]> git.proxmox.com Git - rustc.git/blame - library/core/src/marker.rs
New upstream version 1.55.0+dfsg1
[rustc.git] / library / core / src / marker.rs
CommitLineData
9e0c209e 1//! Primitive traits and types representing basic properties of types.
1a4d82fc
JJ
2//!
3//! Rust types can be classified in various useful ways according to
9e0c209e
SL
4//! their intrinsic properties. These classifications are represented
5//! as traits.
1a4d82fc 6
85aaf69f 7#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 8
48663c56
XL
9use crate::cell::UnsafeCell;
10use crate::cmp;
f9f354fc 11use crate::fmt::Debug;
48663c56
XL
12use crate::hash::Hash;
13use crate::hash::Hasher;
1a4d82fc 14
92a42be0 15/// Types that can be transferred across thread boundaries.
9cc50fc6 16///
9e0c209e
SL
17/// This trait is automatically implemented when the compiler determines it's
18/// appropriate.
19///
20/// An example of a non-`Send` type is the reference-counting pointer
476ff2be 21/// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same
9e0c209e 22/// reference-counted value, they might try to update the reference count at the
476ff2be 23/// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic
9e0c209e
SL
24/// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring
25/// some overhead) and thus is `Send`.
26///
27/// See [the Nomicon](../../nomicon/send-and-sync.html) for more details.
28///
476ff2be 29/// [`Rc`]: ../../std/rc/struct.Rc.html
9e0c209e 30/// [arc]: ../../std/sync/struct.Arc.html
8bb4bdeb 31/// [ub]: ../../reference/behavior-considered-undefined.html
85aaf69f 32#[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d 33#[cfg_attr(not(test), rustc_diagnostic_item = "send_trait")]
8faf50e0 34#[rustc_on_unimplemented(
dfeec247
XL
35 message = "`{Self}` cannot be sent between threads safely",
36 label = "`{Self}` cannot be sent between threads safely"
8faf50e0 37)]
2c00a5a8 38pub unsafe auto trait Send {
9346a6ac
AL
39 // empty.
40}
41
92a42be0 42#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 43impl<T: ?Sized> !Send for *const T {}
92a42be0 44#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 45impl<T: ?Sized> !Send for *mut T {}
c34b1796 46
9e0c209e 47/// Types with a constant size known at compile time.
b039eaaf 48///
9e0c209e
SL
49/// All type parameters have an implicit bound of `Sized`. The special syntax
50/// `?Sized` can be used to remove this bound if it's not appropriate.
b039eaaf
SL
51///
52/// ```
92a42be0 53/// # #![allow(dead_code)]
b039eaaf
SL
54/// struct Foo<T>(T);
55/// struct Bar<T: ?Sized>(T);
56///
57/// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32]
58/// struct BarUse(Bar<[i32]>); // OK
59/// ```
9e0c209e 60///
0531ce1d
XL
61/// The one exception is the implicit `Self` type of a trait. A trait does not
62/// have an implicit `Sized` bound as this is incompatible with [trait object]s
63/// where, by definition, the trait needs to work with all possible implementors,
64/// and thus could be any size.
65///
66/// Although Rust will let you bind `Sized` to a trait, you won't
67/// be able to use it to form a trait object later:
9e0c209e
SL
68///
69/// ```
70/// # #![allow(unused_variables)]
71/// trait Foo { }
72/// trait Bar: Sized { }
73///
74/// struct Impl;
75/// impl Foo for Impl { }
76/// impl Bar for Impl { }
77///
48663c56
XL
78/// let x: &dyn Foo = &Impl; // OK
79/// // let y: &dyn Bar = &Impl; // error: the trait `Bar` cannot
80/// // be made into an object
9e0c209e
SL
81/// ```
82///
9fa01778 83/// [trait object]: ../../book/ch17-02-trait-objects.html
85aaf69f 84#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 85#[lang = "sized"]
8faf50e0 86#[rustc_on_unimplemented(
dfeec247 87 message = "the size for values of type `{Self}` cannot be known at compilation time",
3dfed10e 88 label = "doesn't have a size known at compile-time"
8faf50e0 89)]
c34b1796 90#[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable
f9f354fc 91#[rustc_specialization_trait]
9346a6ac
AL
92pub trait Sized {
93 // Empty.
94}
95
9e0c209e
SL
96/// Types that can be "unsized" to a dynamically-sized type.
97///
98/// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and
60c5eb7d 99/// `Unsize<dyn fmt::Debug>`.
9e0c209e
SL
100///
101/// All implementations of `Unsize` are provided automatically by the compiler.
102///
32a655c1
SL
103/// `Unsize` is implemented for:
104///
105/// - `[T; N]` is `Unsize<[T]>`
dc9dc135 106/// - `T` is `Unsize<dyn Trait>` when `T: Trait`
32a655c1
SL
107/// - `Foo<..., T, ...>` is `Unsize<Foo<..., U, ...>>` if:
108/// - `T: Unsize<U>`
109/// - Foo is a struct
110/// - Only the last field of `Foo` has a type involving `T`
111/// - `T` is not part of the type of any other fields
112/// - `Bar<T>: Unsize<Bar<U>>`, if the last field of `Foo` has type `Bar<T>`
113///
1b1a35ee
XL
114/// `Unsize` is used along with [`ops::CoerceUnsized`] to allow
115/// "user-defined" containers such as [`Rc`] to contain dynamically-sized
32a655c1
SL
116/// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce]
117/// for more details.
9e0c209e 118///
1b1a35ee
XL
119/// [`ops::CoerceUnsized`]: crate::ops::CoerceUnsized
120/// [`Rc`]: ../../std/rc/struct.Rc.html
9e0c209e 121/// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
7cac9316 122/// [nomicon-coerce]: ../../nomicon/coercions.html
e9174d1e 123#[unstable(feature = "unsize", issue = "27732")]
ea8adc8c 124#[lang = "unsize"]
e9174d1e 125pub trait Unsize<T: ?Sized> {
1a4d82fc
JJ
126 // Empty.
127}
128
e74abb32
XL
129/// Required trait for constants used in pattern matches.
130///
131/// Any type that derives `PartialEq` automatically implements this trait,
132/// *regardless* of whether its type-parameters implement `Eq`.
133///
134/// If a `const` item contains some type that does not implement this trait,
135/// then that type either (1.) does not implement `PartialEq` (which means the
136/// constant will not provide that comparison method, which code generation
137/// assumes is available), or (2.) it implements *its own* version of
138/// `PartialEq` (which we assume does not conform to a structural-equality
139/// comparison).
140///
141/// In either of the two scenarios above, we reject usage of such a constant in
142/// a pattern match.
143///
dfeec247 144/// See also the [structural match RFC][RFC1445], and [issue 63438] which
e74abb32
XL
145/// motivated migrating from attribute-based design to this trait.
146///
147/// [RFC1445]: https://github.com/rust-lang/rfcs/blob/master/text/1445-restrict-constants-in-patterns.md
148/// [issue 63438]: https://github.com/rust-lang/rust/issues/63438
e74abb32 149#[unstable(feature = "structural_match", issue = "31434")]
dfeec247 150#[rustc_on_unimplemented(message = "the type `{Self}` does not `#[derive(PartialEq)]`")]
e74abb32
XL
151#[lang = "structural_peq"]
152pub trait StructuralPartialEq {
153 // Empty.
154}
155
156/// Required trait for constants used in pattern matches.
157///
158/// Any type that derives `Eq` automatically implements this trait, *regardless*
fc512014 159/// of whether its type parameters implement `Eq`.
e74abb32 160///
fc512014 161/// This is a hack to work around a limitation in our type system.
e74abb32 162///
fc512014 163/// # Background
e74abb32
XL
164///
165/// We want to require that types of consts used in pattern matches
166/// have the attribute `#[derive(PartialEq, Eq)]`.
167///
168/// In a more ideal world, we could check that requirement by just checking that
fc512014
XL
169/// the given type implements both the `StructuralPartialEq` trait *and*
170/// the `Eq` trait. However, you can have ADTs that *do* `derive(PartialEq, Eq)`,
e74abb32
XL
171/// and be a case that we want the compiler to accept, and yet the constant's
172/// type fails to implement `Eq`.
173///
174/// Namely, a case like this:
175///
176/// ```rust
177/// #[derive(PartialEq, Eq)]
178/// struct Wrap<X>(X);
fc512014 179///
e74abb32 180/// fn higher_order(_: &()) { }
fc512014 181///
e74abb32 182/// const CFN: Wrap<fn(&())> = Wrap(higher_order);
fc512014 183///
e74abb32
XL
184/// fn main() {
185/// match CFN {
186/// CFN => {}
187/// _ => {}
188/// }
189/// }
190/// ```
191///
192/// (The problem in the above code is that `Wrap<fn(&())>` does not implement
193/// `PartialEq`, nor `Eq`, because `for<'a> fn(&'a _)` does not implement those
194/// traits.)
195///
196/// Therefore, we cannot rely on naive check for `StructuralPartialEq` and
197/// mere `Eq`.
198///
199/// As a hack to work around this, we use two separate traits injected by each
200/// of the two derives (`#[derive(PartialEq)]` and `#[derive(Eq)]`) and check
201/// that both of them are present as part of structural-match checking.
e74abb32 202#[unstable(feature = "structural_match", issue = "31434")]
dfeec247 203#[rustc_on_unimplemented(message = "the type `{Self}` does not `#[derive(Eq)]`")]
e74abb32
XL
204#[lang = "structural_teq"]
205pub trait StructuralEq {
206 // Empty.
207}
208
9e0c209e 209/// Types whose values can be duplicated simply by copying bits.
85aaf69f
SL
210///
211/// By default, variable bindings have 'move semantics.' In other
212/// words:
213///
214/// ```
215/// #[derive(Debug)]
216/// struct Foo;
217///
218/// let x = Foo;
219///
220/// let y = x;
221///
222/// // `x` has moved into `y`, and so cannot be used
223///
224/// // println!("{:?}", x); // error: use of moved value
225/// ```
226///
227/// However, if a type implements `Copy`, it instead has 'copy semantics':
228///
229/// ```
9e0c209e
SL
230/// // We can derive a `Copy` implementation. `Clone` is also required, as it's
231/// // a supertrait of `Copy`.
c34b1796 232/// #[derive(Debug, Copy, Clone)]
85aaf69f
SL
233/// struct Foo;
234///
235/// let x = Foo;
236///
237/// let y = x;
238///
239/// // `y` is a copy of `x`
240///
241/// println!("{:?}", x); // A-OK!
242/// ```
243///
9e0c209e
SL
244/// It's important to note that in these two examples, the only difference is whether you
245/// are allowed to access `x` after the assignment. Under the hood, both a copy and a move
246/// can result in bits being copied in memory, although this is sometimes optimized away.
247///
248/// ## How can I implement `Copy`?
249///
250/// There are two ways to implement `Copy` on your type. The simplest is to use `derive`:
251///
252/// ```
253/// #[derive(Copy, Clone)]
254/// struct MyStruct;
255/// ```
256///
257/// You can also implement `Copy` and `Clone` manually:
258///
259/// ```
260/// struct MyStruct;
261///
262/// impl Copy for MyStruct { }
263///
264/// impl Clone for MyStruct {
265/// fn clone(&self) -> MyStruct {
266/// *self
267/// }
268/// }
269/// ```
270///
271/// There is a small difference between the two: the `derive` strategy will also place a `Copy`
272/// bound on type parameters, which isn't always desired.
273///
274/// ## What's the difference between `Copy` and `Clone`?
275///
276/// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of
277/// `Copy` is not overloadable; it is always a simple bit-wise copy.
278///
476ff2be 279/// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can
9e0c209e 280/// provide any type-specific behavior necessary to duplicate values safely. For example,
476ff2be
SL
281/// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string
282/// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the
283/// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`]
9e0c209e
SL
284/// but not `Copy`.
285///
476ff2be 286/// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement
041b39d2 287/// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation only needs to return `*self`
9e0c209e
SL
288/// (see the example above).
289///
85aaf69f
SL
290/// ## When can my type be `Copy`?
291///
292/// A type can implement `Copy` if all of its components implement `Copy`. For example, this
9e0c209e 293/// struct can be `Copy`:
85aaf69f
SL
294///
295/// ```
92a42be0 296/// # #[allow(dead_code)]
3dfed10e 297/// #[derive(Copy, Clone)]
85aaf69f
SL
298/// struct Point {
299/// x: i32,
300/// y: i32,
301/// }
302/// ```
303///
476ff2be 304/// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`.
9e0c209e 305/// By contrast, consider
85aaf69f
SL
306///
307/// ```
92a42be0 308/// # #![allow(dead_code)]
85aaf69f
SL
309/// # struct Point;
310/// struct PointList {
311/// points: Vec<Point>,
312/// }
313/// ```
314///
9e0c209e 315/// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we
62682a34 316/// attempt to derive a `Copy` implementation, we'll get an error:
85aaf69f
SL
317///
318/// ```text
62682a34 319/// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy`
85aaf69f
SL
320/// ```
321///
3dfed10e
XL
322/// Shared references (`&T`) are also `Copy`, so a type can be `Copy`, even when it holds
323/// shared references of types `T` that are *not* `Copy`. Consider the following struct,
324/// which can implement `Copy`, because it only holds a *shared reference* to our non-`Copy`
325/// type `PointList` from above:
326///
327/// ```
328/// # #![allow(dead_code)]
329/// # struct PointList;
330/// #[derive(Copy, Clone)]
331/// struct PointListWrapper<'a> {
332/// point_list_ref: &'a PointList,
333/// }
334/// ```
335///
9e0c209e 336/// ## When *can't* my type be `Copy`?
3157f602
XL
337///
338/// Some types can't be copied safely. For example, copying `&mut T` would create an aliased
476ff2be
SL
339/// mutable reference. Copying [`String`] would duplicate responsibility for managing the
340/// [`String`]'s buffer, leading to a double free.
3157f602 341///
9e0c209e 342/// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's
cc61c64b 343/// managing some resource besides its own [`size_of::<T>`] bytes.
3157f602 344///
32a655c1
SL
345/// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get
346/// the error [E0204].
85aaf69f 347///
c30ab7b3 348/// [E0204]: ../../error-index.html#E0204
85aaf69f 349///
9e0c209e 350/// ## When *should* my type be `Copy`?
85aaf69f 351///
9e0c209e
SL
352/// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though,
353/// that implementing `Copy` is part of the public API of your type. If the type might become
354/// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to
355/// avoid a breaking API change.
85aaf69f 356///
83c7162d
XL
357/// ## Additional implementors
358///
359/// In addition to the [implementors listed below][impls],
360/// the following types also implement `Copy`:
361///
0731742a
XL
362/// * Function item types (i.e., the distinct types defined for each function)
363/// * Function pointer types (e.g., `fn() -> i32`)
364/// * Array types, for all sizes, if the item type also implements `Copy` (e.g., `[i32; 123456]`)
365/// * Tuple types, if each component also implements `Copy` (e.g., `()`, `(i32, bool)`)
83c7162d
XL
366/// * Closure types, if they capture no value from the environment
367/// or if all such captured values implement `Copy` themselves.
368/// Note that variables captured by shared reference always implement `Copy`
369/// (even if the referent doesn't),
370/// while variables captured by mutable reference never implement `Copy`.
371///
9e0c209e
SL
372/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
373/// [`String`]: ../../std/string/struct.String.html
1b1a35ee 374/// [`size_of::<T>`]: crate::mem::size_of
83c7162d 375/// [impls]: #implementors
85aaf69f 376#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 377#[lang = "copy"]
f9f354fc
XL
378// FIXME(matthewjasper) This allows copying a type that doesn't implement
379// `Copy` because of unsatisfied lifetime bounds (copying `A<'_>` when only
380// `A<'static>: Copy` and `A<'_>: Clone`).
381// We have this attribute here for now only because there are quite a few
382// existing specializations on `Copy` that already exist in the standard
383// library, and there's no way to safely have this behavior right now.
384#[rustc_unsafe_specialization_marker]
dfeec247 385pub trait Copy: Clone {
1a4d82fc
JJ
386 // Empty.
387}
388
416331ca 389/// Derive macro generating an impl of the trait `Copy`.
416331ca 390#[rustc_builtin_macro]
416331ca
XL
391#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
392#[allow_internal_unstable(core_intrinsics, derive_clone_copy)]
dfeec247
XL
393pub macro Copy($item:item) {
394 /* compiler built-in */
395}
416331ca 396
9e0c209e
SL
397/// Types for which it is safe to share references between threads.
398///
399/// This trait is automatically implemented when the compiler determines
400/// it's appropriate.
1a4d82fc 401///
1b1a35ee
XL
402/// The precise definition is: a type `T` is [`Sync`] if and only if `&T` is
403/// [`Send`]. In other words, if there is no possibility of
9e0c209e
SL
404/// [undefined behavior][ub] (including data races) when passing
405/// `&T` references between threads.
406///
1b1a35ee
XL
407/// As one would expect, primitive types like [`u8`] and [`f64`]
408/// are all [`Sync`], and so are simple aggregate types containing them,
409/// like tuples, structs and enums. More examples of basic [`Sync`]
9e0c209e
SL
410/// types include "immutable" types like `&T`, and those with simple
411/// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and
1b1a35ee
XL
412/// most other collection types. (Generic parameters need to be [`Sync`]
413/// for their container to be [`Sync`].)
9e0c209e
SL
414///
415/// A somewhat surprising consequence of the definition is that `&mut T`
416/// is `Sync` (if `T` is `Sync`) even though it seems like that might
417/// provide unsynchronized mutation. The trick is that a mutable
418/// reference behind a shared reference (that is, `& &mut T`)
419/// becomes read-only, as if it were a `& &T`. Hence there is no risk
420/// of a data race.
1a4d82fc
JJ
421///
422/// Types that are not `Sync` are those that have "interior
1b1a35ee
XL
423/// mutability" in a non-thread-safe form, such as [`Cell`][cell]
424/// and [`RefCell`][refcell]. These types allow for mutation of
9e0c209e 425/// their contents even through an immutable, shared reference. For
476ff2be
SL
426/// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires
427/// only a shared reference [`&Cell<T>`][cell]. The method performs no
428/// synchronization, thus [`Cell`][cell] cannot be `Sync`.
1a4d82fc 429///
9e0c209e 430/// Another example of a non-`Sync` type is the reference-counting
1b1a35ee 431/// pointer [`Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone
476ff2be 432/// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way.
9cc50fc6 433///
9e0c209e
SL
434/// For cases when one does need thread-safe interior mutability,
435/// Rust provides [atomic data types], as well as explicit locking via
ff7c6d11 436/// [`sync::Mutex`][mutex] and [`sync::RwLock`][rwlock]. These types
9e0c209e
SL
437/// ensure that any mutation cannot cause data races, hence the types
438/// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe
476ff2be 439/// analogue of [`Rc`][rc].
9e0c209e
SL
440///
441/// Any types with interior mutability must also use the
442/// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which
443/// can be mutated through a shared reference. Failing to doing this is
444/// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing
445/// from `&T` to `&mut T` is invalid.
446///
1b1a35ee 447/// See [the Nomicon][nomicon-send-and-sync] for more details about `Sync`.
9e0c209e 448///
9e0c209e
SL
449/// [box]: ../../std/boxed/struct.Box.html
450/// [vec]: ../../std/vec/struct.Vec.html
1b1a35ee
XL
451/// [cell]: crate::cell::Cell
452/// [refcell]: crate::cell::RefCell
9e0c209e
SL
453/// [rc]: ../../std/rc/struct.Rc.html
454/// [arc]: ../../std/sync/struct.Arc.html
1b1a35ee 455/// [atomic data types]: crate::sync::atomic
9e0c209e
SL
456/// [mutex]: ../../std/sync/struct.Mutex.html
457/// [rwlock]: ../../std/sync/struct.RwLock.html
1b1a35ee 458/// [unsafecell]: crate::cell::UnsafeCell
8bb4bdeb 459/// [ub]: ../../reference/behavior-considered-undefined.html
1b1a35ee
XL
460/// [transmute]: crate::mem::transmute
461/// [nomicon-send-and-sync]: ../../nomicon/send-and-sync.html
9346a6ac 462#[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d 463#[cfg_attr(not(test), rustc_diagnostic_item = "sync_trait")]
d9579d0f 464#[lang = "sync"]
0531ce1d 465#[rustc_on_unimplemented(
dfeec247
XL
466 message = "`{Self}` cannot be shared between threads safely",
467 label = "`{Self}` cannot be shared between threads safely"
0531ce1d 468)]
2c00a5a8 469pub unsafe auto trait Sync {
0531ce1d
XL
470 // FIXME(estebank): once support to add notes in `rustc_on_unimplemented`
471 // lands in beta, and it has been extended to check whether a closure is
472 // anywhere in the requirement chain, extend it as such (#48534):
473 // ```
474 // on(
475 // closure,
476 // note="`{Self}` cannot be shared safely, consider marking the closure `move`"
477 // ),
478 // ```
479
9346a6ac
AL
480 // Empty
481}
482
92a42be0 483#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 484impl<T: ?Sized> !Sync for *const T {}
92a42be0 485#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 486impl<T: ?Sized> !Sync for *mut T {}
c34b1796 487
dfeec247
XL
488macro_rules! impls {
489 ($t: ident) => {
92a42be0 490 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 491 impl<T: ?Sized> Hash for $t<T> {
85aaf69f 492 #[inline]
dfeec247 493 fn hash<H: Hasher>(&self, _: &mut H) {}
85aaf69f
SL
494 }
495
92a42be0 496 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 497 impl<T: ?Sized> cmp::PartialEq for $t<T> {
85aaf69f
SL
498 fn eq(&self, _other: &$t<T>) -> bool {
499 true
500 }
501 }
502
92a42be0 503 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 504 impl<T: ?Sized> cmp::Eq for $t<T> {}
85aaf69f 505
92a42be0 506 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 507 impl<T: ?Sized> cmp::PartialOrd for $t<T> {
85aaf69f
SL
508 fn partial_cmp(&self, _other: &$t<T>) -> Option<cmp::Ordering> {
509 Option::Some(cmp::Ordering::Equal)
510 }
511 }
512
92a42be0 513 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 514 impl<T: ?Sized> cmp::Ord for $t<T> {
85aaf69f
SL
515 fn cmp(&self, _other: &$t<T>) -> cmp::Ordering {
516 cmp::Ordering::Equal
517 }
518 }
519
92a42be0 520 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 521 impl<T: ?Sized> Copy for $t<T> {}
85aaf69f 522
92a42be0 523 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
524 impl<T: ?Sized> Clone for $t<T> {
525 fn clone(&self) -> Self {
526 Self
85aaf69f
SL
527 }
528 }
92a42be0
SL
529
530 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
531 impl<T: ?Sized> Default for $t<T> {
532 fn default() -> Self {
533 Self
92a42be0
SL
534 }
535 }
e74abb32 536
e74abb32 537 #[unstable(feature = "structural_match", issue = "31434")]
dfeec247 538 impl<T: ?Sized> StructuralPartialEq for $t<T> {}
e74abb32 539
e74abb32 540 #[unstable(feature = "structural_match", issue = "31434")]
dfeec247
XL
541 impl<T: ?Sized> StructuralEq for $t<T> {}
542 };
85aaf69f
SL
543}
544
9e0c209e 545/// Zero-sized type used to mark things that "act like" they own a `T`.
9346a6ac 546///
9e0c209e
SL
547/// Adding a `PhantomData<T>` field to your type tells the compiler that your
548/// type acts as though it stores a value of type `T`, even though it doesn't
549/// really. This information is used when computing certain safety properties.
9cc50fc6 550///
9e0c209e
SL
551/// For a more in-depth explanation of how to use `PhantomData<T>`, please see
552/// [the Nomicon](../../nomicon/phantom-data.html).
9cc50fc6 553///
e9174d1e
SL
554/// # A ghastly note 👻👻👻
555///
9e0c209e
SL
556/// Though they both have scary names, `PhantomData` and 'phantom types' are
557/// related, but not identical. A phantom type parameter is simply a type
558/// parameter which is never used. In Rust, this often causes the compiler to
559/// complain, and the solution is to add a "dummy" use by way of `PhantomData`.
1a4d82fc 560///
c34b1796 561/// # Examples
1a4d82fc 562///
9e0c209e 563/// ## Unused lifetime parameters
1a4d82fc 564///
9e0c209e
SL
565/// Perhaps the most common use case for `PhantomData` is a struct that has an
566/// unused lifetime parameter, typically as part of some unsafe code. For
567/// example, here is a struct `Slice` that has two pointers of type `*const T`,
568/// presumably pointing into an array somewhere:
85aaf69f 569///
041b39d2 570/// ```compile_fail,E0392
9346a6ac
AL
571/// struct Slice<'a, T> {
572/// start: *const T,
573/// end: *const T,
1a4d82fc
JJ
574/// }
575/// ```
576///
9346a6ac
AL
577/// The intention is that the underlying data is only valid for the
578/// lifetime `'a`, so `Slice` should not outlive `'a`. However, this
579/// intent is not expressed in the code, since there are no uses of
580/// the lifetime `'a` and hence it is not clear what data it applies
581/// to. We can correct this by telling the compiler to act *as if* the
9e0c209e 582/// `Slice` struct contained a reference `&'a T`:
1a4d82fc 583///
c34b1796 584/// ```
9346a6ac 585/// use std::marker::PhantomData;
1a4d82fc 586///
92a42be0 587/// # #[allow(dead_code)]
9cc50fc6 588/// struct Slice<'a, T: 'a> {
9346a6ac
AL
589/// start: *const T,
590/// end: *const T,
9e0c209e 591/// phantom: PhantomData<&'a T>,
9346a6ac 592/// }
c34b1796 593/// ```
1a4d82fc 594///
9e0c209e
SL
595/// This also in turn requires the annotation `T: 'a`, indicating
596/// that any references in `T` are valid over the lifetime `'a`.
597///
598/// When initializing a `Slice` you simply provide the value
599/// `PhantomData` for the field `phantom`:
600///
601/// ```
602/// # #![allow(dead_code)]
603/// # use std::marker::PhantomData;
604/// # struct Slice<'a, T: 'a> {
605/// # start: *const T,
606/// # end: *const T,
607/// # phantom: PhantomData<&'a T>,
608/// # }
416331ca 609/// fn borrow_vec<T>(vec: &Vec<T>) -> Slice<'_, T> {
9e0c209e
SL
610/// let ptr = vec.as_ptr();
611/// Slice {
612/// start: ptr,
b7449926 613/// end: unsafe { ptr.add(vec.len()) },
9e0c209e
SL
614/// phantom: PhantomData,
615/// }
616/// }
617/// ```
1a4d82fc 618///
9346a6ac 619/// ## Unused type parameters
1a4d82fc 620///
9e0c209e 621/// It sometimes happens that you have unused type parameters which
9346a6ac
AL
622/// indicate what type of data a struct is "tied" to, even though that
623/// data is not actually found in the struct itself. Here is an
9e0c209e
SL
624/// example where this arises with [FFI]. The foreign interface uses
625/// handles of type `*mut ()` to refer to Rust values of different
626/// types. We track the Rust type using a phantom type parameter on
627/// the struct `ExternalResource` which wraps a handle.
628///
9fa01778 629/// [FFI]: ../../book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
c34b1796
AL
630///
631/// ```
92a42be0 632/// # #![allow(dead_code)]
9e0c209e 633/// # trait ResType { }
c34b1796
AL
634/// # struct ParamType;
635/// # mod foreign_lib {
9e0c209e
SL
636/// # pub fn new(_: usize) -> *mut () { 42 as *mut () }
637/// # pub fn do_stuff(_: *mut (), _: usize) {}
c34b1796
AL
638/// # }
639/// # fn convert_params(_: ParamType) -> usize { 42 }
640/// use std::marker::PhantomData;
641/// use std::mem;
642///
643/// struct ExternalResource<R> {
644/// resource_handle: *mut (),
645/// resource_type: PhantomData<R>,
646/// }
647///
648/// impl<R: ResType> ExternalResource<R> {
1b1a35ee 649/// fn new() -> Self {
c34b1796 650/// let size_of_res = mem::size_of::<R>();
1b1a35ee 651/// Self {
c34b1796
AL
652/// resource_handle: foreign_lib::new(size_of_res),
653/// resource_type: PhantomData,
654/// }
655/// }
656///
657/// fn do_stuff(&self, param: ParamType) {
658/// let foreign_params = convert_params(param);
659/// foreign_lib::do_stuff(self.resource_handle, foreign_params);
660/// }
661/// }
662/// ```
663///
9e0c209e 664/// ## Ownership and the drop check
9346a6ac 665///
9e0c209e
SL
666/// Adding a field of type `PhantomData<T>` indicates that your
667/// type owns data of type `T`. This in turn implies that when your
668/// type is dropped, it may drop one or more instances of the type
669/// `T`. This has bearing on the Rust compiler's [drop check]
670/// analysis.
9346a6ac
AL
671///
672/// If your struct does not in fact *own* the data of type `T`, it is
673/// better to use a reference type, like `PhantomData<&'a T>`
674/// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so
675/// as not to indicate ownership.
9e0c209e
SL
676///
677/// [drop check]: ../../nomicon/dropck.html
d9579d0f 678#[lang = "phantom_data"]
85aaf69f 679#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 680pub struct PhantomData<T: ?Sized>;
1a4d82fc 681
85aaf69f 682impls! { PhantomData }
1a4d82fc 683
85aaf69f 684mod impls {
92a42be0 685 #[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 686 unsafe impl<T: Sync + ?Sized> Send for &T {}
92a42be0 687 #[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 688 unsafe impl<T: Send + ?Sized> Send for &mut T {}
85aaf69f 689}
cc61c64b 690
f9f354fc
XL
691/// Compiler-internal trait used to indicate the type of enum discriminants.
692///
693/// This trait is automatically implemented for every type and does not add any
694/// guarantees to [`mem::Discriminant`]. It is **undefined behavior** to transmute
695/// between `DiscriminantKind::Discriminant` and `mem::Discriminant`.
696///
1b1a35ee 697/// [`mem::Discriminant`]: crate::mem::Discriminant
f9f354fc
XL
698#[unstable(
699 feature = "discriminant_kind",
700 issue = "none",
701 reason = "this trait is unlikely to ever be stabilized, use `mem::discriminant` instead"
702)]
f035d41b 703#[lang = "discriminant_kind"]
f9f354fc 704pub trait DiscriminantKind {
f035d41b 705 /// The type of the discriminant, which must satisfy the trait
f9f354fc 706 /// bounds required by `mem::Discriminant`.
1b1a35ee 707 #[lang = "discriminant_type"]
f9f354fc
XL
708 type Discriminant: Clone + Copy + Debug + Eq + PartialEq + Hash + Send + Sync + Unpin;
709}
710
cc61c64b
XL
711/// Compiler-internal trait used to determine whether a type contains
712/// any `UnsafeCell` internally, but not through an indirection.
713/// This affects, for example, whether a `static` of that type is
714/// placed in read-only static memory or writable static memory.
7cac9316 715#[lang = "freeze"]
0731742a 716pub(crate) unsafe auto trait Freeze {}
cc61c64b
XL
717
718impl<T: ?Sized> !Freeze for UnsafeCell<T> {}
719unsafe impl<T: ?Sized> Freeze for PhantomData<T> {}
720unsafe impl<T: ?Sized> Freeze for *const T {}
721unsafe impl<T: ?Sized> Freeze for *mut T {}
0bf4aa26
XL
722unsafe impl<T: ?Sized> Freeze for &T {}
723unsafe impl<T: ?Sized> Freeze for &mut T {}
0531ce1d 724
e1599b0c 725/// Types that can be safely moved after being pinned.
0531ce1d 726///
1b1a35ee
XL
727/// Rust itself has no notion of immovable types, and considers moves (e.g.,
728/// through assignment or [`mem::replace`]) to always be safe.
b7449926 729///
1b1a35ee
XL
730/// The [`Pin`][Pin] type is used instead to prevent moves through the type
731/// system. Pointers `P<T>` wrapped in the [`Pin<P<T>>`][Pin] wrapper can't be
732/// moved out of. See the [`pin` module] documentation for more information on
733/// pinning.
b7449926 734///
1b1a35ee
XL
735/// Implementing the `Unpin` trait for `T` lifts the restrictions of pinning off
736/// the type, which then allows moving `T` out of [`Pin<P<T>>`][Pin] with
737/// functions such as [`mem::replace`].
0731742a
XL
738///
739/// `Unpin` has no consequence at all for non-pinned data. In particular,
740/// [`mem::replace`] happily moves `!Unpin` data (it works for any `&mut T`, not
1b1a35ee
XL
741/// just when `T: Unpin`). However, you cannot use [`mem::replace`] on data
742/// wrapped inside a [`Pin<P<T>>`][Pin] because you cannot get the `&mut T` you
743/// need for that, and *that* is what makes this system work.
b7449926
XL
744///
745/// So this, for example, can only be done on types implementing `Unpin`:
746///
747/// ```rust
f9f354fc 748/// # #![allow(unused_must_use)]
0731742a 749/// use std::mem;
0bf4aa26 750/// use std::pin::Pin;
b7449926
XL
751///
752/// let mut string = "this".to_string();
0bf4aa26 753/// let mut pinned_string = Pin::new(&mut string);
b7449926 754///
0731742a
XL
755/// // We need a mutable reference to call `mem::replace`.
756/// // We can obtain such a reference by (implicitly) invoking `Pin::deref_mut`,
757/// // but that is only possible because `String` implements `Unpin`.
758/// mem::replace(&mut *pinned_string, "other".to_string());
b7449926 759/// ```
0531ce1d
XL
760///
761/// This trait is automatically implemented for almost every type.
83c7162d 762///
1b1a35ee
XL
763/// [`mem::replace`]: crate::mem::replace
764/// [Pin]: crate::pin::Pin
765/// [`pin` module]: crate::pin
0731742a 766#[stable(feature = "pin", since = "1.33.0")]
74b04a01 767#[rustc_on_unimplemented(
cdc7bbd5 768 note = "consider using `Box::pin`",
74b04a01
XL
769 message = "`{Self}` cannot be unpinned"
770)]
532ac7d7 771#[lang = "unpin"]
94b46f34
XL
772pub auto trait Unpin {}
773
0731742a 774/// A marker type which does not implement `Unpin`.
94b46f34 775///
0731742a
XL
776/// If a type contains a `PhantomPinned`, it will not implement `Unpin` by default.
777#[stable(feature = "pin", since = "1.33.0")]
fc512014 778#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
0731742a 779pub struct PhantomPinned;
94b46f34 780
0731742a
XL
781#[stable(feature = "pin", since = "1.33.0")]
782impl !Unpin for PhantomPinned {}
83c7162d 783
0731742a 784#[stable(feature = "pin", since = "1.33.0")]
8faf50e0
XL
785impl<'a, T: ?Sized + 'a> Unpin for &'a T {}
786
0731742a 787#[stable(feature = "pin", since = "1.33.0")]
8faf50e0
XL
788impl<'a, T: ?Sized + 'a> Unpin for &'a mut T {}
789
416331ca
XL
790#[stable(feature = "pin_raw", since = "1.38.0")]
791impl<T: ?Sized> Unpin for *const T {}
792
793#[stable(feature = "pin_raw", since = "1.38.0")]
794impl<T: ?Sized> Unpin for *mut T {}
795
83c7162d
XL
796/// Implementations of `Copy` for primitive types.
797///
798/// Implementations that cannot be described in Rust
ba9703b0
XL
799/// are implemented in `traits::SelectionContext::copy_clone_conditions()`
800/// in `rustc_trait_selection`.
83c7162d
XL
801mod copy_impls {
802
803 use super::Copy;
804
805 macro_rules! impl_copy {
806 ($($t:ty)*) => {
807 $(
808 #[stable(feature = "rust1", since = "1.0.0")]
809 impl Copy for $t {}
810 )*
811 }
812 }
813
814 impl_copy! {
815 usize u8 u16 u32 u64 u128
816 isize i8 i16 i32 i64 i128
817 f32 f64
818 bool char
819 }
820
821 #[unstable(feature = "never_type", issue = "35121")]
822 impl Copy for ! {}
823
824 #[stable(feature = "rust1", since = "1.0.0")]
825 impl<T: ?Sized> Copy for *const T {}
826
827 #[stable(feature = "rust1", since = "1.0.0")]
828 impl<T: ?Sized> Copy for *mut T {}
829
ba9703b0 830 /// Shared references can be copied, but mutable references *cannot*!
83c7162d 831 #[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 832 impl<T: ?Sized> Copy for &T {}
83c7162d 833}