]> git.proxmox.com Git - rustc.git/blame - library/core/src/iter/traits/iterator.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / library / core / src / iter / traits / iterator.rs
CommitLineData
e1599b0c 1use crate::cmp::{self, Ordering};
a2a8927a 2use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
a7813a04 3
5099ac24 4use super::super::try_process;
ee023bcb 5use super::super::ByRefSized;
94222f64 6use super::super::TrustedRandomAccessNoCoerce;
dfeec247
XL
7use super::super::{Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, Fuse};
8use super::super::{FlatMap, Flatten};
5869c6ff 9use super::super::{FromIterator, Intersperse, IntersperseWith, Product, Sum, Zip};
74b04a01
XL
10use super::super::{
11 Inspect, Map, MapWhile, Peekable, Rev, Scan, Skip, SkipWhile, StepBy, Take, TakeWhile,
12};
a7813a04 13
dfeec247 14fn _assert_is_object_safe(_: &dyn Iterator<Item = ()>) {}
a7813a04
XL
15
16/// An interface for dealing with iterators.
17///
18/// This is the main iterator trait. For more about the concept of iterators
19/// generally, please see the [module-level documentation]. In particular, you
20/// may want to know how to [implement `Iterator`][impl].
21///
1b1a35ee
XL
22/// [module-level documentation]: crate::iter
23/// [impl]: crate::iter#implementing-iterator
a7813a04 24#[stable(feature = "rust1", since = "1.0.0")]
2c00a5a8 25#[rustc_on_unimplemented(
0bf4aa26 26 on(
dfeec247
XL
27 _Self = "std::ops::RangeTo<Idx>",
28 label = "if you meant to iterate until a value, add a starting value",
29 note = "`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \
0bf4aa26
XL
30 bounded `Range`: `0..end`"
31 ),
32 on(
dfeec247
XL
33 _Self = "std::ops::RangeToInclusive<Idx>",
34 label = "if you meant to iterate until a value (including it), add a starting value",
35 note = "`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \
0bf4aa26
XL
36 to have a bounded `RangeInclusive`: `0..=end`"
37 ),
ee023bcb
FG
38 on(
39 _Self = "[]",
40 label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
41 ),
42 on(_Self = "&[]", label = "`{Self}` is not an iterator; try calling `.iter()`"),
2c00a5a8 43 on(
dfeec247
XL
44 _Self = "&str",
45 label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
2c00a5a8 46 ),
0bf4aa26 47 on(
dfeec247
XL
48 _Self = "std::string::String",
49 label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
0bf4aa26 50 ),
0bf4aa26 51 on(
dfeec247
XL
52 _Self = "{integral}",
53 note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
0bf4aa26
XL
54 syntax `start..end` or the inclusive range syntax `start..=end`"
55 ),
dfeec247
XL
56 label = "`{Self}` is not an iterator",
57 message = "`{Self}` is not an iterator"
2c00a5a8 58)]
17df50a5 59#[doc(notable_trait)]
6a06907d 60#[rustc_diagnostic_item = "Iterator"]
0731742a 61#[must_use = "iterators are lazy and do nothing unless consumed"]
a7813a04
XL
62pub trait Iterator {
63 /// The type of the elements being iterated over.
64 #[stable(feature = "rust1", since = "1.0.0")]
65 type Item;
66
67 /// Advances the iterator and returns the next value.
68 ///
476ff2be 69 /// Returns [`None`] when iteration is finished. Individual iterator
a7813a04 70 /// implementations may choose to resume iteration, and so calling `next()`
476ff2be 71 /// again may or may not eventually start returning [`Some(Item)`] again at some
a7813a04
XL
72 /// point.
73 ///
3dfed10e 74 /// [`Some(Item)`]: Some
476ff2be 75 ///
a7813a04
XL
76 /// # Examples
77 ///
78 /// Basic usage:
79 ///
80 /// ```
81 /// let a = [1, 2, 3];
82 ///
83 /// let mut iter = a.iter();
84 ///
85 /// // A call to next() returns the next value...
86 /// assert_eq!(Some(&1), iter.next());
87 /// assert_eq!(Some(&2), iter.next());
88 /// assert_eq!(Some(&3), iter.next());
89 ///
90 /// // ... and then None once it's over.
91 /// assert_eq!(None, iter.next());
92 ///
9fa01778 93 /// // More calls may or may not return `None`. Here, they always will.
a7813a04
XL
94 /// assert_eq!(None, iter.next());
95 /// assert_eq!(None, iter.next());
96 /// ```
1b1a35ee 97 #[lang = "next"]
a7813a04
XL
98 #[stable(feature = "rust1", since = "1.0.0")]
99 fn next(&mut self) -> Option<Self::Item>;
100
101 /// Returns the bounds on the remaining length of the iterator.
102 ///
103 /// Specifically, `size_hint()` returns a tuple where the first element
104 /// is the lower bound, and the second element is the upper bound.
105 ///
c295e0f8 106 /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
476ff2be
SL
107 /// A [`None`] here means that either there is no known upper bound, or the
108 /// upper bound is larger than [`usize`].
a7813a04
XL
109 ///
110 /// # Implementation notes
111 ///
112 /// It is not enforced that an iterator implementation yields the declared
113 /// number of elements. A buggy iterator may yield less than the lower bound
114 /// or more than the upper bound of elements.
115 ///
116 /// `size_hint()` is primarily intended to be used for optimizations such as
117 /// reserving space for the elements of the iterator, but must not be
0731742a 118 /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
a7813a04
XL
119 /// implementation of `size_hint()` should not lead to memory safety
120 /// violations.
121 ///
122 /// That said, the implementation should provide a correct estimation,
123 /// because otherwise it would be a violation of the trait's protocol.
124 ///
c295e0f8 125 /// The default implementation returns <code>(0, [None])</code> which is correct for any
a7813a04
XL
126 /// iterator.
127 ///
128 /// # Examples
129 ///
130 /// Basic usage:
131 ///
132 /// ```
133 /// let a = [1, 2, 3];
134 /// let iter = a.iter();
135 ///
136 /// assert_eq!((3, Some(3)), iter.size_hint());
137 /// ```
138 ///
139 /// A more complex example:
140 ///
141 /// ```
17df50a5 142 /// // The even numbers in the range of zero to nine.
a7813a04
XL
143 /// let iter = (0..10).filter(|x| x % 2 == 0);
144 ///
145 /// // We might iterate from zero to ten times. Knowing that it's five
146 /// // exactly wouldn't be possible without executing filter().
147 /// assert_eq!((0, Some(10)), iter.size_hint());
148 ///
7cac9316 149 /// // Let's add five more numbers with chain()
a7813a04
XL
150 /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
151 ///
152 /// // now both bounds are increased by five
153 /// assert_eq!((5, Some(15)), iter.size_hint());
154 /// ```
155 ///
156 /// Returning `None` for an upper bound:
157 ///
158 /// ```
159 /// // an infinite iterator has no upper bound
7cac9316 160 /// // and the maximum possible lower bound
a7813a04
XL
161 /// let iter = 0..;
162 ///
ba9703b0 163 /// assert_eq!((usize::MAX, None), iter.size_hint());
a7813a04
XL
164 /// ```
165 #[inline]
166 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
167 fn size_hint(&self) -> (usize, Option<usize>) {
168 (0, None)
169 }
a7813a04
XL
170
171 /// Consumes the iterator, counting the number of iterations and returning it.
172 ///
60c5eb7d
XL
173 /// This method will call [`next`] repeatedly until [`None`] is encountered,
174 /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
175 /// called at least once even if the iterator does not have any elements.
a7813a04 176 ///
1b1a35ee 177 /// [`next`]: Iterator::next
a7813a04
XL
178 ///
179 /// # Overflow Behavior
180 ///
181 /// The method does no guarding against overflows, so counting elements of
476ff2be 182 /// an iterator with more than [`usize::MAX`] elements either produces the
a7813a04
XL
183 /// wrong result or panics. If debug assertions are enabled, a panic is
184 /// guaranteed.
185 ///
186 /// # Panics
187 ///
476ff2be 188 /// This function might panic if the iterator has more than [`usize::MAX`]
a7813a04
XL
189 /// elements.
190 ///
191 /// # Examples
192 ///
193 /// Basic usage:
194 ///
195 /// ```
196 /// let a = [1, 2, 3];
197 /// assert_eq!(a.iter().count(), 3);
198 ///
199 /// let a = [1, 2, 3, 4, 5];
200 /// assert_eq!(a.iter().count(), 5);
201 /// ```
202 #[inline]
203 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
204 fn count(self) -> usize
205 where
206 Self: Sized,
207 {
6a06907d
XL
208 self.fold(
209 0,
210 #[rustc_inherit_overflow_checks]
211 |count, _| count + 1,
212 )
a7813a04
XL
213 }
214
215 /// Consumes the iterator, returning the last element.
216 ///
476ff2be
SL
217 /// This method will evaluate the iterator until it returns [`None`]. While
218 /// doing so, it keeps track of the current element. After [`None`] is
a7813a04
XL
219 /// returned, `last()` will then return the last element it saw.
220 ///
221 /// # Examples
222 ///
223 /// Basic usage:
224 ///
225 /// ```
226 /// let a = [1, 2, 3];
227 /// assert_eq!(a.iter().last(), Some(&3));
228 ///
229 /// let a = [1, 2, 3, 4, 5];
230 /// assert_eq!(a.iter().last(), Some(&5));
231 /// ```
232 #[inline]
233 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
234 fn last(self) -> Option<Self::Item>
235 where
236 Self: Sized,
237 {
e1599b0c
XL
238 #[inline]
239 fn some<T>(_: Option<T>, x: T) -> Option<T> {
240 Some(x)
241 }
242
243 self.fold(None, some)
a7813a04
XL
244 }
245
1b1a35ee
XL
246 /// Advances the iterator by `n` elements.
247 ///
248 /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
249 /// times until [`None`] is encountered.
250 ///
29967ef6
XL
251 /// `advance_by(n)` will return [`Ok(())`][Ok] if the iterator successfully advances by
252 /// `n` elements, or [`Err(k)`][Err] if [`None`] is encountered, where `k` is the number
1b1a35ee
XL
253 /// of elements the iterator is advanced by before running out of elements (i.e. the
254 /// length of the iterator). Note that `k` is always less than `n`.
255 ///
c295e0f8
XL
256 /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
257 /// can advance its outer iterator until it finds an inner iterator that is not empty, which
258 /// then often allows it to return a more accurate `size_hint()` than in its initial state.
1b1a35ee 259 ///
c295e0f8 260 /// [`Flatten`]: crate::iter::Flatten
1b1a35ee
XL
261 /// [`next`]: Iterator::next
262 ///
263 /// # Examples
264 ///
265 /// Basic usage:
266 ///
267 /// ```
268 /// #![feature(iter_advance_by)]
269 ///
270 /// let a = [1, 2, 3, 4];
271 /// let mut iter = a.iter();
272 ///
273 /// assert_eq!(iter.advance_by(2), Ok(()));
274 /// assert_eq!(iter.next(), Some(&3));
275 /// assert_eq!(iter.advance_by(0), Ok(()));
276 /// assert_eq!(iter.advance_by(100), Err(1)); // only `&4` was skipped
277 /// ```
278 #[inline]
279 #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
280 fn advance_by(&mut self, n: usize) -> Result<(), usize> {
281 for i in 0..n {
282 self.next().ok_or(i)?;
283 }
284 Ok(())
285 }
286
c30ab7b3 287 /// Returns the `n`th element of the iterator.
a7813a04 288 ///
a7813a04
XL
289 /// Like most indexing operations, the count starts from zero, so `nth(0)`
290 /// returns the first value, `nth(1)` the second, and so on.
291 ///
8bb4bdeb
XL
292 /// Note that all preceding elements, as well as the returned element, will be
293 /// consumed from the iterator. That means that the preceding elements will be
294 /// discarded, and also that calling `nth(0)` multiple times on the same iterator
295 /// will return different elements.
296 ///
476ff2be 297 /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
a7813a04
XL
298 /// iterator.
299 ///
300 /// # Examples
301 ///
302 /// Basic usage:
303 ///
304 /// ```
305 /// let a = [1, 2, 3];
306 /// assert_eq!(a.iter().nth(1), Some(&2));
307 /// ```
308 ///
309 /// Calling `nth()` multiple times doesn't rewind the iterator:
310 ///
311 /// ```
312 /// let a = [1, 2, 3];
313 ///
314 /// let mut iter = a.iter();
315 ///
316 /// assert_eq!(iter.nth(1), Some(&2));
317 /// assert_eq!(iter.nth(1), None);
318 /// ```
319 ///
320 /// Returning `None` if there are less than `n + 1` elements:
321 ///
322 /// ```
323 /// let a = [1, 2, 3];
324 /// assert_eq!(a.iter().nth(10), None);
325 /// ```
326 #[inline]
327 #[stable(feature = "rust1", since = "1.0.0")]
1b1a35ee
XL
328 fn nth(&mut self, n: usize) -> Option<Self::Item> {
329 self.advance_by(n).ok()?;
330 self.next()
a7813a04
XL
331 }
332
7cac9316
XL
333 /// Creates an iterator starting at the same point, but stepping by
334 /// the given amount at each iteration.
335 ///
94b46f34 336 /// Note 1: The first element of the iterator will always be returned,
7cac9316
XL
337 /// regardless of the step given.
338 ///
94b46f34 339 /// Note 2: The time at which ignored elements are pulled is not fixed.
136023e0
XL
340 /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
341 /// `self.nth(step-1)`, …, but is also free to behave like the sequence
342 /// `advance_n_and_return_first(&mut self, step)`,
343 /// `advance_n_and_return_first(&mut self, step)`, …
94b46f34
XL
344 /// Which way is used may change for some iterators for performance reasons.
345 /// The second way will advance the iterator earlier and may consume more items.
346 ///
347 /// `advance_n_and_return_first` is the equivalent of:
348 /// ```
136023e0 349 /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
94b46f34
XL
350 /// where
351 /// I: Iterator,
352 /// {
353 /// let next = iter.next();
136023e0
XL
354 /// if n > 1 {
355 /// iter.nth(n - 2);
94b46f34
XL
356 /// }
357 /// next
358 /// }
359 /// ```
360 ///
7cac9316
XL
361 /// # Panics
362 ///
363 /// The method will panic if the given step is `0`.
364 ///
365 /// # Examples
366 ///
367 /// Basic usage:
368 ///
369 /// ```
7cac9316 370 /// let a = [0, 1, 2, 3, 4, 5];
48663c56 371 /// let mut iter = a.iter().step_by(2);
7cac9316
XL
372 ///
373 /// assert_eq!(iter.next(), Some(&0));
374 /// assert_eq!(iter.next(), Some(&2));
375 /// assert_eq!(iter.next(), Some(&4));
376 /// assert_eq!(iter.next(), None);
377 /// ```
378 #[inline]
94b46f34 379 #[stable(feature = "iterator_step_by", since = "1.28.0")]
dfeec247
XL
380 fn step_by(self, step: usize) -> StepBy<Self>
381 where
382 Self: Sized,
383 {
9fa01778 384 StepBy::new(self, step)
7cac9316
XL
385 }
386
a7813a04
XL
387 /// Takes two iterators and creates a new iterator over both in sequence.
388 ///
389 /// `chain()` will return a new iterator which will first iterate over
390 /// values from the first iterator and then over values from the second
391 /// iterator.
392 ///
393 /// In other words, it links two iterators together, in a chain. 🔗
394 ///
e74abb32
XL
395 /// [`once`] is commonly used to adapt a single value into a chain of
396 /// other kinds of iteration.
397 ///
a7813a04
XL
398 /// # Examples
399 ///
400 /// Basic usage:
401 ///
402 /// ```
403 /// let a1 = [1, 2, 3];
404 /// let a2 = [4, 5, 6];
405 ///
406 /// let mut iter = a1.iter().chain(a2.iter());
407 ///
408 /// assert_eq!(iter.next(), Some(&1));
409 /// assert_eq!(iter.next(), Some(&2));
410 /// assert_eq!(iter.next(), Some(&3));
411 /// assert_eq!(iter.next(), Some(&4));
412 /// assert_eq!(iter.next(), Some(&5));
413 /// assert_eq!(iter.next(), Some(&6));
414 /// assert_eq!(iter.next(), None);
415 /// ```
416 ///
417 /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
418 /// anything that can be converted into an [`Iterator`], not just an
419 /// [`Iterator`] itself. For example, slices (`&[T]`) implement
420 /// [`IntoIterator`], and so can be passed to `chain()` directly:
421 ///
a7813a04
XL
422 /// ```
423 /// let s1 = &[1, 2, 3];
424 /// let s2 = &[4, 5, 6];
425 ///
426 /// let mut iter = s1.iter().chain(s2);
427 ///
428 /// assert_eq!(iter.next(), Some(&1));
429 /// assert_eq!(iter.next(), Some(&2));
430 /// assert_eq!(iter.next(), Some(&3));
431 /// assert_eq!(iter.next(), Some(&4));
432 /// assert_eq!(iter.next(), Some(&5));
433 /// assert_eq!(iter.next(), Some(&6));
434 /// assert_eq!(iter.next(), None);
435 /// ```
e74abb32
XL
436 ///
437 /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
438 ///
439 /// ```
440 /// #[cfg(windows)]
441 /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
442 /// use std::os::windows::ffi::OsStrExt;
443 /// s.encode_wide().chain(std::iter::once(0)).collect()
444 /// }
445 /// ```
446 ///
1b1a35ee 447 /// [`once`]: crate::iter::once
e74abb32 448 /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
a7813a04
XL
449 #[inline]
450 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
451 fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
452 where
453 Self: Sized,
454 U: IntoIterator<Item = Self::Item>,
a7813a04 455 {
9fa01778 456 Chain::new(self, other.into_iter())
a7813a04
XL
457 }
458
459 /// 'Zips up' two iterators into a single iterator of pairs.
460 ///
461 /// `zip()` returns a new iterator that will iterate over two other
462 /// iterators, returning a tuple where the first element comes from the
463 /// first iterator, and the second element comes from the second iterator.
464 ///
465 /// In other words, it zips two iterators together, into a single one.
466 ///
8faf50e0 467 /// If either iterator returns [`None`], [`next`] from the zipped iterator
a2a8927a
XL
468 /// will return [`None`].
469 /// If the zipped iterator has no more elements to return then each further attempt to advance
470 /// it will first try to advance the first iterator at most one time and if it still yielded an item
471 /// try to advance the second iterator at most one time.
a7813a04
XL
472 ///
473 /// # Examples
474 ///
475 /// Basic usage:
476 ///
477 /// ```
478 /// let a1 = [1, 2, 3];
479 /// let a2 = [4, 5, 6];
480 ///
481 /// let mut iter = a1.iter().zip(a2.iter());
482 ///
483 /// assert_eq!(iter.next(), Some((&1, &4)));
484 /// assert_eq!(iter.next(), Some((&2, &5)));
485 /// assert_eq!(iter.next(), Some((&3, &6)));
486 /// assert_eq!(iter.next(), None);
487 /// ```
488 ///
489 /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
490 /// anything that can be converted into an [`Iterator`], not just an
491 /// [`Iterator`] itself. For example, slices (`&[T]`) implement
492 /// [`IntoIterator`], and so can be passed to `zip()` directly:
493 ///
a7813a04
XL
494 /// ```
495 /// let s1 = &[1, 2, 3];
496 /// let s2 = &[4, 5, 6];
497 ///
498 /// let mut iter = s1.iter().zip(s2);
499 ///
500 /// assert_eq!(iter.next(), Some((&1, &4)));
501 /// assert_eq!(iter.next(), Some((&2, &5)));
502 /// assert_eq!(iter.next(), Some((&3, &6)));
503 /// assert_eq!(iter.next(), None);
504 /// ```
505 ///
506 /// `zip()` is often used to zip an infinite iterator to a finite one.
476ff2be 507 /// This works because the finite iterator will eventually return [`None`],
cc61c64b 508 /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
a7813a04
XL
509 ///
510 /// ```
511 /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
512 ///
513 /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
514 ///
515 /// assert_eq!((0, 'f'), enumerate[0]);
516 /// assert_eq!((0, 'f'), zipper[0]);
517 ///
518 /// assert_eq!((1, 'o'), enumerate[1]);
519 /// assert_eq!((1, 'o'), zipper[1]);
520 ///
521 /// assert_eq!((2, 'o'), enumerate[2]);
522 /// assert_eq!((2, 'o'), zipper[2]);
523 /// ```
524 ///
5099ac24
FG
525 /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
526 ///
527 /// ```
528 /// use std::iter::zip;
529 ///
530 /// let a = [1, 2, 3];
531 /// let b = [2, 3, 4];
532 ///
533 /// let mut zipped = zip(
534 /// a.into_iter().map(|x| x * 2).skip(1),
535 /// b.into_iter().map(|x| x * 2).skip(1),
536 /// );
537 ///
538 /// assert_eq!(zipped.next(), Some((4, 6)));
539 /// assert_eq!(zipped.next(), Some((6, 8)));
540 /// assert_eq!(zipped.next(), None);
541 /// ```
542 ///
543 /// compared to:
544 ///
545 /// ```
546 /// # let a = [1, 2, 3];
547 /// # let b = [2, 3, 4];
548 /// #
549 /// let mut zipped = a
550 /// .into_iter()
551 /// .map(|x| x * 2)
552 /// .skip(1)
553 /// .zip(b.into_iter().map(|x| x * 2).skip(1));
554 /// #
555 /// # assert_eq!(zipped.next(), Some((4, 6)));
556 /// # assert_eq!(zipped.next(), Some((6, 8)));
557 /// # assert_eq!(zipped.next(), None);
558 /// ```
559 ///
1b1a35ee
XL
560 /// [`enumerate`]: Iterator::enumerate
561 /// [`next`]: Iterator::next
5099ac24 562 /// [`zip`]: crate::iter::zip
a7813a04
XL
563 #[inline]
564 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
565 fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
566 where
567 Self: Sized,
568 U: IntoIterator,
a7813a04 569 {
3157f602 570 Zip::new(self, other.into_iter())
a7813a04
XL
571 }
572
5869c6ff
XL
573 /// Creates a new iterator which places a copy of `separator` between adjacent
574 /// items of the original iterator.
575 ///
576 /// In case `separator` does not implement [`Clone`] or needs to be
577 /// computed every time, use [`intersperse_with`].
578 ///
579 /// # Examples
580 ///
581 /// Basic usage:
582 ///
583 /// ```
dc3f5686
XL
584 /// #![feature(iter_intersperse)]
585 ///
5869c6ff
XL
586 /// let mut a = [0, 1, 2].iter().intersperse(&100);
587 /// assert_eq!(a.next(), Some(&0)); // The first element from `a`.
588 /// assert_eq!(a.next(), Some(&100)); // The separator.
589 /// assert_eq!(a.next(), Some(&1)); // The next element from `a`.
590 /// assert_eq!(a.next(), Some(&100)); // The separator.
591 /// assert_eq!(a.next(), Some(&2)); // The last element from `a`.
592 /// assert_eq!(a.next(), None); // The iterator is finished.
593 /// ```
594 ///
595 /// `intersperse` can be very useful to join an iterator's items using a common element:
94222f64 596 /// ```
dc3f5686
XL
597 /// #![feature(iter_intersperse)]
598 ///
5869c6ff
XL
599 /// let hello = ["Hello", "World", "!"].iter().copied().intersperse(" ").collect::<String>();
600 /// assert_eq!(hello, "Hello World !");
601 /// ```
602 ///
603 /// [`Clone`]: crate::clone::Clone
604 /// [`intersperse_with`]: Iterator::intersperse_with
605 #[inline]
dc3f5686 606 #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
5869c6ff
XL
607 fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
608 where
609 Self: Sized,
610 Self::Item: Clone,
611 {
612 Intersperse::new(self, separator)
613 }
614
615 /// Creates a new iterator which places an item generated by `separator`
616 /// between adjacent items of the original iterator.
617 ///
618 /// The closure will be called exactly once each time an item is placed
619 /// between two adjacent items from the underlying iterator; specifically,
620 /// the closure is not called if the underlying iterator yields less than
621 /// two items and after the last item is yielded.
622 ///
623 /// If the iterator's item implements [`Clone`], it may be easier to use
624 /// [`intersperse`].
625 ///
626 /// # Examples
627 ///
628 /// Basic usage:
629 ///
630 /// ```
dc3f5686
XL
631 /// #![feature(iter_intersperse)]
632 ///
5869c6ff
XL
633 /// #[derive(PartialEq, Debug)]
634 /// struct NotClone(usize);
635 ///
5099ac24 636 /// let v = [NotClone(0), NotClone(1), NotClone(2)];
5869c6ff
XL
637 /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
638 ///
639 /// assert_eq!(it.next(), Some(NotClone(0))); // The first element from `v`.
640 /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
641 /// assert_eq!(it.next(), Some(NotClone(1))); // The next element from `v`.
642 /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
643 /// assert_eq!(it.next(), Some(NotClone(2))); // The last element from from `v`.
644 /// assert_eq!(it.next(), None); // The iterator is finished.
645 /// ```
646 ///
647 /// `intersperse_with` can be used in situations where the separator needs
648 /// to be computed:
94222f64 649 /// ```
dc3f5686
XL
650 /// #![feature(iter_intersperse)]
651 ///
5869c6ff
XL
652 /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
653 ///
654 /// // The closure mutably borrows its context to generate an item.
655 /// let mut happy_emojis = [" ❤️ ", " 😀 "].iter().copied();
656 /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
657 ///
658 /// let result = src.intersperse_with(separator).collect::<String>();
659 /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
660 /// ```
661 /// [`Clone`]: crate::clone::Clone
662 /// [`intersperse`]: Iterator::intersperse
663 #[inline]
dc3f5686 664 #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
5869c6ff
XL
665 fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
666 where
667 Self: Sized,
668 G: FnMut() -> Self::Item,
669 {
670 IntersperseWith::new(self, separator)
671 }
672
a7813a04
XL
673 /// Takes a closure and creates an iterator which calls that closure on each
674 /// element.
675 ///
676 /// `map()` transforms one iterator into another, by means of its argument:
a1dfa0c6 677 /// something that implements [`FnMut`]. It produces a new iterator which
a7813a04
XL
678 /// calls this closure on each element of the original iterator.
679 ///
680 /// If you are good at thinking in types, you can think of `map()` like this:
681 /// If you have an iterator that gives you elements of some type `A`, and
682 /// you want an iterator of some other type `B`, you can use `map()`,
683 /// passing a closure that takes an `A` and returns a `B`.
684 ///
685 /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
686 /// lazy, it is best used when you're already working with other iterators.
687 /// If you're doing some sort of looping for a side effect, it's considered
688 /// more idiomatic to use [`for`] than `map()`.
689 ///
13cf67c4 690 /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
3dfed10e 691 /// [`FnMut`]: crate::ops::FnMut
a7813a04
XL
692 ///
693 /// # Examples
694 ///
695 /// Basic usage:
696 ///
697 /// ```
698 /// let a = [1, 2, 3];
699 ///
48663c56 700 /// let mut iter = a.iter().map(|x| 2 * x);
a7813a04
XL
701 ///
702 /// assert_eq!(iter.next(), Some(2));
703 /// assert_eq!(iter.next(), Some(4));
704 /// assert_eq!(iter.next(), Some(6));
705 /// assert_eq!(iter.next(), None);
706 /// ```
707 ///
708 /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
709 ///
710 /// ```
711 /// # #![allow(unused_must_use)]
712 /// // don't do this:
ee023bcb 713 /// (0..5).map(|x| println!("{x}"));
a7813a04
XL
714 ///
715 /// // it won't even execute, as it is lazy. Rust will warn you about this.
716 ///
717 /// // Instead, use for:
718 /// for x in 0..5 {
ee023bcb 719 /// println!("{x}");
a7813a04
XL
720 /// }
721 /// ```
722 #[inline]
723 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
724 fn map<B, F>(self, f: F) -> Map<Self, F>
725 where
726 Self: Sized,
727 F: FnMut(Self::Item) -> B,
a7813a04 728 {
9fa01778 729 Map::new(self, f)
a7813a04
XL
730 }
731
041b39d2
XL
732 /// Calls a closure on each element of an iterator.
733 ///
734 /// This is equivalent to using a [`for`] loop on the iterator, although
9fa01778 735 /// `break` and `continue` are not possible from a closure. It's generally
041b39d2 736 /// more idiomatic to use a `for` loop, but `for_each` may be more legible
9fa01778 737 /// when processing items at the end of longer iterator chains. In some
041b39d2 738 /// cases `for_each` may also be faster than a loop, because it will use
94222f64 739 /// internal iteration on adapters like `Chain`.
041b39d2 740 ///
13cf67c4 741 /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
041b39d2
XL
742 ///
743 /// # Examples
744 ///
745 /// Basic usage:
746 ///
747 /// ```
041b39d2
XL
748 /// use std::sync::mpsc::channel;
749 ///
750 /// let (tx, rx) = channel();
751 /// (0..5).map(|x| x * 2 + 1)
752 /// .for_each(move |x| tx.send(x).unwrap());
753 ///
754 /// let v: Vec<_> = rx.iter().collect();
755 /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
756 /// ```
757 ///
758 /// For such a small example, a `for` loop may be cleaner, but `for_each`
759 /// might be preferable to keep a functional style with longer iterators:
760 ///
761 /// ```
041b39d2
XL
762 /// (0..5).flat_map(|x| x * 100 .. x * 110)
763 /// .enumerate()
764 /// .filter(|&(i, x)| (i + x) % 3 == 0)
ee023bcb 765 /// .for_each(|(i, x)| println!("{i}:{x}"));
041b39d2
XL
766 /// ```
767 #[inline]
3b2f2976 768 #[stable(feature = "iterator_for_each", since = "1.21.0")]
dfeec247
XL
769 fn for_each<F>(self, f: F)
770 where
771 Self: Sized,
772 F: FnMut(Self::Item),
041b39d2 773 {
e1599b0c
XL
774 #[inline]
775 fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
776 move |(), item| f(item)
777 }
778
779 self.fold((), call(f));
041b39d2
XL
780 }
781
a7813a04
XL
782 /// Creates an iterator which uses a closure to determine if an element
783 /// should be yielded.
784 ///
1b1a35ee
XL
785 /// Given an element the closure must return `true` or `false`. The returned
786 /// iterator will yield only the elements for which the closure returns
787 /// true.
a7813a04
XL
788 ///
789 /// # Examples
790 ///
791 /// Basic usage:
792 ///
793 /// ```
794 /// let a = [0i32, 1, 2];
795 ///
48663c56 796 /// let mut iter = a.iter().filter(|x| x.is_positive());
a7813a04
XL
797 ///
798 /// assert_eq!(iter.next(), Some(&1));
799 /// assert_eq!(iter.next(), Some(&2));
800 /// assert_eq!(iter.next(), None);
801 /// ```
802 ///
803 /// Because the closure passed to `filter()` takes a reference, and many
804 /// iterators iterate over references, this leads to a possibly confusing
805 /// situation, where the type of the closure is a double reference:
806 ///
807 /// ```
808 /// let a = [0, 1, 2];
809 ///
48663c56 810 /// let mut iter = a.iter().filter(|x| **x > 1); // need two *s!
a7813a04
XL
811 ///
812 /// assert_eq!(iter.next(), Some(&2));
813 /// assert_eq!(iter.next(), None);
814 /// ```
815 ///
816 /// It's common to instead use destructuring on the argument to strip away
817 /// one:
818 ///
819 /// ```
820 /// let a = [0, 1, 2];
821 ///
48663c56 822 /// let mut iter = a.iter().filter(|&x| *x > 1); // both & and *
a7813a04
XL
823 ///
824 /// assert_eq!(iter.next(), Some(&2));
825 /// assert_eq!(iter.next(), None);
826 /// ```
827 ///
828 /// or both:
829 ///
830 /// ```
831 /// let a = [0, 1, 2];
832 ///
48663c56 833 /// let mut iter = a.iter().filter(|&&x| x > 1); // two &s
a7813a04
XL
834 ///
835 /// assert_eq!(iter.next(), Some(&2));
836 /// assert_eq!(iter.next(), None);
837 /// ```
838 ///
839 /// of these layers.
74b04a01
XL
840 ///
841 /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
a7813a04
XL
842 #[inline]
843 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
844 fn filter<P>(self, predicate: P) -> Filter<Self, P>
845 where
846 Self: Sized,
847 P: FnMut(&Self::Item) -> bool,
a7813a04 848 {
9fa01778 849 Filter::new(self, predicate)
a7813a04
XL
850 }
851
852 /// Creates an iterator that both filters and maps.
853 ///
1b1a35ee
XL
854 /// The returned iterator yields only the `value`s for which the supplied
855 /// closure returns `Some(value)`.
a7813a04 856 ///
1b1a35ee
XL
857 /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
858 /// concise. The example below shows how a `map().filter().map()` can be
859 /// shortened to a single call to `filter_map`.
a7813a04 860 ///
1b1a35ee
XL
861 /// [`filter`]: Iterator::filter
862 /// [`map`]: Iterator::map
a7813a04
XL
863 ///
864 /// # Examples
865 ///
866 /// Basic usage:
867 ///
868 /// ```
3dfed10e 869 /// let a = ["1", "two", "NaN", "four", "5"];
a7813a04
XL
870 ///
871 /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
872 ///
873 /// assert_eq!(iter.next(), Some(1));
ff7c6d11 874 /// assert_eq!(iter.next(), Some(5));
a7813a04
XL
875 /// assert_eq!(iter.next(), None);
876 /// ```
877 ///
cc61c64b 878 /// Here's the same example, but with [`filter`] and [`map`]:
a7813a04
XL
879 ///
880 /// ```
3dfed10e 881 /// let a = ["1", "two", "NaN", "four", "5"];
ff7c6d11 882 /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
3b2f2976 883 /// assert_eq!(iter.next(), Some(1));
ff7c6d11 884 /// assert_eq!(iter.next(), Some(5));
a7813a04
XL
885 /// assert_eq!(iter.next(), None);
886 /// ```
a7813a04
XL
887 #[inline]
888 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
889 fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
890 where
891 Self: Sized,
892 F: FnMut(Self::Item) -> Option<B>,
a7813a04 893 {
9fa01778 894 FilterMap::new(self, f)
a7813a04
XL
895 }
896
897 /// Creates an iterator which gives the current iteration count as well as
898 /// the next value.
899 ///
900 /// The iterator returned yields pairs `(i, val)`, where `i` is the
901 /// current index of iteration and `val` is the value returned by the
902 /// iterator.
903 ///
904 /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
cc61c64b 905 /// different sized integer, the [`zip`] function provides similar
a7813a04
XL
906 /// functionality.
907 ///
a7813a04
XL
908 /// # Overflow Behavior
909 ///
910 /// The method does no guarding against overflows, so enumerating more than
911 /// [`usize::MAX`] elements either produces the wrong result or panics. If
912 /// debug assertions are enabled, a panic is guaranteed.
913 ///
a7813a04
XL
914 /// # Panics
915 ///
916 /// The returned iterator might panic if the to-be-returned index would
476ff2be
SL
917 /// overflow a [`usize`].
918 ///
1b1a35ee 919 /// [`zip`]: Iterator::zip
a7813a04
XL
920 ///
921 /// # Examples
922 ///
923 /// ```
924 /// let a = ['a', 'b', 'c'];
925 ///
926 /// let mut iter = a.iter().enumerate();
927 ///
928 /// assert_eq!(iter.next(), Some((0, &'a')));
929 /// assert_eq!(iter.next(), Some((1, &'b')));
930 /// assert_eq!(iter.next(), Some((2, &'c')));
931 /// assert_eq!(iter.next(), None);
932 /// ```
933 #[inline]
934 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
935 fn enumerate(self) -> Enumerate<Self>
936 where
937 Self: Sized,
938 {
9fa01778 939 Enumerate::new(self)
a7813a04
XL
940 }
941
cdc7bbd5
XL
942 /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
943 /// to look at the next element of the iterator without consuming it. See
944 /// their documentation for more information.
a7813a04 945 ///
cdc7bbd5
XL
946 /// Note that the underlying iterator is still advanced when [`peek`] or
947 /// [`peek_mut`] are called for the first time: In order to retrieve the
948 /// next element, [`next`] is called on the underlying iterator, hence any
949 /// side effects (i.e. anything other than fetching the next value) of
950 /// the [`next`] method will occur.
a7813a04 951 ///
a7813a04
XL
952 ///
953 /// # Examples
954 ///
955 /// Basic usage:
956 ///
957 /// ```
958 /// let xs = [1, 2, 3];
959 ///
960 /// let mut iter = xs.iter().peekable();
961 ///
962 /// // peek() lets us see into the future
963 /// assert_eq!(iter.peek(), Some(&&1));
964 /// assert_eq!(iter.next(), Some(&1));
965 ///
966 /// assert_eq!(iter.next(), Some(&2));
967 ///
968 /// // we can peek() multiple times, the iterator won't advance
969 /// assert_eq!(iter.peek(), Some(&&3));
970 /// assert_eq!(iter.peek(), Some(&&3));
971 ///
972 /// assert_eq!(iter.next(), Some(&3));
973 ///
974 /// // after the iterator is finished, so is peek()
975 /// assert_eq!(iter.peek(), None);
976 /// assert_eq!(iter.next(), None);
977 /// ```
cdc7bbd5
XL
978 ///
979 /// Using [`peek_mut`] to mutate the next item without advancing the
980 /// iterator:
981 ///
982 /// ```
983 /// let xs = [1, 2, 3];
984 ///
985 /// let mut iter = xs.iter().peekable();
986 ///
987 /// // `peek_mut()` lets us see into the future
988 /// assert_eq!(iter.peek_mut(), Some(&mut &1));
989 /// assert_eq!(iter.peek_mut(), Some(&mut &1));
990 /// assert_eq!(iter.next(), Some(&1));
991 ///
992 /// if let Some(mut p) = iter.peek_mut() {
993 /// assert_eq!(*p, &2);
994 /// // put a value into the iterator
995 /// *p = &1000;
996 /// }
997 ///
998 /// // The value reappears as the iterator continues
999 /// assert_eq!(iter.collect::<Vec<_>>(), vec![&1000, &3]);
1000 /// ```
1001 /// [`peek`]: Peekable::peek
1002 /// [`peek_mut`]: Peekable::peek_mut
1003 /// [`next`]: Iterator::next
a7813a04
XL
1004 #[inline]
1005 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1006 fn peekable(self) -> Peekable<Self>
1007 where
1008 Self: Sized,
1009 {
9fa01778 1010 Peekable::new(self)
a7813a04
XL
1011 }
1012
cc61c64b 1013 /// Creates an iterator that [`skip`]s elements based on a predicate.
a7813a04 1014 ///
1b1a35ee 1015 /// [`skip`]: Iterator::skip
a7813a04
XL
1016 ///
1017 /// `skip_while()` takes a closure as an argument. It will call this
1018 /// closure on each element of the iterator, and ignore elements
1019 /// until it returns `false`.
1020 ///
1021 /// After `false` is returned, `skip_while()`'s job is over, and the
1022 /// rest of the elements are yielded.
1023 ///
1024 /// # Examples
1025 ///
1026 /// Basic usage:
1027 ///
1028 /// ```
1029 /// let a = [-1i32, 0, 1];
1030 ///
48663c56 1031 /// let mut iter = a.iter().skip_while(|x| x.is_negative());
a7813a04
XL
1032 ///
1033 /// assert_eq!(iter.next(), Some(&0));
1034 /// assert_eq!(iter.next(), Some(&1));
1035 /// assert_eq!(iter.next(), None);
1036 /// ```
1037 ///
1038 /// Because the closure passed to `skip_while()` takes a reference, and many
1039 /// iterators iterate over references, this leads to a possibly confusing
6a06907d 1040 /// situation, where the type of the closure argument is a double reference:
a7813a04
XL
1041 ///
1042 /// ```
1043 /// let a = [-1, 0, 1];
1044 ///
48663c56 1045 /// let mut iter = a.iter().skip_while(|x| **x < 0); // need two *s!
a7813a04
XL
1046 ///
1047 /// assert_eq!(iter.next(), Some(&0));
1048 /// assert_eq!(iter.next(), Some(&1));
1049 /// assert_eq!(iter.next(), None);
1050 /// ```
1051 ///
1052 /// Stopping after an initial `false`:
1053 ///
1054 /// ```
1055 /// let a = [-1, 0, 1, -2];
1056 ///
48663c56 1057 /// let mut iter = a.iter().skip_while(|x| **x < 0);
a7813a04
XL
1058 ///
1059 /// assert_eq!(iter.next(), Some(&0));
1060 /// assert_eq!(iter.next(), Some(&1));
1061 ///
1062 /// // while this would have been false, since we already got a false,
1063 /// // skip_while() isn't used any more
1064 /// assert_eq!(iter.next(), Some(&-2));
1065 ///
1066 /// assert_eq!(iter.next(), None);
1067 /// ```
1068 #[inline]
a2a8927a 1069 #[doc(alias = "drop_while")]
a7813a04 1070 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1071 fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1072 where
1073 Self: Sized,
1074 P: FnMut(&Self::Item) -> bool,
a7813a04 1075 {
9fa01778 1076 SkipWhile::new(self, predicate)
a7813a04
XL
1077 }
1078
1079 /// Creates an iterator that yields elements based on a predicate.
1080 ///
1081 /// `take_while()` takes a closure as an argument. It will call this
1082 /// closure on each element of the iterator, and yield elements
1083 /// while it returns `true`.
1084 ///
1085 /// After `false` is returned, `take_while()`'s job is over, and the
1086 /// rest of the elements are ignored.
1087 ///
1088 /// # Examples
1089 ///
1090 /// Basic usage:
1091 ///
1092 /// ```
1093 /// let a = [-1i32, 0, 1];
1094 ///
48663c56 1095 /// let mut iter = a.iter().take_while(|x| x.is_negative());
a7813a04
XL
1096 ///
1097 /// assert_eq!(iter.next(), Some(&-1));
1098 /// assert_eq!(iter.next(), None);
1099 /// ```
1100 ///
1101 /// Because the closure passed to `take_while()` takes a reference, and many
1102 /// iterators iterate over references, this leads to a possibly confusing
1103 /// situation, where the type of the closure is a double reference:
1104 ///
1105 /// ```
1106 /// let a = [-1, 0, 1];
1107 ///
48663c56 1108 /// let mut iter = a.iter().take_while(|x| **x < 0); // need two *s!
a7813a04
XL
1109 ///
1110 /// assert_eq!(iter.next(), Some(&-1));
1111 /// assert_eq!(iter.next(), None);
1112 /// ```
1113 ///
1114 /// Stopping after an initial `false`:
1115 ///
1116 /// ```
1117 /// let a = [-1, 0, 1, -2];
1118 ///
48663c56 1119 /// let mut iter = a.iter().take_while(|x| **x < 0);
a7813a04
XL
1120 ///
1121 /// assert_eq!(iter.next(), Some(&-1));
1122 ///
1123 /// // We have more elements that are less than zero, but since we already
1124 /// // got a false, take_while() isn't used any more
1125 /// assert_eq!(iter.next(), None);
1126 /// ```
1127 ///
1128 /// Because `take_while()` needs to look at the value in order to see if it
1129 /// should be included or not, consuming iterators will see that it is
1130 /// removed:
1131 ///
1132 /// ```
1133 /// let a = [1, 2, 3, 4];
48663c56 1134 /// let mut iter = a.iter();
a7813a04
XL
1135 ///
1136 /// let result: Vec<i32> = iter.by_ref()
1137 /// .take_while(|n| **n != 3)
1138 /// .cloned()
1139 /// .collect();
1140 ///
1141 /// assert_eq!(result, &[1, 2]);
1142 ///
1143 /// let result: Vec<i32> = iter.cloned().collect();
1144 ///
1145 /// assert_eq!(result, &[4]);
1146 /// ```
1147 ///
1148 /// The `3` is no longer there, because it was consumed in order to see if
9fa01778 1149 /// the iteration should stop, but wasn't placed back into the iterator.
a7813a04
XL
1150 #[inline]
1151 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1152 fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1153 where
1154 Self: Sized,
1155 P: FnMut(&Self::Item) -> bool,
a7813a04 1156 {
9fa01778 1157 TakeWhile::new(self, predicate)
a7813a04
XL
1158 }
1159
74b04a01
XL
1160 /// Creates an iterator that both yields elements based on a predicate and maps.
1161 ///
1162 /// `map_while()` takes a closure as an argument. It will call this
1163 /// closure on each element of the iterator, and yield elements
1164 /// while it returns [`Some(_)`][`Some`].
1165 ///
74b04a01
XL
1166 /// # Examples
1167 ///
1168 /// Basic usage:
1169 ///
1170 /// ```
74b04a01
XL
1171 /// let a = [-1i32, 4, 0, 1];
1172 ///
1173 /// let mut iter = a.iter().map_while(|x| 16i32.checked_div(*x));
1174 ///
1175 /// assert_eq!(iter.next(), Some(-16));
1176 /// assert_eq!(iter.next(), Some(4));
1177 /// assert_eq!(iter.next(), None);
1178 /// ```
1179 ///
1180 /// Here's the same example, but with [`take_while`] and [`map`]:
1181 ///
1b1a35ee
XL
1182 /// [`take_while`]: Iterator::take_while
1183 /// [`map`]: Iterator::map
74b04a01
XL
1184 ///
1185 /// ```
1186 /// let a = [-1i32, 4, 0, 1];
1187 ///
1188 /// let mut iter = a.iter()
1189 /// .map(|x| 16i32.checked_div(*x))
1190 /// .take_while(|x| x.is_some())
1191 /// .map(|x| x.unwrap());
1192 ///
1193 /// assert_eq!(iter.next(), Some(-16));
1194 /// assert_eq!(iter.next(), Some(4));
1195 /// assert_eq!(iter.next(), None);
1196 /// ```
1197 ///
1198 /// Stopping after an initial [`None`]:
1199 ///
1200 /// ```
ba9703b0 1201 /// let a = [0, 1, 2, -3, 4, 5, -6];
74b04a01 1202 ///
ba9703b0
XL
1203 /// let iter = a.iter().map_while(|x| u32::try_from(*x).ok());
1204 /// let vec = iter.collect::<Vec<_>>();
74b04a01 1205 ///
ba9703b0 1206 /// // We have more elements which could fit in u32 (4, 5), but `map_while` returned `None` for `-3`
3dfed10e 1207 /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
ba9703b0 1208 /// assert_eq!(vec, vec![0, 1, 2]);
74b04a01
XL
1209 /// ```
1210 ///
1211 /// Because `map_while()` needs to look at the value in order to see if it
1212 /// should be included or not, consuming iterators will see that it is
1213 /// removed:
1214 ///
1215 /// ```
74b04a01
XL
1216 /// let a = [1, 2, -3, 4];
1217 /// let mut iter = a.iter();
1218 ///
1219 /// let result: Vec<u32> = iter.by_ref()
1220 /// .map_while(|n| u32::try_from(*n).ok())
1221 /// .collect();
1222 ///
1223 /// assert_eq!(result, &[1, 2]);
1224 ///
1225 /// let result: Vec<i32> = iter.cloned().collect();
1226 ///
1227 /// assert_eq!(result, &[4]);
1228 /// ```
1229 ///
1230 /// The `-3` is no longer there, because it was consumed in order to see if
1231 /// the iteration should stop, but wasn't placed back into the iterator.
1232 ///
ba9703b0 1233 /// Note that unlike [`take_while`] this iterator is **not** fused.
5869c6ff 1234 /// It is also not specified what this iterator returns after the first [`None`] is returned.
ba9703b0
XL
1235 /// If you need fused iterator, use [`fuse`].
1236 ///
1b1a35ee 1237 /// [`fuse`]: Iterator::fuse
74b04a01 1238 #[inline]
c295e0f8 1239 #[stable(feature = "iter_map_while", since = "1.57.0")]
74b04a01
XL
1240 fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1241 where
1242 Self: Sized,
1243 P: FnMut(Self::Item) -> Option<B>,
1244 {
1245 MapWhile::new(self, predicate)
1246 }
1247
a7813a04
XL
1248 /// Creates an iterator that skips the first `n` elements.
1249 ///
cdc7bbd5
XL
1250 /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1251 /// iterator is reached (whichever happens first). After that, all the remaining
1252 /// elements are yielded. In particular, if the original iterator is too short,
1253 /// then the returned iterator is empty.
1254 ///
dc9dc135 1255 /// Rather than overriding this method directly, instead override the `nth` method.
a7813a04
XL
1256 ///
1257 /// # Examples
1258 ///
1259 /// Basic usage:
1260 ///
1261 /// ```
1262 /// let a = [1, 2, 3];
1263 ///
1264 /// let mut iter = a.iter().skip(2);
1265 ///
1266 /// assert_eq!(iter.next(), Some(&3));
1267 /// assert_eq!(iter.next(), None);
1268 /// ```
1269 #[inline]
1270 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1271 fn skip(self, n: usize) -> Skip<Self>
1272 where
1273 Self: Sized,
1274 {
9fa01778 1275 Skip::new(self, n)
a7813a04
XL
1276 }
1277
cdc7bbd5
XL
1278 /// Creates an iterator that yields the first `n` elements, or fewer
1279 /// if the underlying iterator ends sooner.
1280 ///
1281 /// `take(n)` yields elements until `n` elements are yielded or the end of
1282 /// the iterator is reached (whichever happens first).
1283 /// The returned iterator is a prefix of length `n` if the original iterator
1284 /// contains at least `n` elements, otherwise it contains all of the
1285 /// (fewer than `n`) elements of the original iterator.
a7813a04
XL
1286 ///
1287 /// # Examples
1288 ///
1289 /// Basic usage:
1290 ///
1291 /// ```
1292 /// let a = [1, 2, 3];
1293 ///
1294 /// let mut iter = a.iter().take(2);
1295 ///
1296 /// assert_eq!(iter.next(), Some(&1));
1297 /// assert_eq!(iter.next(), Some(&2));
1298 /// assert_eq!(iter.next(), None);
1299 /// ```
1300 ///
1301 /// `take()` is often used with an infinite iterator, to make it finite:
1302 ///
1303 /// ```
1304 /// let mut iter = (0..).take(3);
1305 ///
1306 /// assert_eq!(iter.next(), Some(0));
1307 /// assert_eq!(iter.next(), Some(1));
1308 /// assert_eq!(iter.next(), Some(2));
1309 /// assert_eq!(iter.next(), None);
1310 /// ```
f9f354fc
XL
1311 ///
1312 /// If less than `n` elements are available,
1313 /// `take` will limit itself to the size of the underlying iterator:
1314 ///
1315 /// ```
5099ac24 1316 /// let v = [1, 2];
f9f354fc
XL
1317 /// let mut iter = v.into_iter().take(5);
1318 /// assert_eq!(iter.next(), Some(1));
1319 /// assert_eq!(iter.next(), Some(2));
1320 /// assert_eq!(iter.next(), None);
1321 /// ```
a7813a04
XL
1322 #[inline]
1323 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1324 fn take(self, n: usize) -> Take<Self>
1325 where
1326 Self: Sized,
1327 {
9fa01778 1328 Take::new(self, n)
a7813a04
XL
1329 }
1330
94222f64 1331 /// An iterator adapter similar to [`fold`] that holds internal state and
a7813a04
XL
1332 /// produces a new iterator.
1333 ///
1b1a35ee 1334 /// [`fold`]: Iterator::fold
a7813a04
XL
1335 ///
1336 /// `scan()` takes two arguments: an initial value which seeds the internal
1337 /// state, and a closure with two arguments, the first being a mutable
1338 /// reference to the internal state and the second an iterator element.
1339 /// The closure can assign to the internal state to share state between
1340 /// iterations.
1341 ///
1342 /// On iteration, the closure will be applied to each element of the
1343 /// iterator and the return value from the closure, an [`Option`], is
1344 /// yielded by the iterator.
1345 ///
a7813a04
XL
1346 /// # Examples
1347 ///
1348 /// Basic usage:
1349 ///
1350 /// ```
1351 /// let a = [1, 2, 3];
1352 ///
1353 /// let mut iter = a.iter().scan(1, |state, &x| {
1354 /// // each iteration, we'll multiply the state by the element
1355 /// *state = *state * x;
1356 ///
0531ce1d
XL
1357 /// // then, we'll yield the negation of the state
1358 /// Some(-*state)
a7813a04
XL
1359 /// });
1360 ///
0531ce1d
XL
1361 /// assert_eq!(iter.next(), Some(-1));
1362 /// assert_eq!(iter.next(), Some(-2));
1363 /// assert_eq!(iter.next(), Some(-6));
a7813a04
XL
1364 /// assert_eq!(iter.next(), None);
1365 /// ```
1366 #[inline]
1367 #[stable(feature = "rust1", since = "1.0.0")]
1368 fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
dfeec247
XL
1369 where
1370 Self: Sized,
1371 F: FnMut(&mut St, Self::Item) -> Option<B>,
a7813a04 1372 {
9fa01778 1373 Scan::new(self, initial_state, f)
a7813a04
XL
1374 }
1375
1376 /// Creates an iterator that works like map, but flattens nested structure.
1377 ///
cc61c64b 1378 /// The [`map`] adapter is very useful, but only when the closure
a7813a04
XL
1379 /// argument produces values. If it produces an iterator instead, there's
1380 /// an extra layer of indirection. `flat_map()` will remove this extra layer
1381 /// on its own.
1382 ///
83c7162d 1383 /// You can think of `flat_map(f)` as the semantic equivalent
0531ce1d
XL
1384 /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1385 ///
cc61c64b 1386 /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
a7813a04
XL
1387 /// one item for each element, and `flat_map()`'s closure returns an
1388 /// iterator for each element.
1389 ///
1b1a35ee
XL
1390 /// [`map`]: Iterator::map
1391 /// [`flatten`]: Iterator::flatten
476ff2be 1392 ///
a7813a04
XL
1393 /// # Examples
1394 ///
1395 /// Basic usage:
1396 ///
1397 /// ```
1398 /// let words = ["alpha", "beta", "gamma"];
1399 ///
1400 /// // chars() returns an iterator
1401 /// let merged: String = words.iter()
1402 /// .flat_map(|s| s.chars())
1403 /// .collect();
1404 /// assert_eq!(merged, "alphabetagamma");
1405 /// ```
1406 #[inline]
1407 #[stable(feature = "rust1", since = "1.0.0")]
1408 fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
dfeec247
XL
1409 where
1410 Self: Sized,
1411 U: IntoIterator,
1412 F: FnMut(Self::Item) -> U,
a7813a04 1413 {
9fa01778 1414 FlatMap::new(self, f)
0531ce1d
XL
1415 }
1416
1417 /// Creates an iterator that flattens nested structure.
1418 ///
1419 /// This is useful when you have an iterator of iterators or an iterator of
1420 /// things that can be turned into iterators and you want to remove one
1421 /// level of indirection.
1422 ///
1423 /// # Examples
1424 ///
1425 /// Basic usage:
1426 ///
1427 /// ```
0531ce1d
XL
1428 /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1429 /// let flattened = data.into_iter().flatten().collect::<Vec<u8>>();
1430 /// assert_eq!(flattened, &[1, 2, 3, 4, 5, 6]);
1431 /// ```
1432 ///
1433 /// Mapping and then flattening:
1434 ///
1435 /// ```
0531ce1d
XL
1436 /// let words = ["alpha", "beta", "gamma"];
1437 ///
1438 /// // chars() returns an iterator
1439 /// let merged: String = words.iter()
1440 /// .map(|s| s.chars())
1441 /// .flatten()
1442 /// .collect();
1443 /// assert_eq!(merged, "alphabetagamma");
1444 /// ```
1445 ///
1446 /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1447 /// in this case since it conveys intent more clearly:
1448 ///
1449 /// ```
1450 /// let words = ["alpha", "beta", "gamma"];
1451 ///
1452 /// // chars() returns an iterator
1453 /// let merged: String = words.iter()
1454 /// .flat_map(|s| s.chars())
1455 /// .collect();
1456 /// assert_eq!(merged, "alphabetagamma");
1457 /// ```
1458 ///
fc512014 1459 /// Flattening only removes one level of nesting at a time:
0531ce1d
XL
1460 ///
1461 /// ```
0531ce1d
XL
1462 /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1463 ///
1464 /// let d2 = d3.iter().flatten().collect::<Vec<_>>();
1465 /// assert_eq!(d2, [&[1, 2], &[3, 4], &[5, 6], &[7, 8]]);
1466 ///
1467 /// let d1 = d3.iter().flatten().flatten().collect::<Vec<_>>();
1468 /// assert_eq!(d1, [&1, &2, &3, &4, &5, &6, &7, &8]);
1469 /// ```
1470 ///
1471 /// Here we see that `flatten()` does not perform a "deep" flatten.
1472 /// Instead, only one level of nesting is removed. That is, if you
fc512014 1473 /// `flatten()` a three-dimensional array, the result will be
0531ce1d
XL
1474 /// two-dimensional and not one-dimensional. To get a one-dimensional
1475 /// structure, you have to `flatten()` again.
83c7162d 1476 ///
1b1a35ee 1477 /// [`flat_map()`]: Iterator::flat_map
0531ce1d 1478 #[inline]
b7449926 1479 #[stable(feature = "iterator_flatten", since = "1.29.0")]
0531ce1d 1480 fn flatten(self) -> Flatten<Self>
dfeec247
XL
1481 where
1482 Self: Sized,
1483 Self::Item: IntoIterator,
1484 {
9fa01778 1485 Flatten::new(self)
a7813a04
XL
1486 }
1487
476ff2be
SL
1488 /// Creates an iterator which ends after the first [`None`].
1489 ///
1490 /// After an iterator returns [`None`], future calls may or may not yield
1491 /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1492 /// [`None`] is given, it will always return [`None`] forever.
a7813a04 1493 ///
cdc7bbd5
XL
1494 /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1495 /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1496 /// if the [`FusedIterator`] trait is improperly implemented.
1497 ///
3dfed10e 1498 /// [`Some(T)`]: Some
cdc7bbd5 1499 /// [`FusedIterator`]: crate::iter::FusedIterator
a7813a04
XL
1500 ///
1501 /// # Examples
1502 ///
1503 /// Basic usage:
1504 ///
1505 /// ```
1506 /// // an iterator which alternates between Some and None
1507 /// struct Alternate {
1508 /// state: i32,
1509 /// }
1510 ///
1511 /// impl Iterator for Alternate {
1512 /// type Item = i32;
1513 ///
1514 /// fn next(&mut self) -> Option<i32> {
1515 /// let val = self.state;
1516 /// self.state = self.state + 1;
1517 ///
1518 /// // if it's even, Some(i32), else None
1519 /// if val % 2 == 0 {
1520 /// Some(val)
1521 /// } else {
1522 /// None
1523 /// }
1524 /// }
1525 /// }
1526 ///
1527 /// let mut iter = Alternate { state: 0 };
1528 ///
1529 /// // we can see our iterator going back and forth
1530 /// assert_eq!(iter.next(), Some(0));
1531 /// assert_eq!(iter.next(), None);
1532 /// assert_eq!(iter.next(), Some(2));
1533 /// assert_eq!(iter.next(), None);
1534 ///
1535 /// // however, once we fuse it...
1536 /// let mut iter = iter.fuse();
1537 ///
1538 /// assert_eq!(iter.next(), Some(4));
1539 /// assert_eq!(iter.next(), None);
1540 ///
9fa01778 1541 /// // it will always return `None` after the first time.
a7813a04
XL
1542 /// assert_eq!(iter.next(), None);
1543 /// assert_eq!(iter.next(), None);
1544 /// assert_eq!(iter.next(), None);
1545 /// ```
1546 #[inline]
1547 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1548 fn fuse(self) -> Fuse<Self>
1549 where
1550 Self: Sized,
1551 {
9fa01778 1552 Fuse::new(self)
a7813a04
XL
1553 }
1554
60c5eb7d 1555 /// Does something with each element of an iterator, passing the value on.
a7813a04
XL
1556 ///
1557 /// When using iterators, you'll often chain several of them together.
1558 /// While working on such code, you might want to check out what's
1559 /// happening at various parts in the pipeline. To do that, insert
1560 /// a call to `inspect()`.
1561 ///
94b46f34
XL
1562 /// It's more common for `inspect()` to be used as a debugging tool than to
1563 /// exist in your final code, but applications may find it useful in certain
1564 /// situations when errors need to be logged before being discarded.
a7813a04
XL
1565 ///
1566 /// # Examples
1567 ///
1568 /// Basic usage:
1569 ///
1570 /// ```
1571 /// let a = [1, 4, 2, 3];
1572 ///
1573 /// // this iterator sequence is complex.
1574 /// let sum = a.iter()
0531ce1d
XL
1575 /// .cloned()
1576 /// .filter(|x| x % 2 == 0)
1577 /// .fold(0, |sum, i| sum + i);
a7813a04 1578 ///
ee023bcb 1579 /// println!("{sum}");
a7813a04
XL
1580 ///
1581 /// // let's add some inspect() calls to investigate what's happening
1582 /// let sum = a.iter()
0531ce1d 1583 /// .cloned()
ee023bcb 1584 /// .inspect(|x| println!("about to filter: {x}"))
0531ce1d 1585 /// .filter(|x| x % 2 == 0)
ee023bcb 1586 /// .inspect(|x| println!("made it through filter: {x}"))
0531ce1d 1587 /// .fold(0, |sum, i| sum + i);
a7813a04 1588 ///
ee023bcb 1589 /// println!("{sum}");
a7813a04
XL
1590 /// ```
1591 ///
1592 /// This will print:
1593 ///
1594 /// ```text
0531ce1d 1595 /// 6
a7813a04
XL
1596 /// about to filter: 1
1597 /// about to filter: 4
1598 /// made it through filter: 4
1599 /// about to filter: 2
1600 /// made it through filter: 2
1601 /// about to filter: 3
1602 /// 6
1603 /// ```
94b46f34
XL
1604 ///
1605 /// Logging errors before discarding them:
1606 ///
1607 /// ```
1608 /// let lines = ["1", "2", "a"];
1609 ///
1610 /// let sum: i32 = lines
1611 /// .iter()
1612 /// .map(|line| line.parse::<i32>())
1613 /// .inspect(|num| {
1614 /// if let Err(ref e) = *num {
ee023bcb 1615 /// println!("Parsing error: {e}");
94b46f34
XL
1616 /// }
1617 /// })
1618 /// .filter_map(Result::ok)
1619 /// .sum();
1620 ///
ee023bcb 1621 /// println!("Sum: {sum}");
94b46f34
XL
1622 /// ```
1623 ///
1624 /// This will print:
1625 ///
1626 /// ```text
1627 /// Parsing error: invalid digit found in string
1628 /// Sum: 3
1629 /// ```
a7813a04
XL
1630 #[inline]
1631 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1632 fn inspect<F>(self, f: F) -> Inspect<Self, F>
1633 where
1634 Self: Sized,
1635 F: FnMut(&Self::Item),
a7813a04 1636 {
9fa01778 1637 Inspect::new(self, f)
a7813a04
XL
1638 }
1639
1640 /// Borrows an iterator, rather than consuming it.
1641 ///
94222f64 1642 /// This is useful to allow applying iterator adapters while still
a7813a04
XL
1643 /// retaining ownership of the original iterator.
1644 ///
1645 /// # Examples
1646 ///
1647 /// Basic usage:
1648 ///
1649 /// ```
5099ac24 1650 /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
a7813a04 1651 ///
cdc7bbd5
XL
1652 /// // Take the first two words.
1653 /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1654 /// assert_eq!(hello_world, vec!["hello", "world"]);
a7813a04 1655 ///
cdc7bbd5
XL
1656 /// // Collect the rest of the words.
1657 /// // We can only do this because we used `by_ref` earlier.
1658 /// let of_rust: Vec<_> = words.collect();
1659 /// assert_eq!(of_rust, vec!["of", "Rust"]);
a7813a04
XL
1660 /// ```
1661 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1662 fn by_ref(&mut self) -> &mut Self
1663 where
1664 Self: Sized,
1665 {
1666 self
1667 }
a7813a04
XL
1668
1669 /// Transforms an iterator into a collection.
1670 ///
1671 /// `collect()` can take anything iterable, and turn it into a relevant
1672 /// collection. This is one of the more powerful methods in the standard
1673 /// library, used in a variety of contexts.
1674 ///
1675 /// The most basic pattern in which `collect()` is used is to turn one
cc61c64b 1676 /// collection into another. You take a collection, call [`iter`] on it,
a7813a04
XL
1677 /// do a bunch of transformations, and then `collect()` at the end.
1678 ///
3dfed10e
XL
1679 /// `collect()` can also create instances of types that are not typical
1680 /// collections. For example, a [`String`] can be built from [`char`]s,
1681 /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1682 /// into `Result<Collection<T>, E>`. See the examples below for more.
a7813a04 1683 ///
a7813a04
XL
1684 /// Because `collect()` is so general, it can cause problems with type
1685 /// inference. As such, `collect()` is one of the few times you'll see
1686 /// the syntax affectionately known as the 'turbofish': `::<>`. This
1687 /// helps the inference algorithm understand specifically which collection
1688 /// you're trying to collect into.
1689 ///
1690 /// # Examples
1691 ///
1692 /// Basic usage:
1693 ///
1694 /// ```
1695 /// let a = [1, 2, 3];
1696 ///
1697 /// let doubled: Vec<i32> = a.iter()
1698 /// .map(|&x| x * 2)
1699 /// .collect();
1700 ///
1701 /// assert_eq!(vec![2, 4, 6], doubled);
1702 /// ```
1703 ///
1704 /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1705 /// we could collect into, for example, a [`VecDeque<T>`] instead:
1706 ///
1707 /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1708 ///
1709 /// ```
1710 /// use std::collections::VecDeque;
1711 ///
1712 /// let a = [1, 2, 3];
1713 ///
0531ce1d 1714 /// let doubled: VecDeque<i32> = a.iter().map(|&x| x * 2).collect();
a7813a04
XL
1715 ///
1716 /// assert_eq!(2, doubled[0]);
1717 /// assert_eq!(4, doubled[1]);
1718 /// assert_eq!(6, doubled[2]);
1719 /// ```
1720 ///
1721 /// Using the 'turbofish' instead of annotating `doubled`:
1722 ///
1723 /// ```
1724 /// let a = [1, 2, 3];
1725 ///
0531ce1d 1726 /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
a7813a04
XL
1727 ///
1728 /// assert_eq!(vec![2, 4, 6], doubled);
1729 /// ```
1730 ///
3b2f2976 1731 /// Because `collect()` only cares about what you're collecting into, you can
a7813a04
XL
1732 /// still use a partial type hint, `_`, with the turbofish:
1733 ///
1734 /// ```
1735 /// let a = [1, 2, 3];
1736 ///
0531ce1d 1737 /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
a7813a04
XL
1738 ///
1739 /// assert_eq!(vec![2, 4, 6], doubled);
1740 /// ```
1741 ///
1742 /// Using `collect()` to make a [`String`]:
1743 ///
1744 /// ```
1745 /// let chars = ['g', 'd', 'k', 'k', 'n'];
1746 ///
1747 /// let hello: String = chars.iter()
0531ce1d
XL
1748 /// .map(|&x| x as u8)
1749 /// .map(|x| (x + 1) as char)
1750 /// .collect();
a7813a04
XL
1751 ///
1752 /// assert_eq!("hello", hello);
1753 /// ```
1754 ///
476ff2be 1755 /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
a7813a04
XL
1756 /// see if any of them failed:
1757 ///
1758 /// ```
1759 /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
1760 ///
1761 /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
1762 ///
1763 /// // gives us the first error
1764 /// assert_eq!(Err("nope"), result);
1765 ///
1766 /// let results = [Ok(1), Ok(3)];
1767 ///
1768 /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
1769 ///
1770 /// // gives us the list of answers
1771 /// assert_eq!(Ok(vec![1, 3]), result);
1772 /// ```
476ff2be 1773 ///
1b1a35ee 1774 /// [`iter`]: Iterator::next
476ff2be 1775 /// [`String`]: ../../std/string/struct.String.html
3dfed10e 1776 /// [`char`]: type@char
a7813a04
XL
1777 #[inline]
1778 #[stable(feature = "rust1", since = "1.0.0")]
83c7162d 1779 #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
dfeec247
XL
1780 fn collect<B: FromIterator<Self::Item>>(self) -> B
1781 where
1782 Self: Sized,
1783 {
a7813a04
XL
1784 FromIterator::from_iter(self)
1785 }
1786
5099ac24
FG
1787 /// Fallibly transforms an iterator into a collection, short circuiting if
1788 /// a failure is encountered.
1789 ///
1790 /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
1791 /// conversions during collection. Its main use case is simplifying conversions from
1792 /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
1793 /// types (e.g. [`Result`]).
1794 ///
1795 /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
1796 /// only the inner type produced on `Try::Output` must implement it. Concretely,
1797 /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
1798 /// [`FromIterator`], even though [`ControlFlow`] doesn't.
1799 ///
1800 /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
1801 /// may continue to be used, in which case it will continue iterating starting after the element that
1802 /// triggered the failure. See the last example below for an example of how this works.
1803 ///
1804 /// # Examples
1805 /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
1806 /// ```
1807 /// #![feature(iterator_try_collect)]
1808 ///
1809 /// let u = vec![Some(1), Some(2), Some(3)];
1810 /// let v = u.into_iter().try_collect::<Vec<i32>>();
1811 /// assert_eq!(v, Some(vec![1, 2, 3]));
1812 /// ```
1813 ///
1814 /// Failing to collect in the same way:
1815 /// ```
1816 /// #![feature(iterator_try_collect)]
1817 ///
1818 /// let u = vec![Some(1), Some(2), None, Some(3)];
1819 /// let v = u.into_iter().try_collect::<Vec<i32>>();
1820 /// assert_eq!(v, None);
1821 /// ```
1822 ///
1823 /// A similar example, but with `Result`:
1824 /// ```
1825 /// #![feature(iterator_try_collect)]
1826 ///
1827 /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
1828 /// let v = u.into_iter().try_collect::<Vec<i32>>();
1829 /// assert_eq!(v, Ok(vec![1, 2, 3]));
1830 ///
1831 /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
1832 /// let v = u.into_iter().try_collect::<Vec<i32>>();
1833 /// assert_eq!(v, Err(()));
1834 /// ```
1835 ///
1836 /// Finally, even [`ControlFlow`] works, despite the fact that it
1837 /// doesn't implement [`FromIterator`]. Note also that the iterator can
1838 /// continue to be used, even if a failure is encountered:
1839 ///
1840 /// ```
1841 /// #![feature(iterator_try_collect)]
1842 ///
1843 /// use core::ops::ControlFlow::{Break, Continue};
1844 ///
1845 /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
1846 /// let mut it = u.into_iter();
1847 ///
1848 /// let v = it.try_collect::<Vec<_>>();
1849 /// assert_eq!(v, Break(3));
1850 ///
1851 /// let v = it.try_collect::<Vec<_>>();
1852 /// assert_eq!(v, Continue(vec![4, 5]));
1853 /// ```
1854 ///
1855 /// [`collect`]: Iterator::collect
1856 #[inline]
1857 #[unstable(feature = "iterator_try_collect", issue = "94047")]
1858 fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
1859 where
1860 Self: Sized,
1861 <Self as Iterator>::Item: Try,
1862 <<Self as Iterator>::Item as Try>::Residual: Residual<B>,
1863 B: FromIterator<<Self::Item as Try>::Output>,
1864 {
ee023bcb
FG
1865 try_process(ByRefSized(self), |i| i.collect())
1866 }
1867
1868 /// Collects all the items from an iterator into a collection.
1869 ///
1870 /// This method consumes the iterator and adds all its items to the
1871 /// passed collection. The collection is then returned, so the call chain
1872 /// can be continued.
1873 ///
1874 /// This is useful when you already have a collection and wants to add
1875 /// the iterator items to it.
1876 ///
1877 /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
1878 /// but instead of being called on a collection, it's called on an iterator.
1879 ///
1880 /// # Examples
1881 ///
1882 /// Basic usage:
1883 ///
1884 /// ```
1885 /// #![feature(iter_collect_into)]
1886 ///
1887 /// let a = [1, 2, 3];
1888 /// let mut vec: Vec::<i32> = vec![0, 1];
1889 ///
1890 /// a.iter().map(|&x| x * 2).collect_into(&mut vec);
1891 /// a.iter().map(|&x| x * 10).collect_into(&mut vec);
1892 ///
1893 /// assert_eq!(vec![0, 1, 2, 4, 6, 10, 20, 30], vec);
1894 /// ```
1895 ///
1896 /// `Vec` can have a manual set capacity to avoid reallocating it:
1897 ///
1898 /// ```
1899 /// #![feature(iter_collect_into)]
1900 ///
1901 /// let a = [1, 2, 3];
1902 /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
1903 ///
1904 /// a.iter().map(|&x| x * 2).collect_into(&mut vec);
1905 /// a.iter().map(|&x| x * 10).collect_into(&mut vec);
1906 ///
1907 /// assert_eq!(6, vec.capacity());
1908 /// println!("{:?}", vec);
1909 /// ```
1910 ///
1911 /// The returned mutable reference can be used to continue the call chain:
1912 ///
1913 /// ```
1914 /// #![feature(iter_collect_into)]
1915 ///
1916 /// let a = [1, 2, 3];
1917 /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
1918 ///
1919 /// let count = a.iter().collect_into(&mut vec).iter().count();
1920 ///
1921 /// assert_eq!(count, vec.len());
1922 /// println!("Vec len is {}", count);
1923 ///
1924 /// let count = a.iter().collect_into(&mut vec).iter().count();
1925 ///
1926 /// assert_eq!(count, vec.len());
1927 /// println!("Vec len now is {}", count);
1928 /// ```
1929 #[inline]
1930 #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
1931 fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
1932 where
1933 Self: Sized,
1934 {
1935 collection.extend(self);
1936 collection
5099ac24
FG
1937 }
1938
a7813a04
XL
1939 /// Consumes an iterator, creating two collections from it.
1940 ///
1941 /// The predicate passed to `partition()` can return `true`, or `false`.
1942 /// `partition()` returns a pair, all of the elements for which it returned
1943 /// `true`, and all of the elements for which it returned `false`.
1944 ///
416331ca
XL
1945 /// See also [`is_partitioned()`] and [`partition_in_place()`].
1946 ///
1b1a35ee
XL
1947 /// [`is_partitioned()`]: Iterator::is_partitioned
1948 /// [`partition_in_place()`]: Iterator::partition_in_place
416331ca 1949 ///
a7813a04
XL
1950 /// # Examples
1951 ///
1952 /// Basic usage:
1953 ///
1954 /// ```
1955 /// let a = [1, 2, 3];
1956 ///
ee023bcb
FG
1957 /// let (even, odd): (Vec<_>, Vec<_>) = a
1958 /// .into_iter()
1959 /// .partition(|n| n % 2 == 0);
a7813a04
XL
1960 ///
1961 /// assert_eq!(even, vec![2]);
1962 /// assert_eq!(odd, vec![1, 3]);
1963 /// ```
1964 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
1965 fn partition<B, F>(self, f: F) -> (B, B)
1966 where
a7813a04
XL
1967 Self: Sized,
1968 B: Default + Extend<Self::Item>,
dfeec247 1969 F: FnMut(&Self::Item) -> bool,
a7813a04 1970 {
e1599b0c
XL
1971 #[inline]
1972 fn extend<'a, T, B: Extend<T>>(
1973 mut f: impl FnMut(&T) -> bool + 'a,
1974 left: &'a mut B,
1975 right: &'a mut B,
f9f354fc
XL
1976 ) -> impl FnMut((), T) + 'a {
1977 move |(), x| {
e1599b0c 1978 if f(&x) {
f9f354fc 1979 left.extend_one(x);
e1599b0c 1980 } else {
f9f354fc 1981 right.extend_one(x);
e1599b0c
XL
1982 }
1983 }
1984 }
1985
a7813a04
XL
1986 let mut left: B = Default::default();
1987 let mut right: B = Default::default();
1988
f9f354fc 1989 self.fold((), extend(f, &mut left, &mut right));
a7813a04
XL
1990
1991 (left, right)
1992 }
1993
60c5eb7d 1994 /// Reorders the elements of this iterator *in-place* according to the given predicate,
416331ca
XL
1995 /// such that all those that return `true` precede all those that return `false`.
1996 /// Returns the number of `true` elements found.
1997 ///
1998 /// The relative order of partitioned items is not maintained.
1999 ///
17df50a5 2000 /// # Current implementation
c295e0f8 2001 ///
17df50a5
XL
2002 /// Current algorithms tries finding the first element for which the predicate evaluates
2003 /// to false, and the last element for which it evaluates to true and repeatedly swaps them.
2004 ///
c295e0f8 2005 /// Time complexity: *O*(*n*)
17df50a5 2006 ///
416331ca
XL
2007 /// See also [`is_partitioned()`] and [`partition()`].
2008 ///
1b1a35ee
XL
2009 /// [`is_partitioned()`]: Iterator::is_partitioned
2010 /// [`partition()`]: Iterator::partition
416331ca
XL
2011 ///
2012 /// # Examples
2013 ///
2014 /// ```
2015 /// #![feature(iter_partition_in_place)]
2016 ///
2017 /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2018 ///
2019 /// // Partition in-place between evens and odds
2020 /// let i = a.iter_mut().partition_in_place(|&n| n % 2 == 0);
2021 ///
2022 /// assert_eq!(i, 3);
2023 /// assert!(a[..i].iter().all(|&n| n % 2 == 0)); // evens
2024 /// assert!(a[i..].iter().all(|&n| n % 2 == 1)); // odds
2025 /// ```
2026 #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
2027 fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2028 where
2029 Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2030 P: FnMut(&T) -> bool,
2031 {
2032 // FIXME: should we worry about the count overflowing? The only way to have more than
2033 // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2034
2035 // These closure "factory" functions exist to avoid genericity in `Self`.
2036
2037 #[inline]
2038 fn is_false<'a, T>(
2039 predicate: &'a mut impl FnMut(&T) -> bool,
2040 true_count: &'a mut usize,
2041 ) -> impl FnMut(&&mut T) -> bool + 'a {
2042 move |x| {
2043 let p = predicate(&**x);
2044 *true_count += p as usize;
2045 !p
2046 }
2047 }
2048
2049 #[inline]
dfeec247 2050 fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
416331ca
XL
2051 move |x| predicate(&**x)
2052 }
2053
2054 // Repeatedly find the first `false` and swap it with the last `true`.
2055 let mut true_count = 0;
2056 while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2057 if let Some(tail) = self.rfind(is_true(predicate)) {
2058 crate::mem::swap(head, tail);
2059 true_count += 1;
2060 } else {
2061 break;
2062 }
2063 }
2064 true_count
2065 }
2066
2067 /// Checks if the elements of this iterator are partitioned according to the given predicate,
2068 /// such that all those that return `true` precede all those that return `false`.
2069 ///
2070 /// See also [`partition()`] and [`partition_in_place()`].
2071 ///
1b1a35ee
XL
2072 /// [`partition()`]: Iterator::partition
2073 /// [`partition_in_place()`]: Iterator::partition_in_place
416331ca
XL
2074 ///
2075 /// # Examples
2076 ///
2077 /// ```
2078 /// #![feature(iter_is_partitioned)]
2079 ///
2080 /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2081 /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2082 /// ```
2083 #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
2084 fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2085 where
2086 Self: Sized,
2087 P: FnMut(Self::Item) -> bool,
2088 {
2089 // Either all items test `true`, or the first clause stops at `false`
2090 // and we check that there are no more `true` items after that.
2091 self.all(&mut predicate) || !self.any(predicate)
2092 }
2093
abe05a73
XL
2094 /// An iterator method that applies a function as long as it returns
2095 /// successfully, producing a single, final value.
2096 ///
2097 /// `try_fold()` takes two arguments: an initial value, and a closure with
2098 /// two arguments: an 'accumulator', and an element. The closure either
2099 /// returns successfully, with the value that the accumulator should have
2100 /// for the next iteration, or it returns failure, with an error value that
2101 /// is propagated back to the caller immediately (short-circuiting).
2102 ///
2103 /// The initial value is the value the accumulator will have on the first
9fa01778 2104 /// call. If applying the closure succeeded against every element of the
abe05a73
XL
2105 /// iterator, `try_fold()` returns the final accumulator as success.
2106 ///
2107 /// Folding is useful whenever you have a collection of something, and want
2108 /// to produce a single value from it.
2109 ///
2110 /// # Note to Implementors
2111 ///
f9f354fc 2112 /// Several of the other (forward) methods have default implementations in
abe05a73
XL
2113 /// terms of this one, so try to implement this explicitly if it can
2114 /// do something better than the default `for` loop implementation.
2115 ///
2116 /// In particular, try to have this call `try_fold()` on the internal parts
9fa01778 2117 /// from which this iterator is composed. If multiple calls are needed,
0531ce1d
XL
2118 /// the `?` operator may be convenient for chaining the accumulator value
2119 /// along, but beware any invariants that need to be upheld before those
9fa01778 2120 /// early returns. This is a `&mut self` method, so iteration needs to be
abe05a73
XL
2121 /// resumable after hitting an error here.
2122 ///
2123 /// # Examples
2124 ///
2125 /// Basic usage:
2126 ///
2127 /// ```
abe05a73
XL
2128 /// let a = [1, 2, 3];
2129 ///
2130 /// // the checked sum of all of the elements of the array
0531ce1d 2131 /// let sum = a.iter().try_fold(0i8, |acc, &x| acc.checked_add(x));
abe05a73
XL
2132 ///
2133 /// assert_eq!(sum, Some(6));
2134 /// ```
2135 ///
2136 /// Short-circuiting:
2137 ///
2138 /// ```
abe05a73
XL
2139 /// let a = [10, 20, 30, 100, 40, 50];
2140 /// let mut it = a.iter();
2141 ///
2142 /// // This sum overflows when adding the 100 element
2143 /// let sum = it.try_fold(0i8, |acc, &x| acc.checked_add(x));
2144 /// assert_eq!(sum, None);
2145 ///
2146 /// // Because it short-circuited, the remaining elements are still
2147 /// // available through the iterator.
2148 /// assert_eq!(it.len(), 2);
2149 /// assert_eq!(it.next(), Some(&40));
2150 /// ```
136023e0 2151 ///
94222f64
XL
2152 /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2153 /// a similar idea:
136023e0
XL
2154 ///
2155 /// ```
2156 /// use std::ops::ControlFlow;
2157 ///
2158 /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2159 /// if let Some(next) = prev.checked_add(x) {
2160 /// ControlFlow::Continue(next)
2161 /// } else {
2162 /// ControlFlow::Break(prev)
2163 /// }
2164 /// });
2165 /// assert_eq!(triangular, ControlFlow::Break(120));
2166 ///
2167 /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2168 /// if let Some(next) = prev.checked_add(x) {
2169 /// ControlFlow::Continue(next)
2170 /// } else {
2171 /// ControlFlow::Break(prev)
2172 /// }
2173 /// });
2174 /// assert_eq!(triangular, ControlFlow::Continue(435));
2175 /// ```
abe05a73 2176 #[inline]
83c7162d 2177 #[stable(feature = "iterator_try_fold", since = "1.27.0")]
dfeec247
XL
2178 fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2179 where
2180 Self: Sized,
2181 F: FnMut(B, Self::Item) -> R,
17df50a5 2182 R: Try<Output = B>,
abe05a73
XL
2183 {
2184 let mut accum = init;
2185 while let Some(x) = self.next() {
2186 accum = f(accum, x)?;
2187 }
29967ef6 2188 try { accum }
abe05a73
XL
2189 }
2190
0531ce1d
XL
2191 /// An iterator method that applies a fallible function to each item in the
2192 /// iterator, stopping at the first error and returning that error.
2193 ///
2194 /// This can also be thought of as the fallible form of [`for_each()`]
2195 /// or as the stateless version of [`try_fold()`].
2196 ///
1b1a35ee
XL
2197 /// [`for_each()`]: Iterator::for_each
2198 /// [`try_fold()`]: Iterator::try_fold
0531ce1d
XL
2199 ///
2200 /// # Examples
2201 ///
2202 /// ```
0531ce1d
XL
2203 /// use std::fs::rename;
2204 /// use std::io::{stdout, Write};
2205 /// use std::path::Path;
2206 ///
2207 /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2208 ///
ee023bcb 2209 /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
0531ce1d
XL
2210 /// assert!(res.is_ok());
2211 ///
2212 /// let mut it = data.iter().cloned();
2213 /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2214 /// assert!(res.is_err());
2215 /// // It short-circuited, so the remaining items are still in the iterator:
2216 /// assert_eq!(it.next(), Some("stale_bread.json"));
2217 /// ```
136023e0 2218 ///
94222f64
XL
2219 /// The [`ControlFlow`] type can be used with this method for the situations
2220 /// in which you'd use `break` and `continue` in a normal loop:
136023e0
XL
2221 ///
2222 /// ```
2223 /// use std::ops::ControlFlow;
2224 ///
2225 /// let r = (2..100).try_for_each(|x| {
2226 /// if 323 % x == 0 {
2227 /// return ControlFlow::Break(x)
2228 /// }
2229 ///
2230 /// ControlFlow::Continue(())
2231 /// });
2232 /// assert_eq!(r, ControlFlow::Break(17));
2233 /// ```
0531ce1d 2234 #[inline]
83c7162d 2235 #[stable(feature = "iterator_try_fold", since = "1.27.0")]
dfeec247
XL
2236 fn try_for_each<F, R>(&mut self, f: F) -> R
2237 where
2238 Self: Sized,
2239 F: FnMut(Self::Item) -> R,
17df50a5 2240 R: Try<Output = ()>,
0531ce1d 2241 {
e1599b0c
XL
2242 #[inline]
2243 fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2244 move |(), x| f(x)
2245 }
2246
2247 self.try_fold((), call(f))
0531ce1d
XL
2248 }
2249
5869c6ff
XL
2250 /// Folds every element into an accumulator by applying an operation,
2251 /// returning the final result.
a7813a04
XL
2252 ///
2253 /// `fold()` takes two arguments: an initial value, and a closure with two
2254 /// arguments: an 'accumulator', and an element. The closure returns the value that
2255 /// the accumulator should have for the next iteration.
2256 ///
2257 /// The initial value is the value the accumulator will have on the first
2258 /// call.
2259 ///
2260 /// After applying this closure to every element of the iterator, `fold()`
2261 /// returns the accumulator.
2262 ///
2263 /// This operation is sometimes called 'reduce' or 'inject'.
2264 ///
2265 /// Folding is useful whenever you have a collection of something, and want
2266 /// to produce a single value from it.
2267 ///
2c00a5a8 2268 /// Note: `fold()`, and similar methods that traverse the entire iterator,
94222f64 2269 /// might not terminate for infinite iterators, even on traits for which a
2c00a5a8
XL
2270 /// result is determinable in finite time.
2271 ///
5869c6ff
XL
2272 /// Note: [`reduce()`] can be used to use the first element as the initial
2273 /// value, if the accumulator type and item type is the same.
2274 ///
136023e0
XL
2275 /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2276 /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2277 /// operators like `-` the order will affect the final result.
2278 /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2279 ///
f9f354fc
XL
2280 /// # Note to Implementors
2281 ///
2282 /// Several of the other (forward) methods have default implementations in
2283 /// terms of this one, so try to implement this explicitly if it can
2284 /// do something better than the default `for` loop implementation.
2285 ///
2286 /// In particular, try to have this call `fold()` on the internal parts
2287 /// from which this iterator is composed.
2288 ///
a7813a04
XL
2289 /// # Examples
2290 ///
2291 /// Basic usage:
2292 ///
2293 /// ```
2294 /// let a = [1, 2, 3];
2295 ///
abe05a73 2296 /// // the sum of all of the elements of the array
0531ce1d 2297 /// let sum = a.iter().fold(0, |acc, x| acc + x);
a7813a04
XL
2298 ///
2299 /// assert_eq!(sum, 6);
2300 /// ```
2301 ///
2302 /// Let's walk through each step of the iteration here:
2303 ///
2304 /// | element | acc | x | result |
2305 /// |---------|-----|---|--------|
2306 /// | | 0 | | |
2307 /// | 1 | 0 | 1 | 1 |
2308 /// | 2 | 1 | 2 | 3 |
2309 /// | 3 | 3 | 3 | 6 |
2310 ///
2311 /// And so, our final result, `6`.
2312 ///
136023e0
XL
2313 /// This example demonstrates the left-associative nature of `fold()`:
2314 /// it builds a string, starting with an initial value
2315 /// and continuing with each element from the front until the back:
2316 ///
2317 /// ```
2318 /// let numbers = [1, 2, 3, 4, 5];
2319 ///
2320 /// let zero = "0".to_string();
2321 ///
2322 /// let result = numbers.iter().fold(zero, |acc, &x| {
ee023bcb 2323 /// format!("({acc} + {x})")
136023e0
XL
2324 /// });
2325 ///
2326 /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2327 /// ```
a7813a04
XL
2328 /// It's common for people who haven't used iterators a lot to
2329 /// use a `for` loop with a list of things to build up a result. Those
2330 /// can be turned into `fold()`s:
2331 ///
13cf67c4 2332 /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
476ff2be 2333 ///
a7813a04
XL
2334 /// ```
2335 /// let numbers = [1, 2, 3, 4, 5];
2336 ///
2337 /// let mut result = 0;
2338 ///
2339 /// // for loop:
2340 /// for i in &numbers {
2341 /// result = result + i;
2342 /// }
2343 ///
2344 /// // fold:
2345 /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2346 ///
2347 /// // they're the same
2348 /// assert_eq!(result, result2);
2349 /// ```
5869c6ff
XL
2350 ///
2351 /// [`reduce()`]: Iterator::reduce
136023e0 2352 #[doc(alias = "inject", alias = "foldl")]
a7813a04
XL
2353 #[inline]
2354 #[stable(feature = "rust1", since = "1.0.0")]
f9f354fc 2355 fn fold<B, F>(mut self, init: B, mut f: F) -> B
dfeec247
XL
2356 where
2357 Self: Sized,
2358 F: FnMut(B, Self::Item) -> B,
a7813a04 2359 {
f9f354fc
XL
2360 let mut accum = init;
2361 while let Some(x) = self.next() {
2362 accum = f(accum, x);
e1599b0c 2363 }
f9f354fc 2364 accum
a7813a04
XL
2365 }
2366
5869c6ff
XL
2367 /// Reduces the elements to a single one, by repeatedly applying a reducing
2368 /// operation.
2369 ///
2370 /// If the iterator is empty, returns [`None`]; otherwise, returns the
2371 /// result of the reduction.
2372 ///
c295e0f8 2373 /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
5869c6ff 2374 /// For iterators with at least one element, this is the same as [`fold()`]
c295e0f8 2375 /// with the first element of the iterator as the initial accumulator value, folding
5869c6ff 2376 /// every subsequent element into it.
ba9703b0 2377 ///
1b1a35ee
XL
2378 /// [`fold()`]: Iterator::fold
2379 ///
ba9703b0
XL
2380 /// # Example
2381 ///
2382 /// Find the maximum value:
2383 ///
2384 /// ```
ba9703b0
XL
2385 /// fn find_max<I>(iter: I) -> Option<I::Item>
2386 /// where I: Iterator,
2387 /// I::Item: Ord,
2388 /// {
c295e0f8
XL
2389 /// iter.reduce(|accum, item| {
2390 /// if accum >= item { accum } else { item }
ba9703b0
XL
2391 /// })
2392 /// }
2393 /// let a = [10, 20, 5, -23, 0];
2394 /// let b: [u32; 0] = [];
2395 ///
2396 /// assert_eq!(find_max(a.iter()), Some(&20));
2397 /// assert_eq!(find_max(b.iter()), None);
2398 /// ```
2399 #[inline]
5869c6ff
XL
2400 #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2401 fn reduce<F>(mut self, f: F) -> Option<Self::Item>
ba9703b0
XL
2402 where
2403 Self: Sized,
2404 F: FnMut(Self::Item, Self::Item) -> Self::Item,
2405 {
2406 let first = self.next()?;
2407 Some(self.fold(first, f))
2408 }
2409
a2a8927a
XL
2410 /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2411 /// closure returns a failure, the failure is propagated back to the caller immediately.
2412 ///
2413 /// The return type of this method depends on the return type of the closure. If the closure
2414 /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2415 /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2416 /// `Option<Option<Self::Item>>`.
2417 ///
2418 /// When called on an empty iterator, this function will return either `Some(None)` or
2419 /// `Ok(None)` depending on the type of the provided closure.
2420 ///
2421 /// For iterators with at least one element, this is essentially the same as calling
2422 /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2423 ///
2424 /// [`try_fold()`]: Iterator::try_fold
2425 ///
2426 /// # Examples
2427 ///
2428 /// Safely calculate the sum of a series of numbers:
2429 ///
2430 /// ```
2431 /// #![feature(iterator_try_reduce)]
2432 ///
2433 /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2434 /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2435 /// assert_eq!(sum, Some(Some(58)));
2436 /// ```
2437 ///
2438 /// Determine when a reduction short circuited:
2439 ///
2440 /// ```
2441 /// #![feature(iterator_try_reduce)]
2442 ///
2443 /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2444 /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2445 /// assert_eq!(sum, None);
2446 /// ```
2447 ///
2448 /// Determine when a reduction was not performed because there are no elements:
2449 ///
2450 /// ```
2451 /// #![feature(iterator_try_reduce)]
2452 ///
2453 /// let numbers: Vec<usize> = Vec::new();
2454 /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2455 /// assert_eq!(sum, Some(None));
2456 /// ```
2457 ///
2458 /// Use a [`Result`] instead of an [`Option`]:
2459 ///
2460 /// ```
2461 /// #![feature(iterator_try_reduce)]
2462 ///
2463 /// let numbers = vec!["1", "2", "3", "4", "5"];
2464 /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2465 /// numbers.into_iter().try_reduce(|x, y| {
2466 /// if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2467 /// });
2468 /// assert_eq!(max, Ok(Some("5")));
2469 /// ```
2470 #[inline]
2471 #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
2472 fn try_reduce<F, R>(&mut self, f: F) -> ChangeOutputType<R, Option<R::Output>>
2473 where
2474 Self: Sized,
2475 F: FnMut(Self::Item, Self::Item) -> R,
2476 R: Try<Output = Self::Item>,
2477 R::Residual: Residual<Option<Self::Item>>,
2478 {
2479 let first = match self.next() {
2480 Some(i) => i,
2481 None => return Try::from_output(None),
2482 };
2483
2484 match self.try_fold(first, f).branch() {
2485 ControlFlow::Break(r) => FromResidual::from_residual(r),
2486 ControlFlow::Continue(i) => Try::from_output(Some(i)),
2487 }
2488 }
2489
a7813a04
XL
2490 /// Tests if every element of the iterator matches a predicate.
2491 ///
2492 /// `all()` takes a closure that returns `true` or `false`. It applies
2493 /// this closure to each element of the iterator, and if they all return
2494 /// `true`, then so does `all()`. If any of them return `false`, it
2495 /// returns `false`.
2496 ///
2497 /// `all()` is short-circuiting; in other words, it will stop processing
2498 /// as soon as it finds a `false`, given that no matter what else happens,
2499 /// the result will also be `false`.
2500 ///
2501 /// An empty iterator returns `true`.
2502 ///
2503 /// # Examples
2504 ///
2505 /// Basic usage:
2506 ///
2507 /// ```
2508 /// let a = [1, 2, 3];
2509 ///
2510 /// assert!(a.iter().all(|&x| x > 0));
2511 ///
2512 /// assert!(!a.iter().all(|&x| x > 2));
2513 /// ```
2514 ///
2515 /// Stopping at the first `false`:
2516 ///
2517 /// ```
2518 /// let a = [1, 2, 3];
2519 ///
2520 /// let mut iter = a.iter();
2521 ///
2522 /// assert!(!iter.all(|&x| x != 2));
2523 ///
2524 /// // we can still use `iter`, as there are more elements.
2525 /// assert_eq!(iter.next(), Some(&3));
2526 /// ```
2527 #[inline]
2528 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2529 fn all<F>(&mut self, f: F) -> bool
2530 where
2531 Self: Sized,
2532 F: FnMut(Self::Item) -> bool,
a7813a04 2533 {
e1599b0c 2534 #[inline]
2a314972 2535 fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
e74abb32 2536 move |(), x| {
1b1a35ee 2537 if f(x) { ControlFlow::CONTINUE } else { ControlFlow::BREAK }
e1599b0c
XL
2538 }
2539 }
1b1a35ee 2540 self.try_fold((), check(f)) == ControlFlow::CONTINUE
a7813a04
XL
2541 }
2542
2543 /// Tests if any element of the iterator matches a predicate.
2544 ///
2545 /// `any()` takes a closure that returns `true` or `false`. It applies
2546 /// this closure to each element of the iterator, and if any of them return
2547 /// `true`, then so does `any()`. If they all return `false`, it
2548 /// returns `false`.
2549 ///
2550 /// `any()` is short-circuiting; in other words, it will stop processing
2551 /// as soon as it finds a `true`, given that no matter what else happens,
2552 /// the result will also be `true`.
2553 ///
2554 /// An empty iterator returns `false`.
2555 ///
2556 /// # Examples
2557 ///
2558 /// Basic usage:
2559 ///
2560 /// ```
2561 /// let a = [1, 2, 3];
2562 ///
2563 /// assert!(a.iter().any(|&x| x > 0));
2564 ///
2565 /// assert!(!a.iter().any(|&x| x > 5));
2566 /// ```
2567 ///
2568 /// Stopping at the first `true`:
2569 ///
2570 /// ```
2571 /// let a = [1, 2, 3];
2572 ///
2573 /// let mut iter = a.iter();
2574 ///
2575 /// assert!(iter.any(|&x| x != 2));
2576 ///
2577 /// // we can still use `iter`, as there are more elements.
2578 /// assert_eq!(iter.next(), Some(&2));
2579 /// ```
2580 #[inline]
2581 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2582 fn any<F>(&mut self, f: F) -> bool
2583 where
a7813a04 2584 Self: Sized,
dfeec247 2585 F: FnMut(Self::Item) -> bool,
a7813a04 2586 {
e1599b0c 2587 #[inline]
2a314972 2588 fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
e74abb32 2589 move |(), x| {
1b1a35ee 2590 if f(x) { ControlFlow::BREAK } else { ControlFlow::CONTINUE }
e1599b0c
XL
2591 }
2592 }
2593
1b1a35ee 2594 self.try_fold((), check(f)) == ControlFlow::BREAK
a7813a04
XL
2595 }
2596
2597 /// Searches for an element of an iterator that satisfies a predicate.
2598 ///
2599 /// `find()` takes a closure that returns `true` or `false`. It applies
2600 /// this closure to each element of the iterator, and if any of them return
476ff2be
SL
2601 /// `true`, then `find()` returns [`Some(element)`]. If they all return
2602 /// `false`, it returns [`None`].
a7813a04
XL
2603 ///
2604 /// `find()` is short-circuiting; in other words, it will stop processing
2605 /// as soon as the closure returns `true`.
2606 ///
2607 /// Because `find()` takes a reference, and many iterators iterate over
2608 /// references, this leads to a possibly confusing situation where the
2609 /// argument is a double reference. You can see this effect in the
2610 /// examples below, with `&&x`.
2611 ///
3dfed10e 2612 /// [`Some(element)`]: Some
476ff2be 2613 ///
a7813a04
XL
2614 /// # Examples
2615 ///
2616 /// Basic usage:
2617 ///
2618 /// ```
2619 /// let a = [1, 2, 3];
2620 ///
2621 /// assert_eq!(a.iter().find(|&&x| x == 2), Some(&2));
2622 ///
2623 /// assert_eq!(a.iter().find(|&&x| x == 5), None);
2624 /// ```
2625 ///
2626 /// Stopping at the first `true`:
2627 ///
2628 /// ```
2629 /// let a = [1, 2, 3];
2630 ///
2631 /// let mut iter = a.iter();
2632 ///
2633 /// assert_eq!(iter.find(|&&x| x == 2), Some(&2));
2634 ///
2635 /// // we can still use `iter`, as there are more elements.
2636 /// assert_eq!(iter.next(), Some(&3));
2637 /// ```
74b04a01
XL
2638 ///
2639 /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
a7813a04
XL
2640 #[inline]
2641 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2642 fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2643 where
a7813a04
XL
2644 Self: Sized,
2645 P: FnMut(&Self::Item) -> bool,
2646 {
e1599b0c 2647 #[inline]
2a314972 2648 fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
e74abb32 2649 move |(), x| {
1b1a35ee 2650 if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::CONTINUE }
e1599b0c
XL
2651 }
2652 }
2653
e74abb32 2654 self.try_fold((), check(predicate)).break_value()
a7813a04
XL
2655 }
2656
83c7162d
XL
2657 /// Applies function to the elements of iterator and returns
2658 /// the first non-none result.
2659 ///
2660 /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2661 ///
83c7162d
XL
2662 /// # Examples
2663 ///
2664 /// ```
83c7162d
XL
2665 /// let a = ["lol", "NaN", "2", "5"];
2666 ///
a1dfa0c6 2667 /// let first_number = a.iter().find_map(|s| s.parse().ok());
83c7162d
XL
2668 ///
2669 /// assert_eq!(first_number, Some(2));
2670 /// ```
2671 #[inline]
b7449926 2672 #[stable(feature = "iterator_find_map", since = "1.30.0")]
dfeec247
XL
2673 fn find_map<B, F>(&mut self, f: F) -> Option<B>
2674 where
83c7162d
XL
2675 Self: Sized,
2676 F: FnMut(Self::Item) -> Option<B>,
2677 {
e1599b0c 2678 #[inline]
2a314972 2679 fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
e74abb32 2680 move |(), x| match f(x) {
1b1a35ee
XL
2681 Some(x) => ControlFlow::Break(x),
2682 None => ControlFlow::CONTINUE,
83c7162d 2683 }
e1599b0c
XL
2684 }
2685
e74abb32 2686 self.try_fold((), check(f)).break_value()
83c7162d
XL
2687 }
2688
dfeec247 2689 /// Applies function to the elements of iterator and returns
f035d41b 2690 /// the first true result or the first error.
dfeec247 2691 ///
a2a8927a
XL
2692 /// The return type of this method depends on the return type of the closure.
2693 /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>; E>`.
2694 /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2695 ///
dfeec247
XL
2696 /// # Examples
2697 ///
2698 /// ```
2699 /// #![feature(try_find)]
2700 ///
2701 /// let a = ["1", "2", "lol", "NaN", "5"];
2702 ///
2703 /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2704 /// Ok(s.parse::<i32>()? == search)
2705 /// };
2706 ///
2707 /// let result = a.iter().try_find(|&&s| is_my_num(s, 2));
2708 /// assert_eq!(result, Ok(Some(&"2")));
2709 ///
2710 /// let result = a.iter().try_find(|&&s| is_my_num(s, 5));
2711 /// assert!(result.is_err());
2712 /// ```
a2a8927a
XL
2713 ///
2714 /// This also supports other types which implement `Try`, not just `Result`.
2715 /// ```
2716 /// #![feature(try_find)]
2717 ///
2718 /// use std::num::NonZeroU32;
2719 /// let a = [3, 5, 7, 4, 9, 0, 11];
2720 /// let result = a.iter().try_find(|&&x| NonZeroU32::new(x).map(|y| y.is_power_of_two()));
2721 /// assert_eq!(result, Some(Some(&4)));
2722 /// let result = a.iter().take(3).try_find(|&&x| NonZeroU32::new(x).map(|y| y.is_power_of_two()));
2723 /// assert_eq!(result, Some(None));
2724 /// let result = a.iter().rev().try_find(|&&x| NonZeroU32::new(x).map(|y| y.is_power_of_two()));
2725 /// assert_eq!(result, None);
2726 /// ```
dfeec247
XL
2727 #[inline]
2728 #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
a2a8927a 2729 fn try_find<F, R>(&mut self, f: F) -> ChangeOutputType<R, Option<Self::Item>>
17df50a5
XL
2730 where
2731 Self: Sized,
2732 F: FnMut(&Self::Item) -> R,
2733 R: Try<Output = bool>,
a2a8927a 2734 R::Residual: Residual<Option<Self::Item>>,
17df50a5
XL
2735 {
2736 #[inline]
a2a8927a
XL
2737 fn check<I, V, R>(
2738 mut f: impl FnMut(&I) -> V,
2739 ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
17df50a5 2740 where
a2a8927a
XL
2741 V: Try<Output = bool, Residual = R>,
2742 R: Residual<Option<I>>,
17df50a5
XL
2743 {
2744 move |(), x| match f(&x).branch() {
2745 ControlFlow::Continue(false) => ControlFlow::CONTINUE,
a2a8927a
XL
2746 ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
2747 ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
17df50a5
XL
2748 }
2749 }
2750
a2a8927a
XL
2751 match self.try_fold((), check(f)) {
2752 ControlFlow::Break(x) => x,
2753 ControlFlow::Continue(()) => Try::from_output(None),
2754 }
17df50a5
XL
2755 }
2756
a7813a04
XL
2757 /// Searches for an element in an iterator, returning its index.
2758 ///
2759 /// `position()` takes a closure that returns `true` or `false`. It applies
2760 /// this closure to each element of the iterator, and if one of them
476ff2be
SL
2761 /// returns `true`, then `position()` returns [`Some(index)`]. If all of
2762 /// them return `false`, it returns [`None`].
a7813a04
XL
2763 ///
2764 /// `position()` is short-circuiting; in other words, it will stop
2765 /// processing as soon as it finds a `true`.
2766 ///
2767 /// # Overflow Behavior
2768 ///
2769 /// The method does no guarding against overflows, so if there are more
476ff2be 2770 /// than [`usize::MAX`] non-matching elements, it either produces the wrong
a7813a04
XL
2771 /// result or panics. If debug assertions are enabled, a panic is
2772 /// guaranteed.
2773 ///
2774 /// # Panics
2775 ///
2776 /// This function might panic if the iterator has more than `usize::MAX`
2777 /// non-matching elements.
2778 ///
3dfed10e 2779 /// [`Some(index)`]: Some
476ff2be 2780 ///
a7813a04
XL
2781 /// # Examples
2782 ///
2783 /// Basic usage:
2784 ///
2785 /// ```
2786 /// let a = [1, 2, 3];
2787 ///
2788 /// assert_eq!(a.iter().position(|&x| x == 2), Some(1));
2789 ///
2790 /// assert_eq!(a.iter().position(|&x| x == 5), None);
2791 /// ```
2792 ///
2793 /// Stopping at the first `true`:
2794 ///
2795 /// ```
cc61c64b 2796 /// let a = [1, 2, 3, 4];
a7813a04
XL
2797 ///
2798 /// let mut iter = a.iter();
2799 ///
cc61c64b 2800 /// assert_eq!(iter.position(|&x| x >= 2), Some(1));
a7813a04
XL
2801 ///
2802 /// // we can still use `iter`, as there are more elements.
2803 /// assert_eq!(iter.next(), Some(&3));
cc61c64b
XL
2804 ///
2805 /// // The returned index depends on iterator state
2806 /// assert_eq!(iter.position(|&x| x == 4), Some(0));
2807 ///
a7813a04
XL
2808 /// ```
2809 #[inline]
2810 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2811 fn position<P>(&mut self, predicate: P) -> Option<usize>
2812 where
a7813a04
XL
2813 Self: Sized,
2814 P: FnMut(Self::Item) -> bool,
2815 {
e1599b0c
XL
2816 #[inline]
2817 fn check<T>(
2818 mut predicate: impl FnMut(T) -> bool,
1b1a35ee 2819 ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
6a06907d 2820 #[rustc_inherit_overflow_checks]
e1599b0c 2821 move |i, x| {
6a06907d 2822 if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i + 1) }
e1599b0c
XL
2823 }
2824 }
2825
2826 self.try_fold(0, check(predicate)).break_value()
a7813a04
XL
2827 }
2828
2829 /// Searches for an element in an iterator from the right, returning its
2830 /// index.
2831 ///
2832 /// `rposition()` takes a closure that returns `true` or `false`. It applies
2833 /// this closure to each element of the iterator, starting from the end,
2834 /// and if one of them returns `true`, then `rposition()` returns
476ff2be 2835 /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
a7813a04
XL
2836 ///
2837 /// `rposition()` is short-circuiting; in other words, it will stop
2838 /// processing as soon as it finds a `true`.
2839 ///
3dfed10e 2840 /// [`Some(index)`]: Some
476ff2be 2841 ///
a7813a04
XL
2842 /// # Examples
2843 ///
2844 /// Basic usage:
2845 ///
2846 /// ```
2847 /// let a = [1, 2, 3];
2848 ///
2849 /// assert_eq!(a.iter().rposition(|&x| x == 3), Some(2));
2850 ///
2851 /// assert_eq!(a.iter().rposition(|&x| x == 5), None);
2852 /// ```
2853 ///
2854 /// Stopping at the first `true`:
2855 ///
2856 /// ```
2857 /// let a = [1, 2, 3];
2858 ///
2859 /// let mut iter = a.iter();
2860 ///
2861 /// assert_eq!(iter.rposition(|&x| x == 2), Some(1));
2862 ///
2863 /// // we can still use `iter`, as there are more elements.
2864 /// assert_eq!(iter.next(), Some(&1));
2865 /// ```
2866 #[inline]
2867 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2868 fn rposition<P>(&mut self, predicate: P) -> Option<usize>
2869 where
a7813a04 2870 P: FnMut(Self::Item) -> bool,
dfeec247 2871 Self: Sized + ExactSizeIterator + DoubleEndedIterator,
a7813a04 2872 {
abe05a73
XL
2873 // No need for an overflow check here, because `ExactSizeIterator`
2874 // implies that the number of elements fits into a `usize`.
e1599b0c
XL
2875 #[inline]
2876 fn check<T>(
2877 mut predicate: impl FnMut(T) -> bool,
1b1a35ee 2878 ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
e1599b0c
XL
2879 move |i, x| {
2880 let i = i - 1;
1b1a35ee 2881 if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
e1599b0c
XL
2882 }
2883 }
2884
abe05a73 2885 let n = self.len();
e1599b0c 2886 self.try_rfold(n, check(predicate)).break_value()
a7813a04
XL
2887 }
2888
2889 /// Returns the maximum element of an iterator.
2890 ///
32a655c1 2891 /// If several elements are equally maximum, the last element is
8bb4bdeb
XL
2892 /// returned. If the iterator is empty, [`None`] is returned.
2893 ///
17df50a5
XL
2894 /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
2895 /// incomparable. You can work around this by using [`Iterator::reduce`]:
2896 /// ```
2897 /// assert_eq!(
5099ac24 2898 /// [2.4, f32::NAN, 1.3]
17df50a5
XL
2899 /// .into_iter()
2900 /// .reduce(f32::max)
2901 /// .unwrap(),
2902 /// 2.4
2903 /// );
2904 /// ```
2905 ///
a7813a04
XL
2906 /// # Examples
2907 ///
2908 /// Basic usage:
2909 ///
2910 /// ```
2911 /// let a = [1, 2, 3];
8bb4bdeb 2912 /// let b: Vec<u32> = Vec::new();
a7813a04
XL
2913 ///
2914 /// assert_eq!(a.iter().max(), Some(&3));
8bb4bdeb 2915 /// assert_eq!(b.iter().max(), None);
a7813a04
XL
2916 /// ```
2917 #[inline]
2918 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2919 fn max(self) -> Option<Self::Item>
2920 where
2921 Self: Sized,
2922 Self::Item: Ord,
a7813a04 2923 {
532ac7d7 2924 self.max_by(Ord::cmp)
a7813a04
XL
2925 }
2926
2927 /// Returns the minimum element of an iterator.
2928 ///
17df50a5
XL
2929 /// If several elements are equally minimum, the first element is returned.
2930 /// If the iterator is empty, [`None`] is returned.
2931 ///
2932 /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
2933 /// incomparable. You can work around this by using [`Iterator::reduce`]:
2934 /// ```
2935 /// assert_eq!(
5099ac24 2936 /// [2.4, f32::NAN, 1.3]
17df50a5
XL
2937 /// .into_iter()
2938 /// .reduce(f32::min)
2939 /// .unwrap(),
2940 /// 1.3
2941 /// );
2942 /// ```
8bb4bdeb 2943 ///
a7813a04
XL
2944 /// # Examples
2945 ///
2946 /// Basic usage:
2947 ///
2948 /// ```
2949 /// let a = [1, 2, 3];
8bb4bdeb 2950 /// let b: Vec<u32> = Vec::new();
a7813a04
XL
2951 ///
2952 /// assert_eq!(a.iter().min(), Some(&1));
8bb4bdeb 2953 /// assert_eq!(b.iter().min(), None);
a7813a04
XL
2954 /// ```
2955 #[inline]
2956 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
2957 fn min(self) -> Option<Self::Item>
2958 where
2959 Self: Sized,
2960 Self::Item: Ord,
a7813a04 2961 {
532ac7d7 2962 self.min_by(Ord::cmp)
a7813a04
XL
2963 }
2964
2965 /// Returns the element that gives the maximum value from the
2966 /// specified function.
2967 ///
32a655c1 2968 /// If several elements are equally maximum, the last element is
8bb4bdeb
XL
2969 /// returned. If the iterator is empty, [`None`] is returned.
2970 ///
a7813a04
XL
2971 /// # Examples
2972 ///
2973 /// ```
2974 /// let a = [-3_i32, 0, 1, 5, -10];
2975 /// assert_eq!(*a.iter().max_by_key(|x| x.abs()).unwrap(), -10);
2976 /// ```
2977 #[inline]
2978 #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
e1599b0c 2979 fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
dfeec247
XL
2980 where
2981 Self: Sized,
2982 F: FnMut(&Self::Item) -> B,
a7813a04 2983 {
e1599b0c
XL
2984 #[inline]
2985 fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
2986 move |x| (f(&x), x)
2987 }
2988
2989 #[inline]
2990 fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
2991 x_p.cmp(y_p)
2992 }
2993
2994 let (_, x) = self.map(key(f)).max_by(compare)?;
2995 Some(x)
a7813a04
XL
2996 }
2997
9e0c209e
SL
2998 /// Returns the element that gives the maximum value with respect to the
2999 /// specified comparison function.
3000 ///
32a655c1 3001 /// If several elements are equally maximum, the last element is
8bb4bdeb
XL
3002 /// returned. If the iterator is empty, [`None`] is returned.
3003 ///
9e0c209e
SL
3004 /// # Examples
3005 ///
3006 /// ```
9e0c209e
SL
3007 /// let a = [-3_i32, 0, 1, 5, -10];
3008 /// assert_eq!(*a.iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3009 /// ```
3010 #[inline]
476ff2be 3011 #[stable(feature = "iter_max_by", since = "1.15.0")]
e1599b0c 3012 fn max_by<F>(self, compare: F) -> Option<Self::Item>
dfeec247
XL
3013 where
3014 Self: Sized,
3015 F: FnMut(&Self::Item, &Self::Item) -> Ordering,
9e0c209e 3016 {
e1599b0c
XL
3017 #[inline]
3018 fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3019 move |x, y| cmp::max_by(x, y, &mut compare)
3020 }
3021
5869c6ff 3022 self.reduce(fold(compare))
9e0c209e
SL
3023 }
3024
a7813a04
XL
3025 /// Returns the element that gives the minimum value from the
3026 /// specified function.
3027 ///
32a655c1 3028 /// If several elements are equally minimum, the first element is
8bb4bdeb
XL
3029 /// returned. If the iterator is empty, [`None`] is returned.
3030 ///
a7813a04
XL
3031 /// # Examples
3032 ///
3033 /// ```
3034 /// let a = [-3_i32, 0, 1, 5, -10];
3035 /// assert_eq!(*a.iter().min_by_key(|x| x.abs()).unwrap(), 0);
3036 /// ```
e1599b0c 3037 #[inline]
a7813a04 3038 #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
e1599b0c 3039 fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
dfeec247
XL
3040 where
3041 Self: Sized,
3042 F: FnMut(&Self::Item) -> B,
a7813a04 3043 {
e1599b0c
XL
3044 #[inline]
3045 fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3046 move |x| (f(&x), x)
3047 }
3048
3049 #[inline]
3050 fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3051 x_p.cmp(y_p)
3052 }
3053
3054 let (_, x) = self.map(key(f)).min_by(compare)?;
3055 Some(x)
a7813a04
XL
3056 }
3057
9e0c209e
SL
3058 /// Returns the element that gives the minimum value with respect to the
3059 /// specified comparison function.
3060 ///
32a655c1 3061 /// If several elements are equally minimum, the first element is
8bb4bdeb
XL
3062 /// returned. If the iterator is empty, [`None`] is returned.
3063 ///
9e0c209e
SL
3064 /// # Examples
3065 ///
3066 /// ```
9e0c209e
SL
3067 /// let a = [-3_i32, 0, 1, 5, -10];
3068 /// assert_eq!(*a.iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3069 /// ```
3070 #[inline]
476ff2be 3071 #[stable(feature = "iter_min_by", since = "1.15.0")]
e1599b0c 3072 fn min_by<F>(self, compare: F) -> Option<Self::Item>
dfeec247
XL
3073 where
3074 Self: Sized,
3075 F: FnMut(&Self::Item, &Self::Item) -> Ordering,
9e0c209e 3076 {
e1599b0c
XL
3077 #[inline]
3078 fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3079 move |x, y| cmp::min_by(x, y, &mut compare)
3080 }
3081
5869c6ff 3082 self.reduce(fold(compare))
9e0c209e
SL
3083 }
3084
a7813a04
XL
3085 /// Reverses an iterator's direction.
3086 ///
3087 /// Usually, iterators iterate from left to right. After using `rev()`,
3088 /// an iterator will instead iterate from right to left.
3089 ///
3090 /// This is only possible if the iterator has an end, so `rev()` only
3091 /// works on [`DoubleEndedIterator`]s.
3092 ///
a7813a04
XL
3093 /// # Examples
3094 ///
3095 /// ```
3096 /// let a = [1, 2, 3];
3097 ///
3098 /// let mut iter = a.iter().rev();
3099 ///
3100 /// assert_eq!(iter.next(), Some(&3));
3101 /// assert_eq!(iter.next(), Some(&2));
3102 /// assert_eq!(iter.next(), Some(&1));
3103 ///
3104 /// assert_eq!(iter.next(), None);
3105 /// ```
3106 #[inline]
6a06907d 3107 #[doc(alias = "reverse")]
a7813a04 3108 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
3109 fn rev(self) -> Rev<Self>
3110 where
3111 Self: Sized + DoubleEndedIterator,
3112 {
9fa01778 3113 Rev::new(self)
a7813a04
XL
3114 }
3115
3116 /// Converts an iterator of pairs into a pair of containers.
3117 ///
3118 /// `unzip()` consumes an entire iterator of pairs, producing two
3119 /// collections: one from the left elements of the pairs, and one
3120 /// from the right elements.
3121 ///
cc61c64b 3122 /// This function is, in some sense, the opposite of [`zip`].
a7813a04 3123 ///
1b1a35ee 3124 /// [`zip`]: Iterator::zip
a7813a04
XL
3125 ///
3126 /// # Examples
3127 ///
3128 /// Basic usage:
3129 ///
3130 /// ```
3c0e092e 3131 /// let a = [(1, 2), (3, 4), (5, 6)];
a7813a04
XL
3132 ///
3133 /// let (left, right): (Vec<_>, Vec<_>) = a.iter().cloned().unzip();
3134 ///
3c0e092e
XL
3135 /// assert_eq!(left, [1, 3, 5]);
3136 /// assert_eq!(right, [2, 4, 6]);
94222f64
XL
3137 ///
3138 /// // you can also unzip multiple nested tuples at once
3139 /// let a = [(1, (2, 3)), (4, (5, 6))];
3140 ///
3141 /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.iter().cloned().unzip();
3142 /// assert_eq!(x, [1, 4]);
3143 /// assert_eq!(y, [2, 5]);
3144 /// assert_eq!(z, [3, 6]);
a7813a04
XL
3145 /// ```
3146 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
3147 fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3148 where
a7813a04
XL
3149 FromA: Default + Extend<A>,
3150 FromB: Default + Extend<B>,
dfeec247 3151 Self: Sized + Iterator<Item = (A, B)>,
a7813a04 3152 {
94222f64
XL
3153 let mut unzipped: (FromA, FromB) = Default::default();
3154 unzipped.extend(self);
3155 unzipped
a7813a04
XL
3156 }
3157
0731742a
XL
3158 /// Creates an iterator which copies all of its elements.
3159 ///
3160 /// This is useful when you have an iterator over `&T`, but you need an
3161 /// iterator over `T`.
3162 ///
3163 /// # Examples
3164 ///
3165 /// Basic usage:
3166 ///
3167 /// ```
0731742a
XL
3168 /// let a = [1, 2, 3];
3169 ///
f035d41b 3170 /// let v_copied: Vec<_> = a.iter().copied().collect();
0731742a
XL
3171 ///
3172 /// // copied is the same as .map(|&x| x)
3173 /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3174 ///
f035d41b 3175 /// assert_eq!(v_copied, vec![1, 2, 3]);
0731742a
XL
3176 /// assert_eq!(v_map, vec![1, 2, 3]);
3177 /// ```
48663c56 3178 #[stable(feature = "iter_copied", since = "1.36.0")]
0731742a 3179 fn copied<'a, T: 'a>(self) -> Copied<Self>
dfeec247
XL
3180 where
3181 Self: Sized + Iterator<Item = &'a T>,
3182 T: Copy,
0731742a 3183 {
9fa01778 3184 Copied::new(self)
0731742a
XL
3185 }
3186
cc61c64b 3187 /// Creates an iterator which [`clone`]s all of its elements.
a7813a04
XL
3188 ///
3189 /// This is useful when you have an iterator over `&T`, but you need an
3190 /// iterator over `T`.
3191 ///
ee023bcb
FG
3192 /// There is no guarantee whatsoever about the `clone` method actually
3193 /// being called *or* optimized away. So code should not depend on
3194 /// either.
3195 ///
1b1a35ee 3196 /// [`clone`]: Clone::clone
476ff2be 3197 ///
a7813a04
XL
3198 /// # Examples
3199 ///
3200 /// Basic usage:
3201 ///
3202 /// ```
3203 /// let a = [1, 2, 3];
3204 ///
3205 /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3206 ///
3207 /// // cloned is the same as .map(|&x| x), for integers
3208 /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3209 ///
3210 /// assert_eq!(v_cloned, vec![1, 2, 3]);
3211 /// assert_eq!(v_map, vec![1, 2, 3]);
3212 /// ```
ee023bcb
FG
3213 ///
3214 /// To get the best performance, try to clone late:
3215 ///
3216 /// ```
3217 /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3218 /// // don't do this:
3219 /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3220 /// assert_eq!(&[vec![23]], &slower[..]);
3221 /// // instead call `cloned` late
3222 /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3223 /// assert_eq!(&[vec![23]], &faster[..]);
3224 /// ```
a7813a04
XL
3225 #[stable(feature = "rust1", since = "1.0.0")]
3226 fn cloned<'a, T: 'a>(self) -> Cloned<Self>
dfeec247
XL
3227 where
3228 Self: Sized + Iterator<Item = &'a T>,
3229 T: Clone,
a7813a04 3230 {
9fa01778 3231 Cloned::new(self)
a7813a04
XL
3232 }
3233
3234 /// Repeats an iterator endlessly.
3235 ///
476ff2be 3236 /// Instead of stopping at [`None`], the iterator will instead start again,
a7813a04 3237 /// from the beginning. After iterating again, it will start at the
a2a8927a
XL
3238 /// beginning again. And again. And again. Forever. Note that in case the
3239 /// original iterator is empty, the resulting iterator will also be empty.
a7813a04
XL
3240 ///
3241 /// # Examples
3242 ///
3243 /// Basic usage:
3244 ///
3245 /// ```
3246 /// let a = [1, 2, 3];
3247 ///
3248 /// let mut it = a.iter().cycle();
3249 ///
3250 /// assert_eq!(it.next(), Some(&1));
3251 /// assert_eq!(it.next(), Some(&2));
3252 /// assert_eq!(it.next(), Some(&3));
3253 /// assert_eq!(it.next(), Some(&1));
3254 /// assert_eq!(it.next(), Some(&2));
3255 /// assert_eq!(it.next(), Some(&3));
3256 /// assert_eq!(it.next(), Some(&1));
3257 /// ```
3258 #[stable(feature = "rust1", since = "1.0.0")]
3259 #[inline]
dfeec247
XL
3260 fn cycle(self) -> Cycle<Self>
3261 where
3262 Self: Sized + Clone,
3263 {
9fa01778 3264 Cycle::new(self)
a7813a04
XL
3265 }
3266
3267 /// Sums the elements of an iterator.
3268 ///
3269 /// Takes each element, adds them together, and returns the result.
3270 ///
3271 /// An empty iterator returns the zero value of the type.
3272 ///
3157f602
XL
3273 /// # Panics
3274 ///
476ff2be 3275 /// When calling `sum()` and a primitive integer type is being returned, this
9e0c209e
SL
3276 /// method will panic if the computation overflows and debug assertions are
3277 /// enabled.
3157f602 3278 ///
a7813a04
XL
3279 /// # Examples
3280 ///
3281 /// Basic usage:
3282 ///
3283 /// ```
a7813a04
XL
3284 /// let a = [1, 2, 3];
3285 /// let sum: i32 = a.iter().sum();
3286 ///
3287 /// assert_eq!(sum, 6);
3288 /// ```
3157f602
XL
3289 #[stable(feature = "iter_arith", since = "1.11.0")]
3290 fn sum<S>(self) -> S
dfeec247
XL
3291 where
3292 Self: Sized,
3293 S: Sum<Self::Item>,
a7813a04 3294 {
3157f602 3295 Sum::sum(self)
a7813a04
XL
3296 }
3297
3298 /// Iterates over the entire iterator, multiplying all the elements
3299 ///
3300 /// An empty iterator returns the one value of the type.
3301 ///
3157f602
XL
3302 /// # Panics
3303 ///
476ff2be 3304 /// When calling `product()` and a primitive integer type is being returned,
9e0c209e
SL
3305 /// method will panic if the computation overflows and debug assertions are
3306 /// enabled.
3157f602 3307 ///
a7813a04
XL
3308 /// # Examples
3309 ///
3310 /// ```
a7813a04 3311 /// fn factorial(n: u32) -> u32 {
0731742a 3312 /// (1..=n).product()
a7813a04
XL
3313 /// }
3314 /// assert_eq!(factorial(0), 1);
3315 /// assert_eq!(factorial(1), 1);
3316 /// assert_eq!(factorial(5), 120);
3317 /// ```
3157f602
XL
3318 #[stable(feature = "iter_arith", since = "1.11.0")]
3319 fn product<P>(self) -> P
dfeec247
XL
3320 where
3321 Self: Sized,
3322 P: Product<Self::Item>,
a7813a04 3323 {
3157f602 3324 Product::product(self)
a7813a04
XL
3325 }
3326
29967ef6 3327 /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
a7813a04 3328 /// of another.
e1599b0c
XL
3329 ///
3330 /// # Examples
3331 ///
3332 /// ```
3333 /// use std::cmp::Ordering;
3334 ///
3335 /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3336 /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3337 /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3338 /// ```
a7813a04 3339 #[stable(feature = "iter_order", since = "1.5.0")]
e1599b0c
XL
3340 fn cmp<I>(self, other: I) -> Ordering
3341 where
a7813a04
XL
3342 I: IntoIterator<Item = Self::Item>,
3343 Self::Item: Ord,
3344 Self: Sized,
e1599b0c
XL
3345 {
3346 self.cmp_by(other, |x, y| x.cmp(&y))
3347 }
3348
29967ef6 3349 /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
e1599b0c
XL
3350 /// of another with respect to the specified comparison function.
3351 ///
3352 /// # Examples
3353 ///
3354 /// Basic usage:
3355 ///
3356 /// ```
3357 /// #![feature(iter_order_by)]
3358 ///
3359 /// use std::cmp::Ordering;
3360 ///
3361 /// let xs = [1, 2, 3, 4];
3362 /// let ys = [1, 4, 9, 16];
3363 ///
3364 /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| x.cmp(&y)), Ordering::Less);
3365 /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (x * x).cmp(&y)), Ordering::Equal);
3366 /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (2 * x).cmp(&y)), Ordering::Greater);
3367 /// ```
e74abb32 3368 #[unstable(feature = "iter_order_by", issue = "64295")]
e1599b0c
XL
3369 fn cmp_by<I, F>(mut self, other: I, mut cmp: F) -> Ordering
3370 where
3371 Self: Sized,
3372 I: IntoIterator,
3373 F: FnMut(Self::Item, I::Item) -> Ordering,
a7813a04
XL
3374 {
3375 let mut other = other.into_iter();
3376
3377 loop {
abe05a73 3378 let x = match self.next() {
dfeec247
XL
3379 None => {
3380 if other.next().is_none() {
3381 return Ordering::Equal;
3382 } else {
3383 return Ordering::Less;
3384 }
3385 }
abe05a73
XL
3386 Some(val) => val,
3387 };
3388
3389 let y = match other.next() {
3390 None => return Ordering::Greater,
3391 Some(val) => val,
3392 };
3393
e1599b0c 3394 match cmp(x, y) {
abe05a73
XL
3395 Ordering::Equal => (),
3396 non_eq => return non_eq,
a7813a04
XL
3397 }
3398 }
3399 }
3400
29967ef6 3401 /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
a7813a04 3402 /// of another.
e1599b0c
XL
3403 ///
3404 /// # Examples
3405 ///
3406 /// ```
3407 /// use std::cmp::Ordering;
3408 ///
3409 /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3410 /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3411 /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3412 ///
ba9703b0 3413 /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
e1599b0c 3414 /// ```
a7813a04 3415 #[stable(feature = "iter_order", since = "1.5.0")]
e1599b0c
XL
3416 fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3417 where
a7813a04
XL
3418 I: IntoIterator,
3419 Self::Item: PartialOrd<I::Item>,
3420 Self: Sized,
e1599b0c
XL
3421 {
3422 self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3423 }
3424
29967ef6 3425 /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
e1599b0c
XL
3426 /// of another with respect to the specified comparison function.
3427 ///
3428 /// # Examples
3429 ///
3430 /// Basic usage:
3431 ///
3432 /// ```
3433 /// #![feature(iter_order_by)]
3434 ///
3435 /// use std::cmp::Ordering;
3436 ///
3437 /// let xs = [1.0, 2.0, 3.0, 4.0];
3438 /// let ys = [1.0, 4.0, 9.0, 16.0];
3439 ///
3440 /// assert_eq!(
3441 /// xs.iter().partial_cmp_by(&ys, |&x, &y| x.partial_cmp(&y)),
3442 /// Some(Ordering::Less)
3443 /// );
3444 /// assert_eq!(
3445 /// xs.iter().partial_cmp_by(&ys, |&x, &y| (x * x).partial_cmp(&y)),
3446 /// Some(Ordering::Equal)
3447 /// );
3448 /// assert_eq!(
3449 /// xs.iter().partial_cmp_by(&ys, |&x, &y| (2.0 * x).partial_cmp(&y)),
3450 /// Some(Ordering::Greater)
3451 /// );
3452 /// ```
e74abb32 3453 #[unstable(feature = "iter_order_by", issue = "64295")]
e1599b0c
XL
3454 fn partial_cmp_by<I, F>(mut self, other: I, mut partial_cmp: F) -> Option<Ordering>
3455 where
3456 Self: Sized,
3457 I: IntoIterator,
3458 F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
a7813a04
XL
3459 {
3460 let mut other = other.into_iter();
3461
3462 loop {
abe05a73 3463 let x = match self.next() {
dfeec247
XL
3464 None => {
3465 if other.next().is_none() {
3466 return Some(Ordering::Equal);
3467 } else {
3468 return Some(Ordering::Less);
3469 }
3470 }
abe05a73
XL
3471 Some(val) => val,
3472 };
3473
3474 let y = match other.next() {
3475 None => return Some(Ordering::Greater),
3476 Some(val) => val,
3477 };
3478
e1599b0c 3479 match partial_cmp(x, y) {
abe05a73
XL
3480 Some(Ordering::Equal) => (),
3481 non_eq => return non_eq,
a7813a04
XL
3482 }
3483 }
3484 }
3485
1b1a35ee 3486 /// Determines if the elements of this [`Iterator`] are equal to those of
a7813a04 3487 /// another.
e1599b0c
XL
3488 ///
3489 /// # Examples
3490 ///
3491 /// ```
3492 /// assert_eq!([1].iter().eq([1].iter()), true);
3493 /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3494 /// ```
a7813a04 3495 #[stable(feature = "iter_order", since = "1.5.0")]
e1599b0c
XL
3496 fn eq<I>(self, other: I) -> bool
3497 where
a7813a04
XL
3498 I: IntoIterator,
3499 Self::Item: PartialEq<I::Item>,
3500 Self: Sized,
e1599b0c
XL
3501 {
3502 self.eq_by(other, |x, y| x == y)
3503 }
3504
1b1a35ee 3505 /// Determines if the elements of this [`Iterator`] are equal to those of
e1599b0c
XL
3506 /// another with respect to the specified equality function.
3507 ///
3508 /// # Examples
3509 ///
3510 /// Basic usage:
3511 ///
3512 /// ```
3513 /// #![feature(iter_order_by)]
3514 ///
3515 /// let xs = [1, 2, 3, 4];
3516 /// let ys = [1, 4, 9, 16];
3517 ///
3518 /// assert!(xs.iter().eq_by(&ys, |&x, &y| x * x == y));
3519 /// ```
e74abb32 3520 #[unstable(feature = "iter_order_by", issue = "64295")]
e1599b0c
XL
3521 fn eq_by<I, F>(mut self, other: I, mut eq: F) -> bool
3522 where
3523 Self: Sized,
3524 I: IntoIterator,
3525 F: FnMut(Self::Item, I::Item) -> bool,
a7813a04
XL
3526 {
3527 let mut other = other.into_iter();
3528
3529 loop {
abe05a73
XL
3530 let x = match self.next() {
3531 None => return other.next().is_none(),
3532 Some(val) => val,
3533 };
3534
3535 let y = match other.next() {
3536 None => return false,
3537 Some(val) => val,
3538 };
3539
e1599b0c
XL
3540 if !eq(x, y) {
3541 return false;
3542 }
a7813a04
XL
3543 }
3544 }
3545
1b1a35ee 3546 /// Determines if the elements of this [`Iterator`] are unequal to those of
a7813a04 3547 /// another.
e1599b0c
XL
3548 ///
3549 /// # Examples
3550 ///
3551 /// ```
3552 /// assert_eq!([1].iter().ne([1].iter()), false);
3553 /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3554 /// ```
a7813a04 3555 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3556 fn ne<I>(self, other: I) -> bool
3557 where
a7813a04
XL
3558 I: IntoIterator,
3559 Self::Item: PartialEq<I::Item>,
3560 Self: Sized,
3561 {
532ac7d7 3562 !self.eq(other)
a7813a04
XL
3563 }
3564
29967ef6 3565 /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
a7813a04 3566 /// less than those of another.
e1599b0c
XL
3567 ///
3568 /// # Examples
3569 ///
3570 /// ```
3571 /// assert_eq!([1].iter().lt([1].iter()), false);
3572 /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3573 /// assert_eq!([1, 2].iter().lt([1].iter()), false);
1b1a35ee 3574 /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
e1599b0c 3575 /// ```
a7813a04 3576 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3577 fn lt<I>(self, other: I) -> bool
3578 where
a7813a04
XL
3579 I: IntoIterator,
3580 Self::Item: PartialOrd<I::Item>,
3581 Self: Sized,
3582 {
532ac7d7 3583 self.partial_cmp(other) == Some(Ordering::Less)
a7813a04
XL
3584 }
3585
29967ef6 3586 /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
a7813a04 3587 /// less or equal to those of another.
e1599b0c
XL
3588 ///
3589 /// # Examples
3590 ///
3591 /// ```
3592 /// assert_eq!([1].iter().le([1].iter()), true);
3593 /// assert_eq!([1].iter().le([1, 2].iter()), true);
3594 /// assert_eq!([1, 2].iter().le([1].iter()), false);
1b1a35ee 3595 /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
e1599b0c 3596 /// ```
a7813a04 3597 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3598 fn le<I>(self, other: I) -> bool
3599 where
a7813a04
XL
3600 I: IntoIterator,
3601 Self::Item: PartialOrd<I::Item>,
3602 Self: Sized,
3603 {
ba9703b0 3604 matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
a7813a04
XL
3605 }
3606
29967ef6 3607 /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
a7813a04 3608 /// greater than those of another.
e1599b0c
XL
3609 ///
3610 /// # Examples
3611 ///
3612 /// ```
3613 /// assert_eq!([1].iter().gt([1].iter()), false);
3614 /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3615 /// assert_eq!([1, 2].iter().gt([1].iter()), true);
1b1a35ee 3616 /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
e1599b0c 3617 /// ```
a7813a04 3618 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3619 fn gt<I>(self, other: I) -> bool
3620 where
a7813a04
XL
3621 I: IntoIterator,
3622 Self::Item: PartialOrd<I::Item>,
3623 Self: Sized,
3624 {
532ac7d7 3625 self.partial_cmp(other) == Some(Ordering::Greater)
a7813a04
XL
3626 }
3627
29967ef6 3628 /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
a7813a04 3629 /// greater than or equal to those of another.
e1599b0c
XL
3630 ///
3631 /// # Examples
3632 ///
3633 /// ```
3634 /// assert_eq!([1].iter().ge([1].iter()), true);
3635 /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3636 /// assert_eq!([1, 2].iter().ge([1].iter()), true);
1b1a35ee 3637 /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
e1599b0c 3638 /// ```
a7813a04 3639 #[stable(feature = "iter_order", since = "1.5.0")]
dfeec247
XL
3640 fn ge<I>(self, other: I) -> bool
3641 where
a7813a04
XL
3642 I: IntoIterator,
3643 Self::Item: PartialOrd<I::Item>,
3644 Self: Sized,
3645 {
ba9703b0 3646 matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
a7813a04 3647 }
9fa01778
XL
3648
3649 /// Checks if the elements of this iterator are sorted.
3650 ///
3651 /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3652 /// iterator yields exactly zero or one element, `true` is returned.
3653 ///
3654 /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
3655 /// implies that this function returns `false` if any two consecutive items are not
3656 /// comparable.
3657 ///
3658 /// # Examples
3659 ///
3660 /// ```
3661 /// #![feature(is_sorted)]
3662 ///
3663 /// assert!([1, 2, 2, 9].iter().is_sorted());
3664 /// assert!(![1, 3, 2, 4].iter().is_sorted());
3665 /// assert!([0].iter().is_sorted());
3666 /// assert!(std::iter::empty::<i32>().is_sorted());
ba9703b0 3667 /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
9fa01778
XL
3668 /// ```
3669 #[inline]
3670 #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
3671 fn is_sorted(self) -> bool
3672 where
3673 Self: Sized,
3674 Self::Item: PartialOrd,
3675 {
e1599b0c 3676 self.is_sorted_by(PartialOrd::partial_cmp)
9fa01778
XL
3677 }
3678
3679 /// Checks if the elements of this iterator are sorted using the given comparator function.
3680 ///
3681 /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
3682 /// function to determine the ordering of two elements. Apart from that, it's equivalent to
3683 /// [`is_sorted`]; see its documentation for more information.
3684 ///
e1599b0c
XL
3685 /// # Examples
3686 ///
3687 /// ```
3688 /// #![feature(is_sorted)]
3689 ///
3690 /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
3691 /// assert!(![1, 3, 2, 4].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
3692 /// assert!([0].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
3693 /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| a.partial_cmp(b)));
ba9703b0 3694 /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
e1599b0c
XL
3695 /// ```
3696 ///
1b1a35ee 3697 /// [`is_sorted`]: Iterator::is_sorted
9fa01778 3698 #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
6a06907d 3699 fn is_sorted_by<F>(mut self, compare: F) -> bool
9fa01778
XL
3700 where
3701 Self: Sized,
dfeec247 3702 F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>,
9fa01778 3703 {
6a06907d
XL
3704 #[inline]
3705 fn check<'a, T>(
3706 last: &'a mut T,
3707 mut compare: impl FnMut(&T, &T) -> Option<Ordering> + 'a,
3708 ) -> impl FnMut(T) -> bool + 'a {
3709 move |curr| {
3710 if let Some(Ordering::Greater) | None = compare(&last, &curr) {
3711 return false;
3712 }
3713 *last = curr;
3714 true
3715 }
3716 }
3717
9fa01778
XL
3718 let mut last = match self.next() {
3719 Some(e) => e,
3720 None => return true,
3721 };
3722
6a06907d 3723 self.all(check(&mut last, compare))
9fa01778
XL
3724 }
3725
3726 /// Checks if the elements of this iterator are sorted using the given key extraction
3727 /// function.
3728 ///
3729 /// Instead of comparing the iterator's elements directly, this function compares the keys of
3730 /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
3731 /// its documentation for more information.
3732 ///
1b1a35ee 3733 /// [`is_sorted`]: Iterator::is_sorted
9fa01778
XL
3734 ///
3735 /// # Examples
3736 ///
3737 /// ```
3738 /// #![feature(is_sorted)]
3739 ///
3740 /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
3741 /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
3742 /// ```
3743 #[inline]
3744 #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
416331ca 3745 fn is_sorted_by_key<F, K>(self, f: F) -> bool
9fa01778
XL
3746 where
3747 Self: Sized,
416331ca 3748 F: FnMut(Self::Item) -> K,
dfeec247 3749 K: PartialOrd,
9fa01778 3750 {
416331ca 3751 self.map(f).is_sorted()
9fa01778 3752 }
3dfed10e 3753
94222f64 3754 /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
1b1a35ee
XL
3755 // The unusual name is to avoid name collisions in method resolution
3756 // see #76479.
3dfed10e
XL
3757 #[inline]
3758 #[doc(hidden)]
3759 #[unstable(feature = "trusted_random_access", issue = "none")]
6c58768f 3760 unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
3dfed10e 3761 where
94222f64 3762 Self: TrustedRandomAccessNoCoerce,
3dfed10e
XL
3763 {
3764 unreachable!("Always specialized");
3765 }
a7813a04
XL
3766}
3767
a7813a04 3768#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 3769impl<I: Iterator + ?Sized> Iterator for &mut I {
a7813a04 3770 type Item = I::Item;
c295e0f8 3771 #[inline]
dfeec247
XL
3772 fn next(&mut self) -> Option<I::Item> {
3773 (**self).next()
3774 }
3775 fn size_hint(&self) -> (usize, Option<usize>) {
3776 (**self).size_hint()
3777 }
1b1a35ee
XL
3778 fn advance_by(&mut self, n: usize) -> Result<(), usize> {
3779 (**self).advance_by(n)
3780 }
476ff2be
SL
3781 fn nth(&mut self, n: usize) -> Option<Self::Item> {
3782 (**self).nth(n)
3783 }
a7813a04 3784}