gt<I>(self, other: I) -> bool
3247 where
a7813a04
XL
3248 I: IntoIterator,
3249 Self::Item: PartialOrd<I::Item>,
3250 Self: Sized,
3251 {
532ac7d7 3252 self.partial_cmp(other) == Some(Ordering::Greater)
a7813a04
XL
3253 }
3254
29967ef6 3255 /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
a7813a04 3256 /// greater than or equal to those of another.
e1599b0c
XL
3257 ///
3258 /// # Examples
3259 ///
3260 /// ```
3261 /// assert_eq!([1].iter().ge([1].iter()), true);
3262 /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3263 /// assert_eq!([1, 2].iter().ge([1].iter()), true);
1b1a35ee 3264 /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
e1599b0c 3265 /// ```
a7813a04 3266 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3267 fn ge<I>(self, other: I) -> bool
3268 where
a7813a04
XL
3269 I: IntoIterator,
3270 Self::Item: PartialOrd<I::Item>,
3271 Self: Sized,
3272 {
ba9703b0 3273 matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
a7813a04 3274 }
9fa01778
XL
3275
3276 /// Checks if the elements of this iterator are sorted.
3277 ///
3278 /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3279 /// iterator yields exactly zero or one element, `true` is returned.
3280 ///
3281 /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
3282 /// implies that this function returns `false` if any two consecutive items are not
3283 /// comparable.
3284 ///
3285 /// # Examples
3286 ///
3287 /// ```
3288 /// #![feature(is_sorted)]
3289 ///
3290 /// assert!([1, 2, 2, 9].iter().is_sorted());
3291 /// assert!(![1, 3, 2, 4].iter().is_sorted());
3292 /// assert!([0].iter().is_sorted());
3293 /// assert!(std::iter::empty::<i32>().is_sorted());
ba9703b0 3294 /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
9fa01778
XL
3295 /// ```
3296 #[inline]
3297 #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
3298 fn is_sorted(self) -> bool
3299 where
3300 Self: Sized,
3301 Self::Item: PartialOrd,
3302 {
e1599b0c 3303 self.is_sorted_by(PartialOrd::partial_cmp)
9fa01778
XL
3304 }
3305
3306 /// Checks if the elements of this iterator are sorted using the given comparator function.
3307 ///
3308 /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
3309 /// function to determine the ordering of two elements. Apart from that, it's equivalent to
3310 /// [`is_sorted`]; see its documentation for more information.
3311 ///
e1599b0c
XL
3312 /// # Examples
3313 ///
3314 /// ```
3315 /// #![feature(is_sorted)]
3316 ///
3317 /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
3318 /// assert!(![1, 3, 2, 4].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
3319 /// assert!([0].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
3320 /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| a.partial_cmp(b)));
ba9703b0 3321 /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
e1599b0c
XL
3322 /// ```
3323 ///
1b1a35ee 3324 /// [`is_sorted`]: Iterator::is_sorted
9fa01778 3325 #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
6a06907d 3326 fn is_sorted_by<F>(mut self, compare: F) -> bool
9fa01778
XL
3327 where
3328 Self: Sized,
dfeec247 3329 F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>,
9fa01778 3330 {
6a06907d
XL
3331 #[inline]
3332 fn check<'a, T>(
3333 last: &'a mut T,
3334 mut compare: impl FnMut(&T, &T) -> Option<Ordering> + 'a,
3335 ) -> impl FnMut(T) -> bool + 'a {
3336 move |curr| {
3337 if let Some(Ordering::Greater) | None = compare(&last, &curr) {
3338 return false;
3339 }
3340 *last = curr;
3341 true
3342 }
3343 }
3344
9fa01778
XL
3345 let mut last = match self.next() {
3346 Some(e) => e,
3347 None => return true,
3348 };
3349
6a06907d 3350 self.all(check(&mut last, compare))
9fa01778
XL
3351 }
3352
3353 /// Checks if the elements of this iterator are sorted using the given key extraction
3354 /// function.
3355 ///
3356 /// Instead of comparing the iterator's elements directly, this function compares the keys of
3357 /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
3358 /// its documentation for more information.
3359 ///
1b1a35ee 3360 /// [`is_sorted`]: Iterator::is_sorted
9fa01778
XL
3361 ///
3362 /// # Examples
3363 ///
3364 /// ```
3365 /// #![feature(is_sorted)]
3366 ///
3367 /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
3368 /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
3369 /// ```
3370 #[inline]
3371 #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
416331ca 3372 fn is_sorted_by_key<F, K>(self, f: F) -> bool
9fa01778
XL
3373 where
3374 Self: Sized,
416331ca 3375 F: FnMut(Self::Item) -> K,
dfeec247 3376 K: PartialOrd,
9fa01778 3377 {
416331ca 3378 self.map(f).is_sorted()
9fa01778 3379 }
3dfed10e
XL
3380
3381 /// See [TrustedRandomAccess]
1b1a35ee
XL
3382 // The unusual name is to avoid name collisions in method resolution
3383 // see #76479.
3dfed10e
XL
3384 #[inline]
3385 #[doc(hidden)]
3386 #[unstable(feature = "trusted_random_access", issue = "none")]
6c58768f 3387 unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
3dfed10e
XL
3388 where
3389 Self: TrustedRandomAccess,
3390 {
3391 unreachable!("Always specialized");
3392 }
a7813a04
XL
3393}
3394
a7813a04 3395#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 3396impl<I: Iterator + ?Sized> Iterator for &mut I {
a7813a04 3397 type Item = I::Item;
dfeec247
XL
3398 fn next(&mut self) -> Option<I::Item> {
3399 (**self).next()
3400 }
3401 fn size_hint(&self) -> (usize, Option<usize>) {
3402 (**self).size_hint()
3403 }
1b1a35ee
XL
3404 fn advance_by(&mut self, n: usize) -> Result<(), usize> {
3405 (**self).advance_by(n)
3406 }
476ff2be
SL
3407 fn nth(&mut self, n: usize) -> Option<Self::Item> {
3408 (**self).nth(n)
3409 }
a7813a04 3410}