]> git.proxmox.com Git - rustc.git/blame - library/std/src/io/mod.rs
New upstream version 1.76.0+dfsg1
[rustc.git] / library / std / src / io / mod.rs
CommitLineData
85aaf69f 1//! Traits, helpers, and type definitions for core I/O functionality.
c1a9b12d
SL
2//!
3//! The `std::io` module contains a number of common things you'll need
4//! when doing input and output. The most core part of this module is
c30ab7b3 5//! the [`Read`] and [`Write`] traits, which provide the
c1a9b12d
SL
6//! most general interface for reading and writing input and output.
7//!
781aab86 8//! ## Read and Write
c1a9b12d 9//!
c30ab7b3 10//! Because they are traits, [`Read`] and [`Write`] are implemented by a number
b039eaaf
SL
11//! of other types, and you can implement them for your types too. As such,
12//! you'll see a few different types of I/O throughout the documentation in
c30ab7b3 13//! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
cc61c64b 14//! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
3b2f2976 15//! [`File`]s:
c1a9b12d 16//!
0531ce1d 17//! ```no_run
c1a9b12d
SL
18//! use std::io;
19//! use std::io::prelude::*;
20//! use std::fs::File;
21//!
0531ce1d
XL
22//! fn main() -> io::Result<()> {
23//! let mut f = File::open("foo.txt")?;
24//! let mut buffer = [0; 10];
c1a9b12d 25//!
0531ce1d 26//! // read up to 10 bytes
532ac7d7 27//! let n = f.read(&mut buffer)?;
c1a9b12d 28//!
532ac7d7 29//! println!("The bytes: {:?}", &buffer[..n]);
0531ce1d
XL
30//! Ok(())
31//! }
c1a9b12d
SL
32//! ```
33//!
c30ab7b3 34//! [`Read`] and [`Write`] are so important, implementors of the two traits have a
c1a9b12d 35//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
c30ab7b3 36//! of 'a type that implements the [`Read`] trait'. Much easier!
c1a9b12d
SL
37//!
38//! ## Seek and BufRead
39//!
c30ab7b3
SL
40//! Beyond that, there are two important traits that are provided: [`Seek`]
41//! and [`BufRead`]. Both of these build on top of a reader to control
42//! how the reading happens. [`Seek`] lets you control where the next byte is
c1a9b12d
SL
43//! coming from:
44//!
0531ce1d 45//! ```no_run
c1a9b12d
SL
46//! use std::io;
47//! use std::io::prelude::*;
48//! use std::io::SeekFrom;
49//! use std::fs::File;
50//!
0531ce1d
XL
51//! fn main() -> io::Result<()> {
52//! let mut f = File::open("foo.txt")?;
53//! let mut buffer = [0; 10];
c1a9b12d 54//!
0531ce1d
XL
55//! // skip to the last 10 bytes of the file
56//! f.seek(SeekFrom::End(-10))?;
c1a9b12d 57//!
0531ce1d 58//! // read up to 10 bytes
532ac7d7 59//! let n = f.read(&mut buffer)?;
c1a9b12d 60//!
532ac7d7 61//! println!("The bytes: {:?}", &buffer[..n]);
0531ce1d
XL
62//! Ok(())
63//! }
c1a9b12d
SL
64//! ```
65//!
c30ab7b3 66//! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
c1a9b12d
SL
67//! to show it off, we'll need to talk about buffers in general. Keep reading!
68//!
69//! ## BufReader and BufWriter
70//!
71//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
72//! making near-constant calls to the operating system. To help with this,
c30ab7b3 73//! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
c1a9b12d
SL
74//! readers and writers. The wrapper uses a buffer, reducing the number of
75//! calls and providing nicer methods for accessing exactly what you want.
76//!
c30ab7b3 77//! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
c1a9b12d
SL
78//! methods to any reader:
79//!
0531ce1d 80//! ```no_run
c1a9b12d
SL
81//! use std::io;
82//! use std::io::prelude::*;
83//! use std::io::BufReader;
84//! use std::fs::File;
85//!
0531ce1d
XL
86//! fn main() -> io::Result<()> {
87//! let f = File::open("foo.txt")?;
88//! let mut reader = BufReader::new(f);
89//! let mut buffer = String::new();
c1a9b12d 90//!
0531ce1d
XL
91//! // read a line into buffer
92//! reader.read_line(&mut buffer)?;
c1a9b12d 93//!
5e7ed085 94//! println!("{buffer}");
0531ce1d
XL
95//! Ok(())
96//! }
c1a9b12d
SL
97//! ```
98//!
c30ab7b3 99//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
cc61c64b 100//! to [`write`][`Write::write`]:
c1a9b12d 101//!
0531ce1d 102//! ```no_run
c1a9b12d
SL
103//! use std::io;
104//! use std::io::prelude::*;
105//! use std::io::BufWriter;
106//! use std::fs::File;
107//!
0531ce1d
XL
108//! fn main() -> io::Result<()> {
109//! let f = File::create("foo.txt")?;
110//! {
111//! let mut writer = BufWriter::new(f);
c1a9b12d 112//!
0531ce1d
XL
113//! // write a byte to the buffer
114//! writer.write(&[42])?;
c1a9b12d 115//!
0531ce1d 116//! } // the buffer is flushed once writer goes out of scope
c1a9b12d 117//!
0531ce1d
XL
118//! Ok(())
119//! }
c1a9b12d
SL
120//! ```
121//!
c1a9b12d
SL
122//! ## Standard input and output
123//!
124//! A very common source of input is standard input:
125//!
0531ce1d 126//! ```no_run
c1a9b12d
SL
127//! use std::io;
128//!
0531ce1d
XL
129//! fn main() -> io::Result<()> {
130//! let mut input = String::new();
c1a9b12d 131//!
0531ce1d 132//! io::stdin().read_line(&mut input)?;
c1a9b12d 133//!
0531ce1d
XL
134//! println!("You typed: {}", input.trim());
135//! Ok(())
136//! }
c1a9b12d
SL
137//! ```
138//!
3b2f2976 139//! Note that you cannot use the [`?` operator] in functions that do not return
94b46f34 140//! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
3b2f2976 141//! or `match` on the return value to catch any possible errors:
cc61c64b 142//!
0531ce1d 143//! ```no_run
cc61c64b
XL
144//! use std::io;
145//!
146//! let mut input = String::new();
147//!
148//! io::stdin().read_line(&mut input).unwrap();
149//! ```
150//!
c1a9b12d
SL
151//! And a very common source of output is standard output:
152//!
0531ce1d 153//! ```no_run
c1a9b12d
SL
154//! use std::io;
155//! use std::io::prelude::*;
156//!
0531ce1d
XL
157//! fn main() -> io::Result<()> {
158//! io::stdout().write(&[42])?;
159//! Ok(())
160//! }
c1a9b12d
SL
161//! ```
162//!
cc61c64b 163//! Of course, using [`io::stdout`] directly is less common than something like
c30ab7b3 164//! [`println!`].
c1a9b12d
SL
165//!
166//! ## Iterator types
167//!
168//! A large number of the structures provided by `std::io` are for various
c30ab7b3 169//! ways of iterating over I/O. For example, [`Lines`] is used to split over
c1a9b12d
SL
170//! lines:
171//!
0531ce1d 172//! ```no_run
c1a9b12d
SL
173//! use std::io;
174//! use std::io::prelude::*;
175//! use std::io::BufReader;
176//! use std::fs::File;
177//!
0531ce1d
XL
178//! fn main() -> io::Result<()> {
179//! let f = File::open("foo.txt")?;
180//! let reader = BufReader::new(f);
c1a9b12d 181//!
0531ce1d
XL
182//! for line in reader.lines() {
183//! println!("{}", line?);
184//! }
185//! Ok(())
c1a9b12d 186//! }
c1a9b12d
SL
187//! ```
188//!
189//! ## Functions
190//!
a7813a04 191//! There are a number of [functions][functions-list] that offer access to various
c1a9b12d
SL
192//! features. For example, we can use three of these functions to copy everything
193//! from standard input to standard output:
194//!
0531ce1d 195//! ```no_run
c1a9b12d
SL
196//! use std::io;
197//!
0531ce1d
XL
198//! fn main() -> io::Result<()> {
199//! io::copy(&mut io::stdin(), &mut io::stdout())?;
200//! Ok(())
201//! }
c1a9b12d
SL
202//! ```
203//!
a7813a04 204//! [functions-list]: #functions-1
c1a9b12d
SL
205//!
206//! ## io::Result
207//!
c30ab7b3 208//! Last, but certainly not least, is [`io::Result`]. This type is used
c1a9b12d
SL
209//! as the return type of many `std::io` functions that can cause an error, and
210//! can be returned from your own functions as well. Many of the examples in this
32a655c1 211//! module use the [`?` operator]:
c1a9b12d
SL
212//!
213//! ```
214//! use std::io;
215//!
216//! fn read_input() -> io::Result<()> {
217//! let mut input = String::new();
218//!
32a655c1 219//! io::stdin().read_line(&mut input)?;
c1a9b12d
SL
220//!
221//! println!("You typed: {}", input.trim());
222//!
223//! Ok(())
224//! }
225//! ```
226//!
c30ab7b3
SL
227//! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
228//! common type for functions which don't have a 'real' return value, but do want to
229//! return errors if they happen. In this case, the only purpose of this function is
b039eaaf 230//! to read the line and print it, so we use `()`.
c1a9b12d 231//!
9cc50fc6
SL
232//! ## Platform-specific behavior
233//!
234//! Many I/O functions throughout the standard library are documented to indicate
235//! what various library or syscalls they are delegated to. This is done to help
236//! applications both understand what's happening under the hood as well as investigate
237//! any possibly unclear semantics. Note, however, that this is informative, not a binding
238//! contract. The implementation of many of these functions are subject to change over
239//! time and may call fewer or more syscalls/library functions.
c30ab7b3 240//!
781aab86
FG
241//! ## I/O Safety
242//!
243//! Rust follows an I/O safety discipline that is comparable to its memory safety discipline. This
244//! means that file descriptors can be *exclusively owned*. (Here, "file descriptor" is meant to
245//! subsume similar concepts that exist across a wide range of operating systems even if they might
246//! use a different name, such as "handle".) An exclusively owned file descriptor is one that no
247//! other code is allowed to access in any way, but the owner is allowed to access and even close
248//! it any time. A type that owns its file descriptor should usually close it in its `drop`
249//! function. Types like [`File`] own their file descriptor. Similarly, file descriptors
250//! can be *borrowed*, granting the temporary right to perform operations on this file descriptor.
251//! This indicates that the file descriptor will not be closed for the lifetime of the borrow, but
252//! it does *not* imply any right to close this file descriptor, since it will likely be owned by
253//! someone else.
254//!
255//! The platform-specific parts of the Rust standard library expose types that reflect these
256//! concepts, see [`os::unix`] and [`os::windows`].
257//!
258//! To uphold I/O safety, it is crucial that no code acts on file descriptors it does not own or
259//! borrow, and no code closes file descriptors it does not own. In other words, a safe function
260//! that takes a regular integer, treats it as a file descriptor, and acts on it, is *unsound*.
261//!
262//! Not upholding I/O safety and acting on a file descriptor without proof of ownership can lead to
263//! misbehavior and even Undefined Behavior in code that relies on ownership of its file
264//! descriptors: a closed file descriptor could be re-allocated, so the original owner of that file
265//! descriptor is now working on the wrong file. Some code might even rely on fully encapsulating
266//! its file descriptors with no operations being performed by any other part of the program.
267//!
268//! Note that exclusive ownership of a file descriptor does *not* imply exclusive ownership of the
269//! underlying kernel object that the file descriptor references (also called "file description" on
270//! some operating systems). File descriptors basically work like [`Arc`]: when you receive an owned
271//! file descriptor, you cannot know whether there are any other file descriptors that reference the
272//! same kernel object. However, when you create a new kernel object, you know that you are holding
273//! the only reference to it. Just be careful not to lend it to anyone, since they can obtain a
274//! clone and then you can no longer know what the reference count is! In that sense, [`OwnedFd`] is
275//! like `Arc` and [`BorrowedFd<'a>`] is like `&'a Arc` (and similar for the Windows types). In
276//! particular, given a `BorrowedFd<'a>`, you are not allowed to close the file descriptor -- just
277//! like how, given a `&'a Arc`, you are not allowed to decrement the reference count and
278//! potentially free the underlying object. There is no equivalent to `Box` for file descriptors in
279//! the standard library (that would be a type that guarantees that the reference count is `1`),
280//! however, it would be possible for a crate to define a type with those semantics.
281//!
3dfed10e
XL
282//! [`File`]: crate::fs::File
283//! [`TcpStream`]: crate::net::TcpStream
3dfed10e
XL
284//! [`io::stdout`]: stdout
285//! [`io::Result`]: self::Result
0731742a 286//! [`?` operator]: ../../book/appendix-02-operators.html
3dfed10e
XL
287//! [`Result`]: crate::result::Result
288//! [`.unwrap()`]: crate::result::Result::unwrap
781aab86
FG
289//! [`os::unix`]: ../os/unix/io/index.html
290//! [`os::windows`]: ../os/windows/io/index.html
291//! [`OwnedFd`]: ../os/fd/struct.OwnedFd.html
292//! [`BorrowedFd<'a>`]: ../os/fd/struct.BorrowedFd.html
293//! [`Arc`]: crate::sync::Arc
1a4d82fc 294
c34b1796 295#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 296
1b1a35ee
XL
297#[cfg(test)]
298mod tests;
299
532ac7d7
XL
300use crate::cmp;
301use crate::fmt;
49aad941 302use crate::mem::take;
532ac7d7 303use crate::ops::{Deref, DerefMut};
60c5eb7d
XL
304use crate::slice;
305use crate::str;
532ac7d7 306use crate::sys;
17df50a5 307use crate::sys_common::memchr;
1a4d82fc 308
94222f64
XL
309#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
310pub use self::buffered::WriterPanicked;
9ffffee4
FG
311#[unstable(feature = "raw_os_error_ty", issue = "107792")]
312pub use self::error::RawOsError;
2b03887a 313pub(crate) use self::stdio::attempt_print_to_stderr;
fc512014
XL
314#[unstable(feature = "internal_output_capture", issue = "none")]
315#[doc(no_inline, hidden)]
316pub use self::stdio::set_output_capture;
353b0b11 317#[stable(feature = "is_terminal", since = "1.70.0")]
2b03887a 318pub use self::stdio::IsTerminal;
dfeec247 319#[unstable(feature = "print_internals", issue = "none")]
ed00b5ec 320#[doc(hidden)]
60c5eb7d 321pub use self::stdio::{_eprint, _print};
60c5eb7d 322#[stable(feature = "rust1", since = "1.0.0")]
5099ac24
FG
323pub use self::{
324 buffered::{BufReader, BufWriter, IntoInnerError, LineWriter},
325 copy::copy,
326 cursor::Cursor,
327 error::{Error, ErrorKind, Result},
328 stdio::{stderr, stdin, stdout, Stderr, StderrLock, Stdin, StdinLock, Stdout, StdoutLock},
329 util::{empty, repeat, sink, Empty, Repeat, Sink},
330};
29967ef6 331
a2a8927a 332#[unstable(feature = "read_buf", issue = "78485")]
ed00b5ec 333pub use core::io::{BorrowedBuf, BorrowedCursor};
5099ac24 334pub(crate) use error::const_io_error;
a2a8927a 335
1a4d82fc 336mod buffered;
fc512014 337pub(crate) mod copy;
85aaf69f
SL
338mod cursor;
339mod error;
340mod impls;
60c5eb7d 341pub mod prelude;
c34b1796 342mod stdio;
60c5eb7d 343mod util;
1a4d82fc 344
532ac7d7 345const DEFAULT_BUF_SIZE: usize = crate::sys_common::io::DEFAULT_BUF_SIZE;
1a4d82fc 346
3c0e092e 347pub(crate) use stdio::cleanup;
cdc7bbd5 348
60c5eb7d
XL
349struct Guard<'a> {
350 buf: &'a mut Vec<u8>,
351 len: usize,
352}
041b39d2 353
9fa01778 354impl Drop for Guard<'_> {
041b39d2 355 fn drop(&mut self) {
60c5eb7d
XL
356 unsafe {
357 self.buf.set_len(self.len);
358 }
041b39d2
XL
359 }
360}
361
c295e0f8
XL
362// Several `read_to_string` and `read_line` methods in the standard library will
363// append data into a `String` buffer, but we need to be pretty careful when
364// doing this. The implementation will just call `.as_mut_vec()` and then
365// delegate to a byte-oriented reading method, but we must ensure that when
366// returning we never leave `buf` in a state such that it contains invalid UTF-8
367// in its bounds.
85aaf69f
SL
368//
369// To this end, we use an RAII guard (to protect against panics) which updates
370// the length of the string when it is dropped. This guard initially truncates
371// the string to the prior length and only after we've validated that the
372// new contents are valid UTF-8 do we allow it to set a longer length.
373//
374// The unsafety in this function is twofold:
375//
376// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
377// checks.
378// 2. We're passing a raw buffer to the function `f`, and it is expected that
379// the function only *appends* bytes to the buffer. We'll get undefined
380// behavior if existing bytes are overwritten to have non-UTF-8 data.
c295e0f8 381pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
60c5eb7d
XL
382where
383 F: FnOnce(&mut Vec<u8>) -> Result<usize>,
85aaf69f 384{
c295e0f8
XL
385 let mut g = Guard { len: buf.len(), buf: buf.as_mut_vec() };
386 let ret = f(g.buf);
387 if str::from_utf8(&g.buf[g.len..]).is_err() {
388 ret.and_then(|_| {
5099ac24
FG
389 Err(error::const_io_error!(
390 ErrorKind::InvalidData,
391 "stream did not contain valid UTF-8"
392 ))
c295e0f8
XL
393 })
394 } else {
395 g.len = g.buf.len();
396 ret
1a4d82fc
JJ
397 }
398}
399
4b012472
FG
400// Here we must serve many masters with conflicting goals:
401//
402// - avoid allocating unless necessary
403// - avoid overallocating if we know the exact size (#89165)
404// - avoid passing large buffers to readers that always initialize the free capacity if they perform short reads (#23815, #23820)
405// - pass large buffers to readers that do not initialize the spare capacity. this can amortize per-call overheads
406// - and finally pass not-too-small and not-too-large buffers to Windows read APIs because they manage to suffer from both problems
407// at the same time, i.e. small reads suffer from syscall overhead, all reads incur initialization cost
408// proportional to buffer size (#110650)
409//
49aad941
FG
410pub(crate) fn default_read_to_end<R: Read + ?Sized>(
411 r: &mut R,
412 buf: &mut Vec<u8>,
413 size_hint: Option<usize>,
414) -> Result<usize> {
c34b1796 415 let start_len = buf.len();
c295e0f8 416 let start_cap = buf.capacity();
49aad941
FG
417 // Optionally limit the maximum bytes read on each iteration.
418 // This adds an arbitrary fiddle factor to allow for more data than we expect.
4b012472
FG
419 let mut max_read_size = size_hint
420 .and_then(|s| s.checked_add(1024)?.checked_next_multiple_of(DEFAULT_BUF_SIZE))
421 .unwrap_or(DEFAULT_BUF_SIZE);
a2a8927a
XL
422
423 let mut initialized = 0; // Extra initialized bytes from previous loop iteration
4b012472
FG
424
425 const PROBE_SIZE: usize = 32;
426
427 fn small_probe_read<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
428 let mut probe = [0u8; PROBE_SIZE];
429
430 loop {
431 match r.read(&mut probe) {
432 Ok(n) => {
433 buf.extend_from_slice(&probe[..n]);
434 return Ok(n);
435 }
436 Err(ref e) if e.is_interrupted() => continue,
437 Err(e) => return Err(e),
438 }
439 }
440 }
441
442 // avoid inflating empty/small vecs before we have determined that there's anything to read
443 if (size_hint.is_none() || size_hint == Some(0)) && buf.capacity() - buf.len() < PROBE_SIZE {
444 let read = small_probe_read(r, buf)?;
445
446 if read == 0 {
447 return Ok(0);
448 }
449 }
450
85aaf69f 451 loop {
4b012472
FG
452 if buf.len() == buf.capacity() && buf.capacity() == start_cap {
453 // The buffer might be an exact fit. Let's read into a probe buffer
454 // and see if it returns `Ok(0)`. If so, we've avoided an
455 // unnecessary doubling of the capacity. But if not, append the
456 // probe buffer to the primary buffer and let its capacity grow.
457 let read = small_probe_read(r, buf)?;
458
459 if read == 0 {
460 return Ok(buf.len() - start_len);
461 }
462 }
463
a2a8927a 464 if buf.len() == buf.capacity() {
4b012472 465 buf.reserve(PROBE_SIZE); // buf is full, need more space
c295e0f8
XL
466 }
467
49aad941 468 let mut spare = buf.spare_capacity_mut();
4b012472
FG
469 let buf_len = cmp::min(spare.len(), max_read_size);
470 spare = &mut spare[..buf_len];
49aad941 471 let mut read_buf: BorrowedBuf<'_> = spare.into();
a2a8927a
XL
472
473 // SAFETY: These bytes were initialized but not filled in the previous loop
474 unsafe {
f2b60f7d 475 read_buf.set_init(initialized);
85aaf69f 476 }
c34b1796 477
f2b60f7d 478 let mut cursor = read_buf.unfilled();
4b012472
FG
479 loop {
480 match r.read_buf(cursor.reborrow()) {
481 Ok(()) => break,
482 Err(e) if e.is_interrupted() => continue,
483 Err(e) => return Err(e),
484 }
85aaf69f 485 }
c295e0f8 486
4b012472
FG
487 let unfilled_but_initialized = cursor.init_ref().len();
488 let bytes_read = cursor.written();
489 let was_fully_initialized = read_buf.init_len() == buf_len;
490
491 if bytes_read == 0 {
a2a8927a
XL
492 return Ok(buf.len() - start_len);
493 }
494
495 // store how much was initialized but not filled
4b012472 496 initialized = unfilled_but_initialized;
a2a8927a 497
f2b60f7d 498 // SAFETY: BorrowedBuf's invariants mean this much memory is initialized.
a2a8927a 499 unsafe {
4b012472 500 let new_len = bytes_read + buf.len();
a2a8927a
XL
501 buf.set_len(new_len);
502 }
503
4b012472
FG
504 // Use heuristics to determine the max read size if no initial size hint was provided
505 if size_hint.is_none() {
506 // The reader is returning short reads but it doesn't call ensure_init().
507 // In that case we no longer need to restrict read sizes to avoid
508 // initialization costs.
509 if !was_fully_initialized {
510 max_read_size = usize::MAX;
511 }
512
513 // we have passed a larger buffer than previously and the
514 // reader still hasn't returned a short read
515 if buf_len >= max_read_size && bytes_read == buf_len {
516 max_read_size = max_read_size.saturating_mul(2);
c295e0f8
XL
517 }
518 }
1a4d82fc
JJ
519 }
520}
521
c295e0f8
XL
522pub(crate) fn default_read_to_string<R: Read + ?Sized>(
523 r: &mut R,
524 buf: &mut String,
49aad941 525 size_hint: Option<usize>,
c295e0f8
XL
526) -> Result<usize> {
527 // Note that we do *not* call `r.read_to_end()` here. We are passing
528 // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
529 // method to fill it up. An arbitrary implementation could overwrite the
530 // entire contents of the vector, not just append to it (which is what
531 // we are expecting).
532 //
533 // To prevent extraneously checking the UTF-8-ness of the entire buffer
534 // we pass it to our hardcoded `default_read_to_end` implementation which
535 // we know is guaranteed to only read data into the end of the buffer.
49aad941 536 unsafe { append_to_string(buf, |b| default_read_to_end(r, b, size_hint)) }
c295e0f8
XL
537}
538
48663c56 539pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
532ac7d7 540where
60c5eb7d 541 F: FnOnce(&mut [u8]) -> Result<usize>,
532ac7d7 542{
60c5eb7d 543 let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
532ac7d7
XL
544 read(buf)
545}
546
48663c56 547pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
532ac7d7 548where
60c5eb7d 549 F: FnOnce(&[u8]) -> Result<usize>,
532ac7d7 550{
60c5eb7d 551 let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
532ac7d7
XL
552 write(buf)
553}
554
5869c6ff
XL
555pub(crate) fn default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
556 while !buf.is_empty() {
557 match this.read(buf) {
558 Ok(0) => break,
559 Ok(n) => {
ed00b5ec 560 buf = &mut buf[n..];
5869c6ff 561 }
781aab86 562 Err(ref e) if e.is_interrupted() => {}
5869c6ff
XL
563 Err(e) => return Err(e),
564 }
565 }
566 if !buf.is_empty() {
5099ac24 567 Err(error::const_io_error!(ErrorKind::UnexpectedEof, "failed to fill whole buffer"))
5869c6ff
XL
568 } else {
569 Ok(())
570 }
571}
572
f2b60f7d 573pub(crate) fn default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()>
a2a8927a
XL
574where
575 F: FnOnce(&mut [u8]) -> Result<usize>,
576{
f2b60f7d
FG
577 let n = read(cursor.ensure_init().init_mut())?;
578 unsafe {
579 // SAFETY: we initialised using `ensure_init` so there is no uninit data to advance to.
580 cursor.advance(n);
581 }
a2a8927a
XL
582 Ok(())
583}
584
c1a9b12d 585/// The `Read` trait allows for reading bytes from a source.
85aaf69f 586///
041b39d2 587/// Implementors of the `Read` trait are called 'readers'.
1a4d82fc 588///
3b2f2976 589/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
c1a9b12d 590/// will attempt to pull bytes from this source into a provided buffer. A
3b2f2976 591/// number of other methods are implemented in terms of [`read()`], giving
c1a9b12d
SL
592/// implementors a number of ways to read bytes while only needing to implement
593/// a single method.
594///
595/// Readers are intended to be composable with one another. Many implementors
3b2f2976 596/// throughout [`std::io`] take and provide types which implement the `Read`
c1a9b12d
SL
597/// trait.
598///
3b2f2976
XL
599/// Please note that each call to [`read()`] may involve a system call, and
600/// therefore, using something that implements [`BufRead`], such as
601/// [`BufReader`], will be more efficient.
b039eaaf 602///
4b012472
FG
603/// Repeated calls to the reader use the same cursor, so for example
604/// calling `read_to_end` twice on a [`File`] will only return the file's
605/// contents once. It's recommended to first call `rewind()` in that case.
606///
c1a9b12d
SL
607/// # Examples
608///
3b2f2976 609/// [`File`]s implement `Read`:
c1a9b12d 610///
0531ce1d
XL
611/// ```no_run
612/// use std::io;
c1a9b12d
SL
613/// use std::io::prelude::*;
614/// use std::fs::File;
615///
0531ce1d
XL
616/// fn main() -> io::Result<()> {
617/// let mut f = File::open("foo.txt")?;
618/// let mut buffer = [0; 10];
c1a9b12d 619///
0531ce1d
XL
620/// // read up to 10 bytes
621/// f.read(&mut buffer)?;
c1a9b12d 622///
a1dfa0c6 623/// let mut buffer = Vec::new();
0531ce1d
XL
624/// // read the whole file
625/// f.read_to_end(&mut buffer)?;
c1a9b12d 626///
0531ce1d
XL
627/// // read into a String, so that you don't need to do the conversion.
628/// let mut buffer = String::new();
629/// f.read_to_string(&mut buffer)?;
c1a9b12d 630///
0531ce1d
XL
631/// // and more! See the other methods for more details.
632/// Ok(())
633/// }
c1a9b12d 634/// ```
ff7c6d11 635///
6a06907d 636/// Read from [`&str`] because [`&[u8]`][prim@slice] implements `Read`:
ff7c6d11 637///
0531ce1d 638/// ```no_run
ff7c6d11
XL
639/// # use std::io;
640/// use std::io::prelude::*;
641///
0531ce1d
XL
642/// fn main() -> io::Result<()> {
643/// let mut b = "This string will be read".as_bytes();
644/// let mut buffer = [0; 10];
ff7c6d11 645///
0531ce1d
XL
646/// // read up to 10 bytes
647/// b.read(&mut buffer)?;
ff7c6d11 648///
0531ce1d
XL
649/// // etc... it works exactly as a File does!
650/// Ok(())
651/// }
ff7c6d11
XL
652/// ```
653///
3dfed10e
XL
654/// [`read()`]: Read::read
655/// [`&str`]: prim@str
656/// [`std::io`]: self
657/// [`File`]: crate::fs::File
c34b1796 658#[stable(feature = "rust1", since = "1.0.0")]
17df50a5 659#[doc(notable_trait)]
136023e0 660#[cfg_attr(not(test), rustc_diagnostic_item = "IoRead")]
85aaf69f
SL
661pub trait Read {
662 /// Pull some bytes from this source into the specified buffer, returning
663 /// how many bytes were read.
664 ///
665 /// This function does not provide any guarantees about whether it blocks
ba9703b0 666 /// waiting for data, but if an object needs to block for a read and cannot,
3b2f2976 667 /// it will typically signal this via an [`Err`] return value.
85aaf69f 668 ///
6a06907d
XL
669 /// If the return value of this method is [`Ok(n)`], then implementations must
670 /// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
9346a6ac 671 /// that the buffer `buf` has been filled in with `n` bytes of data from this
85aaf69f
SL
672 /// source. If `n` is `0`, then it can indicate one of two scenarios:
673 ///
674 /// 1. This reader has reached its "end of file" and will likely no longer
675 /// be able to produce bytes. Note that this does not mean that the
17df50a5
XL
676 /// reader will *always* no longer be able to produce bytes. As an example,
677 /// on Linux, this method will call the `recv` syscall for a [`TcpStream`],
678 /// where returning zero indicates the connection was shut down correctly. While
679 /// for [`File`], it is possible to reach the end of file and get zero as result,
680 /// but if more data is appended to the file, future calls to `read` will return
681 /// more data.
85aaf69f
SL
682 /// 2. The buffer specified was 0 bytes in length.
683 ///
f9f354fc
XL
684 /// It is not an error if the returned value `n` is smaller than the buffer size,
685 /// even when the reader is not at the end of the stream yet.
686 /// This may happen for example because fewer bytes are actually available right now
687 /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
688 ///
49aad941
FG
689 /// As this trait is safe to implement, callers in unsafe code cannot rely on
690 /// `n <= buf.len()` for safety.
6a06907d
XL
691 /// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
692 /// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
693 /// `n > buf.len()`.
694 ///
85aaf69f 695 /// No guarantees are provided about the contents of `buf` when this
2b03887a 696 /// function is called, so implementations cannot rely on any property of the
dc9dc135 697 /// contents of `buf` being true. It is recommended that *implementations*
85aaf69f 698 /// only write data to `buf` instead of reading its contents.
1a4d82fc 699 ///
49aad941
FG
700 /// Correspondingly, however, *callers* of this method in unsafe code must not assume
701 /// any guarantees about how the implementation uses `buf`. The trait is safe to implement,
416331ca
XL
702 /// so it is possible that the code that's supposed to write to the buffer might also read
703 /// from it. It is your responsibility to make sure that `buf` is initialized
dc9dc135
XL
704 /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
705 /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
706 ///
3dfed10e 707 /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
dc9dc135 708 ///
85aaf69f 709 /// # Errors
1a4d82fc 710 ///
85aaf69f
SL
711 /// If this function encounters any form of I/O or other error, an error
712 /// variant will be returned. If an error is returned then it must be
713 /// guaranteed that no bytes were read.
c1a9b12d 714 ///
3b2f2976 715 /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
7cac9316
XL
716 /// operation should be retried if there is nothing else to do.
717 ///
c1a9b12d
SL
718 /// # Examples
719 ///
3b2f2976 720 /// [`File`]s implement `Read`:
c1a9b12d 721 ///
3dfed10e
XL
722 /// [`Ok(n)`]: Ok
723 /// [`File`]: crate::fs::File
17df50a5 724 /// [`TcpStream`]: crate::net::TcpStream
c1a9b12d 725 ///
0531ce1d 726 /// ```no_run
c1a9b12d
SL
727 /// use std::io;
728 /// use std::io::prelude::*;
729 /// use std::fs::File;
730 ///
0531ce1d
XL
731 /// fn main() -> io::Result<()> {
732 /// let mut f = File::open("foo.txt")?;
733 /// let mut buffer = [0; 10];
c1a9b12d 734 ///
0531ce1d 735 /// // read up to 10 bytes
532ac7d7
XL
736 /// let n = f.read(&mut buffer[..])?;
737 ///
738 /// println!("The bytes: {:?}", &buffer[..n]);
0531ce1d
XL
739 /// Ok(())
740 /// }
c1a9b12d 741 /// ```
c34b1796 742 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 743 fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
1a4d82fc 744
9fa01778
XL
745 /// Like `read`, except that it reads into a slice of buffers.
746 ///
747 /// Data is copied to fill each buffer in order, with the final buffer
f9f354fc
XL
748 /// written to possibly being only partially filled. This method must
749 /// behave equivalently to a single call to `read` with concatenated
750 /// buffers.
9fa01778 751 ///
532ac7d7
XL
752 /// The default implementation calls `read` with either the first nonempty
753 /// buffer provided, or an empty one if none exists.
48663c56
XL
754 #[stable(feature = "iovec", since = "1.36.0")]
755 fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
532ac7d7 756 default_read_vectored(|b| self.read(b), bufs)
9fa01778
XL
757 }
758
f9f354fc
XL
759 /// Determines if this `Read`er has an efficient `read_vectored`
760 /// implementation.
761 ///
762 /// If a `Read`er does not override the default `read_vectored`
763 /// implementation, code using it may want to avoid the method all together
764 /// and coalesce writes into a single buffer for higher performance.
765 ///
766 /// The default implementation returns `false`.
767 #[unstable(feature = "can_vector", issue = "69941")]
768 fn is_read_vectored(&self) -> bool {
769 false
770 }
771
85aaf69f 772 /// Read all bytes until EOF in this source, placing them into `buf`.
1a4d82fc 773 ///
85aaf69f 774 /// All bytes read from this source will be appended to the specified buffer
3b2f2976
XL
775 /// `buf`. This function will continuously call [`read()`] to append more data to
776 /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
777 /// non-[`ErrorKind::Interrupted`] kind.
1a4d82fc 778 ///
9346a6ac 779 /// If successful, this function will return the total number of bytes read.
1a4d82fc 780 ///
85aaf69f 781 /// # Errors
1a4d82fc 782 ///
85aaf69f 783 /// If this function encounters an error of the kind
3b2f2976 784 /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
85aaf69f 785 /// will continue.
1a4d82fc 786 ///
85aaf69f
SL
787 /// If any other read error is encountered then this function immediately
788 /// returns. Any bytes which have already been read will be appended to
789 /// `buf`.
c1a9b12d
SL
790 ///
791 /// # Examples
792 ///
3b2f2976 793 /// [`File`]s implement `Read`:
c1a9b12d 794 ///
3dfed10e
XL
795 /// [`read()`]: Read::read
796 /// [`Ok(0)`]: Ok
797 /// [`File`]: crate::fs::File
c1a9b12d 798 ///
0531ce1d 799 /// ```no_run
c1a9b12d
SL
800 /// use std::io;
801 /// use std::io::prelude::*;
802 /// use std::fs::File;
803 ///
0531ce1d
XL
804 /// fn main() -> io::Result<()> {
805 /// let mut f = File::open("foo.txt")?;
806 /// let mut buffer = Vec::new();
c1a9b12d 807 ///
0531ce1d
XL
808 /// // read the whole file
809 /// f.read_to_end(&mut buffer)?;
810 /// Ok(())
811 /// }
c1a9b12d 812 /// ```
83c7162d
XL
813 ///
814 /// (See also the [`std::fs::read`] convenience function for reading from a
815 /// file.)
816 ///
3dfed10e 817 /// [`std::fs::read`]: crate::fs::read
c34b1796
AL
818 #[stable(feature = "rust1", since = "1.0.0")]
819 fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
49aad941 820 default_read_to_end(self, buf, None)
1a4d82fc
JJ
821 }
822
2c00a5a8 823 /// Read all bytes until EOF in this source, appending them to `buf`.
1a4d82fc 824 ///
c34b1796
AL
825 /// If successful, this function returns the number of bytes which were read
826 /// and appended to `buf`.
827 ///
85aaf69f 828 /// # Errors
1a4d82fc 829 ///
85aaf69f
SL
830 /// If the data in this stream is *not* valid UTF-8 then an error is
831 /// returned and `buf` is unchanged.
1a4d82fc 832 ///
3dfed10e 833 /// See [`read_to_end`] for other error semantics.
c1a9b12d 834 ///
3dfed10e 835 /// [`read_to_end`]: Read::read_to_end
c1a9b12d
SL
836 ///
837 /// # Examples
838 ///
3dfed10e 839 /// [`File`]s implement `Read`:
c1a9b12d 840 ///
3dfed10e 841 /// [`File`]: crate::fs::File
c1a9b12d 842 ///
0531ce1d 843 /// ```no_run
c1a9b12d
SL
844 /// use std::io;
845 /// use std::io::prelude::*;
846 /// use std::fs::File;
847 ///
0531ce1d
XL
848 /// fn main() -> io::Result<()> {
849 /// let mut f = File::open("foo.txt")?;
850 /// let mut buffer = String::new();
c1a9b12d 851 ///
0531ce1d
XL
852 /// f.read_to_string(&mut buffer)?;
853 /// Ok(())
854 /// }
c1a9b12d 855 /// ```
83c7162d
XL
856 ///
857 /// (See also the [`std::fs::read_to_string`] convenience function for
858 /// reading from a file.)
859 ///
3dfed10e 860 /// [`std::fs::read_to_string`]: crate::fs::read_to_string
c34b1796
AL
861 #[stable(feature = "rust1", since = "1.0.0")]
862 fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
49aad941 863 default_read_to_string(self, buf, None)
1a4d82fc
JJ
864 }
865
e9174d1e
SL
866 /// Read the exact number of bytes required to fill `buf`.
867 ///
868 /// This function reads as many bytes as necessary to completely fill the
869 /// specified buffer `buf`.
870 ///
871 /// No guarantees are provided about the contents of `buf` when this
2b03887a 872 /// function is called, so implementations cannot rely on any property of the
e9174d1e 873 /// contents of `buf` being true. It is recommended that implementations
3dfed10e
XL
874 /// only write data to `buf` instead of reading its contents. The
875 /// documentation on [`read`] has a more detailed explanation on this
876 /// subject.
e9174d1e
SL
877 ///
878 /// # Errors
879 ///
880 /// If this function encounters an error of the kind
3b2f2976 881 /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
e9174d1e
SL
882 /// will continue.
883 ///
884 /// If this function encounters an "end of file" before completely filling
3b2f2976 885 /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
e9174d1e
SL
886 /// The contents of `buf` are unspecified in this case.
887 ///
888 /// If any other read error is encountered then this function immediately
889 /// returns. The contents of `buf` are unspecified in this case.
890 ///
891 /// If this function returns an error, it is unspecified how many bytes it
892 /// has read, but it will never read more than would be necessary to
893 /// completely fill the buffer.
894 ///
895 /// # Examples
896 ///
3b2f2976 897 /// [`File`]s implement `Read`:
e9174d1e 898 ///
3dfed10e
XL
899 /// [`read`]: Read::read
900 /// [`File`]: crate::fs::File
e9174d1e 901 ///
0531ce1d 902 /// ```no_run
e9174d1e
SL
903 /// use std::io;
904 /// use std::io::prelude::*;
905 /// use std::fs::File;
906 ///
0531ce1d
XL
907 /// fn main() -> io::Result<()> {
908 /// let mut f = File::open("foo.txt")?;
909 /// let mut buffer = [0; 10];
e9174d1e 910 ///
0531ce1d
XL
911 /// // read exactly 10 bytes
912 /// f.read_exact(&mut buffer)?;
913 /// Ok(())
914 /// }
e9174d1e 915 /// ```
92a42be0 916 #[stable(feature = "read_exact", since = "1.6.0")]
5869c6ff
XL
917 fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
918 default_read_exact(self, buf)
e9174d1e
SL
919 }
920
a2a8927a
XL
921 /// Pull some bytes from this source into the specified buffer.
922 ///
f2b60f7d 923 /// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
a2a8927a
XL
924 /// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
925 ///
926 /// The default implementation delegates to `read`.
927 #[unstable(feature = "read_buf", issue = "78485")]
f2b60f7d 928 fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()> {
a2a8927a
XL
929 default_read_buf(|b| self.read(b), buf)
930 }
931
f2b60f7d 932 /// Read the exact number of bytes required to fill `cursor`.
a2a8927a 933 ///
353b0b11
FG
934 /// This is similar to the [`read_exact`](Read::read_exact) method, except
935 /// that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
936 /// with uninitialized buffers.
937 ///
938 /// # Errors
939 ///
940 /// If this function encounters an error of the kind [`ErrorKind::Interrupted`]
941 /// then the error is ignored and the operation will continue.
942 ///
943 /// If this function encounters an "end of file" before completely filling
944 /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
945 ///
946 /// If any other read error is encountered then this function immediately
947 /// returns.
948 ///
949 /// If this function returns an error, all bytes read will be appended to `cursor`.
a2a8927a 950 #[unstable(feature = "read_buf", issue = "78485")]
f2b60f7d
FG
951 fn read_buf_exact(&mut self, mut cursor: BorrowedCursor<'_>) -> Result<()> {
952 while cursor.capacity() > 0 {
953 let prev_written = cursor.written();
954 match self.read_buf(cursor.reborrow()) {
a2a8927a 955 Ok(()) => {}
781aab86 956 Err(e) if e.is_interrupted() => continue,
a2a8927a
XL
957 Err(e) => return Err(e),
958 }
959
f2b60f7d 960 if cursor.written() == prev_written {
a2a8927a
XL
961 return Err(Error::new(ErrorKind::UnexpectedEof, "failed to fill buffer"));
962 }
963 }
964
965 Ok(())
966 }
967
968 /// Creates a "by reference" adaptor for this instance of `Read`.
1a4d82fc 969 ///
94222f64 970 /// The returned adapter also implements `Read` and will simply borrow this
85aaf69f 971 /// current reader.
c1a9b12d
SL
972 ///
973 /// # Examples
974 ///
3dfed10e 975 /// [`File`]s implement `Read`:
c1a9b12d 976 ///
3dfed10e 977 /// [`File`]: crate::fs::File
c1a9b12d 978 ///
0531ce1d 979 /// ```no_run
c1a9b12d
SL
980 /// use std::io;
981 /// use std::io::Read;
982 /// use std::fs::File;
983 ///
0531ce1d
XL
984 /// fn main() -> io::Result<()> {
985 /// let mut f = File::open("foo.txt")?;
986 /// let mut buffer = Vec::new();
987 /// let mut other_buffer = Vec::new();
c1a9b12d 988 ///
0531ce1d
XL
989 /// {
990 /// let reference = f.by_ref();
c1a9b12d 991 ///
0531ce1d
XL
992 /// // read at most 5 bytes
993 /// reference.take(5).read_to_end(&mut buffer)?;
c1a9b12d 994 ///
0531ce1d 995 /// } // drop our &mut reference so we can use f again
c1a9b12d 996 ///
0531ce1d
XL
997 /// // original file still usable, read the rest
998 /// f.read_to_end(&mut other_buffer)?;
999 /// Ok(())
1000 /// }
c1a9b12d 1001 /// ```
c34b1796 1002 #[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d
XL
1003 fn by_ref(&mut self) -> &mut Self
1004 where
1005 Self: Sized,
1006 {
1007 self
1008 }
1a4d82fc 1009
3b2f2976 1010 /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
1a4d82fc 1011 ///
c295e0f8
XL
1012 /// The returned type implements [`Iterator`] where the [`Item`] is
1013 /// <code>[Result]<[u8], [io::Error]></code>.
abe05a73
XL
1014 /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
1015 /// otherwise. EOF is mapped to returning [`None`] from this iterator.
c1a9b12d 1016 ///
f2b60f7d
FG
1017 /// The default implementation calls `read` for each byte,
1018 /// which can be very inefficient for data that's not in memory,
1019 /// such as [`File`]. Consider using a [`BufReader`] in such cases.
1020 ///
c1a9b12d
SL
1021 /// # Examples
1022 ///
3dfed10e 1023 /// [`File`]s implement `Read`:
c1a9b12d 1024 ///
c295e0f8
XL
1025 /// [`Item`]: Iterator::Item
1026 /// [`File`]: crate::fs::File "fs::File"
1027 /// [Result]: crate::result::Result "Result"
1028 /// [io::Error]: self::Error "io::Error"
c1a9b12d 1029 ///
0531ce1d 1030 /// ```no_run
c1a9b12d
SL
1031 /// use std::io;
1032 /// use std::io::prelude::*;
f2b60f7d 1033 /// use std::io::BufReader;
c1a9b12d
SL
1034 /// use std::fs::File;
1035 ///
0531ce1d 1036 /// fn main() -> io::Result<()> {
f2b60f7d 1037 /// let f = BufReader::new(File::open("foo.txt")?);
c1a9b12d 1038 ///
0531ce1d
XL
1039 /// for byte in f.bytes() {
1040 /// println!("{}", byte.unwrap());
1041 /// }
1042 /// Ok(())
c1a9b12d 1043 /// }
c1a9b12d 1044 /// ```
c34b1796 1045 #[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d
XL
1046 fn bytes(self) -> Bytes<Self>
1047 where
1048 Self: Sized,
1049 {
85aaf69f 1050 Bytes { inner: self }
1a4d82fc
JJ
1051 }
1052
94222f64 1053 /// Creates an adapter which will chain this stream with another.
1a4d82fc 1054 ///
85aaf69f
SL
1055 /// The returned `Read` instance will first read all bytes from this object
1056 /// until EOF is encountered. Afterwards the output is equivalent to the
1057 /// output of `next`.
c1a9b12d
SL
1058 ///
1059 /// # Examples
1060 ///
3dfed10e 1061 /// [`File`]s implement `Read`:
c1a9b12d 1062 ///
3dfed10e 1063 /// [`File`]: crate::fs::File
c1a9b12d 1064 ///
0531ce1d 1065 /// ```no_run
c1a9b12d
SL
1066 /// use std::io;
1067 /// use std::io::prelude::*;
1068 /// use std::fs::File;
1069 ///
0531ce1d 1070 /// fn main() -> io::Result<()> {
064997fb
FG
1071 /// let f1 = File::open("foo.txt")?;
1072 /// let f2 = File::open("bar.txt")?;
c1a9b12d 1073 ///
0531ce1d
XL
1074 /// let mut handle = f1.chain(f2);
1075 /// let mut buffer = String::new();
c1a9b12d 1076 ///
0531ce1d
XL
1077 /// // read the value into a String. We could use any Read method here,
1078 /// // this is just one example.
1079 /// handle.read_to_string(&mut buffer)?;
1080 /// Ok(())
1081 /// }
c1a9b12d 1082 /// ```
c34b1796 1083 #[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d
XL
1084 fn chain<R: Read>(self, next: R) -> Chain<Self, R>
1085 where
1086 Self: Sized,
1087 {
85aaf69f 1088 Chain { first: self, second: next, done_first: false }
1a4d82fc
JJ
1089 }
1090
94222f64 1091 /// Creates an adapter which will read at most `limit` bytes from it.
1a4d82fc 1092 ///
85aaf69f 1093 /// This function returns a new instance of `Read` which will read at most
3b2f2976 1094 /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
85aaf69f 1095 /// read errors will not count towards the number of bytes read and future
3b2f2976 1096 /// calls to [`read()`] may succeed.
c1a9b12d
SL
1097 ///
1098 /// # Examples
1099 ///
3b2f2976 1100 /// [`File`]s implement `Read`:
c1a9b12d 1101 ///
3dfed10e
XL
1102 /// [`File`]: crate::fs::File
1103 /// [`Ok(0)`]: Ok
1104 /// [`read()`]: Read::read
c1a9b12d 1105 ///
0531ce1d 1106 /// ```no_run
c1a9b12d
SL
1107 /// use std::io;
1108 /// use std::io::prelude::*;
1109 /// use std::fs::File;
1110 ///
0531ce1d 1111 /// fn main() -> io::Result<()> {
064997fb 1112 /// let f = File::open("foo.txt")?;
0531ce1d 1113 /// let mut buffer = [0; 5];
c1a9b12d 1114 ///
0531ce1d
XL
1115 /// // read at most five bytes
1116 /// let mut handle = f.take(5);
c1a9b12d 1117 ///
0531ce1d
XL
1118 /// handle.read(&mut buffer)?;
1119 /// Ok(())
1120 /// }
c1a9b12d 1121 /// ```
c34b1796 1122 #[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d
XL
1123 fn take(self, limit: u64) -> Take<Self>
1124 where
1125 Self: Sized,
1126 {
74b04a01 1127 Take { inner: self, limit }
1a4d82fc 1128 }
85aaf69f 1129}
1a4d82fc 1130
5869c6ff
XL
1131/// Read all bytes from a [reader][Read] into a new [`String`].
1132///
1133/// This is a convenience function for [`Read::read_to_string`]. Using this
1134/// function avoids having to create a variable first and provides more type
1135/// safety since you can only get the buffer out if there were no errors. (If you
1136/// use [`Read::read_to_string`] you have to remember to check whether the read
1137/// succeeded because otherwise your buffer will be empty or only partially full.)
1138///
1139/// # Performance
1140///
1141/// The downside of this function's increased ease of use and type safety is
1142/// that it gives you less control over performance. For example, you can't
1143/// pre-allocate memory like you can using [`String::with_capacity`] and
1144/// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
1145/// occurs while reading.
1146///
1147/// In many cases, this function's performance will be adequate and the ease of use
1148/// and type safety tradeoffs will be worth it. However, there are cases where you
1149/// need more control over performance, and in those cases you should definitely use
1150/// [`Read::read_to_string`] directly.
1151///
c295e0f8
XL
1152/// Note that in some special cases, such as when reading files, this function will
1153/// pre-allocate memory based on the size of the input it is reading. In those
1154/// cases, the performance should be as good as if you had used
1155/// [`Read::read_to_string`] with a manually pre-allocated buffer.
1156///
5869c6ff
XL
1157/// # Errors
1158///
1159/// This function forces you to handle errors because the output (the `String`)
1160/// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
1161/// that can occur. If any error occurs, you will get an [`Err`], so you
1162/// don't have to worry about your buffer being empty or partially full.
1163///
1164/// # Examples
1165///
1166/// ```no_run
5869c6ff
XL
1167/// # use std::io;
1168/// fn main() -> io::Result<()> {
5099ac24 1169/// let stdin = io::read_to_string(io::stdin())?;
5869c6ff 1170/// println!("Stdin was:");
5e7ed085 1171/// println!("{stdin}");
5869c6ff
XL
1172/// Ok(())
1173/// }
1174/// ```
f2b60f7d 1175#[stable(feature = "io_read_to_string", since = "1.65.0")]
5099ac24 1176pub fn read_to_string<R: Read>(mut reader: R) -> Result<String> {
5869c6ff
XL
1177 let mut buf = String::new();
1178 reader.read_to_string(&mut buf)?;
1179 Ok(buf)
1180}
1181
9fa01778
XL
1182/// A buffer type used with `Read::read_vectored`.
1183///
1184/// It is semantically a wrapper around an `&mut [u8]`, but is guaranteed to be
1185/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1186/// Windows.
48663c56 1187#[stable(feature = "iovec", since = "1.36.0")]
9fa01778 1188#[repr(transparent)]
48663c56 1189pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
9fa01778 1190
ed00b5ec 1191#[stable(feature = "iovec_send_sync", since = "1.44.0")]
ba9703b0
XL
1192unsafe impl<'a> Send for IoSliceMut<'a> {}
1193
ed00b5ec 1194#[stable(feature = "iovec_send_sync", since = "1.44.0")]
ba9703b0
XL
1195unsafe impl<'a> Sync for IoSliceMut<'a> {}
1196
48663c56
XL
1197#[stable(feature = "iovec", since = "1.36.0")]
1198impl<'a> fmt::Debug for IoSliceMut<'a> {
532ac7d7 1199 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
9fa01778
XL
1200 fmt::Debug::fmt(self.0.as_slice(), fmt)
1201 }
1202}
1203
48663c56
XL
1204impl<'a> IoSliceMut<'a> {
1205 /// Creates a new `IoSliceMut` wrapping a byte slice.
9fa01778
XL
1206 ///
1207 /// # Panics
1208 ///
1209 /// Panics on Windows if the slice is larger than 4GB.
48663c56 1210 #[stable(feature = "iovec", since = "1.36.0")]
9fa01778 1211 #[inline]
48663c56
XL
1212 pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
1213 IoSliceMut(sys::io::IoSliceMut::new(buf))
9fa01778 1214 }
416331ca
XL
1215
1216 /// Advance the internal cursor of the slice.
1217 ///
136023e0
XL
1218 /// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
1219 /// multiple buffers.
1220 ///
923072b8
FG
1221 /// # Panics
1222 ///
1223 /// Panics when trying to advance beyond the end of the slice.
1224 ///
136023e0
XL
1225 /// # Examples
1226 ///
1227 /// ```
1228 /// #![feature(io_slice_advance)]
1229 ///
1230 /// use std::io::IoSliceMut;
1231 /// use std::ops::Deref;
1232 ///
1233 /// let mut data = [1; 8];
1234 /// let mut buf = IoSliceMut::new(&mut data);
1235 ///
1236 /// // Mark 3 bytes as read.
1237 /// buf.advance(3);
1238 /// assert_eq!(buf.deref(), [1; 5].as_ref());
1239 /// ```
1240 #[unstable(feature = "io_slice_advance", issue = "62726")]
1241 #[inline]
1242 pub fn advance(&mut self, n: usize) {
1243 self.0.advance(n)
1244 }
1245
923072b8 1246 /// Advance a slice of slices.
136023e0 1247 ///
923072b8
FG
1248 /// Shrinks the slice to remove any `IoSliceMut`s that are fully advanced over.
1249 /// If the cursor ends up in the middle of an `IoSliceMut`, it is modified
1250 /// to start at that cursor.
416331ca 1251 ///
923072b8
FG
1252 /// For example, if we have a slice of two 8-byte `IoSliceMut`s, and we advance by 10 bytes,
1253 /// the result will only include the second `IoSliceMut`, advanced by 2 bytes.
1254 ///
1255 /// # Panics
1256 ///
1257 /// Panics when trying to advance beyond the end of the slices.
416331ca
XL
1258 ///
1259 /// # Examples
1260 ///
1261 /// ```
1262 /// #![feature(io_slice_advance)]
1263 ///
1264 /// use std::io::IoSliceMut;
416331ca
XL
1265 /// use std::ops::Deref;
1266 ///
1267 /// let mut buf1 = [1; 8];
1268 /// let mut buf2 = [2; 16];
1269 /// let mut buf3 = [3; 8];
1270 /// let mut bufs = &mut [
1271 /// IoSliceMut::new(&mut buf1),
1272 /// IoSliceMut::new(&mut buf2),
1273 /// IoSliceMut::new(&mut buf3),
1274 /// ][..];
1275 ///
1276 /// // Mark 10 bytes as read.
136023e0 1277 /// IoSliceMut::advance_slices(&mut bufs, 10);
416331ca
XL
1278 /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1279 /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1280 /// ```
1281 #[unstable(feature = "io_slice_advance", issue = "62726")]
1282 #[inline]
136023e0 1283 pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
416331ca
XL
1284 // Number of buffers to remove.
1285 let mut remove = 0;
781aab86
FG
1286 // Remaining length before reaching n.
1287 let mut left = n;
416331ca 1288 for buf in bufs.iter() {
781aab86
FG
1289 if let Some(remainder) = left.checked_sub(buf.len()) {
1290 left = remainder;
416331ca 1291 remove += 1;
781aab86
FG
1292 } else {
1293 break;
416331ca
XL
1294 }
1295 }
1296
49aad941 1297 *bufs = &mut take(bufs)[remove..];
923072b8 1298 if bufs.is_empty() {
781aab86 1299 assert!(left == 0, "advancing io slices beyond their length");
923072b8 1300 } else {
781aab86 1301 bufs[0].advance(left);
416331ca 1302 }
416331ca 1303 }
9fa01778
XL
1304}
1305
48663c56
XL
1306#[stable(feature = "iovec", since = "1.36.0")]
1307impl<'a> Deref for IoSliceMut<'a> {
9fa01778
XL
1308 type Target = [u8];
1309
1310 #[inline]
1311 fn deref(&self) -> &[u8] {
1312 self.0.as_slice()
1313 }
1314}
1315
48663c56
XL
1316#[stable(feature = "iovec", since = "1.36.0")]
1317impl<'a> DerefMut for IoSliceMut<'a> {
9fa01778
XL
1318 #[inline]
1319 fn deref_mut(&mut self) -> &mut [u8] {
1320 self.0.as_mut_slice()
1321 }
1322}
1323
1324/// A buffer type used with `Write::write_vectored`.
1325///
94222f64 1326/// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
9fa01778
XL
1327/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1328/// Windows.
48663c56 1329#[stable(feature = "iovec", since = "1.36.0")]
ba9703b0 1330#[derive(Copy, Clone)]
9fa01778 1331#[repr(transparent)]
48663c56 1332pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
9fa01778 1333
ed00b5ec 1334#[stable(feature = "iovec_send_sync", since = "1.44.0")]
ba9703b0
XL
1335unsafe impl<'a> Send for IoSlice<'a> {}
1336
ed00b5ec 1337#[stable(feature = "iovec_send_sync", since = "1.44.0")]
ba9703b0
XL
1338unsafe impl<'a> Sync for IoSlice<'a> {}
1339
48663c56
XL
1340#[stable(feature = "iovec", since = "1.36.0")]
1341impl<'a> fmt::Debug for IoSlice<'a> {
532ac7d7 1342 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
9fa01778
XL
1343 fmt::Debug::fmt(self.0.as_slice(), fmt)
1344 }
1345}
1346
48663c56
XL
1347impl<'a> IoSlice<'a> {
1348 /// Creates a new `IoSlice` wrapping a byte slice.
9fa01778
XL
1349 ///
1350 /// # Panics
1351 ///
1352 /// Panics on Windows if the slice is larger than 4GB.
48663c56 1353 #[stable(feature = "iovec", since = "1.36.0")]
c295e0f8 1354 #[must_use]
9fa01778 1355 #[inline]
48663c56
XL
1356 pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
1357 IoSlice(sys::io::IoSlice::new(buf))
9fa01778 1358 }
416331ca
XL
1359
1360 /// Advance the internal cursor of the slice.
1361 ///
136023e0
XL
1362 /// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
1363 /// buffers.
1364 ///
923072b8
FG
1365 /// # Panics
1366 ///
1367 /// Panics when trying to advance beyond the end of the slice.
1368 ///
136023e0
XL
1369 /// # Examples
1370 ///
1371 /// ```
1372 /// #![feature(io_slice_advance)]
1373 ///
1374 /// use std::io::IoSlice;
1375 /// use std::ops::Deref;
1376 ///
923072b8
FG
1377 /// let data = [1; 8];
1378 /// let mut buf = IoSlice::new(&data);
136023e0
XL
1379 ///
1380 /// // Mark 3 bytes as read.
1381 /// buf.advance(3);
1382 /// assert_eq!(buf.deref(), [1; 5].as_ref());
1383 /// ```
1384 #[unstable(feature = "io_slice_advance", issue = "62726")]
1385 #[inline]
1386 pub fn advance(&mut self, n: usize) {
1387 self.0.advance(n)
1388 }
1389
923072b8 1390 /// Advance a slice of slices.
136023e0 1391 ///
923072b8
FG
1392 /// Shrinks the slice to remove any `IoSlice`s that are fully advanced over.
1393 /// If the cursor ends up in the middle of an `IoSlice`, it is modified
1394 /// to start at that cursor.
1395 ///
1396 /// For example, if we have a slice of two 8-byte `IoSlice`s, and we advance by 10 bytes,
1397 /// the result will only include the second `IoSlice`, advanced by 2 bytes.
1398 ///
1399 /// # Panics
416331ca 1400 ///
923072b8 1401 /// Panics when trying to advance beyond the end of the slices.
416331ca
XL
1402 ///
1403 /// # Examples
1404 ///
1405 /// ```
1406 /// #![feature(io_slice_advance)]
1407 ///
1408 /// use std::io::IoSlice;
416331ca
XL
1409 /// use std::ops::Deref;
1410 ///
60c5eb7d
XL
1411 /// let buf1 = [1; 8];
1412 /// let buf2 = [2; 16];
1413 /// let buf3 = [3; 8];
416331ca 1414 /// let mut bufs = &mut [
60c5eb7d
XL
1415 /// IoSlice::new(&buf1),
1416 /// IoSlice::new(&buf2),
1417 /// IoSlice::new(&buf3),
416331ca
XL
1418 /// ][..];
1419 ///
1420 /// // Mark 10 bytes as written.
136023e0 1421 /// IoSlice::advance_slices(&mut bufs, 10);
416331ca
XL
1422 /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1423 /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1424 #[unstable(feature = "io_slice_advance", issue = "62726")]
1425 #[inline]
136023e0 1426 pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
416331ca
XL
1427 // Number of buffers to remove.
1428 let mut remove = 0;
781aab86
FG
1429 // Remaining length before reaching n. This prevents overflow
1430 // that could happen if the length of slices in `bufs` were instead
1431 // accumulated. Those slice may be aliased and, if they are large
1432 // enough, their added length may overflow a `usize`.
1433 let mut left = n;
416331ca 1434 for buf in bufs.iter() {
781aab86
FG
1435 if let Some(remainder) = left.checked_sub(buf.len()) {
1436 left = remainder;
416331ca 1437 remove += 1;
781aab86
FG
1438 } else {
1439 break;
416331ca
XL
1440 }
1441 }
1442
49aad941 1443 *bufs = &mut take(bufs)[remove..];
923072b8 1444 if bufs.is_empty() {
781aab86 1445 assert!(left == 0, "advancing io slices beyond their length");
923072b8 1446 } else {
781aab86 1447 bufs[0].advance(left);
416331ca 1448 }
416331ca 1449 }
9fa01778
XL
1450}
1451
48663c56
XL
1452#[stable(feature = "iovec", since = "1.36.0")]
1453impl<'a> Deref for IoSlice<'a> {
9fa01778
XL
1454 type Target = [u8];
1455
1456 #[inline]
1457 fn deref(&self) -> &[u8] {
1458 self.0.as_slice()
1459 }
1460}
1461
85aaf69f
SL
1462/// A trait for objects which are byte-oriented sinks.
1463///
c1a9b12d
SL
1464/// Implementors of the `Write` trait are sometimes called 'writers'.
1465///
cc61c64b 1466/// Writers are defined by two required methods, [`write`] and [`flush`]:
c1a9b12d 1467///
cc61c64b 1468/// * The [`write`] method will attempt to write some data into the object,
c1a9b12d
SL
1469/// returning how many bytes were successfully written.
1470///
94222f64 1471/// * The [`flush`] method is useful for adapters and explicit buffers
c1a9b12d
SL
1472/// themselves for ensuring that all buffered data has been pushed out to the
1473/// 'true sink'.
1474///
1475/// Writers are intended to be composable with one another. Many implementors
476ff2be 1476/// throughout [`std::io`] take and provide types which implement the `Write`
c1a9b12d
SL
1477/// trait.
1478///
3dfed10e
XL
1479/// [`write`]: Write::write
1480/// [`flush`]: Write::flush
1481/// [`std::io`]: self
476ff2be 1482///
c1a9b12d
SL
1483/// # Examples
1484///
0531ce1d 1485/// ```no_run
c1a9b12d
SL
1486/// use std::io::prelude::*;
1487/// use std::fs::File;
85aaf69f 1488///
0531ce1d 1489/// fn main() -> std::io::Result<()> {
532ac7d7
XL
1490/// let data = b"some bytes";
1491///
1492/// let mut pos = 0;
0531ce1d 1493/// let mut buffer = File::create("foo.txt")?;
85aaf69f 1494///
532ac7d7
XL
1495/// while pos < data.len() {
1496/// let bytes_written = buffer.write(&data[pos..])?;
1497/// pos += bytes_written;
1498/// }
0531ce1d
XL
1499/// Ok(())
1500/// }
c1a9b12d 1501/// ```
532ac7d7
XL
1502///
1503/// The trait also provides convenience methods like [`write_all`], which calls
1504/// `write` in a loop until its entire input has been written.
1505///
3dfed10e 1506/// [`write_all`]: Write::write_all
c34b1796 1507#[stable(feature = "rust1", since = "1.0.0")]
17df50a5 1508#[doc(notable_trait)]
136023e0 1509#[cfg_attr(not(test), rustc_diagnostic_item = "IoWrite")]
85aaf69f 1510pub trait Write {
0731742a 1511 /// Write a buffer into this writer, returning how many bytes were written.
1a4d82fc 1512 ///
85aaf69f 1513 /// This function will attempt to write the entire contents of `buf`, but
94222f64 1514 /// the entire write might not succeed, or the write may also generate an
fe692bf9 1515 /// error. Typically, a call to `write` represents one attempt to write to
85aaf69f 1516 /// any wrapped object.
1a4d82fc 1517 ///
85aaf69f 1518 /// Calls to `write` are not guaranteed to block waiting for data to be
62682a34 1519 /// written, and a write which would otherwise block can be indicated through
2c00a5a8 1520 /// an [`Err`] variant.
1a4d82fc 1521 ///
fe692bf9
FG
1522 /// If this method consumed `n > 0` bytes of `buf` it must return [`Ok(n)`].
1523 /// If the return value is `Ok(n)` then `n` must satisfy `n <= buf.len()`.
1524 /// A return value of `Ok(0)` typically means that the underlying object is
1525 /// no longer able to accept bytes and will likely not be able to in the
1526 /// future as well, or that the buffer provided is empty.
1a4d82fc 1527 ///
85aaf69f 1528 /// # Errors
1a4d82fc 1529 ///
85aaf69f
SL
1530 /// Each call to `write` may generate an I/O error indicating that the
1531 /// operation could not be completed. If an error is returned then no bytes
1532 /// in the buffer were written to this writer.
1a4d82fc 1533 ///
85aaf69f
SL
1534 /// It is **not** considered an error if the entire buffer could not be
1535 /// written to this writer.
c1a9b12d 1536 ///
2c00a5a8 1537 /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
7cac9316
XL
1538 /// write operation should be retried if there is nothing else to do.
1539 ///
c1a9b12d
SL
1540 /// # Examples
1541 ///
0531ce1d 1542 /// ```no_run
c1a9b12d
SL
1543 /// use std::io::prelude::*;
1544 /// use std::fs::File;
1545 ///
0531ce1d
XL
1546 /// fn main() -> std::io::Result<()> {
1547 /// let mut buffer = File::create("foo.txt")?;
c1a9b12d 1548 ///
0531ce1d
XL
1549 /// // Writes some prefix of the byte string, not necessarily all of it.
1550 /// buffer.write(b"some bytes")?;
1551 /// Ok(())
1552 /// }
c1a9b12d 1553 /// ```
3dfed10e
XL
1554 ///
1555 /// [`Ok(n)`]: Ok
c34b1796 1556 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1557 fn write(&mut self, buf: &[u8]) -> Result<usize>;
1a4d82fc 1558
3dfed10e 1559 /// Like [`write`], except that it writes from a slice of buffers.
9fa01778 1560 ///
416331ca 1561 /// Data is copied from each buffer in order, with the final buffer
9fa01778 1562 /// read from possibly being only partially consumed. This method must
3dfed10e 1563 /// behave as a call to [`write`] with the buffers concatenated would.
9fa01778 1564 ///
3dfed10e 1565 /// The default implementation calls [`write`] with either the first nonempty
532ac7d7 1566 /// buffer provided, or an empty one if none exists.
3dfed10e 1567 ///
136023e0
XL
1568 /// # Examples
1569 ///
1570 /// ```no_run
1571 /// use std::io::IoSlice;
1572 /// use std::io::prelude::*;
1573 /// use std::fs::File;
1574 ///
1575 /// fn main() -> std::io::Result<()> {
923072b8
FG
1576 /// let data1 = [1; 8];
1577 /// let data2 = [15; 8];
1578 /// let io_slice1 = IoSlice::new(&data1);
1579 /// let io_slice2 = IoSlice::new(&data2);
136023e0
XL
1580 ///
1581 /// let mut buffer = File::create("foo.txt")?;
1582 ///
1583 /// // Writes some prefix of the byte string, not necessarily all of it.
1584 /// buffer.write_vectored(&[io_slice1, io_slice2])?;
1585 /// Ok(())
1586 /// }
1587 /// ```
1588 ///
3dfed10e 1589 /// [`write`]: Write::write
48663c56
XL
1590 #[stable(feature = "iovec", since = "1.36.0")]
1591 fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
532ac7d7 1592 default_write_vectored(|b| self.write(b), bufs)
9fa01778
XL
1593 }
1594
fc512014 1595 /// Determines if this `Write`r has an efficient [`write_vectored`]
f9f354fc
XL
1596 /// implementation.
1597 ///
fc512014 1598 /// If a `Write`r does not override the default [`write_vectored`]
f9f354fc
XL
1599 /// implementation, code using it may want to avoid the method all together
1600 /// and coalesce writes into a single buffer for higher performance.
1601 ///
1602 /// The default implementation returns `false`.
3dfed10e
XL
1603 ///
1604 /// [`write_vectored`]: Write::write_vectored
f9f354fc
XL
1605 #[unstable(feature = "can_vector", issue = "69941")]
1606 fn is_write_vectored(&self) -> bool {
1607 false
1608 }
1609
85aaf69f
SL
1610 /// Flush this output stream, ensuring that all intermediately buffered
1611 /// contents reach their destination.
1a4d82fc 1612 ///
85aaf69f 1613 /// # Errors
1a4d82fc 1614 ///
85aaf69f
SL
1615 /// It is considered an error if not all bytes could be written due to
1616 /// I/O errors or EOF being reached.
c1a9b12d
SL
1617 ///
1618 /// # Examples
1619 ///
0531ce1d 1620 /// ```no_run
c1a9b12d
SL
1621 /// use std::io::prelude::*;
1622 /// use std::io::BufWriter;
1623 /// use std::fs::File;
1624 ///
0531ce1d
XL
1625 /// fn main() -> std::io::Result<()> {
1626 /// let mut buffer = BufWriter::new(File::create("foo.txt")?);
c1a9b12d 1627 ///
532ac7d7 1628 /// buffer.write_all(b"some bytes")?;
0531ce1d
XL
1629 /// buffer.flush()?;
1630 /// Ok(())
1631 /// }
c1a9b12d 1632 /// ```
c34b1796 1633 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1634 fn flush(&mut self) -> Result<()>;
1a4d82fc 1635
0731742a 1636 /// Attempts to write an entire buffer into this writer.
1a4d82fc 1637 ///
2c00a5a8
XL
1638 /// This method will continuously call [`write`] until there is no more data
1639 /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
7cac9316
XL
1640 /// returned. This method will not return until the entire buffer has been
1641 /// successfully written or such an error occurs. The first error that is
2c00a5a8 1642 /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
7cac9316 1643 /// returned.
1a4d82fc 1644 ///
74b04a01
XL
1645 /// If the buffer contains no data, this will never call [`write`].
1646 ///
1a4d82fc
JJ
1647 /// # Errors
1648 ///
7cac9316 1649 /// This function will return the first error of
2c00a5a8
XL
1650 /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
1651 ///
3dfed10e 1652 /// [`write`]: Write::write
c1a9b12d
SL
1653 ///
1654 /// # Examples
1655 ///
0531ce1d 1656 /// ```no_run
c1a9b12d
SL
1657 /// use std::io::prelude::*;
1658 /// use std::fs::File;
1659 ///
0531ce1d
XL
1660 /// fn main() -> std::io::Result<()> {
1661 /// let mut buffer = File::create("foo.txt")?;
c1a9b12d 1662 ///
0531ce1d
XL
1663 /// buffer.write_all(b"some bytes")?;
1664 /// Ok(())
1665 /// }
c1a9b12d 1666 /// ```
c34b1796 1667 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1668 fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
9346a6ac 1669 while !buf.is_empty() {
85aaf69f 1670 match self.write(buf) {
60c5eb7d 1671 Ok(0) => {
5099ac24 1672 return Err(error::const_io_error!(
cdc7bbd5 1673 ErrorKind::WriteZero,
5099ac24 1674 "failed to write whole buffer",
cdc7bbd5 1675 ));
60c5eb7d 1676 }
85aaf69f 1677 Ok(n) => buf = &buf[n..],
781aab86 1678 Err(ref e) if e.is_interrupted() => {}
85aaf69f
SL
1679 Err(e) => return Err(e),
1680 }
1681 }
1682 Ok(())
1683 }
1a4d82fc 1684
ba9703b0
XL
1685 /// Attempts to write multiple buffers into this writer.
1686 ///
1687 /// This method will continuously call [`write_vectored`] until there is no
1688 /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
1689 /// kind is returned. This method will not return until all buffers have
1690 /// been successfully written or such an error occurs. The first error that
1691 /// is not of [`ErrorKind::Interrupted`] kind generated from this method
1692 /// will be returned.
1693 ///
1694 /// If the buffer contains no data, this will never call [`write_vectored`].
1695 ///
ba9703b0
XL
1696 /// # Notes
1697 ///
3dfed10e
XL
1698 /// Unlike [`write_vectored`], this takes a *mutable* reference to
1699 /// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
ba9703b0
XL
1700 /// modify the slice to keep track of the bytes already written.
1701 ///
1702 /// Once this function returns, the contents of `bufs` are unspecified, as
3dfed10e 1703 /// this depends on how many calls to [`write_vectored`] were necessary. It is
ba9703b0
XL
1704 /// best to understand this function as taking ownership of `bufs` and to
1705 /// not use `bufs` afterwards. The underlying buffers, to which the
3dfed10e 1706 /// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
ba9703b0
XL
1707 /// can be reused.
1708 ///
3dfed10e
XL
1709 /// [`write_vectored`]: Write::write_vectored
1710 ///
ba9703b0
XL
1711 /// # Examples
1712 ///
1713 /// ```
1714 /// #![feature(write_all_vectored)]
1715 /// # fn main() -> std::io::Result<()> {
1716 ///
1717 /// use std::io::{Write, IoSlice};
1718 ///
1719 /// let mut writer = Vec::new();
1720 /// let bufs = &mut [
1721 /// IoSlice::new(&[1]),
1722 /// IoSlice::new(&[2, 3]),
1723 /// IoSlice::new(&[4, 5, 6]),
1724 /// ];
1725 ///
1726 /// writer.write_all_vectored(bufs)?;
1727 /// // Note: the contents of `bufs` is now undefined, see the Notes section.
1728 ///
1729 /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
1730 /// # Ok(()) }
1731 /// ```
1732 #[unstable(feature = "write_all_vectored", issue = "70436")]
1733 fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
3dfed10e
XL
1734 // Guarantee that bufs is empty if it contains no data,
1735 // to avoid calling write_vectored if there is no data to be written.
136023e0 1736 IoSlice::advance_slices(&mut bufs, 0);
ba9703b0
XL
1737 while !bufs.is_empty() {
1738 match self.write_vectored(bufs) {
1739 Ok(0) => {
5099ac24 1740 return Err(error::const_io_error!(
cdc7bbd5 1741 ErrorKind::WriteZero,
5099ac24 1742 "failed to write whole buffer",
cdc7bbd5 1743 ));
ba9703b0 1744 }
136023e0 1745 Ok(n) => IoSlice::advance_slices(&mut bufs, n),
781aab86 1746 Err(ref e) if e.is_interrupted() => {}
ba9703b0
XL
1747 Err(e) => return Err(e),
1748 }
1749 }
1750 Ok(())
1751 }
1752
1a4d82fc
JJ
1753 /// Writes a formatted string into this writer, returning any error
1754 /// encountered.
1755 ///
c1a9b12d 1756 /// This method is primarily used to interface with the
c295e0f8 1757 /// [`format_args!()`] macro, and it is rare that this should
3dfed10e 1758 /// explicitly be called. The [`write!()`] macro should be favored to
c1a9b12d
SL
1759 /// invoke this method instead.
1760 ///
3dfed10e 1761 /// This function internally uses the [`write_all`] method on
c1a9b12d
SL
1762 /// this trait and hence will continuously write data so long as no errors
1763 /// are received. This also means that partial writes are not indicated in
1764 /// this signature.
1765 ///
3dfed10e 1766 /// [`write_all`]: Write::write_all
85aaf69f 1767 ///
1a4d82fc
JJ
1768 /// # Errors
1769 ///
1770 /// This function will return any I/O error reported while formatting.
c1a9b12d
SL
1771 ///
1772 /// # Examples
1773 ///
0531ce1d 1774 /// ```no_run
c1a9b12d
SL
1775 /// use std::io::prelude::*;
1776 /// use std::fs::File;
1777 ///
0531ce1d
XL
1778 /// fn main() -> std::io::Result<()> {
1779 /// let mut buffer = File::create("foo.txt")?;
c1a9b12d 1780 ///
0531ce1d
XL
1781 /// // this call
1782 /// write!(buffer, "{:.*}", 2, 1.234567)?;
1783 /// // turns into this:
1784 /// buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
1785 /// Ok(())
1786 /// }
c1a9b12d 1787 /// ```
c34b1796 1788 #[stable(feature = "rust1", since = "1.0.0")]
532ac7d7 1789 fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()> {
85aaf69f 1790 // Create a shim which translates a Write to a fmt::Write and saves
1a4d82fc 1791 // off I/O errors. instead of discarding them
94222f64 1792 struct Adapter<'a, T: ?Sized + 'a> {
1a4d82fc 1793 inner: &'a mut T,
85aaf69f 1794 error: Result<()>,
1a4d82fc
JJ
1795 }
1796
94222f64 1797 impl<T: Write + ?Sized> fmt::Write for Adapter<'_, T> {
1a4d82fc 1798 fn write_str(&mut self, s: &str) -> fmt::Result {
85aaf69f 1799 match self.inner.write_all(s.as_bytes()) {
1a4d82fc
JJ
1800 Ok(()) => Ok(()),
1801 Err(e) => {
1802 self.error = Err(e);
1803 Err(fmt::Error)
1804 }
1805 }
1806 }
1807 }
1808
94222f64 1809 let mut output = Adapter { inner: self, error: Ok(()) };
1a4d82fc
JJ
1810 match fmt::write(&mut output, fmt) {
1811 Ok(()) => Ok(()),
7453a54e
SL
1812 Err(..) => {
1813 // check if the error came from the underlying `Write` or not
1814 if output.error.is_err() {
1815 output.error
1816 } else {
5099ac24 1817 Err(error::const_io_error!(ErrorKind::Uncategorized, "formatter error"))
7453a54e
SL
1818 }
1819 }
1a4d82fc
JJ
1820 }
1821 }
1a4d82fc 1822
94222f64 1823 /// Creates a "by reference" adapter for this instance of `Write`.
1a4d82fc 1824 ///
94222f64 1825 /// The returned adapter also implements `Write` and will simply borrow this
85aaf69f 1826 /// current writer.
c1a9b12d
SL
1827 ///
1828 /// # Examples
1829 ///
0531ce1d 1830 /// ```no_run
c1a9b12d
SL
1831 /// use std::io::Write;
1832 /// use std::fs::File;
1833 ///
0531ce1d
XL
1834 /// fn main() -> std::io::Result<()> {
1835 /// let mut buffer = File::create("foo.txt")?;
c1a9b12d 1836 ///
0531ce1d 1837 /// let reference = buffer.by_ref();
c1a9b12d 1838 ///
0531ce1d
XL
1839 /// // we can use reference just like our original buffer
1840 /// reference.write_all(b"some bytes")?;
1841 /// Ok(())
1842 /// }
c1a9b12d 1843 /// ```
c34b1796 1844 #[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d
XL
1845 fn by_ref(&mut self) -> &mut Self
1846 where
1847 Self: Sized,
1848 {
1849 self
1850 }
1a4d82fc
JJ
1851}
1852
c1a9b12d
SL
1853/// The `Seek` trait provides a cursor which can be moved within a stream of
1854/// bytes.
1a4d82fc 1855///
85aaf69f
SL
1856/// The stream typically has a fixed size, allowing seeking relative to either
1857/// end or the current offset.
c1a9b12d
SL
1858///
1859/// # Examples
1860///
3dfed10e 1861/// [`File`]s implement `Seek`:
c1a9b12d 1862///
3dfed10e 1863/// [`File`]: crate::fs::File
c1a9b12d 1864///
0531ce1d 1865/// ```no_run
c1a9b12d
SL
1866/// use std::io;
1867/// use std::io::prelude::*;
1868/// use std::fs::File;
1869/// use std::io::SeekFrom;
1870///
0531ce1d
XL
1871/// fn main() -> io::Result<()> {
1872/// let mut f = File::open("foo.txt")?;
c1a9b12d 1873///
0531ce1d
XL
1874/// // move the cursor 42 bytes from the start of the file
1875/// f.seek(SeekFrom::Start(42))?;
1876/// Ok(())
1877/// }
c1a9b12d 1878/// ```
c34b1796 1879#[stable(feature = "rust1", since = "1.0.0")]
ed00b5ec 1880#[cfg_attr(not(test), rustc_diagnostic_item = "IoSeek")]
85aaf69f 1881pub trait Seek {
c1a9b12d 1882 /// Seek to an offset, in bytes, in a stream.
85aaf69f 1883 ///
0bf4aa26
XL
1884 /// A seek beyond the end of a stream is allowed, but behavior is defined
1885 /// by the implementation.
85aaf69f 1886 ///
c1a9b12d
SL
1887 /// If the seek operation completed successfully,
1888 /// this method returns the new position from the start of the stream.
5bcae85e 1889 /// That position can be used later with [`SeekFrom::Start`].
85aaf69f
SL
1890 ///
1891 /// # Errors
1892 ///
17df50a5
XL
1893 /// Seeking can fail, for example because it might involve flushing a buffer.
1894 ///
c1a9b12d 1895 /// Seeking to a negative offset is considered an error.
c34b1796 1896 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1897 fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
532ac7d7 1898
17df50a5
XL
1899 /// Rewind to the beginning of a stream.
1900 ///
1901 /// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
1902 ///
1903 /// # Errors
1904 ///
1905 /// Rewinding can fail, for example because it might involve flushing a buffer.
1906 ///
1907 /// # Example
1908 ///
1909 /// ```no_run
17df50a5
XL
1910 /// use std::io::{Read, Seek, Write};
1911 /// use std::fs::OpenOptions;
1912 ///
1913 /// let mut f = OpenOptions::new()
1914 /// .write(true)
1915 /// .read(true)
1916 /// .create(true)
1917 /// .open("foo.txt").unwrap();
1918 ///
1919 /// let hello = "Hello!\n";
5e7ed085 1920 /// write!(f, "{hello}").unwrap();
17df50a5
XL
1921 /// f.rewind().unwrap();
1922 ///
1923 /// let mut buf = String::new();
1924 /// f.read_to_string(&mut buf).unwrap();
1925 /// assert_eq!(&buf, hello);
1926 /// ```
136023e0 1927 #[stable(feature = "seek_rewind", since = "1.55.0")]
17df50a5
XL
1928 fn rewind(&mut self) -> Result<()> {
1929 self.seek(SeekFrom::Start(0))?;
1930 Ok(())
1931 }
1932
532ac7d7
XL
1933 /// Returns the length of this stream (in bytes).
1934 ///
1935 /// This method is implemented using up to three seek operations. If this
1936 /// method returns successfully, the seek position is unchanged (i.e. the
1937 /// position before calling this method is the same as afterwards).
1938 /// However, if this method returns an error, the seek position is
1939 /// unspecified.
1940 ///
1941 /// If you need to obtain the length of *many* streams and you don't care
1942 /// about the seek position afterwards, you can reduce the number of seek
1943 /// operations by simply calling `seek(SeekFrom::End(0))` and using its
1944 /// return value (it is also the stream length).
1945 ///
1946 /// Note that length of a stream can change over time (for example, when
1947 /// data is appended to a file). So calling this method multiple times does
1948 /// not necessarily return the same length each time.
1949 ///
532ac7d7
XL
1950 /// # Example
1951 ///
1952 /// ```no_run
5869c6ff 1953 /// #![feature(seek_stream_len)]
532ac7d7
XL
1954 /// use std::{
1955 /// io::{self, Seek},
1956 /// fs::File,
1957 /// };
1958 ///
1959 /// fn main() -> io::Result<()> {
1960 /// let mut f = File::open("foo.txt")?;
1961 ///
1962 /// let len = f.stream_len()?;
5e7ed085 1963 /// println!("The file is currently {len} bytes long");
532ac7d7
XL
1964 /// Ok(())
1965 /// }
1966 /// ```
5869c6ff 1967 #[unstable(feature = "seek_stream_len", issue = "59359")]
532ac7d7
XL
1968 fn stream_len(&mut self) -> Result<u64> {
1969 let old_pos = self.stream_position()?;
1970 let len = self.seek(SeekFrom::End(0))?;
1971
1972 // Avoid seeking a third time when we were already at the end of the
1973 // stream. The branch is usually way cheaper than a seek operation.
1974 if old_pos != len {
1975 self.seek(SeekFrom::Start(old_pos))?;
1976 }
1977
1978 Ok(len)
1979 }
1980
1981 /// Returns the current seek position from the start of the stream.
1982 ///
1983 /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
1984 ///
532ac7d7
XL
1985 /// # Example
1986 ///
1987 /// ```no_run
532ac7d7
XL
1988 /// use std::{
1989 /// io::{self, BufRead, BufReader, Seek},
1990 /// fs::File,
1991 /// };
1992 ///
1993 /// fn main() -> io::Result<()> {
1994 /// let mut f = BufReader::new(File::open("foo.txt")?);
1995 ///
1996 /// let before = f.stream_position()?;
1997 /// f.read_line(&mut String::new())?;
1998 /// let after = f.stream_position()?;
1999 ///
2000 /// println!("The first line was {} bytes long", after - before);
2001 /// Ok(())
2002 /// }
2003 /// ```
5869c6ff 2004 #[stable(feature = "seek_convenience", since = "1.51.0")]
532ac7d7
XL
2005 fn stream_position(&mut self) -> Result<u64> {
2006 self.seek(SeekFrom::Current(0))
2007 }
4b012472
FG
2008
2009 /// Seeks relative to the current position.
2010 ///
2011 /// This is equivalent to `self.seek(SeekFrom::Current(offset))` but
2012 /// doesn't return the new position which can allow some implementations
2013 /// such as [`BufReader`] to perform more efficient seeks.
2014 ///
2015 /// # Example
2016 ///
2017 /// ```no_run
2018 /// #![feature(seek_seek_relative)]
2019 /// use std::{
2020 /// io::{self, Seek},
2021 /// fs::File,
2022 /// };
2023 ///
2024 /// fn main() -> io::Result<()> {
2025 /// let mut f = File::open("foo.txt")?;
2026 /// f.seek_relative(10)?;
2027 /// assert_eq!(f.stream_position()?, 10);
2028 /// Ok(())
2029 /// }
2030 /// ```
2031 ///
2032 /// [`BufReader`]: crate::io::BufReader
2033 #[unstable(feature = "seek_seek_relative", issue = "117374")]
2034 fn seek_relative(&mut self, offset: i64) -> Result<()> {
2035 self.seek(SeekFrom::Current(offset))?;
2036 Ok(())
2037 }
1a4d82fc
JJ
2038}
2039
85aaf69f 2040/// Enumeration of possible methods to seek within an I/O object.
5bcae85e
SL
2041///
2042/// It is used by the [`Seek`] trait.
85aaf69f 2043#[derive(Copy, PartialEq, Eq, Clone, Debug)]
c34b1796 2044#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 2045pub enum SeekFrom {
9fa01778 2046 /// Sets the offset to the provided number of bytes.
c34b1796 2047 #[stable(feature = "rust1", since = "1.0.0")]
7453a54e 2048 Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
1a4d82fc 2049
9fa01778 2050 /// Sets the offset to the size of this object plus the specified number of
85aaf69f
SL
2051 /// bytes.
2052 ///
9cc50fc6 2053 /// It is possible to seek beyond the end of an object, but it's an error to
85aaf69f 2054 /// seek before byte 0.
c34b1796 2055 #[stable(feature = "rust1", since = "1.0.0")]
7453a54e 2056 End(#[stable(feature = "rust1", since = "1.0.0")] i64),
1a4d82fc 2057
9fa01778 2058 /// Sets the offset to the current position plus the specified number of
85aaf69f
SL
2059 /// bytes.
2060 ///
9cc50fc6 2061 /// It is possible to seek beyond the end of an object, but it's an error to
85aaf69f 2062 /// seek before byte 0.
c34b1796 2063 #[stable(feature = "rust1", since = "1.0.0")]
7453a54e 2064 Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
1a4d82fc
JJ
2065}
2066
60c5eb7d 2067fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
c34b1796 2068 let mut read = 0;
85aaf69f
SL
2069 loop {
2070 let (done, used) = {
2071 let available = match r.fill_buf() {
2072 Ok(n) => n,
781aab86 2073 Err(ref e) if e.is_interrupted() => continue,
60c5eb7d 2074 Err(e) => return Err(e),
85aaf69f 2075 };
9cc50fc6 2076 match memchr::memchr(delim, available) {
85aaf69f 2077 Some(i) => {
0731742a 2078 buf.extend_from_slice(&available[..=i]);
85aaf69f
SL
2079 (true, i + 1)
2080 }
2081 None => {
92a42be0 2082 buf.extend_from_slice(available);
85aaf69f
SL
2083 (false, available.len())
2084 }
2085 }
2086 };
2087 r.consume(used);
c34b1796 2088 read += used;
85aaf69f 2089 if done || used == 0 {
c34b1796 2090 return Ok(read);
1a4d82fc
JJ
2091 }
2092 }
2093}
2094
4b012472
FG
2095fn skip_until<R: BufRead + ?Sized>(r: &mut R, delim: u8) -> Result<usize> {
2096 let mut read = 0;
2097 loop {
2098 let (done, used) = {
2099 let available = match r.fill_buf() {
2100 Ok(n) => n,
2101 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
2102 Err(e) => return Err(e),
2103 };
2104 match memchr::memchr(delim, available) {
2105 Some(i) => (true, i + 1),
2106 None => (false, available.len()),
2107 }
2108 };
2109 r.consume(used);
2110 read += used;
2111 if done || used == 0 {
2112 return Ok(read);
2113 }
2114 }
2115}
2116
c1a9b12d
SL
2117/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
2118/// to perform extra ways of reading.
2119///
2120/// For example, reading line-by-line is inefficient without using a buffer, so
2121/// if you want to read by line, you'll need `BufRead`, which includes a
cc61c64b 2122/// [`read_line`] method as well as a [`lines`] iterator.
c1a9b12d
SL
2123///
2124/// # Examples
2125///
2126/// A locked standard input implements `BufRead`:
2127///
0531ce1d 2128/// ```no_run
c1a9b12d
SL
2129/// use std::io;
2130/// use std::io::prelude::*;
2131///
2132/// let stdin = io::stdin();
2133/// for line in stdin.lock().lines() {
2134/// println!("{}", line.unwrap());
2135/// }
2136/// ```
2137///
c30ab7b3
SL
2138/// If you have something that implements [`Read`], you can use the [`BufReader`
2139/// type][`BufReader`] to turn it into a `BufRead`.
c1a9b12d 2140///
c30ab7b3
SL
2141/// For example, [`File`] implements [`Read`], but not `BufRead`.
2142/// [`BufReader`] to the rescue!
85aaf69f 2143///
3dfed10e
XL
2144/// [`File`]: crate::fs::File
2145/// [`read_line`]: BufRead::read_line
2146/// [`lines`]: BufRead::lines
c1a9b12d 2147///
0531ce1d 2148/// ```no_run
c1a9b12d
SL
2149/// use std::io::{self, BufReader};
2150/// use std::io::prelude::*;
2151/// use std::fs::File;
2152///
0531ce1d
XL
2153/// fn main() -> io::Result<()> {
2154/// let f = File::open("foo.txt")?;
2155/// let f = BufReader::new(f);
c1a9b12d 2156///
0531ce1d
XL
2157/// for line in f.lines() {
2158/// println!("{}", line.unwrap());
2159/// }
c1a9b12d 2160///
0531ce1d
XL
2161/// Ok(())
2162/// }
c1a9b12d 2163/// ```
c34b1796 2164#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 2165pub trait BufRead: Read {
b7449926
XL
2166 /// Returns the contents of the internal buffer, filling it with more data
2167 /// from the inner reader if it is empty.
85aaf69f 2168 ///
c1a9b12d 2169 /// This function is a lower-level call. It needs to be paired with the
cc61c64b 2170 /// [`consume`] method to function properly. When calling this
c1a9b12d 2171 /// method, none of the contents will be "read" in the sense that later
cc61c64b 2172 /// calling `read` may return the same contents. As such, [`consume`] must
c30ab7b3 2173 /// be called with the number of bytes that are consumed from this buffer to
c1a9b12d 2174 /// ensure that the bytes are never returned twice.
1a4d82fc 2175 ///
3dfed10e 2176 /// [`consume`]: BufRead::consume
1a4d82fc 2177 ///
85aaf69f
SL
2178 /// An empty buffer returned indicates that the stream has reached EOF.
2179 ///
2180 /// # Errors
1a4d82fc
JJ
2181 ///
2182 /// This function will return an I/O error if the underlying reader was
85aaf69f 2183 /// read, but returned an error.
c1a9b12d
SL
2184 ///
2185 /// # Examples
2186 ///
2187 /// A locked standard input implements `BufRead`:
2188 ///
0531ce1d 2189 /// ```no_run
c1a9b12d
SL
2190 /// use std::io;
2191 /// use std::io::prelude::*;
2192 ///
2193 /// let stdin = io::stdin();
2194 /// let mut stdin = stdin.lock();
2195 ///
48663c56 2196 /// let buffer = stdin.fill_buf().unwrap();
c1a9b12d 2197 ///
48663c56 2198 /// // work with buffer
5e7ed085 2199 /// println!("{buffer:?}");
c1a9b12d
SL
2200 ///
2201 /// // ensure the bytes we worked with aren't returned again later
48663c56 2202 /// let length = buffer.len();
c1a9b12d
SL
2203 /// stdin.consume(length);
2204 /// ```
c34b1796 2205 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 2206 fn fill_buf(&mut self) -> Result<&[u8]>;
1a4d82fc
JJ
2207
2208 /// Tells this buffer that `amt` bytes have been consumed from the buffer,
2209 /// so they should no longer be returned in calls to `read`.
c34b1796 2210 ///
c1a9b12d 2211 /// This function is a lower-level call. It needs to be paired with the
cc61c64b 2212 /// [`fill_buf`] method to function properly. This function does
c1a9b12d 2213 /// not perform any I/O, it simply informs this object that some amount of
cc61c64b 2214 /// its buffer, returned from [`fill_buf`], has been consumed and should
c30ab7b3 2215 /// no longer be returned. As such, this function may do odd things if
cc61c64b 2216 /// [`fill_buf`] isn't called before calling it.
c1a9b12d
SL
2217 ///
2218 /// The `amt` must be `<=` the number of bytes in the buffer returned by
cc61c64b 2219 /// [`fill_buf`].
c34b1796 2220 ///
c1a9b12d 2221 /// # Examples
c34b1796 2222 ///
cc61c64b 2223 /// Since `consume()` is meant to be used with [`fill_buf`],
c1a9b12d 2224 /// that method's example includes an example of `consume()`.
c30ab7b3 2225 ///
3dfed10e 2226 /// [`fill_buf`]: BufRead::fill_buf
c34b1796 2227 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 2228 fn consume(&mut self, amt: usize);
1a4d82fc 2229
136023e0
XL
2230 /// Check if the underlying `Read` has any data left to be read.
2231 ///
2232 /// This function may fill the buffer to check for data,
2233 /// so this functions returns `Result<bool>`, not `bool`.
2234 ///
2235 /// Default implementation calls `fill_buf` and checks that
2236 /// returned slice is empty (which means that there is no data left,
2237 /// since EOF is reached).
2238 ///
2239 /// Examples
2240 ///
2241 /// ```
2242 /// #![feature(buf_read_has_data_left)]
2243 /// use std::io;
2244 /// use std::io::prelude::*;
2245 ///
2246 /// let stdin = io::stdin();
2247 /// let mut stdin = stdin.lock();
2248 ///
2249 /// while stdin.has_data_left().unwrap() {
2250 /// let mut line = String::new();
2251 /// stdin.read_line(&mut line).unwrap();
2252 /// // work with line
5e7ed085 2253 /// println!("{line:?}");
136023e0
XL
2254 /// }
2255 /// ```
2256 #[unstable(feature = "buf_read_has_data_left", reason = "recently added", issue = "86423")]
2257 fn has_data_left(&mut self) -> Result<bool> {
2258 self.fill_buf().map(|b| !b.is_empty())
2259 }
2260
c30ab7b3 2261 /// Read all bytes into `buf` until the delimiter `byte` or EOF is reached.
1a4d82fc 2262 ///
c1a9b12d
SL
2263 /// This function will read bytes from the underlying stream until the
2264 /// delimiter or EOF is found. Once found, all bytes up to, and including,
2265 /// the delimiter (if found) will be appended to `buf`.
1a4d82fc 2266 ///
c30ab7b3 2267 /// If successful, this function will return the total number of bytes read.
1a4d82fc 2268 ///
f035d41b
XL
2269 /// This function is blocking and should be used carefully: it is possible for
2270 /// an attacker to continuously send bytes without ever sending the delimiter
2271 /// or EOF.
2272 ///
85aaf69f 2273 /// # Errors
1a4d82fc 2274 ///
c30ab7b3 2275 /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
cc61c64b 2276 /// will otherwise return any errors returned by [`fill_buf`].
1a4d82fc 2277 ///
85aaf69f
SL
2278 /// If an I/O error is encountered then all bytes read so far will be
2279 /// present in `buf` and its length will have been adjusted appropriately.
c1a9b12d 2280 ///
3dfed10e 2281 /// [`fill_buf`]: BufRead::fill_buf
c30ab7b3 2282 ///
cc61c64b 2283 /// # Examples
c1a9b12d 2284 ///
cc61c64b
XL
2285 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2286 /// this example, we use [`Cursor`] to read all the bytes in a byte slice
2287 /// in hyphen delimited segments:
c1a9b12d 2288 ///
cc61c64b
XL
2289 /// ```
2290 /// use std::io::{self, BufRead};
2291 ///
2292 /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
2293 /// let mut buf = vec![];
2294 ///
2295 /// // cursor is at 'l'
2296 /// let num_bytes = cursor.read_until(b'-', &mut buf)
2297 /// .expect("reading from cursor won't fail");
2298 /// assert_eq!(num_bytes, 6);
2299 /// assert_eq!(buf, b"lorem-");
2300 /// buf.clear();
2301 ///
2302 /// // cursor is at 'i'
2303 /// let num_bytes = cursor.read_until(b'-', &mut buf)
2304 /// .expect("reading from cursor won't fail");
2305 /// assert_eq!(num_bytes, 5);
2306 /// assert_eq!(buf, b"ipsum");
2307 /// buf.clear();
2308 ///
2309 /// // cursor is at EOF
2310 /// let num_bytes = cursor.read_until(b'-', &mut buf)
2311 /// .expect("reading from cursor won't fail");
2312 /// assert_eq!(num_bytes, 0);
2313 /// assert_eq!(buf, b"");
c1a9b12d 2314 /// ```
c34b1796
AL
2315 #[stable(feature = "rust1", since = "1.0.0")]
2316 fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
85aaf69f 2317 read_until(self, byte, buf)
1a4d82fc
JJ
2318 }
2319
4b012472
FG
2320 /// Skip all bytes until the delimiter `byte` or EOF is reached.
2321 ///
2322 /// This function will read (and discard) bytes from the underlying stream until the
2323 /// delimiter or EOF is found.
2324 ///
2325 /// If successful, this function will return the total number of bytes read,
2326 /// including the delimiter byte.
2327 ///
2328 /// This is useful for efficiently skipping data such as NUL-terminated strings
2329 /// in binary file formats without buffering.
2330 ///
2331 /// This function is blocking and should be used carefully: it is possible for
2332 /// an attacker to continuously send bytes without ever sending the delimiter
2333 /// or EOF.
2334 ///
2335 /// # Errors
2336 ///
2337 /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2338 /// will otherwise return any errors returned by [`fill_buf`].
2339 ///
2340 /// If an I/O error is encountered then all bytes read so far will be
2341 /// present in `buf` and its length will have been adjusted appropriately.
2342 ///
2343 /// [`fill_buf`]: BufRead::fill_buf
2344 ///
2345 /// # Examples
2346 ///
2347 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2348 /// this example, we use [`Cursor`] to read some NUL-terminated information
2349 /// about Ferris from a binary string, skipping the fun fact:
2350 ///
2351 /// ```
2352 /// #![feature(bufread_skip_until)]
2353 ///
2354 /// use std::io::{self, BufRead};
2355 ///
2356 /// let mut cursor = io::Cursor::new(b"Ferris\0Likes long walks on the beach\0Crustacean\0");
2357 ///
2358 /// // read name
2359 /// let mut name = Vec::new();
2360 /// let num_bytes = cursor.read_until(b'\0', &mut name)
2361 /// .expect("reading from cursor won't fail");
2362 /// assert_eq!(num_bytes, 7);
2363 /// assert_eq!(name, b"Ferris\0");
2364 ///
2365 /// // skip fun fact
2366 /// let num_bytes = cursor.skip_until(b'\0')
2367 /// .expect("reading from cursor won't fail");
2368 /// assert_eq!(num_bytes, 30);
2369 ///
2370 /// // read animal type
2371 /// let mut animal = Vec::new();
2372 /// let num_bytes = cursor.read_until(b'\0', &mut animal)
2373 /// .expect("reading from cursor won't fail");
2374 /// assert_eq!(num_bytes, 11);
2375 /// assert_eq!(animal, b"Crustacean\0");
2376 /// ```
2377 #[unstable(feature = "bufread_skip_until", issue = "111735")]
2378 fn skip_until(&mut self, byte: u8) -> Result<usize> {
2379 skip_until(self, byte)
2380 }
2381
3dfed10e 2382 /// Read all bytes until a newline (the `0xA` byte) is reached, and append
9c376795
FG
2383 /// them to the provided `String` buffer.
2384 ///
2385 /// Previous content of the buffer will be preserved. To avoid appending to
2386 /// the buffer, you need to [`clear`] it first.
1a4d82fc 2387 ///
c1a9b12d 2388 /// This function will read bytes from the underlying stream until the
3dfed10e 2389 /// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
c1a9b12d
SL
2390 /// up to, and including, the delimiter (if found) will be appended to
2391 /// `buf`.
1a4d82fc 2392 ///
c30ab7b3 2393 /// If successful, this function will return the total number of bytes read.
85aaf69f 2394 ///
3dfed10e 2395 /// If this function returns [`Ok(0)`], the stream has reached EOF.
abe05a73 2396 ///
f035d41b
XL
2397 /// This function is blocking and should be used carefully: it is possible for
2398 /// an attacker to continuously send bytes without ever sending a newline
9c376795 2399 /// or EOF. You can use [`take`] to limit the maximum number of bytes read.
f035d41b 2400 ///
3dfed10e 2401 /// [`Ok(0)`]: Ok
9c376795
FG
2402 /// [`clear`]: String::clear
2403 /// [`take`]: crate::io::Read::take
3dfed10e 2404 ///
85aaf69f
SL
2405 /// # Errors
2406 ///
cc61c64b 2407 /// This function has the same error semantics as [`read_until`] and will
c30ab7b3
SL
2408 /// also return an error if the read bytes are not valid UTF-8. If an I/O
2409 /// error is encountered then `buf` may contain some bytes already read in
2410 /// the event that all data read so far was valid UTF-8.
c1a9b12d 2411 ///
3dfed10e 2412 /// [`read_until`]: BufRead::read_until
0531ce1d 2413 ///
c1a9b12d
SL
2414 /// # Examples
2415 ///
cc61c64b
XL
2416 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2417 /// this example, we use [`Cursor`] to read all the lines in a byte slice:
c1a9b12d 2418 ///
c1a9b12d 2419 /// ```
cc61c64b
XL
2420 /// use std::io::{self, BufRead};
2421 ///
2422 /// let mut cursor = io::Cursor::new(b"foo\nbar");
2423 /// let mut buf = String::new();
2424 ///
2425 /// // cursor is at 'f'
2426 /// let num_bytes = cursor.read_line(&mut buf)
2427 /// .expect("reading from cursor won't fail");
2428 /// assert_eq!(num_bytes, 4);
2429 /// assert_eq!(buf, "foo\n");
2430 /// buf.clear();
2431 ///
2432 /// // cursor is at 'b'
2433 /// let num_bytes = cursor.read_line(&mut buf)
2434 /// .expect("reading from cursor won't fail");
2435 /// assert_eq!(num_bytes, 3);
2436 /// assert_eq!(buf, "bar");
2437 /// buf.clear();
2438 ///
2439 /// // cursor is at EOF
2440 /// let num_bytes = cursor.read_line(&mut buf)
2441 /// .expect("reading from cursor won't fail");
2442 /// assert_eq!(num_bytes, 0);
2443 /// assert_eq!(buf, "");
c1a9b12d 2444 /// ```
c34b1796
AL
2445 #[stable(feature = "rust1", since = "1.0.0")]
2446 fn read_line(&mut self, buf: &mut String) -> Result<usize> {
85aaf69f
SL
2447 // Note that we are not calling the `.read_until` method here, but
2448 // rather our hardcoded implementation. For more details as to why, see
2449 // the comments in `read_to_end`.
c295e0f8 2450 unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
1a4d82fc 2451 }
1a4d82fc 2452
85aaf69f
SL
2453 /// Returns an iterator over the contents of this reader split on the byte
2454 /// `byte`.
1a4d82fc 2455 ///
85aaf69f 2456 /// The iterator returned from this function will return instances of
c295e0f8 2457 /// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
c30ab7b3 2458 /// the delimiter byte at the end.
1a4d82fc 2459 ///
cc61c64b 2460 /// This function will yield errors whenever [`read_until`] would have
c30ab7b3 2461 /// also yielded an error.
c1a9b12d 2462 ///
c295e0f8 2463 /// [io::Result]: self::Result "io::Result"
3dfed10e 2464 /// [`read_until`]: BufRead::read_until
cc61c64b 2465 ///
c1a9b12d
SL
2466 /// # Examples
2467 ///
cc61c64b
XL
2468 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2469 /// this example, we use [`Cursor`] to iterate over all hyphen delimited
2470 /// segments in a byte slice
c1a9b12d
SL
2471 ///
2472 /// ```
cc61c64b 2473 /// use std::io::{self, BufRead};
c1a9b12d 2474 ///
cc61c64b 2475 /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
c1a9b12d 2476 ///
cc61c64b
XL
2477 /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
2478 /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
2479 /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
2480 /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
2481 /// assert_eq!(split_iter.next(), None);
c1a9b12d 2482 /// ```
c34b1796 2483 #[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d
XL
2484 fn split(self, byte: u8) -> Split<Self>
2485 where
2486 Self: Sized,
2487 {
85aaf69f
SL
2488 Split { buf: self, delim: byte }
2489 }
1a4d82fc 2490
85aaf69f 2491 /// Returns an iterator over the lines of this reader.
1a4d82fc 2492 ///
85aaf69f 2493 /// The iterator returned from this function will yield instances of
c295e0f8 2494 /// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
3dfed10e 2495 /// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
c1a9b12d 2496 ///
c295e0f8 2497 /// [io::Result]: self::Result "io::Result"
c30ab7b3 2498 ///
c1a9b12d
SL
2499 /// # Examples
2500 ///
cc61c64b
XL
2501 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2502 /// this example, we use [`Cursor`] to iterate over all the lines in a byte
2503 /// slice.
2504 ///
c1a9b12d 2505 /// ```
cc61c64b 2506 /// use std::io::{self, BufRead};
c1a9b12d 2507 ///
cc61c64b 2508 /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
c1a9b12d 2509 ///
cc61c64b
XL
2510 /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
2511 /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
2512 /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
2513 /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
2514 /// assert_eq!(lines_iter.next(), None);
c1a9b12d 2515 /// ```
32a655c1
SL
2516 ///
2517 /// # Errors
2518 ///
cc61c64b 2519 /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
c34b1796 2520 #[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d
XL
2521 fn lines(self) -> Lines<Self>
2522 where
2523 Self: Sized,
2524 {
85aaf69f
SL
2525 Lines { buf: self }
2526 }
2527}
2528
94222f64 2529/// Adapter to chain together two readers.
c1a9b12d 2530///
cc61c64b
XL
2531/// This struct is generally created by calling [`chain`] on a reader.
2532/// Please see the documentation of [`chain`] for more details.
85aaf69f 2533///
3dfed10e 2534/// [`chain`]: Read::chain
c34b1796 2535#[stable(feature = "rust1", since = "1.0.0")]
cdc7bbd5 2536#[derive(Debug)]
85aaf69f
SL
2537pub struct Chain<T, U> {
2538 first: T,
2539 second: U,
2540 done_first: bool,
1a4d82fc
JJ
2541}
2542
7cac9316
XL
2543impl<T, U> Chain<T, U> {
2544 /// Consumes the `Chain`, returning the wrapped readers.
2545 ///
2546 /// # Examples
2547 ///
0531ce1d
XL
2548 /// ```no_run
2549 /// use std::io;
7cac9316
XL
2550 /// use std::io::prelude::*;
2551 /// use std::fs::File;
2552 ///
0531ce1d
XL
2553 /// fn main() -> io::Result<()> {
2554 /// let mut foo_file = File::open("foo.txt")?;
2555 /// let mut bar_file = File::open("bar.txt")?;
7cac9316 2556 ///
0531ce1d
XL
2557 /// let chain = foo_file.chain(bar_file);
2558 /// let (foo_file, bar_file) = chain.into_inner();
2559 /// Ok(())
2560 /// }
7cac9316 2561 /// ```
041b39d2 2562 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
7cac9316
XL
2563 pub fn into_inner(self) -> (T, U) {
2564 (self.first, self.second)
2565 }
2566
2567 /// Gets references to the underlying readers in this `Chain`.
2568 ///
2569 /// # Examples
2570 ///
0531ce1d
XL
2571 /// ```no_run
2572 /// use std::io;
7cac9316
XL
2573 /// use std::io::prelude::*;
2574 /// use std::fs::File;
2575 ///
0531ce1d
XL
2576 /// fn main() -> io::Result<()> {
2577 /// let mut foo_file = File::open("foo.txt")?;
2578 /// let mut bar_file = File::open("bar.txt")?;
7cac9316 2579 ///
0531ce1d
XL
2580 /// let chain = foo_file.chain(bar_file);
2581 /// let (foo_file, bar_file) = chain.get_ref();
2582 /// Ok(())
2583 /// }
7cac9316 2584 /// ```
041b39d2 2585 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
7cac9316
XL
2586 pub fn get_ref(&self) -> (&T, &U) {
2587 (&self.first, &self.second)
2588 }
2589
2590 /// Gets mutable references to the underlying readers in this `Chain`.
2591 ///
2592 /// Care should be taken to avoid modifying the internal I/O state of the
2593 /// underlying readers as doing so may corrupt the internal state of this
2594 /// `Chain`.
2595 ///
2596 /// # Examples
2597 ///
0531ce1d
XL
2598 /// ```no_run
2599 /// use std::io;
7cac9316
XL
2600 /// use std::io::prelude::*;
2601 /// use std::fs::File;
2602 ///
0531ce1d
XL
2603 /// fn main() -> io::Result<()> {
2604 /// let mut foo_file = File::open("foo.txt")?;
2605 /// let mut bar_file = File::open("bar.txt")?;
7cac9316 2606 ///
0531ce1d
XL
2607 /// let mut chain = foo_file.chain(bar_file);
2608 /// let (foo_file, bar_file) = chain.get_mut();
2609 /// Ok(())
2610 /// }
7cac9316 2611 /// ```
041b39d2 2612 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
7cac9316
XL
2613 pub fn get_mut(&mut self) -> (&mut T, &mut U) {
2614 (&mut self.first, &mut self.second)
2615 }
2616}
2617
c34b1796 2618#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
2619impl<T: Read, U: Read> Read for Chain<T, U> {
2620 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2621 if !self.done_first {
54a0048b 2622 match self.first.read(buf)? {
416331ca 2623 0 if !buf.is_empty() => self.done_first = true,
85aaf69f
SL
2624 n => return Ok(n),
2625 }
2626 }
2627 self.second.read(buf)
2628 }
041b39d2 2629
48663c56 2630 fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
9fa01778
XL
2631 if !self.done_first {
2632 match self.first.read_vectored(bufs)? {
2633 0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
2634 n => return Ok(n),
2635 }
2636 }
2637 self.second.read_vectored(bufs)
2638 }
1a4d82fc
JJ
2639}
2640
54a0048b
SL
2641#[stable(feature = "chain_bufread", since = "1.9.0")]
2642impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
2643 fn fill_buf(&mut self) -> Result<&[u8]> {
2644 if !self.done_first {
2645 match self.first.fill_buf()? {
60c5eb7d
XL
2646 buf if buf.is_empty() => {
2647 self.done_first = true;
2648 }
54a0048b
SL
2649 buf => return Ok(buf),
2650 }
2651 }
2652 self.second.fill_buf()
2653 }
2654
2655 fn consume(&mut self, amt: usize) {
60c5eb7d 2656 if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
54a0048b
SL
2657 }
2658}
2659
6a06907d 2660impl<T, U> SizeHint for Chain<T, U> {
136023e0 2661 #[inline]
6a06907d
XL
2662 fn lower_bound(&self) -> usize {
2663 SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
2664 }
2665
136023e0 2666 #[inline]
6a06907d
XL
2667 fn upper_bound(&self) -> Option<usize> {
2668 match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
136023e0 2669 (Some(first), Some(second)) => first.checked_add(second),
6a06907d
XL
2670 _ => None,
2671 }
2672 }
2673}
2674
94222f64 2675/// Reader adapter which limits the bytes read from an underlying reader.
1a4d82fc 2676///
cc61c64b
XL
2677/// This struct is generally created by calling [`take`] on a reader.
2678/// Please see the documentation of [`take`] for more details.
c1a9b12d 2679///
3dfed10e 2680/// [`take`]: Read::take
c34b1796 2681#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 2682#[derive(Debug)]
85aaf69f
SL
2683pub struct Take<T> {
2684 inner: T,
2685 limit: u64,
1a4d82fc
JJ
2686}
2687
85aaf69f
SL
2688impl<T> Take<T> {
2689 /// Returns the number of bytes that can be read before this instance will
2690 /// return EOF.
1a4d82fc 2691 ///
85aaf69f 2692 /// # Note
1a4d82fc 2693 ///
476ff2be
SL
2694 /// This instance may reach `EOF` after reading fewer bytes than indicated by
2695 /// this method if the underlying [`Read`] instance reaches EOF.
2696 ///
5bcae85e
SL
2697 /// # Examples
2698 ///
0531ce1d 2699 /// ```no_run
5bcae85e
SL
2700 /// use std::io;
2701 /// use std::io::prelude::*;
2702 /// use std::fs::File;
2703 ///
0531ce1d
XL
2704 /// fn main() -> io::Result<()> {
2705 /// let f = File::open("foo.txt")?;
5bcae85e 2706 ///
0531ce1d
XL
2707 /// // read at most five bytes
2708 /// let handle = f.take(5);
5bcae85e 2709 ///
0531ce1d
XL
2710 /// println!("limit: {}", handle.limit());
2711 /// Ok(())
2712 /// }
5bcae85e 2713 /// ```
c34b1796 2714 #[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d
XL
2715 pub fn limit(&self) -> u64 {
2716 self.limit
2717 }
9e0c209e 2718
041b39d2
XL
2719 /// Sets the number of bytes that can be read before this instance will
2720 /// return EOF. This is the same as constructing a new `Take` instance, so
2721 /// the amount of bytes read and the previous limit value don't matter when
2722 /// calling this method.
2723 ///
2724 /// # Examples
2725 ///
0531ce1d 2726 /// ```no_run
041b39d2
XL
2727 /// use std::io;
2728 /// use std::io::prelude::*;
2729 /// use std::fs::File;
2730 ///
0531ce1d
XL
2731 /// fn main() -> io::Result<()> {
2732 /// let f = File::open("foo.txt")?;
041b39d2 2733 ///
0531ce1d
XL
2734 /// // read at most five bytes
2735 /// let mut handle = f.take(5);
2736 /// handle.set_limit(10);
041b39d2 2737 ///
0531ce1d
XL
2738 /// assert_eq!(handle.limit(), 10);
2739 /// Ok(())
2740 /// }
041b39d2 2741 /// ```
83c7162d 2742 #[stable(feature = "take_set_limit", since = "1.27.0")]
041b39d2
XL
2743 pub fn set_limit(&mut self, limit: u64) {
2744 self.limit = limit;
2745 }
2746
9e0c209e
SL
2747 /// Consumes the `Take`, returning the wrapped reader.
2748 ///
2749 /// # Examples
2750 ///
0531ce1d 2751 /// ```no_run
9e0c209e
SL
2752 /// use std::io;
2753 /// use std::io::prelude::*;
2754 /// use std::fs::File;
2755 ///
0531ce1d
XL
2756 /// fn main() -> io::Result<()> {
2757 /// let mut file = File::open("foo.txt")?;
9e0c209e 2758 ///
0531ce1d
XL
2759 /// let mut buffer = [0; 5];
2760 /// let mut handle = file.take(5);
2761 /// handle.read(&mut buffer)?;
9e0c209e 2762 ///
0531ce1d
XL
2763 /// let file = handle.into_inner();
2764 /// Ok(())
2765 /// }
9e0c209e 2766 /// ```
476ff2be 2767 #[stable(feature = "io_take_into_inner", since = "1.15.0")]
9e0c209e
SL
2768 pub fn into_inner(self) -> T {
2769 self.inner
2770 }
7cac9316
XL
2771
2772 /// Gets a reference to the underlying reader.
2773 ///
2774 /// # Examples
2775 ///
0531ce1d 2776 /// ```no_run
7cac9316
XL
2777 /// use std::io;
2778 /// use std::io::prelude::*;
2779 /// use std::fs::File;
2780 ///
0531ce1d
XL
2781 /// fn main() -> io::Result<()> {
2782 /// let mut file = File::open("foo.txt")?;
7cac9316 2783 ///
0531ce1d
XL
2784 /// let mut buffer = [0; 5];
2785 /// let mut handle = file.take(5);
2786 /// handle.read(&mut buffer)?;
7cac9316 2787 ///
0531ce1d
XL
2788 /// let file = handle.get_ref();
2789 /// Ok(())
2790 /// }
7cac9316 2791 /// ```
041b39d2 2792 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
7cac9316
XL
2793 pub fn get_ref(&self) -> &T {
2794 &self.inner
2795 }
2796
2797 /// Gets a mutable reference to the underlying reader.
2798 ///
2799 /// Care should be taken to avoid modifying the internal I/O state of the
2800 /// underlying reader as doing so may corrupt the internal limit of this
2801 /// `Take`.
2802 ///
2803 /// # Examples
2804 ///
0531ce1d 2805 /// ```no_run
7cac9316
XL
2806 /// use std::io;
2807 /// use std::io::prelude::*;
2808 /// use std::fs::File;
2809 ///
0531ce1d
XL
2810 /// fn main() -> io::Result<()> {
2811 /// let mut file = File::open("foo.txt")?;
7cac9316 2812 ///
0531ce1d
XL
2813 /// let mut buffer = [0; 5];
2814 /// let mut handle = file.take(5);
2815 /// handle.read(&mut buffer)?;
7cac9316 2816 ///
0531ce1d
XL
2817 /// let file = handle.get_mut();
2818 /// Ok(())
2819 /// }
7cac9316 2820 /// ```
041b39d2 2821 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
7cac9316
XL
2822 pub fn get_mut(&mut self) -> &mut T {
2823 &mut self.inner
2824 }
85aaf69f 2825}
1a4d82fc 2826
c34b1796 2827#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
2828impl<T: Read> Read for Take<T> {
2829 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
c34b1796
AL
2830 // Don't call into inner reader at all at EOF because it may still block
2831 if self.limit == 0 {
2832 return Ok(0);
2833 }
2834
85aaf69f 2835 let max = cmp::min(buf.len() as u64, self.limit) as usize;
54a0048b 2836 let n = self.inner.read(&mut buf[..max])?;
064997fb 2837 assert!(n as u64 <= self.limit, "number of read bytes exceeds limit");
85aaf69f
SL
2838 self.limit -= n as u64;
2839 Ok(n)
1a4d82fc 2840 }
041b39d2 2841
f2b60f7d 2842 fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
a2a8927a
XL
2843 // Don't call into inner reader at all at EOF because it may still block
2844 if self.limit == 0 {
2845 return Ok(());
2846 }
2847
f2b60f7d 2848 if self.limit <= buf.capacity() as u64 {
a2a8927a
XL
2849 // if we just use an as cast to convert, limit may wrap around on a 32 bit target
2850 let limit = cmp::min(self.limit, usize::MAX as u64) as usize;
2851
f2b60f7d 2852 let extra_init = cmp::min(limit as usize, buf.init_ref().len());
a2a8927a
XL
2853
2854 // SAFETY: no uninit data is written to ibuf
f2b60f7d 2855 let ibuf = unsafe { &mut buf.as_mut()[..limit] };
a2a8927a 2856
f2b60f7d 2857 let mut sliced_buf: BorrowedBuf<'_> = ibuf.into();
a2a8927a
XL
2858
2859 // SAFETY: extra_init bytes of ibuf are known to be initialized
2860 unsafe {
f2b60f7d 2861 sliced_buf.set_init(extra_init);
a2a8927a
XL
2862 }
2863
f2b60f7d
FG
2864 let mut cursor = sliced_buf.unfilled();
2865 self.inner.read_buf(cursor.reborrow())?;
a2a8927a 2866
f2b60f7d
FG
2867 let new_init = cursor.init_ref().len();
2868 let filled = sliced_buf.len();
a2a8927a 2869
f2b60f7d 2870 // cursor / sliced_buf / ibuf must drop here
a2a8927a 2871
a2a8927a 2872 unsafe {
f2b60f7d
FG
2873 // SAFETY: filled bytes have been filled and therefore initialized
2874 buf.advance(filled);
2875 // SAFETY: new_init bytes of buf's unfilled buffer have been initialized
2876 buf.set_init(new_init);
a2a8927a
XL
2877 }
2878
a2a8927a
XL
2879 self.limit -= filled as u64;
2880 } else {
f2b60f7d
FG
2881 let written = buf.written();
2882 self.inner.read_buf(buf.reborrow())?;
2883 self.limit -= (buf.written() - written) as u64;
a2a8927a
XL
2884 }
2885
2886 Ok(())
041b39d2 2887 }
1a4d82fc
JJ
2888}
2889
c34b1796
AL
2890#[stable(feature = "rust1", since = "1.0.0")]
2891impl<T: BufRead> BufRead for Take<T> {
2892 fn fill_buf(&mut self) -> Result<&[u8]> {
a7813a04
XL
2893 // Don't call into inner reader at all at EOF because it may still block
2894 if self.limit == 0 {
2895 return Ok(&[]);
2896 }
2897
54a0048b 2898 let buf = self.inner.fill_buf()?;
c34b1796
AL
2899 let cap = cmp::min(buf.len() as u64, self.limit) as usize;
2900 Ok(&buf[..cap])
2901 }
2902
2903 fn consume(&mut self, amt: usize) {
2904 // Don't let callers reset the limit by passing an overlarge value
2905 let amt = cmp::min(amt as u64, self.limit) as usize;
2906 self.limit -= amt as u64;
2907 self.inner.consume(amt);
2908 }
2909}
2910
136023e0
XL
2911impl<T> SizeHint for Take<T> {
2912 #[inline]
2913 fn lower_bound(&self) -> usize {
2914 cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
2915 }
2916
2917 #[inline]
2918 fn upper_bound(&self) -> Option<usize> {
2919 match SizeHint::upper_bound(&self.inner) {
2920 Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
2921 None => self.limit.try_into().ok(),
2922 }
2923 }
2924}
2925
c1a9b12d
SL
2926/// An iterator over `u8` values of a reader.
2927///
cc61c64b
XL
2928/// This struct is generally created by calling [`bytes`] on a reader.
2929/// Please see the documentation of [`bytes`] for more details.
1a4d82fc 2930///
3dfed10e 2931/// [`bytes`]: Read::bytes
c34b1796 2932#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 2933#[derive(Debug)]
85aaf69f
SL
2934pub struct Bytes<R> {
2935 inner: R,
1a4d82fc
JJ
2936}
2937
c34b1796 2938#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
2939impl<R: Read> Iterator for Bytes<R> {
2940 type Item = Result<u8>;
1a4d82fc 2941
ed00b5ec
FG
2942 // Not `#[inline]`. This function gets inlined even without it, but having
2943 // the inline annotation can result in worse code generation. See #116785.
85aaf69f 2944 fn next(&mut self) -> Option<Result<u8>> {
ed00b5ec 2945 SpecReadByte::spec_read_byte(&mut self.inner)
85aaf69f 2946 }
6a06907d 2947
ed00b5ec 2948 #[inline]
6a06907d
XL
2949 fn size_hint(&self) -> (usize, Option<usize>) {
2950 SizeHint::size_hint(&self.inner)
2951 }
2952}
2953
ed00b5ec
FG
2954/// For the specialization of `Bytes::next`.
2955trait SpecReadByte {
2956 fn spec_read_byte(&mut self) -> Option<Result<u8>>;
2957}
2958
2959impl<R> SpecReadByte for R
2960where
2961 Self: Read,
2962{
2963 #[inline]
2964 default fn spec_read_byte(&mut self) -> Option<Result<u8>> {
2965 inlined_slow_read_byte(self)
2966 }
2967}
2968
2969/// Read a single byte in a slow, generic way. This is used by the default
2970/// `spec_read_byte`.
2971#[inline]
2972fn inlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
2973 let mut byte = 0;
2974 loop {
2975 return match reader.read(slice::from_mut(&mut byte)) {
2976 Ok(0) => None,
2977 Ok(..) => Some(Ok(byte)),
2978 Err(ref e) if e.is_interrupted() => continue,
2979 Err(e) => Some(Err(e)),
2980 };
2981 }
2982}
2983
2984// Used by `BufReader::spec_read_byte`, for which the `inline(ever)` is
2985// important.
2986#[inline(never)]
2987fn uninlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
2988 inlined_slow_read_byte(reader)
2989}
2990
6a06907d
XL
2991trait SizeHint {
2992 fn lower_bound(&self) -> usize;
2993
2994 fn upper_bound(&self) -> Option<usize>;
2995
2996 fn size_hint(&self) -> (usize, Option<usize>) {
2997 (self.lower_bound(), self.upper_bound())
2998 }
2999}
3000
fe692bf9 3001impl<T: ?Sized> SizeHint for T {
136023e0 3002 #[inline]
6a06907d
XL
3003 default fn lower_bound(&self) -> usize {
3004 0
3005 }
3006
136023e0 3007 #[inline]
6a06907d
XL
3008 default fn upper_bound(&self) -> Option<usize> {
3009 None
3010 }
1a4d82fc
JJ
3011}
3012
136023e0
XL
3013impl<T> SizeHint for &mut T {
3014 #[inline]
3015 fn lower_bound(&self) -> usize {
3016 SizeHint::lower_bound(*self)
3017 }
3018
3019 #[inline]
3020 fn upper_bound(&self) -> Option<usize> {
3021 SizeHint::upper_bound(*self)
3022 }
3023}
3024
3025impl<T> SizeHint for Box<T> {
3026 #[inline]
3027 fn lower_bound(&self) -> usize {
3028 SizeHint::lower_bound(&**self)
3029 }
3030
3031 #[inline]
3032 fn upper_bound(&self) -> Option<usize> {
3033 SizeHint::upper_bound(&**self)
3034 }
3035}
3036
3037impl SizeHint for &[u8] {
3038 #[inline]
3039 fn lower_bound(&self) -> usize {
3040 self.len()
3041 }
3042
3043 #[inline]
3044 fn upper_bound(&self) -> Option<usize> {
3045 Some(self.len())
3046 }
3047}
3048
85aaf69f
SL
3049/// An iterator over the contents of an instance of `BufRead` split on a
3050/// particular byte.
3051///
e1599b0c
XL
3052/// This struct is generally created by calling [`split`] on a `BufRead`.
3053/// Please see the documentation of [`split`] for more details.
c1a9b12d 3054///
3dfed10e 3055/// [`split`]: BufRead::split
c34b1796 3056#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 3057#[derive(Debug)]
85aaf69f
SL
3058pub struct Split<B> {
3059 buf: B,
3060 delim: u8,
3061}
1a4d82fc 3062
c34b1796 3063#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
3064impl<B: BufRead> Iterator for Split<B> {
3065 type Item = Result<Vec<u8>>;
1a4d82fc 3066
85aaf69f
SL
3067 fn next(&mut self) -> Option<Result<Vec<u8>>> {
3068 let mut buf = Vec::new();
3069 match self.buf.read_until(self.delim, &mut buf) {
c34b1796
AL
3070 Ok(0) => None,
3071 Ok(_n) => {
85aaf69f
SL
3072 if buf[buf.len() - 1] == self.delim {
3073 buf.pop();
3074 }
3075 Some(Ok(buf))
3076 }
60c5eb7d 3077 Err(e) => Some(Err(e)),
1a4d82fc
JJ
3078 }
3079 }
85aaf69f
SL
3080}
3081
c1a9b12d 3082/// An iterator over the lines of an instance of `BufRead`.
85aaf69f 3083///
e1599b0c
XL
3084/// This struct is generally created by calling [`lines`] on a `BufRead`.
3085/// Please see the documentation of [`lines`] for more details.
c1a9b12d 3086///
3dfed10e 3087/// [`lines`]: BufRead::lines
c34b1796 3088#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 3089#[derive(Debug)]
ed00b5ec 3090#[cfg_attr(not(test), rustc_diagnostic_item = "IoLines")]
85aaf69f
SL
3091pub struct Lines<B> {
3092 buf: B,
3093}
3094
c34b1796 3095#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
3096impl<B: BufRead> Iterator for Lines<B> {
3097 type Item = Result<String>;
1a4d82fc 3098
85aaf69f
SL
3099 fn next(&mut self) -> Option<Result<String>> {
3100 let mut buf = String::new();
3101 match self.buf.read_line(&mut buf) {
c34b1796
AL
3102 Ok(0) => None,
3103 Ok(_n) => {
74b04a01 3104 if buf.ends_with('\n') {
85aaf69f 3105 buf.pop();
74b04a01 3106 if buf.ends_with('\r') {
e9174d1e
SL
3107 buf.pop();
3108 }
1a4d82fc 3109 }
85aaf69f 3110 Some(Ok(buf))
1a4d82fc 3111 }
60c5eb7d 3112 Err(e) => Some(Err(e)),
1a4d82fc
JJ
3113 }
3114 }
85aaf69f 3115}