]> git.proxmox.com Git - rustc.git/blame - library/core/src/num/f64.rs
New upstream version 1.71.1+dfsg1
[rustc.git] / library / core / src / num / f64.rs
CommitLineData
f2b60f7d 1//! Constants for the `f64` double-precision floating point type.
ff7c6d11 2//!
6a06907d 3//! *[See also the `f64` primitive type][f64].*
94b46f34
XL
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
74b04a01 6//!
5869c6ff
XL
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
1a4d82fc 11
85aaf69f 12#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 13
60c5eb7d 14use crate::convert::FloatToInt;
dc9dc135
XL
15#[cfg(not(test))]
16use crate::intrinsics;
48663c56
XL
17use crate::mem;
18use crate::num::FpCategory;
1a4d82fc 19
5bcae85e 20/// The radix or base of the internal representation of `f64`.
6a06907d 21/// Use [`f64::RADIX`] instead.
f9f354fc
XL
22///
23/// # Examples
24///
25/// ```rust
26/// // deprecated way
5869c6ff 27/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
28/// let r = std::f64::RADIX;
29///
30/// // intended way
31/// let r = f64::RADIX;
32/// ```
c34b1796 33#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 34#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
74b04a01 35pub const RADIX: u32 = f64::RADIX;
1a4d82fc 36
5bcae85e 37/// Number of significant digits in base 2.
6a06907d 38/// Use [`f64::MANTISSA_DIGITS`] instead.
f9f354fc
XL
39///
40/// # Examples
41///
42/// ```rust
43/// // deprecated way
5869c6ff 44/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
45/// let d = std::f64::MANTISSA_DIGITS;
46///
47/// // intended way
48/// let d = f64::MANTISSA_DIGITS;
49/// ```
c34b1796 50#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 51#[deprecated(
5869c6ff 52 since = "TBD",
04454e1e 53 note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
5869c6ff 54)]
74b04a01 55pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
f9f354fc 56
5bcae85e 57/// Approximate number of significant digits in base 10.
6a06907d 58/// Use [`f64::DIGITS`] instead.
f9f354fc
XL
59///
60/// # Examples
61///
62/// ```rust
63/// // deprecated way
5869c6ff 64/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
65/// let d = std::f64::DIGITS;
66///
67/// // intended way
68/// let d = f64::DIGITS;
69/// ```
c34b1796 70#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 71#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
74b04a01 72pub const DIGITS: u32 = f64::DIGITS;
1a4d82fc 73
94b46f34 74/// [Machine epsilon] value for `f64`.
6a06907d 75/// Use [`f64::EPSILON`] instead.
94b46f34 76///
60c5eb7d 77/// This is the difference between `1.0` and the next larger representable number.
94b46f34
XL
78///
79/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
f9f354fc
XL
80///
81/// # Examples
82///
83/// ```rust
84/// // deprecated way
5869c6ff 85/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
86/// let e = std::f64::EPSILON;
87///
88/// // intended way
89/// let e = f64::EPSILON;
90/// ```
85aaf69f 91#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 92#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
74b04a01 93pub const EPSILON: f64 = f64::EPSILON;
1a4d82fc 94
5bcae85e 95/// Smallest finite `f64` value.
6a06907d 96/// Use [`f64::MIN`] instead.
f9f354fc
XL
97///
98/// # Examples
99///
100/// ```rust
101/// // deprecated way
5869c6ff 102/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
103/// let min = std::f64::MIN;
104///
105/// // intended way
106/// let min = f64::MIN;
107/// ```
85aaf69f 108#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 109#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
74b04a01 110pub const MIN: f64 = f64::MIN;
f9f354fc 111
5bcae85e 112/// Smallest positive normal `f64` value.
6a06907d 113/// Use [`f64::MIN_POSITIVE`] instead.
f9f354fc
XL
114///
115/// # Examples
116///
117/// ```rust
118/// // deprecated way
5869c6ff 119/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
120/// let min = std::f64::MIN_POSITIVE;
121///
122/// // intended way
123/// let min = f64::MIN_POSITIVE;
124/// ```
85aaf69f 125#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 126#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
74b04a01 127pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
f9f354fc 128
5bcae85e 129/// Largest finite `f64` value.
6a06907d 130/// Use [`f64::MAX`] instead.
f9f354fc
XL
131///
132/// # Examples
133///
134/// ```rust
135/// // deprecated way
5869c6ff 136/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
137/// let max = std::f64::MAX;
138///
139/// // intended way
140/// let max = f64::MAX;
141/// ```
85aaf69f 142#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 143#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
74b04a01 144pub const MAX: f64 = f64::MAX;
85aaf69f 145
5bcae85e 146/// One greater than the minimum possible normal power of 2 exponent.
6a06907d 147/// Use [`f64::MIN_EXP`] instead.
f9f354fc
XL
148///
149/// # Examples
150///
151/// ```rust
152/// // deprecated way
5869c6ff 153/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
154/// let min = std::f64::MIN_EXP;
155///
156/// // intended way
157/// let min = f64::MIN_EXP;
158/// ```
c34b1796 159#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 160#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
74b04a01 161pub const MIN_EXP: i32 = f64::MIN_EXP;
f9f354fc 162
5bcae85e 163/// Maximum possible power of 2 exponent.
6a06907d 164/// Use [`f64::MAX_EXP`] instead.
f9f354fc
XL
165///
166/// # Examples
167///
168/// ```rust
169/// // deprecated way
5869c6ff 170/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
171/// let max = std::f64::MAX_EXP;
172///
173/// // intended way
174/// let max = f64::MAX_EXP;
175/// ```
c34b1796 176#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 177#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
74b04a01 178pub const MAX_EXP: i32 = f64::MAX_EXP;
1a4d82fc 179
5bcae85e 180/// Minimum possible normal power of 10 exponent.
6a06907d 181/// Use [`f64::MIN_10_EXP`] instead.
f9f354fc
XL
182///
183/// # Examples
184///
185/// ```rust
186/// // deprecated way
5869c6ff 187/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
188/// let min = std::f64::MIN_10_EXP;
189///
190/// // intended way
191/// let min = f64::MIN_10_EXP;
192/// ```
c34b1796 193#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 194#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
74b04a01 195pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
f9f354fc 196
5bcae85e 197/// Maximum possible power of 10 exponent.
6a06907d 198/// Use [`f64::MAX_10_EXP`] instead.
f9f354fc
XL
199///
200/// # Examples
201///
202/// ```rust
203/// // deprecated way
5869c6ff 204/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
205/// let max = std::f64::MAX_10_EXP;
206///
207/// // intended way
208/// let max = f64::MAX_10_EXP;
209/// ```
c34b1796 210#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 211#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
74b04a01 212pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
1a4d82fc 213
5bcae85e 214/// Not a Number (NaN).
6a06907d 215/// Use [`f64::NAN`] instead.
f9f354fc
XL
216///
217/// # Examples
218///
219/// ```rust
220/// // deprecated way
5869c6ff 221/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
222/// let nan = std::f64::NAN;
223///
224/// // intended way
225/// let nan = f64::NAN;
226/// ```
85aaf69f 227#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 228#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
74b04a01 229pub const NAN: f64 = f64::NAN;
f9f354fc 230
5bcae85e 231/// Infinity (∞).
6a06907d 232/// Use [`f64::INFINITY`] instead.
f9f354fc
XL
233///
234/// # Examples
235///
236/// ```rust
237/// // deprecated way
5869c6ff 238/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
239/// let inf = std::f64::INFINITY;
240///
241/// // intended way
242/// let inf = f64::INFINITY;
243/// ```
85aaf69f 244#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 245#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
74b04a01 246pub const INFINITY: f64 = f64::INFINITY;
f9f354fc 247
dfeec247 248/// Negative infinity (−∞).
6a06907d 249/// Use [`f64::NEG_INFINITY`] instead.
f9f354fc
XL
250///
251/// # Examples
252///
253/// ```rust
254/// // deprecated way
5869c6ff 255/// # #[allow(deprecated, deprecated_in_future)]
f9f354fc
XL
256/// let ninf = std::f64::NEG_INFINITY;
257///
258/// // intended way
259/// let ninf = f64::NEG_INFINITY;
260/// ```
85aaf69f 261#[stable(feature = "rust1", since = "1.0.0")]
04454e1e 262#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
74b04a01 263pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
1a4d82fc 264
b039eaaf 265/// Basic mathematical constants.
c34b1796 266#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
267pub mod consts {
268 // FIXME: replace with mathematical constants from cmath.
269
5bcae85e 270 /// Archimedes' constant (π)
c34b1796 271 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
272 pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
273
60c5eb7d
XL
274 /// The full circle constant (τ)
275 ///
276 /// Equal to 2π.
3dfed10e 277 #[stable(feature = "tau_constant", since = "1.47.0")]
60c5eb7d
XL
278 pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
279
5bcae85e 280 /// π/2
c34b1796 281 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
282 pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
283
5bcae85e 284 /// π/3
c34b1796 285 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
286 pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
287
5bcae85e 288 /// π/4
c34b1796 289 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
290 pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
291
5bcae85e 292 /// π/6
c34b1796 293 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
294 pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
295
5bcae85e 296 /// π/8
c34b1796 297 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
298 pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
299
5bcae85e 300 /// 1/π
c34b1796 301 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
302 pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
303
5bcae85e 304 /// 2/π
c34b1796 305 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
306 pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
307
5bcae85e 308 /// 2/sqrt(π)
c34b1796
AL
309 #[stable(feature = "rust1", since = "1.0.0")]
310 pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
311
5bcae85e 312 /// sqrt(2)
c34b1796
AL
313 #[stable(feature = "rust1", since = "1.0.0")]
314 pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
315
5bcae85e 316 /// 1/sqrt(2)
c34b1796
AL
317 #[stable(feature = "rust1", since = "1.0.0")]
318 pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
319
5bcae85e 320 /// Euler's number (e)
c34b1796 321 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
322 pub const E: f64 = 2.71828182845904523536028747135266250_f64;
323
94b46f34 324 /// log<sub>2</sub>(10)
74b04a01 325 #[stable(feature = "extra_log_consts", since = "1.43.0")]
94b46f34
XL
326 pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
327
5bcae85e 328 /// log<sub>2</sub>(e)
c34b1796 329 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
330 pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
331
94b46f34 332 /// log<sub>10</sub>(2)
74b04a01 333 #[stable(feature = "extra_log_consts", since = "1.43.0")]
94b46f34
XL
334 pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
335
5bcae85e 336 /// log<sub>10</sub>(e)
c34b1796 337 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
338 pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
339
5bcae85e 340 /// ln(2)
c34b1796 341 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
342 pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
343
5bcae85e 344 /// ln(10)
c34b1796 345 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
346 pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
347}
348
94b46f34
XL
349#[cfg(not(test))]
350impl f64 {
74b04a01
XL
351 /// The radix or base of the internal representation of `f64`.
352 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
353 pub const RADIX: u32 = 2;
354
355 /// Number of significant digits in base 2.
356 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
357 pub const MANTISSA_DIGITS: u32 = 53;
358 /// Approximate number of significant digits in base 10.
359 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
360 pub const DIGITS: u32 = 15;
361
362 /// [Machine epsilon] value for `f64`.
363 ///
364 /// This is the difference between `1.0` and the next larger representable number.
365 ///
366 /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
367 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
368 pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
369
370 /// Smallest finite `f64` value.
371 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
372 pub const MIN: f64 = -1.7976931348623157e+308_f64;
373 /// Smallest positive normal `f64` value.
374 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
375 pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
376 /// Largest finite `f64` value.
377 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
378 pub const MAX: f64 = 1.7976931348623157e+308_f64;
379
380 /// One greater than the minimum possible normal power of 2 exponent.
381 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
382 pub const MIN_EXP: i32 = -1021;
383 /// Maximum possible power of 2 exponent.
384 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
385 pub const MAX_EXP: i32 = 1024;
386
387 /// Minimum possible normal power of 10 exponent.
388 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
389 pub const MIN_10_EXP: i32 = -307;
390 /// Maximum possible power of 10 exponent.
391 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
392 pub const MAX_10_EXP: i32 = 308;
393
394 /// Not a Number (NaN).
04454e1e 395 ///
f2b60f7d 396 /// Note that IEEE 754 doesn't define just a single NaN value;
04454e1e
FG
397 /// a plethora of bit patterns are considered to be NaN.
398 /// Furthermore, the standard makes a difference
399 /// between a "signaling" and a "quiet" NaN,
400 /// and allows inspecting its "payload" (the unspecified bits in the bit pattern).
401 /// This constant isn't guaranteed to equal to any specific NaN bitpattern,
402 /// and the stability of its representation over Rust versions
403 /// and target platforms isn't guaranteed.
74b04a01
XL
404 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
405 pub const NAN: f64 = 0.0_f64 / 0.0_f64;
406 /// Infinity (∞).
407 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
408 pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
f9f354fc 409 /// Negative infinity (−∞).
74b04a01
XL
410 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
411 pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
412
04454e1e 413 /// Returns `true` if this value is NaN.
83c7162d
XL
414 ///
415 /// ```
83c7162d
XL
416 /// let nan = f64::NAN;
417 /// let f = 7.0_f64;
418 ///
419 /// assert!(nan.is_nan());
420 /// assert!(!f.is_nan());
421 /// ```
c295e0f8 422 #[must_use]
83c7162d 423 #[stable(feature = "rust1", since = "1.0.0")]
3dfed10e 424 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
83c7162d 425 #[inline]
3dfed10e 426 pub const fn is_nan(self) -> bool {
94b46f34
XL
427 self != self
428 }
83c7162d 429
9c376795 430 // FIXME(#50145): `abs` is publicly unavailable in core due to
0731742a
XL
431 // concerns about portability, so this implementation is for
432 // private use internally.
433 #[inline]
3dfed10e 434 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
3c0e092e 435 pub(crate) const fn abs_private(self) -> f64 {
04454e1e
FG
436 // SAFETY: This transmutation is fine. Probably. For the reasons std is using it.
437 unsafe {
438 mem::transmute::<u64, f64>(mem::transmute::<f64, u64>(self) & 0x7fff_ffff_ffff_ffff)
439 }
0731742a
XL
440 }
441
9fa01778
XL
442 /// Returns `true` if this value is positive infinity or negative infinity, and
443 /// `false` otherwise.
83c7162d
XL
444 ///
445 /// ```
83c7162d
XL
446 /// let f = 7.0f64;
447 /// let inf = f64::INFINITY;
448 /// let neg_inf = f64::NEG_INFINITY;
449 /// let nan = f64::NAN;
450 ///
451 /// assert!(!f.is_infinite());
452 /// assert!(!nan.is_infinite());
453 ///
454 /// assert!(inf.is_infinite());
455 /// assert!(neg_inf.is_infinite());
456 /// ```
c295e0f8 457 #[must_use]
83c7162d 458 #[stable(feature = "rust1", since = "1.0.0")]
3dfed10e 459 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
83c7162d 460 #[inline]
3dfed10e 461 pub const fn is_infinite(self) -> bool {
04454e1e
FG
462 // Getting clever with transmutation can result in incorrect answers on some FPUs
463 // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
464 // See https://github.com/rust-lang/rust/issues/72327
465 (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
94b46f34 466 }
83c7162d 467
04454e1e 468 /// Returns `true` if this number is neither infinite nor NaN.
83c7162d
XL
469 ///
470 /// ```
83c7162d
XL
471 /// let f = 7.0f64;
472 /// let inf: f64 = f64::INFINITY;
473 /// let neg_inf: f64 = f64::NEG_INFINITY;
474 /// let nan: f64 = f64::NAN;
475 ///
476 /// assert!(f.is_finite());
477 ///
478 /// assert!(!nan.is_finite());
479 /// assert!(!inf.is_finite());
480 /// assert!(!neg_inf.is_finite());
481 /// ```
c295e0f8 482 #[must_use]
83c7162d 483 #[stable(feature = "rust1", since = "1.0.0")]
3dfed10e 484 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
83c7162d 485 #[inline]
3dfed10e 486 pub const fn is_finite(self) -> bool {
0731742a
XL
487 // There's no need to handle NaN separately: if self is NaN,
488 // the comparison is not true, exactly as desired.
f9f354fc 489 self.abs_private() < Self::INFINITY
94b46f34 490 }
83c7162d 491
fc512014
XL
492 /// Returns `true` if the number is [subnormal].
493 ///
494 /// ```
fc512014
XL
495 /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
496 /// let max = f64::MAX;
497 /// let lower_than_min = 1.0e-308_f64;
498 /// let zero = 0.0_f64;
499 ///
500 /// assert!(!min.is_subnormal());
501 /// assert!(!max.is_subnormal());
502 ///
503 /// assert!(!zero.is_subnormal());
504 /// assert!(!f64::NAN.is_subnormal());
505 /// assert!(!f64::INFINITY.is_subnormal());
506 /// // Values between `0` and `min` are Subnormal.
507 /// assert!(lower_than_min.is_subnormal());
508 /// ```
509 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
c295e0f8 510 #[must_use]
cdc7bbd5 511 #[stable(feature = "is_subnormal", since = "1.53.0")]
fc512014
XL
512 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
513 #[inline]
514 pub const fn is_subnormal(self) -> bool {
515 matches!(self.classify(), FpCategory::Subnormal)
516 }
517
83c7162d 518 /// Returns `true` if the number is neither zero, infinite,
04454e1e 519 /// [subnormal], or NaN.
83c7162d
XL
520 ///
521 /// ```
83c7162d
XL
522 /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
523 /// let max = f64::MAX;
524 /// let lower_than_min = 1.0e-308_f64;
525 /// let zero = 0.0f64;
526 ///
527 /// assert!(min.is_normal());
528 /// assert!(max.is_normal());
529 ///
530 /// assert!(!zero.is_normal());
531 /// assert!(!f64::NAN.is_normal());
532 /// assert!(!f64::INFINITY.is_normal());
533 /// // Values between `0` and `min` are Subnormal.
534 /// assert!(!lower_than_min.is_normal());
535 /// ```
536 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
c295e0f8 537 #[must_use]
83c7162d 538 #[stable(feature = "rust1", since = "1.0.0")]
3dfed10e 539 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
83c7162d 540 #[inline]
3dfed10e
XL
541 pub const fn is_normal(self) -> bool {
542 matches!(self.classify(), FpCategory::Normal)
94b46f34 543 }
83c7162d
XL
544
545 /// Returns the floating point category of the number. If only one property
546 /// is going to be tested, it is generally faster to use the specific
547 /// predicate instead.
548 ///
549 /// ```
550 /// use std::num::FpCategory;
83c7162d
XL
551 ///
552 /// let num = 12.4_f64;
553 /// let inf = f64::INFINITY;
554 ///
555 /// assert_eq!(num.classify(), FpCategory::Normal);
556 /// assert_eq!(inf.classify(), FpCategory::Infinite);
557 /// ```
558 #[stable(feature = "rust1", since = "1.0.0")]
3dfed10e
XL
559 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
560 pub const fn classify(self) -> FpCategory {
04454e1e
FG
561 // A previous implementation tried to only use bitmask-based checks,
562 // using f64::to_bits to transmute the float to its bit repr and match on that.
563 // Unfortunately, floating point numbers can be much worse than that.
564 // This also needs to not result in recursive evaluations of f64::to_bits.
565 //
566 // On some processors, in some cases, LLVM will "helpfully" lower floating point ops,
567 // in spite of a request for them using f32 and f64, to things like x87 operations.
568 // These have an f64's mantissa, but can have a larger than normal exponent.
569 // FIXME(jubilee): Using x87 operations is never necessary in order to function
570 // on x86 processors for Rust-to-Rust calls, so this issue should not happen.
571 // Code generation should be adjusted to use non-C calling conventions, avoiding this.
572 //
573 // Thus, a value may compare unequal to infinity, despite having a "full" exponent mask.
574 // And it may not be NaN, as it can simply be an "overextended" finite value.
575 if self.is_nan() {
576 FpCategory::Nan
577 } else {
578 // However, std can't simply compare to zero to check for zero, either,
579 // as correctness requires avoiding equality tests that may be Subnormal == -0.0
580 // because it may be wrong under "denormals are zero" and "flush to zero" modes.
581 // Most of std's targets don't use those, but they are used for thumbv7neon.
582 // So, this does use bitpattern matching for the rest.
583
584 // SAFETY: f64 to u64 is fine. Usually.
585 // If control flow has gotten this far, the value is definitely in one of the categories
586 // that f64::partial_classify can correctly analyze.
587 unsafe { f64::partial_classify(self) }
588 }
589 }
590
591 // This doesn't actually return a right answer for NaN on purpose,
592 // seeing as how it cannot correctly discern between a floating point NaN,
593 // and some normal floating point numbers truncated from an x87 FPU.
594 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
595 const unsafe fn partial_classify(self) -> FpCategory {
94b46f34
XL
596 const EXP_MASK: u64 = 0x7ff0000000000000;
597 const MAN_MASK: u64 = 0x000fffffffffffff;
598
04454e1e
FG
599 // SAFETY: The caller is not asking questions for which this will tell lies.
600 let b = unsafe { mem::transmute::<f64, u64>(self) };
601 match (b & MAN_MASK, b & EXP_MASK) {
602 (0, EXP_MASK) => FpCategory::Infinite,
94b46f34
XL
603 (0, 0) => FpCategory::Zero,
604 (_, 0) => FpCategory::Subnormal,
04454e1e
FG
605 _ => FpCategory::Normal,
606 }
607 }
608
609 // This operates on bits, and only bits, so it can ignore concerns about weird FPUs.
610 // FIXME(jubilee): In a just world, this would be the entire impl for classify,
611 // plus a transmute. We do not live in a just world, but we can make it more so.
612 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
613 const fn classify_bits(b: u64) -> FpCategory {
614 const EXP_MASK: u64 = 0x7ff0000000000000;
615 const MAN_MASK: u64 = 0x000fffffffffffff;
616
617 match (b & MAN_MASK, b & EXP_MASK) {
94b46f34
XL
618 (0, EXP_MASK) => FpCategory::Infinite,
619 (_, EXP_MASK) => FpCategory::Nan,
04454e1e
FG
620 (0, 0) => FpCategory::Zero,
621 (_, 0) => FpCategory::Subnormal,
94b46f34
XL
622 _ => FpCategory::Normal,
623 }
624 }
83c7162d 625
04454e1e 626 /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
f2b60f7d 627 /// positive sign bit and positive infinity. Note that IEEE 754 doesn't assign any
04454e1e
FG
628 /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
629 /// the bit pattern of NaNs are conserved over arithmetic operations, the result of
630 /// `is_sign_positive` on a NaN might produce an unexpected result in some cases.
631 /// See [explanation of NaN as a special value](f32) for more info.
83c7162d
XL
632 ///
633 /// ```
634 /// let f = 7.0_f64;
635 /// let g = -7.0_f64;
636 ///
637 /// assert!(f.is_sign_positive());
638 /// assert!(!g.is_sign_positive());
639 /// ```
c295e0f8 640 #[must_use]
83c7162d 641 #[stable(feature = "rust1", since = "1.0.0")]
3dfed10e 642 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
83c7162d 643 #[inline]
3dfed10e 644 pub const fn is_sign_positive(self) -> bool {
94b46f34
XL
645 !self.is_sign_negative()
646 }
83c7162d 647
c295e0f8 648 #[must_use]
83c7162d 649 #[stable(feature = "rust1", since = "1.0.0")]
04454e1e 650 #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
83c7162d
XL
651 #[inline]
652 #[doc(hidden)]
94b46f34
XL
653 pub fn is_positive(self) -> bool {
654 self.is_sign_positive()
655 }
83c7162d 656
04454e1e 657 /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
f2b60f7d 658 /// negative sign bit and negative infinity. Note that IEEE 754 doesn't assign any
04454e1e
FG
659 /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
660 /// the bit pattern of NaNs are conserved over arithmetic operations, the result of
661 /// `is_sign_negative` on a NaN might produce an unexpected result in some cases.
662 /// See [explanation of NaN as a special value](f32) for more info.
83c7162d
XL
663 ///
664 /// ```
665 /// let f = 7.0_f64;
666 /// let g = -7.0_f64;
667 ///
668 /// assert!(!f.is_sign_negative());
669 /// assert!(g.is_sign_negative());
670 /// ```
c295e0f8 671 #[must_use]
83c7162d 672 #[stable(feature = "rust1", since = "1.0.0")]
3dfed10e 673 #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
83c7162d 674 #[inline]
3dfed10e 675 pub const fn is_sign_negative(self) -> bool {
04454e1e
FG
676 // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
677 // applies to zeros and NaNs as well.
678 // SAFETY: This is just transmuting to get the sign bit, it's fine.
679 unsafe { mem::transmute::<f64, u64>(self) & 0x8000_0000_0000_0000 != 0 }
94b46f34 680 }
83c7162d 681
c295e0f8 682 #[must_use]
83c7162d 683 #[stable(feature = "rust1", since = "1.0.0")]
04454e1e 684 #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
83c7162d
XL
685 #[inline]
686 #[doc(hidden)]
94b46f34
XL
687 pub fn is_negative(self) -> bool {
688 self.is_sign_negative()
689 }
83c7162d 690
f2b60f7d
FG
691 /// Returns the least number greater than `self`.
692 ///
693 /// Let `TINY` be the smallest representable positive `f64`. Then,
694 /// - if `self.is_nan()`, this returns `self`;
695 /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
696 /// - if `self` is `-TINY`, this returns -0.0;
697 /// - if `self` is -0.0 or +0.0, this returns `TINY`;
698 /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
699 /// - otherwise the unique least value greater than `self` is returned.
700 ///
701 /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
702 /// is finite `x == x.next_up().next_down()` also holds.
703 ///
704 /// ```rust
705 /// #![feature(float_next_up_down)]
706 /// // f64::EPSILON is the difference between 1.0 and the next number up.
707 /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
708 /// // But not for most numbers.
709 /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
710 /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
711 /// ```
712 ///
713 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
714 /// [`INFINITY`]: Self::INFINITY
715 /// [`MIN`]: Self::MIN
716 /// [`MAX`]: Self::MAX
717 #[unstable(feature = "float_next_up_down", issue = "91399")]
718 #[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
719 pub const fn next_up(self) -> Self {
720 // We must use strictly integer arithmetic to prevent denormals from
721 // flushing to zero after an arithmetic operation on some platforms.
722 const TINY_BITS: u64 = 0x1; // Smallest positive f64.
723 const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff;
724
725 let bits = self.to_bits();
726 if self.is_nan() || bits == Self::INFINITY.to_bits() {
727 return self;
728 }
729
730 let abs = bits & CLEAR_SIGN_MASK;
731 let next_bits = if abs == 0 {
732 TINY_BITS
733 } else if bits == abs {
734 bits + 1
735 } else {
736 bits - 1
737 };
738 Self::from_bits(next_bits)
739 }
740
741 /// Returns the greatest number less than `self`.
742 ///
743 /// Let `TINY` be the smallest representable positive `f64`. Then,
744 /// - if `self.is_nan()`, this returns `self`;
745 /// - if `self` is [`INFINITY`], this returns [`MAX`];
746 /// - if `self` is `TINY`, this returns 0.0;
747 /// - if `self` is -0.0 or +0.0, this returns `-TINY`;
748 /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
749 /// - otherwise the unique greatest value less than `self` is returned.
750 ///
751 /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
752 /// is finite `x == x.next_down().next_up()` also holds.
753 ///
754 /// ```rust
755 /// #![feature(float_next_up_down)]
756 /// let x = 1.0f64;
757 /// // Clamp value into range [0, 1).
758 /// let clamped = x.clamp(0.0, 1.0f64.next_down());
759 /// assert!(clamped < 1.0);
760 /// assert_eq!(clamped.next_up(), 1.0);
761 /// ```
762 ///
763 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
764 /// [`INFINITY`]: Self::INFINITY
765 /// [`MIN`]: Self::MIN
766 /// [`MAX`]: Self::MAX
767 #[unstable(feature = "float_next_up_down", issue = "91399")]
768 #[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
769 pub const fn next_down(self) -> Self {
770 // We must use strictly integer arithmetic to prevent denormals from
771 // flushing to zero after an arithmetic operation on some platforms.
772 const NEG_TINY_BITS: u64 = 0x8000_0000_0000_0001; // Smallest (in magnitude) negative f64.
773 const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff;
774
775 let bits = self.to_bits();
776 if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
777 return self;
778 }
779
780 let abs = bits & CLEAR_SIGN_MASK;
781 let next_bits = if abs == 0 {
782 NEG_TINY_BITS
783 } else if bits == abs {
784 bits - 1
785 } else {
786 bits + 1
787 };
788 Self::from_bits(next_bits)
789 }
790
83c7162d
XL
791 /// Takes the reciprocal (inverse) of a number, `1/x`.
792 ///
793 /// ```
794 /// let x = 2.0_f64;
e1599b0c 795 /// let abs_difference = (x.recip() - (1.0 / x)).abs();
83c7162d
XL
796 ///
797 /// assert!(abs_difference < 1e-10);
798 /// ```
a2a8927a 799 #[must_use = "this returns the result of the operation, without modifying the original"]
83c7162d
XL
800 #[stable(feature = "rust1", since = "1.0.0")]
801 #[inline]
94b46f34
XL
802 pub fn recip(self) -> f64 {
803 1.0 / self
804 }
83c7162d
XL
805
806 /// Converts radians to degrees.
807 ///
808 /// ```
ba9703b0 809 /// let angle = std::f64::consts::PI;
83c7162d
XL
810 ///
811 /// let abs_difference = (angle.to_degrees() - 180.0).abs();
812 ///
813 /// assert!(abs_difference < 1e-10);
814 /// ```
c295e0f8
XL
815 #[must_use = "this returns the result of the operation, \
816 without modifying the original"]
83c7162d
XL
817 #[stable(feature = "rust1", since = "1.0.0")]
818 #[inline]
94b46f34
XL
819 pub fn to_degrees(self) -> f64 {
820 // The division here is correctly rounded with respect to the true
821 // value of 180/π. (This differs from f32, where a constant must be
822 // used to ensure a correctly rounded result.)
823 self * (180.0f64 / consts::PI)
824 }
83c7162d
XL
825
826 /// Converts degrees to radians.
827 ///
828 /// ```
83c7162d
XL
829 /// let angle = 180.0_f64;
830 ///
ba9703b0 831 /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
83c7162d
XL
832 ///
833 /// assert!(abs_difference < 1e-10);
834 /// ```
c295e0f8
XL
835 #[must_use = "this returns the result of the operation, \
836 without modifying the original"]
83c7162d
XL
837 #[stable(feature = "rust1", since = "1.0.0")]
838 #[inline]
94b46f34
XL
839 pub fn to_radians(self) -> f64 {
840 let value: f64 = consts::PI;
841 self * (value / 180.0)
842 }
83c7162d 843
04454e1e 844 /// Returns the maximum of the two numbers, ignoring NaN.
83c7162d 845 ///
04454e1e 846 /// If one of the arguments is NaN, then the other argument is returned.
f2b60f7d 847 /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
04454e1e
FG
848 /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
849 /// This also matches the behavior of libm’s fmax.
3c0e092e 850 ///
83c7162d
XL
851 /// ```
852 /// let x = 1.0_f64;
853 /// let y = 2.0_f64;
854 ///
855 /// assert_eq!(x.max(y), y);
856 /// ```
a2a8927a 857 #[must_use = "this returns the result of the comparison, without modifying either input"]
83c7162d
XL
858 #[stable(feature = "rust1", since = "1.0.0")]
859 #[inline]
860 pub fn max(self, other: f64) -> f64 {
dc9dc135 861 intrinsics::maxnumf64(self, other)
83c7162d
XL
862 }
863
04454e1e 864 /// Returns the minimum of the two numbers, ignoring NaN.
83c7162d 865 ///
04454e1e 866 /// If one of the arguments is NaN, then the other argument is returned.
f2b60f7d 867 /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
04454e1e
FG
868 /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
869 /// This also matches the behavior of libm’s fmin.
3c0e092e 870 ///
83c7162d
XL
871 /// ```
872 /// let x = 1.0_f64;
873 /// let y = 2.0_f64;
874 ///
875 /// assert_eq!(x.min(y), x);
876 /// ```
a2a8927a 877 #[must_use = "this returns the result of the comparison, without modifying either input"]
83c7162d
XL
878 #[stable(feature = "rust1", since = "1.0.0")]
879 #[inline]
880 pub fn min(self, other: f64) -> f64 {
dc9dc135 881 intrinsics::minnumf64(self, other)
83c7162d
XL
882 }
883
04454e1e 884 /// Returns the maximum of the two numbers, propagating NaN.
3c0e092e
XL
885 ///
886 /// This returns NaN when *either* argument is NaN, as opposed to
887 /// [`f64::max`] which only returns NaN when *both* arguments are NaN.
888 ///
889 /// ```
890 /// #![feature(float_minimum_maximum)]
891 /// let x = 1.0_f64;
892 /// let y = 2.0_f64;
893 ///
894 /// assert_eq!(x.maximum(y), y);
895 /// assert!(x.maximum(f64::NAN).is_nan());
896 /// ```
897 ///
898 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
899 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
900 /// Note that this follows the semantics specified in IEEE 754-2019.
04454e1e
FG
901 ///
902 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
903 /// operand is conserved; see [explanation of NaN as a special value](f32) for more info.
a2a8927a 904 #[must_use = "this returns the result of the comparison, without modifying either input"]
3c0e092e
XL
905 #[unstable(feature = "float_minimum_maximum", issue = "91079")]
906 #[inline]
907 pub fn maximum(self, other: f64) -> f64 {
908 if self > other {
909 self
910 } else if other > self {
911 other
912 } else if self == other {
913 if self.is_sign_positive() && other.is_sign_negative() { self } else { other }
914 } else {
915 self + other
916 }
917 }
918
04454e1e 919 /// Returns the minimum of the two numbers, propagating NaN.
3c0e092e
XL
920 ///
921 /// This returns NaN when *either* argument is NaN, as opposed to
922 /// [`f64::min`] which only returns NaN when *both* arguments are NaN.
923 ///
924 /// ```
925 /// #![feature(float_minimum_maximum)]
926 /// let x = 1.0_f64;
927 /// let y = 2.0_f64;
928 ///
929 /// assert_eq!(x.minimum(y), x);
930 /// assert!(x.minimum(f64::NAN).is_nan());
931 /// ```
932 ///
933 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
934 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
935 /// Note that this follows the semantics specified in IEEE 754-2019.
04454e1e
FG
936 ///
937 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
938 /// operand is conserved; see [explanation of NaN as a special value](f32) for more info.
a2a8927a 939 #[must_use = "this returns the result of the comparison, without modifying either input"]
3c0e092e
XL
940 #[unstable(feature = "float_minimum_maximum", issue = "91079")]
941 #[inline]
942 pub fn minimum(self, other: f64) -> f64 {
943 if self < other {
944 self
945 } else if other < self {
946 other
947 } else if self == other {
948 if self.is_sign_negative() && other.is_sign_positive() { self } else { other }
949 } else {
950 self + other
951 }
952 }
953
49aad941
FG
954 /// Calculates the middle point of `self` and `rhs`.
955 ///
956 /// This returns NaN when *either* argument is NaN or if a combination of
957 /// +inf and -inf is provided as arguments.
958 ///
959 /// # Examples
960 ///
961 /// ```
962 /// #![feature(num_midpoint)]
963 /// assert_eq!(1f64.midpoint(4.0), 2.5);
964 /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
965 /// ```
966 #[unstable(feature = "num_midpoint", issue = "110840")]
967 pub fn midpoint(self, other: f64) -> f64 {
968 const LO: f64 = f64::MIN_POSITIVE * 2.;
969 const HI: f64 = f64::MAX / 2.;
970
971 let (a, b) = (self, other);
972 let abs_a = a.abs_private();
973 let abs_b = b.abs_private();
974
975 if abs_a <= HI && abs_b <= HI {
976 // Overflow is impossible
977 (a + b) / 2.
978 } else if abs_a < LO {
979 // Not safe to halve a
980 a + (b / 2.)
981 } else if abs_b < LO {
982 // Not safe to halve b
983 (a / 2.) + b
984 } else {
985 // Not safe to halve a and b
986 (a / 2.) + (b / 2.)
987 }
988 }
989
60c5eb7d
XL
990 /// Rounds toward zero and converts to any primitive integer type,
991 /// assuming that the value is finite and fits in that type.
992 ///
993 /// ```
f9f354fc 994 /// let value = 4.6_f64;
ba9703b0 995 /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
60c5eb7d
XL
996 /// assert_eq!(rounded, 4);
997 ///
f9f354fc 998 /// let value = -128.9_f64;
ba9703b0
XL
999 /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1000 /// assert_eq!(rounded, i8::MIN);
60c5eb7d
XL
1001 /// ```
1002 ///
1003 /// # Safety
1004 ///
1005 /// The value must:
1006 ///
1007 /// * Not be `NaN`
1008 /// * Not be infinite
1009 /// * Be representable in the return type `Int`, after truncating off its fractional part
c295e0f8
XL
1010 #[must_use = "this returns the result of the operation, \
1011 without modifying the original"]
ba9703b0 1012 #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
60c5eb7d 1013 #[inline]
ba9703b0 1014 pub unsafe fn to_int_unchecked<Int>(self) -> Int
60c5eb7d
XL
1015 where
1016 Self: FloatToInt<Int>,
1017 {
f035d41b
XL
1018 // SAFETY: the caller must uphold the safety contract for
1019 // `FloatToInt::to_int_unchecked`.
1020 unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
60c5eb7d
XL
1021 }
1022
83c7162d
XL
1023 /// Raw transmutation to `u64`.
1024 ///
1025 /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1026 ///
17df50a5
XL
1027 /// See [`from_bits`](Self::from_bits) for some discussion of the
1028 /// portability of this operation (there are almost no issues).
83c7162d
XL
1029 ///
1030 /// Note that this function is distinct from `as` casting, which attempts to
1031 /// preserve the *numeric* value, and not the bitwise value.
1032 ///
1033 /// # Examples
1034 ///
1035 /// ```
1036 /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1037 /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1038 ///
1039 /// ```
c295e0f8
XL
1040 #[must_use = "this returns the result of the operation, \
1041 without modifying the original"]
83c7162d 1042 #[stable(feature = "float_bits_conv", since = "1.20.0")]
3dfed10e 1043 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
83c7162d 1044 #[inline]
3dfed10e 1045 pub const fn to_bits(self) -> u64 {
04454e1e
FG
1046 // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1047 // ...sorta.
1048 //
1049 // See the SAFETY comment in f64::from_bits for more.
1050 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
1051 const fn ct_f64_to_u64(ct: f64) -> u64 {
1052 match ct.classify() {
1053 FpCategory::Nan => {
1054 panic!("const-eval error: cannot use f64::to_bits on a NaN")
1055 }
1056 FpCategory::Subnormal => {
1057 panic!("const-eval error: cannot use f64::to_bits on a subnormal number")
1058 }
1059 FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
1060 // SAFETY: We have a normal floating point number. Now we transmute, i.e. do a bitcopy.
1061 unsafe { mem::transmute::<f64, u64>(ct) }
1062 }
1063 }
1064 }
f2b60f7d
FG
1065
1066 #[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
1067 fn rt_f64_to_u64(rt: f64) -> u64 {
1068 // SAFETY: `u64` is a plain old datatype so we can always... uh...
1069 // ...look, just pretend you forgot what you just read.
1070 // Stability concerns.
1071 unsafe { mem::transmute::<f64, u64>(rt) }
1072 }
04454e1e
FG
1073 // SAFETY: We use internal implementations that either always work or fail at compile time.
1074 unsafe { intrinsics::const_eval_select((self,), ct_f64_to_u64, rt_f64_to_u64) }
83c7162d
XL
1075 }
1076
1077 /// Raw transmutation from `u64`.
1078 ///
1079 /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1080 /// It turns out this is incredibly portable, for two reasons:
1081 ///
1082 /// * Floats and Ints have the same endianness on all supported platforms.
f2b60f7d 1083 /// * IEEE 754 very precisely specifies the bit layout of floats.
83c7162d 1084 ///
f2b60f7d 1085 /// However there is one caveat: prior to the 2008 version of IEEE 754, how
83c7162d
XL
1086 /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1087 /// (notably x86 and ARM) picked the interpretation that was ultimately
1088 /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1089 /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1090 ///
1091 /// Rather than trying to preserve signaling-ness cross-platform, this
3dfed10e 1092 /// implementation favors preserving the exact bits. This means that
83c7162d
XL
1093 /// any payloads encoded in NaNs will be preserved even if the result of
1094 /// this method is sent over the network from an x86 machine to a MIPS one.
1095 ///
1096 /// If the results of this method are only manipulated by the same
1097 /// architecture that produced them, then there is no portability concern.
1098 ///
1099 /// If the input isn't NaN, then there is no portability concern.
1100 ///
3dfed10e 1101 /// If you don't care about signaling-ness (very likely), then there is no
83c7162d
XL
1102 /// portability concern.
1103 ///
1104 /// Note that this function is distinct from `as` casting, which attempts to
1105 /// preserve the *numeric* value, and not the bitwise value.
1106 ///
1107 /// # Examples
1108 ///
1109 /// ```
83c7162d 1110 /// let v = f64::from_bits(0x4029000000000000);
416331ca 1111 /// assert_eq!(v, 12.5);
83c7162d
XL
1112 /// ```
1113 #[stable(feature = "float_bits_conv", since = "1.20.0")]
3dfed10e 1114 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
c295e0f8 1115 #[must_use]
83c7162d 1116 #[inline]
3dfed10e 1117 pub const fn from_bits(v: u64) -> Self {
94b46f34 1118 // It turns out the safety issues with sNaN were overblown! Hooray!
04454e1e
FG
1119 // SAFETY: `u64` is a plain old datatype so we can always transmute from it
1120 // ...sorta.
1121 //
1122 // It turns out that at runtime, it is possible for a floating point number
1123 // to be subject to floating point modes that alter nonzero subnormal numbers
1124 // to zero on reads and writes, aka "denormals are zero" and "flush to zero".
1125 // This is not a problem usually, but at least one tier2 platform for Rust
1126 // actually exhibits an FTZ behavior by default: thumbv7neon
1127 // aka "the Neon FPU in AArch32 state"
1128 //
1129 // Even with this, not all instructions exhibit the FTZ behaviors on thumbv7neon,
1130 // so this should load the same bits if LLVM emits the "correct" instructions,
1131 // but LLVM sometimes makes interesting choices about float optimization,
1132 // and other FPUs may do similar. Thus, it is wise to indulge luxuriously in caution.
1133 //
1134 // In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
1135 // i.e. not soft-float, the way Rust does parameter passing can actually alter
1136 // a number that is "not infinity" to have the same exponent as infinity,
1137 // in a slightly unpredictable manner.
1138 //
1139 // And, of course evaluating to a NaN value is fairly nondeterministic.
1140 // More precisely: when NaN should be returned is knowable, but which NaN?
1141 // So far that's defined by a combination of LLVM and the CPU, not Rust.
1142 // This function, however, allows observing the bitstring of a NaN,
1143 // thus introspection on CTFE.
1144 //
1145 // In order to preserve, at least for the moment, const-to-runtime equivalence,
1146 // reject any of these possible situations from happening.
1147 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
1148 const fn ct_u64_to_f64(ct: u64) -> f64 {
1149 match f64::classify_bits(ct) {
1150 FpCategory::Subnormal => {
1151 panic!("const-eval error: cannot use f64::from_bits on a subnormal number")
1152 }
1153 FpCategory::Nan => {
1154 panic!("const-eval error: cannot use f64::from_bits on NaN")
1155 }
1156 FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
1157 // SAFETY: It's not a frumious number
1158 unsafe { mem::transmute::<u64, f64>(ct) }
1159 }
1160 }
1161 }
f2b60f7d
FG
1162
1163 #[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
1164 fn rt_u64_to_f64(rt: u64) -> f64 {
1165 // SAFETY: `u64` is a plain old datatype so we can always... uh...
1166 // ...look, just pretend you forgot what you just read.
1167 // Stability concerns.
1168 unsafe { mem::transmute::<u64, f64>(rt) }
1169 }
04454e1e
FG
1170 // SAFETY: We use internal implementations that either always work or fail at compile time.
1171 unsafe { intrinsics::const_eval_select((v,), ct_u64_to_f64, rt_u64_to_f64) }
83c7162d 1172 }
416331ca
XL
1173
1174 /// Return the memory representation of this floating point number as a byte array in
1175 /// big-endian (network) byte order.
1176 ///
04454e1e
FG
1177 /// See [`from_bits`](Self::from_bits) for some discussion of the
1178 /// portability of this operation (there are almost no issues).
1179 ///
416331ca
XL
1180 /// # Examples
1181 ///
1182 /// ```
416331ca
XL
1183 /// let bytes = 12.5f64.to_be_bytes();
1184 /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1185 /// ```
c295e0f8
XL
1186 #[must_use = "this returns the result of the operation, \
1187 without modifying the original"]
e74abb32 1188 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
3dfed10e 1189 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
416331ca 1190 #[inline]
3dfed10e 1191 pub const fn to_be_bytes(self) -> [u8; 8] {
416331ca
XL
1192 self.to_bits().to_be_bytes()
1193 }
1194
1195 /// Return the memory representation of this floating point number as a byte array in
1196 /// little-endian byte order.
1197 ///
04454e1e
FG
1198 /// See [`from_bits`](Self::from_bits) for some discussion of the
1199 /// portability of this operation (there are almost no issues).
1200 ///
416331ca
XL
1201 /// # Examples
1202 ///
1203 /// ```
416331ca
XL
1204 /// let bytes = 12.5f64.to_le_bytes();
1205 /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1206 /// ```
c295e0f8
XL
1207 #[must_use = "this returns the result of the operation, \
1208 without modifying the original"]
e74abb32 1209 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
3dfed10e 1210 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
416331ca 1211 #[inline]
3dfed10e 1212 pub const fn to_le_bytes(self) -> [u8; 8] {
416331ca
XL
1213 self.to_bits().to_le_bytes()
1214 }
1215
1216 /// Return the memory representation of this floating point number as a byte array in
1217 /// native byte order.
1218 ///
1219 /// As the target platform's native endianness is used, portable code
1220 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1221 ///
6a06907d
XL
1222 /// [`to_be_bytes`]: f64::to_be_bytes
1223 /// [`to_le_bytes`]: f64::to_le_bytes
416331ca 1224 ///
04454e1e
FG
1225 /// See [`from_bits`](Self::from_bits) for some discussion of the
1226 /// portability of this operation (there are almost no issues).
1227 ///
416331ca
XL
1228 /// # Examples
1229 ///
1230 /// ```
416331ca
XL
1231 /// let bytes = 12.5f64.to_ne_bytes();
1232 /// assert_eq!(
1233 /// bytes,
1234 /// if cfg!(target_endian = "big") {
1235 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1236 /// } else {
1237 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1238 /// }
1239 /// );
1240 /// ```
c295e0f8
XL
1241 #[must_use = "this returns the result of the operation, \
1242 without modifying the original"]
e74abb32 1243 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
3dfed10e 1244 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
416331ca 1245 #[inline]
3dfed10e 1246 pub const fn to_ne_bytes(self) -> [u8; 8] {
416331ca
XL
1247 self.to_bits().to_ne_bytes()
1248 }
1249
1250 /// Create a floating point value from its representation as a byte array in big endian.
1251 ///
04454e1e
FG
1252 /// See [`from_bits`](Self::from_bits) for some discussion of the
1253 /// portability of this operation (there are almost no issues).
1254 ///
416331ca
XL
1255 /// # Examples
1256 ///
1257 /// ```
416331ca
XL
1258 /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1259 /// assert_eq!(value, 12.5);
1260 /// ```
e74abb32 1261 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
3dfed10e 1262 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
c295e0f8 1263 #[must_use]
416331ca 1264 #[inline]
3dfed10e 1265 pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
416331ca
XL
1266 Self::from_bits(u64::from_be_bytes(bytes))
1267 }
1268
1269 /// Create a floating point value from its representation as a byte array in little endian.
1270 ///
04454e1e
FG
1271 /// See [`from_bits`](Self::from_bits) for some discussion of the
1272 /// portability of this operation (there are almost no issues).
1273 ///
416331ca
XL
1274 /// # Examples
1275 ///
1276 /// ```
416331ca
XL
1277 /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1278 /// assert_eq!(value, 12.5);
1279 /// ```
e74abb32 1280 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
3dfed10e 1281 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
c295e0f8 1282 #[must_use]
416331ca 1283 #[inline]
3dfed10e 1284 pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
416331ca
XL
1285 Self::from_bits(u64::from_le_bytes(bytes))
1286 }
1287
1288 /// Create a floating point value from its representation as a byte array in native endian.
1289 ///
1290 /// As the target platform's native endianness is used, portable code
1291 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1292 /// appropriate instead.
1293 ///
6a06907d
XL
1294 /// [`from_be_bytes`]: f64::from_be_bytes
1295 /// [`from_le_bytes`]: f64::from_le_bytes
416331ca 1296 ///
04454e1e
FG
1297 /// See [`from_bits`](Self::from_bits) for some discussion of the
1298 /// portability of this operation (there are almost no issues).
1299 ///
416331ca
XL
1300 /// # Examples
1301 ///
1302 /// ```
416331ca
XL
1303 /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1304 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1305 /// } else {
1306 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1307 /// });
1308 /// assert_eq!(value, 12.5);
1309 /// ```
e74abb32 1310 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
3dfed10e 1311 #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
c295e0f8 1312 #[must_use]
416331ca 1313 #[inline]
3dfed10e 1314 pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
416331ca
XL
1315 Self::from_bits(u64::from_ne_bytes(bytes))
1316 }
f9f354fc 1317
5099ac24
FG
1318 /// Return the ordering between `self` and `other`.
1319 ///
f9f354fc
XL
1320 /// Unlike the standard partial comparison between floating point numbers,
1321 /// this comparison always produces an ordering in accordance to
5099ac24
FG
1322 /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1323 /// floating point standard. The values are ordered in the following sequence:
1324 ///
1325 /// - negative quiet NaN
1326 /// - negative signaling NaN
1327 /// - negative infinity
1328 /// - negative numbers
1329 /// - negative subnormal numbers
1330 /// - negative zero
1331 /// - positive zero
1332 /// - positive subnormal numbers
1333 /// - positive numbers
1334 /// - positive infinity
1335 /// - positive signaling NaN
1336 /// - positive quiet NaN.
1337 ///
1338 /// The ordering established by this function does not always agree with the
1339 /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1340 /// they consider negative and positive zero equal, while `total_cmp`
1341 /// doesn't.
1342 ///
1343 /// The interpretation of the signaling NaN bit follows the definition in
1344 /// the IEEE 754 standard, which may not match the interpretation by some of
1345 /// the older, non-conformant (e.g. MIPS) hardware implementations.
29967ef6 1346 ///
f9f354fc 1347 /// # Example
5099ac24 1348 ///
f9f354fc 1349 /// ```
f9f354fc
XL
1350 /// struct GoodBoy {
1351 /// name: String,
1352 /// weight: f64,
1353 /// }
1354 ///
1355 /// let mut bois = vec![
1356 /// GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1357 /// GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1358 /// GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1359 /// GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1360 /// GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1361 /// GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1362 /// ];
1363 ///
1364 /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1365 /// # assert!(bois.into_iter().map(|b| b.weight)
1366 /// # .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1367 /// # .all(|(a, b)| a.to_bits() == b.to_bits()))
1368 /// ```
04454e1e 1369 #[stable(feature = "total_cmp", since = "1.62.0")]
3c0e092e 1370 #[must_use]
f9f354fc
XL
1371 #[inline]
1372 pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1373 let mut left = self.to_bits() as i64;
1374 let mut right = other.to_bits() as i64;
1375
1376 // In case of negatives, flip all the bits except the sign
1377 // to achieve a similar layout as two's complement integers
1378 //
1379 // Why does this work? IEEE 754 floats consist of three fields:
1380 // Sign bit, exponent and mantissa. The set of exponent and mantissa
1381 // fields as a whole have the property that their bitwise order is
1382 // equal to the numeric magnitude where the magnitude is defined.
1383 // The magnitude is not normally defined on NaN values, but
1384 // IEEE 754 totalOrder defines the NaN values also to follow the
1385 // bitwise order. This leads to order explained in the doc comment.
1386 // However, the representation of magnitude is the same for negative
1387 // and positive numbers – only the sign bit is different.
1388 // To easily compare the floats as signed integers, we need to
1389 // flip the exponent and mantissa bits in case of negative numbers.
1390 // We effectively convert the numbers to "two's complement" form.
1391 //
1392 // To do the flipping, we construct a mask and XOR against it.
1393 // We branchlessly calculate an "all-ones except for the sign bit"
1394 // mask from negative-signed values: right shifting sign-extends
1395 // the integer, so we "fill" the mask with sign bits, and then
1396 // convert to unsigned to push one more zero bit.
1397 // On positive values, the mask is all zeros, so it's a no-op.
1398 left ^= (((left >> 63) as u64) >> 1) as i64;
1399 right ^= (((right >> 63) as u64) >> 1) as i64;
1400
1401 left.cmp(&right)
1402 }
fc512014
XL
1403
1404 /// Restrict a value to a certain interval unless it is NaN.
1405 ///
1406 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1407 /// less than `min`. Otherwise this returns `self`.
1408 ///
1409 /// Note that this function returns NaN if the initial value was NaN as
1410 /// well.
1411 ///
1412 /// # Panics
1413 ///
1414 /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1415 ///
1416 /// # Examples
1417 ///
1418 /// ```
1419 /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1420 /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1421 /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1422 /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1423 /// ```
1424 #[must_use = "method returns a new number and does not mutate the original value"]
1425 #[stable(feature = "clamp", since = "1.50.0")]
1426 #[inline]
f2b60f7d 1427 pub fn clamp(mut self, min: f64, max: f64) -> f64 {
353b0b11 1428 assert!(min <= max, "min > max, or either was NaN. min = {min:?}, max = {max:?}");
f2b60f7d
FG
1429 if self < min {
1430 self = min;
fc512014 1431 }
f2b60f7d
FG
1432 if self > max {
1433 self = max;
fc512014 1434 }
f2b60f7d 1435 self
fc512014 1436 }
83c7162d 1437}