]> git.proxmox.com Git - rustc.git/blame - library/std/src/keyword_docs.rs
New upstream version 1.58.1+dfsg1
[rustc.git] / library / std / src / keyword_docs.rs
CommitLineData
0bf4aa26
XL
1#[doc(keyword = "as")]
2//
48663c56 3/// Cast between types, or rename an import.
0bf4aa26
XL
4///
5/// `as` is most commonly used to turn primitive types into other primitive types, but it has other
6/// uses that include turning pointers into addresses, addresses into pointers, and pointers into
7/// other pointers.
8///
9/// ```rust
10/// let thing1: u8 = 89.0 as u8;
11/// assert_eq!('B' as u32, 66);
12/// assert_eq!(thing1 as char, 'Y');
13/// let thing2: f32 = thing1 as f32 + 10.5;
14/// assert_eq!(true as u8 + thing2 as u8, 100);
15/// ```
16///
17/// In general, any cast that can be performed via ascribing the type can also be done using `as`,
29967ef6
XL
18/// so instead of writing `let x: u32 = 123`, you can write `let x = 123 as u32` (note: `let x: u32
19/// = 123` would be best in that situation). The same is not true in the other direction, however;
0bf4aa26
XL
20/// explicitly using `as` allows a few more coercions that aren't allowed implicitly, such as
21/// changing the type of a raw pointer or turning closures into raw pointers.
22///
fc512014
XL
23/// `as` can be seen as the primitive for `From` and `Into`: `as` only works with primitives
24/// (`u8`, `bool`, `str`, pointers, ...) whereas `From` and `Into` also works with types like
25/// `String` or `Vec`.
26///
27/// `as` can also be used with the `_` placeholder when the destination type can be inferred. Note
28/// that this can cause inference breakage and usually such code should use an explicit type for
29/// both clarity and stability. This is most useful when converting pointers using `as *const _` or
30/// `as *mut _` though the [`cast`][const-cast] method is recommended over `as *const _` and it is
31/// [the same][mut-cast] for `as *mut _`: those methods make the intent clearer.
32///
33/// `as` is also used to rename imports in [`use`] and [`extern crate`][`crate`] statements:
0bf4aa26 34///
29967ef6
XL
35/// ```
36/// # #[allow(unused_imports)]
37/// use std::{mem as memory, net as network};
38/// // Now you can use the names `memory` and `network` to refer to `std::mem` and `std::net`.
39/// ```
29967ef6 40/// For more information on what `as` is capable of, see the [Reference].
0bf4aa26 41///
48663c56 42/// [Reference]: ../reference/expressions/operator-expr.html#type-cast-expressions
fc512014 43/// [`crate`]: keyword.crate.html
29967ef6 44/// [`use`]: keyword.use.html
6a06907d 45/// [const-cast]: pointer::cast
fc512014 46/// [mut-cast]: primitive.pointer.html#method.cast-1
dfeec247 47mod as_keyword {}
0bf4aa26 48
48663c56
XL
49#[doc(keyword = "break")]
50//
51/// Exit early from a loop.
52///
e74abb32
XL
53/// When `break` is encountered, execution of the associated loop body is
54/// immediately terminated.
55///
56/// ```rust
57/// let mut last = 0;
58///
59/// for x in 1..100 {
60/// if x > 12 {
61/// break;
62/// }
63/// last = x;
64/// }
65///
66/// assert_eq!(last, 12);
67/// println!("{}", last);
68/// ```
69///
70/// A break expression is normally associated with the innermost loop enclosing the
71/// `break` but a label can be used to specify which enclosing loop is affected.
72///
73///```rust
74/// 'outer: for i in 1..=5 {
75/// println!("outer iteration (i): {}", i);
76///
60c5eb7d 77/// '_inner: for j in 1..=200 {
e74abb32
XL
78/// println!(" inner iteration (j): {}", j);
79/// if j >= 3 {
c295e0f8 80/// // breaks from inner loop, lets outer loop continue.
e74abb32
XL
81/// break;
82/// }
83/// if i >= 2 {
84/// // breaks from outer loop, and directly to "Bye".
85/// break 'outer;
86/// }
87/// }
88/// }
89/// println!("Bye.");
90///```
91///
92/// When associated with `loop`, a break expression may be used to return a value from that loop.
93/// This is only valid with `loop` and not with any other type of loop.
94/// If no value is specified, `break;` returns `()`.
95/// Every `break` within a loop must return the same type.
96///
97/// ```rust
98/// let (mut a, mut b) = (1, 1);
99/// let result = loop {
100/// if b > 10 {
101/// break b;
102/// }
103/// let c = a + b;
104/// a = b;
105/// b = c;
106/// };
107/// // first number in Fibonacci sequence over 10:
108/// assert_eq!(result, 13);
109/// println!("{}", result);
110/// ```
111///
112/// For more details consult the [Reference on "break expression"] and the [Reference on "break and
113/// loop values"].
114///
115/// [Reference on "break expression"]: ../reference/expressions/loop-expr.html#break-expressions
116/// [Reference on "break and loop values"]:
117/// ../reference/expressions/loop-expr.html#break-and-loop-values
dfeec247 118mod break_keyword {}
48663c56 119
0bf4aa26
XL
120#[doc(keyword = "const")]
121//
c295e0f8 122/// Compile-time constants, compile-time evaluable functions, and raw pointers.
29967ef6
XL
123///
124/// ## Compile-time constants
0bf4aa26
XL
125///
126/// Sometimes a certain value is used many times throughout a program, and it can become
127/// inconvenient to copy it over and over. What's more, it's not always possible or desirable to
128/// make it a variable that gets carried around to each function that needs it. In these cases, the
1b1a35ee 129/// `const` keyword provides a convenient alternative to code duplication:
0bf4aa26
XL
130///
131/// ```rust
132/// const THING: u32 = 0xABAD1DEA;
133///
134/// let foo = 123 + THING;
135/// ```
136///
1b1a35ee
XL
137/// Constants must be explicitly typed; unlike with `let`, you can't ignore their type and let the
138/// compiler figure it out. Any constant value can be defined in a `const`, which in practice happens
139/// to be most things that would be reasonable to have in a constant (barring `const fn`s). For
140/// example, you can't have a [`File`] as a `const`.
141///
142/// [`File`]: crate::fs::File
0bf4aa26
XL
143///
144/// The only lifetime allowed in a constant is `'static`, which is the lifetime that encompasses
145/// all others in a Rust program. For example, if you wanted to define a constant string, it would
146/// look like this:
147///
148/// ```rust
60c5eb7d 149/// const WORDS: &'static str = "hello rust!";
0bf4aa26
XL
150/// ```
151///
1b1a35ee 152/// Thanks to static lifetime elision, you usually don't have to explicitly use `'static`:
0bf4aa26
XL
153///
154/// ```rust
155/// const WORDS: &str = "hello convenience!";
156/// ```
157///
158/// `const` items looks remarkably similar to `static` items, which introduces some confusion as
159/// to which one should be used at which times. To put it simply, constants are inlined wherever
1b1a35ee
XL
160/// they're used, making using them identical to simply replacing the name of the `const` with its
161/// value. Static variables, on the other hand, point to a single location in memory, which all
0bf4aa26
XL
162/// accesses share. This means that, unlike with constants, they can't have destructors, and act as
163/// a single value across the entire codebase.
164///
1b1a35ee 165/// Constants, like statics, should always be in `SCREAMING_SNAKE_CASE`.
0bf4aa26 166///
29967ef6
XL
167/// For more detail on `const`, see the [Rust Book] or the [Reference].
168///
169/// ## Compile-time evaluable functions
170///
171/// The other main use of the `const` keyword is in `const fn`. This marks a function as being
172/// callable in the body of a `const` or `static` item and in array initializers (commonly called
173/// "const contexts"). `const fn` are restricted in the set of operations they can perform, to
174/// ensure that they can be evaluated at compile-time. See the [Reference][const-eval] for more
175/// detail.
176///
177/// Turning a `fn` into a `const fn` has no effect on run-time uses of that function.
178///
179/// ## Other uses of `const`
180///
0bf4aa26 181/// The `const` keyword is also used in raw pointers in combination with `mut`, as seen in `*const
1b1a35ee 182/// T` and `*mut T`. More about `const` as used in raw pointers can be read at the Rust docs for the [pointer primitive].
0bf4aa26 183///
6a06907d 184/// [pointer primitive]: pointer
3c0e092e 185/// [Rust Book]: ../book/ch03-01-variables-and-mutability.html#constants
48663c56 186/// [Reference]: ../reference/items/constant-items.html
29967ef6 187/// [const-eval]: ../reference/const_eval.html
dfeec247 188mod const_keyword {}
0bf4aa26 189
48663c56
XL
190#[doc(keyword = "continue")]
191//
192/// Skip to the next iteration of a loop.
193///
e74abb32
XL
194/// When `continue` is encountered, the current iteration is terminated, returning control to the
195/// loop head, typically continuing with the next iteration.
196///
197///```rust
198/// // Printing odd numbers by skipping even ones
199/// for number in 1..=10 {
200/// if number % 2 == 0 {
201/// continue;
202/// }
203/// println!("{}", number);
204/// }
205///```
206///
207/// Like `break`, `continue` is normally associated with the innermost enclosing loop, but labels
208/// may be used to specify the affected loop.
209///
210///```rust
211/// // Print Odd numbers under 30 with unit <= 5
212/// 'tens: for ten in 0..3 {
60c5eb7d 213/// '_units: for unit in 0..=9 {
e74abb32
XL
214/// if unit % 2 == 0 {
215/// continue;
216/// }
217/// if unit > 5 {
218/// continue 'tens;
219/// }
220/// println!("{}", ten * 10 + unit);
221/// }
222/// }
223///```
224///
225/// See [continue expressions] from the reference for more details.
226///
227/// [continue expressions]: ../reference/expressions/loop-expr.html#continue-expressions
dfeec247 228mod continue_keyword {}
48663c56 229
0bf4aa26
XL
230#[doc(keyword = "crate")]
231//
48663c56 232/// A Rust binary or library.
0bf4aa26
XL
233///
234/// The primary use of the `crate` keyword is as a part of `extern crate` declarations, which are
235/// used to specify a dependency on a crate external to the one it's declared in. Crates are the
236/// fundamental compilation unit of Rust code, and can be seen as libraries or projects. More can
237/// be read about crates in the [Reference].
238///
239/// ```rust ignore
240/// extern crate rand;
241/// extern crate my_crate as thing;
242/// extern crate std; // implicitly added to the root of every Rust project
243/// ```
244///
245/// The `as` keyword can be used to change what the crate is referred to as in your project. If a
246/// crate name includes a dash, it is implicitly imported with the dashes replaced by underscores.
247///
416331ca 248/// `crate` can also be used as in conjunction with `pub` to signify that the item it's attached to
0bf4aa26
XL
249/// is public only to other members of the same crate it's in.
250///
251/// ```rust
252/// # #[allow(unused_imports)]
253/// pub(crate) use std::io::Error as IoError;
254/// pub(crate) enum CoolMarkerType { }
255/// pub struct PublicThing {
256/// pub(crate) semi_secret_thing: bool,
257/// }
258/// ```
259///
416331ca
XL
260/// `crate` is also used to represent the absolute path of a module, where `crate` refers to the
261/// root of the current crate. For instance, `crate::foo::bar` refers to the name `bar` inside the
262/// module `foo`, from anywhere else in the same crate.
263///
48663c56 264/// [Reference]: ../reference/items/extern-crates.html
dfeec247 265mod crate_keyword {}
0bf4aa26 266
48663c56
XL
267#[doc(keyword = "else")]
268//
ba9703b0 269/// What expression to evaluate when an [`if`] condition evaluates to [`false`].
48663c56 270///
ba9703b0
XL
271/// `else` expressions are optional. When no else expressions are supplied it is assumed to evaluate
272/// to the unit type `()`.
273///
274/// The type that the `else` blocks evaluate to must be compatible with the type that the `if` block
275/// evaluates to.
276///
277/// As can be seen below, `else` must be followed by either: `if`, `if let`, or a block `{}` and it
278/// will return the value of that expression.
279///
280/// ```rust
281/// let result = if true == false {
282/// "oh no"
283/// } else if "something" == "other thing" {
284/// "oh dear"
285/// } else if let Some(200) = "blarg".parse::<i32>().ok() {
286/// "uh oh"
287/// } else {
288/// println!("Sneaky side effect.");
289/// "phew, nothing's broken"
290/// };
291/// ```
292///
293/// Here's another example but here we do not try and return an expression:
48663c56 294///
ba9703b0
XL
295/// ```rust
296/// if true == false {
297/// println!("oh no");
298/// } else if "something" == "other thing" {
299/// println!("oh dear");
300/// } else if let Some(200) = "blarg".parse::<i32>().ok() {
301/// println!("uh oh");
302/// } else {
303/// println!("phew, nothing's broken");
304/// }
305/// ```
306///
307/// The above is _still_ an expression but it will always evaluate to `()`.
308///
309/// There is possibly no limit to the number of `else` blocks that could follow an `if` expression
310/// however if you have several then a [`match`] expression might be preferable.
311///
312/// Read more about control flow in the [Rust Book].
313///
314/// [Rust Book]: ../book/ch03-05-control-flow.html#handling-multiple-conditions-with-else-if
315/// [`match`]: keyword.match.html
316/// [`false`]: keyword.false.html
48663c56 317/// [`if`]: keyword.if.html
dfeec247 318mod else_keyword {}
48663c56 319
0bf4aa26
XL
320#[doc(keyword = "enum")]
321//
48663c56 322/// A type that can be any one of several variants.
0bf4aa26
XL
323///
324/// Enums in Rust are similar to those of other compiled languages like C, but have important
325/// differences that make them considerably more powerful. What Rust calls enums are more commonly
48663c56
XL
326/// known as [Algebraic Data Types][ADT] if you're coming from a functional programming background.
327/// The important detail is that each enum variant can have data to go along with it.
0bf4aa26
XL
328///
329/// ```rust
330/// # struct Coord;
331/// enum SimpleEnum {
332/// FirstVariant,
333/// SecondVariant,
334/// ThirdVariant,
335/// }
336///
337/// enum Location {
338/// Unknown,
339/// Anonymous,
340/// Known(Coord),
341/// }
342///
343/// enum ComplexEnum {
344/// Nothing,
345/// Something(u32),
346/// LotsOfThings {
347/// usual_struct_stuff: bool,
348/// blah: String,
349/// }
350/// }
351///
352/// enum EmptyEnum { }
353/// ```
354///
355/// The first enum shown is the usual kind of enum you'd find in a C-style language. The second
356/// shows off a hypothetical example of something storing location data, with `Coord` being any
357/// other type that's needed, for example a struct. The third example demonstrates the kind of
358/// data a variant can store, ranging from nothing, to a tuple, to an anonymous struct.
359///
360/// Instantiating enum variants involves explicitly using the enum's name as its namespace,
361/// followed by one of its variants. `SimpleEnum::SecondVariant` would be an example from above.
362/// When data follows along with a variant, such as with rust's built-in [`Option`] type, the data
363/// is added as the type describes, for example `Option::Some(123)`. The same follows with
364/// struct-like variants, with things looking like `ComplexEnum::LotsOfThings { usual_struct_stuff:
29967ef6 365/// true, blah: "hello!".to_string(), }`. Empty Enums are similar to [`!`] in that they cannot be
0bf4aa26
XL
366/// instantiated at all, and are used mainly to mess with the type system in interesting ways.
367///
368/// For more information, take a look at the [Rust Book] or the [Reference]
369///
48663c56 370/// [ADT]: https://en.wikipedia.org/wiki/Algebraic_data_type
48663c56
XL
371/// [Rust Book]: ../book/ch06-01-defining-an-enum.html
372/// [Reference]: ../reference/items/enumerations.html
dfeec247 373mod enum_keyword {}
0bf4aa26
XL
374
375#[doc(keyword = "extern")]
376//
48663c56 377/// Link to or import external code.
0bf4aa26
XL
378///
379/// The `extern` keyword is used in two places in Rust. One is in conjunction with the [`crate`]
0731742a 380/// keyword to make your Rust code aware of other Rust crates in your project, i.e., `extern crate
0bf4aa26
XL
381/// lazy_static;`. The other use is in foreign function interfaces (FFI).
382///
383/// `extern` is used in two different contexts within FFI. The first is in the form of external
384/// blocks, for declaring function interfaces that Rust code can call foreign code by.
385///
386/// ```rust ignore
387/// #[link(name = "my_c_library")]
388/// extern "C" {
389/// fn my_c_function(x: i32) -> bool;
390/// }
391/// ```
392///
393/// This code would attempt to link with `libmy_c_library.so` on unix-like systems and
394/// `my_c_library.dll` on Windows at runtime, and panic if it can't find something to link to. Rust
395/// code could then use `my_c_function` as if it were any other unsafe Rust function. Working with
396/// non-Rust languages and FFI is inherently unsafe, so wrappers are usually built around C APIs.
397///
398/// The mirror use case of FFI is also done via the `extern` keyword:
399///
400/// ```rust
401/// #[no_mangle]
5869c6ff 402/// pub extern "C" fn callable_from_c(x: i32) -> bool {
0bf4aa26
XL
403/// x % 3 == 0
404/// }
405/// ```
406///
407/// If compiled as a dylib, the resulting .so could then be linked to from a C library, and the
408/// function could be used as if it was from any other library.
409///
410/// For more information on FFI, check the [Rust book] or the [Reference].
411///
412/// [Rust book]:
48663c56
XL
413/// ../book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
414/// [Reference]: ../reference/items/external-blocks.html
29967ef6 415/// [`crate`]: keyword.crate.html
dfeec247 416mod extern_keyword {}
0bf4aa26 417
48663c56
XL
418#[doc(keyword = "false")]
419//
420/// A value of type [`bool`] representing logical **false**.
421///
3dfed10e
XL
422/// `false` is the logical opposite of [`true`].
423///
424/// See the documentation for [`true`] for more information.
48663c56 425///
3dfed10e 426/// [`true`]: keyword.true.html
dfeec247 427mod false_keyword {}
48663c56 428
94b46f34
XL
429#[doc(keyword = "fn")]
430//
48663c56 431/// A function or function pointer.
94b46f34 432///
0bf4aa26
XL
433/// Functions are the primary way code is executed within Rust. Function blocks, usually just
434/// called functions, can be defined in a variety of different places and be assigned many
435/// different attributes and modifiers.
94b46f34 436///
0bf4aa26
XL
437/// Standalone functions that just sit within a module not attached to anything else are common,
438/// but most functions will end up being inside [`impl`] blocks, either on another type itself, or
439/// as a trait impl for that type.
94b46f34
XL
440///
441/// ```rust
0bf4aa26
XL
442/// fn standalone_function() {
443/// // code
444/// }
445///
446/// pub fn public_thing(argument: bool) -> String {
447/// // code
448/// # "".to_string()
449/// }
450///
451/// struct Thing {
452/// foo: i32,
453/// }
454///
455/// impl Thing {
456/// pub fn new() -> Self {
457/// Self {
458/// foo: 42,
459/// }
460/// }
94b46f34
XL
461/// }
462/// ```
463///
0bf4aa26
XL
464/// In addition to presenting fixed types in the form of `fn name(arg: type, ..) -> return_type`,
465/// functions can also declare a list of type parameters along with trait bounds that they fall
466/// into.
94b46f34 467///
0bf4aa26
XL
468/// ```rust
469/// fn generic_function<T: Clone>(x: T) -> (T, T, T) {
470/// (x.clone(), x.clone(), x.clone())
471/// }
472///
473/// fn generic_where<T>(x: T) -> T
9fa01778 474/// where T: std::ops::Add<Output = T> + Copy
0bf4aa26
XL
475/// {
476/// x + x + x
477/// }
478/// ```
479///
480/// Declaring trait bounds in the angle brackets is functionally identical to using a `where`
481/// clause. It's up to the programmer to decide which works better in each situation, but `where`
482/// tends to be better when things get longer than one line.
483///
484/// Along with being made public via `pub`, `fn` can also have an [`extern`] added for use in
485/// FFI.
486///
487/// For more information on the various types of functions and how they're used, consult the [Rust
488/// book] or the [Reference].
489///
490/// [`impl`]: keyword.impl.html
491/// [`extern`]: keyword.extern.html
48663c56
XL
492/// [Rust book]: ../book/ch03-03-how-functions-work.html
493/// [Reference]: ../reference/items/functions.html
dfeec247 494mod fn_keyword {}
b7449926 495
0bf4aa26 496#[doc(keyword = "for")]
b7449926 497//
48663c56
XL
498/// Iteration with [`in`], trait implementation with [`impl`], or [higher-ranked trait bounds]
499/// (`for<'a>`).
0bf4aa26 500///
532ac7d7
XL
501/// The `for` keyword is used in many syntactic locations:
502///
503/// * `for` is used in for-in-loops (see below).
504/// * `for` is used when implementing traits as in `impl Trait for Type` (see [`impl`] for more info
505/// on that).
506/// * `for` is also used for [higher-ranked trait bounds] as in `for<'a> &'a T: PartialEq<i32>`.
507///
508/// for-in-loops, or to be more precise, iterator loops, are a simple syntactic sugar over a common
3dfed10e
XL
509/// practice within Rust, which is to loop over anything that implements [`IntoIterator`] until the
510/// iterator returned by `.into_iter()` returns `None` (or the loop body uses `break`).
0bf4aa26
XL
511///
512/// ```rust
513/// for i in 0..5 {
514/// println!("{}", i * 2);
515/// }
b7449926 516///
0bf4aa26
XL
517/// for i in std::iter::repeat(5) {
518/// println!("turns out {} never stops being 5", i);
519/// break; // would loop forever otherwise
520/// }
b7449926 521///
0bf4aa26
XL
522/// 'outer: for x in 5..50 {
523/// for y in 0..10 {
524/// if x == y {
525/// break 'outer;
526/// }
527/// }
528/// }
529/// ```
530///
531/// As shown in the example above, `for` loops (along with all other loops) can be tagged, using
532/// similar syntax to lifetimes (only visually similar, entirely distinct in practice). Giving the
533/// same tag to `break` breaks the tagged loop, which is useful for inner loops. It is definitely
534/// not a goto.
535///
536/// A `for` loop expands as shown:
b7449926
XL
537///
538/// ```rust
0bf4aa26
XL
539/// # fn code() { }
540/// # let iterator = 0..2;
541/// for loop_variable in iterator {
542/// code()
543/// }
544/// ```
545///
546/// ```rust
547/// # fn code() { }
548/// # let iterator = 0..2;
549/// {
cdc7bbd5
XL
550/// let result = match IntoIterator::into_iter(iterator) {
551/// mut iter => loop {
cdc7bbd5 552/// match iter.next() {
cdc7bbd5 553/// None => break,
3c0e092e 554/// Some(loop_variable) => { code(); },
cdc7bbd5 555/// };
cdc7bbd5
XL
556/// },
557/// };
558/// result
0bf4aa26
XL
559/// }
560/// ```
561///
562/// More details on the functionality shown can be seen at the [`IntoIterator`] docs.
563///
564/// For more information on for-loops, see the [Rust book] or the [Reference].
565///
fc512014
XL
566/// See also, [`loop`], [`while`].
567///
48663c56 568/// [`in`]: keyword.in.html
0bf4aa26 569/// [`impl`]: keyword.impl.html
fc512014
XL
570/// [`loop`]: keyword.loop.html
571/// [`while`]: keyword.while.html
48663c56 572/// [higher-ranked trait bounds]: ../reference/trait-bounds.html#higher-ranked-trait-bounds
0bf4aa26 573/// [Rust book]:
48663c56
XL
574/// ../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
575/// [Reference]: ../reference/expressions/loop-expr.html#iterator-loops
dfeec247 576mod for_keyword {}
0bf4aa26
XL
577
578#[doc(keyword = "if")]
579//
48663c56 580/// Evaluate a block if a condition holds.
0bf4aa26
XL
581///
582/// `if` is a familiar construct to most programmers, and is the main way you'll often do logic in
583/// your code. However, unlike in most languages, `if` blocks can also act as expressions.
584///
585/// ```rust
586/// # let rude = true;
587/// if 1 == 2 {
588/// println!("whoops, mathematics broke");
589/// } else {
590/// println!("everything's fine!");
591/// }
592///
593/// let greeting = if rude {
594/// "sup nerd."
595/// } else {
596/// "hello, friend!"
597/// };
598///
599/// if let Ok(x) = "123".parse::<i32>() {
600/// println!("{} double that and you get {}!", greeting, x * 2);
601/// }
602/// ```
603///
604/// Shown above are the three typical forms an `if` block comes in. First is the usual kind of
605/// thing you'd see in many languages, with an optional `else` block. Second uses `if` as an
606/// expression, which is only possible if all branches return the same type. An `if` expression can
607/// be used everywhere you'd expect. The third kind of `if` block is an `if let` block, which
608/// behaves similarly to using a `match` expression:
609///
610/// ```rust
611/// if let Some(x) = Some(123) {
612/// // code
613/// # let _ = x;
614/// } else {
615/// // something else
616/// }
617///
618/// match Some(123) {
619/// Some(x) => {
620/// // code
621/// # let _ = x;
622/// },
623/// _ => {
624/// // something else
625/// },
626/// }
627/// ```
628///
629/// Each kind of `if` expression can be mixed and matched as needed.
630///
631/// ```rust
632/// if true == false {
633/// println!("oh no");
634/// } else if "something" == "other thing" {
635/// println!("oh dear");
636/// } else if let Some(200) = "blarg".parse::<i32>().ok() {
637/// println!("uh oh");
638/// } else {
639/// println!("phew, nothing's broken");
640/// }
641/// ```
642///
643/// The `if` keyword is used in one other place in Rust, namely as a part of pattern matching
644/// itself, allowing patterns such as `Some(x) if x > 200` to be used.
645///
646/// For more information on `if` expressions, see the [Rust book] or the [Reference].
647///
48663c56
XL
648/// [Rust book]: ../book/ch03-05-control-flow.html#if-expressions
649/// [Reference]: ../reference/expressions/if-expr.html
dfeec247 650mod if_keyword {}
0bf4aa26
XL
651
652#[doc(keyword = "impl")]
653//
48663c56 654/// Implement some functionality for a type.
0bf4aa26
XL
655///
656/// The `impl` keyword is primarily used to define implementations on types. Inherent
657/// implementations are standalone, while trait implementations are used to implement traits for
658/// types, or other traits.
659///
660/// Functions and consts can both be defined in an implementation. A function defined in an
661/// `impl` block can be standalone, meaning it would be called like `Foo::bar()`. If the function
662/// takes `self`, `&self`, or `&mut self` as its first argument, it can also be called using
663/// method-call syntax, a familiar feature to any object oriented programmer, like `foo.bar()`.
664///
665/// ```rust
666/// struct Example {
667/// number: i32,
668/// }
669///
670/// impl Example {
671/// fn boo() {
672/// println!("boo! Example::boo() was called!");
673/// }
674///
675/// fn answer(&mut self) {
676/// self.number += 42;
677/// }
678///
679/// fn get_number(&self) -> i32 {
680/// self.number
681/// }
682/// }
683///
684/// trait Thingy {
685/// fn do_thingy(&self);
686/// }
687///
688/// impl Thingy for Example {
689/// fn do_thingy(&self) {
690/// println!("doing a thing! also, number is {}!", self.number);
691/// }
692/// }
b7449926
XL
693/// ```
694///
0bf4aa26 695/// For more information on implementations, see the [Rust book][book1] or the [Reference].
b7449926 696///
0bf4aa26
XL
697/// The other use of the `impl` keyword is in `impl Trait` syntax, which can be seen as a shorthand
698/// for "a concrete type that implements this trait". Its primary use is working with closures,
699/// which have type definitions generated at compile time that can't be simply typed out.
700///
701/// ```rust
702/// fn thing_returning_closure() -> impl Fn(i32) -> bool {
703/// println!("here's a closure for you!");
704/// |x: i32| x % 3 == 0
705/// }
706/// ```
707///
708/// For more information on `impl Trait` syntax, see the [Rust book][book2].
709///
48663c56
XL
710/// [book1]: ../book/ch05-03-method-syntax.html
711/// [Reference]: ../reference/items/implementations.html
712/// [book2]: ../book/ch10-02-traits.html#returning-types-that-implement-traits
dfeec247 713mod impl_keyword {}
0bf4aa26 714
48663c56
XL
715#[doc(keyword = "in")]
716//
717/// Iterate over a series of values with [`for`].
718///
3dfed10e 719/// The expression immediately following `in` must implement the [`IntoIterator`] trait.
ba9703b0
XL
720///
721/// ## Literal Examples:
722///
fc512014
XL
723/// * `for _ in 1..3 {}` - Iterate over an exclusive range up to but excluding 3.
724/// * `for _ in 1..=3 {}` - Iterate over an inclusive range up to and including 3.
ba9703b0
XL
725///
726/// (Read more about [range patterns])
48663c56 727///
3dfed10e 728/// [`IntoIterator`]: ../book/ch13-04-performance.html
f9f354fc 729/// [range patterns]: ../reference/patterns.html?highlight=range#range-patterns
48663c56 730/// [`for`]: keyword.for.html
dfeec247 731mod in_keyword {}
48663c56 732
0bf4aa26
XL
733#[doc(keyword = "let")]
734//
48663c56 735/// Bind a value to a variable.
0bf4aa26
XL
736///
737/// The primary use for the `let` keyword is in `let` statements, which are used to introduce a new
738/// set of variables into the current scope, as given by a pattern.
b7449926
XL
739///
740/// ```rust
741/// # #![allow(unused_assignments)]
0bf4aa26
XL
742/// let thing1: i32 = 100;
743/// let thing2 = 200 + thing1;
744///
745/// let mut changing_thing = true;
746/// changing_thing = false;
b7449926 747///
0bf4aa26
XL
748/// let (part1, part2) = ("first", "second");
749///
750/// struct Example {
751/// a: bool,
752/// b: u64,
753/// }
754///
755/// let Example { a, b: _ } = Example {
756/// a: true,
757/// b: 10004,
758/// };
759/// assert!(a);
760/// ```
761///
762/// The pattern is most commonly a single variable, which means no pattern matching is done and
763/// the expression given is bound to the variable. Apart from that, patterns used in `let` bindings
764/// can be as complicated as needed, given that the pattern is exhaustive. See the [Rust
765/// book][book1] for more information on pattern matching. The type of the pattern is optionally
766/// given afterwards, but if left blank is automatically inferred by the compiler if possible.
767///
768/// Variables in Rust are immutable by default, and require the `mut` keyword to be made mutable.
769///
770/// Multiple variables can be defined with the same name, known as shadowing. This doesn't affect
771/// the original variable in any way beyond being unable to directly access it beyond the point of
772/// shadowing. It continues to remain in scope, getting dropped only when it falls out of scope.
773/// Shadowed variables don't need to have the same type as the variables shadowing them.
774///
775/// ```rust
776/// let shadowing_example = true;
777/// let shadowing_example = 123.4;
778/// let shadowing_example = shadowing_example as u32;
779/// let mut shadowing_example = format!("cool! {}", shadowing_example);
780/// shadowing_example += " something else!"; // not shadowing
b7449926
XL
781/// ```
782///
0bf4aa26
XL
783/// Other places the `let` keyword is used include along with [`if`], in the form of `if let`
784/// expressions. They're useful if the pattern being matched isn't exhaustive, such as with
785/// enumerations. `while let` also exists, which runs a loop with a pattern matched value until
786/// that pattern can't be matched.
b7449926 787///
48663c56 788/// For more information on the `let` keyword, see the [Rust book][book2] or the [Reference]
0bf4aa26 789///
48663c56 790/// [book1]: ../book/ch06-02-match.html
0bf4aa26 791/// [`if`]: keyword.if.html
48663c56
XL
792/// [book2]: ../book/ch18-01-all-the-places-for-patterns.html#let-statements
793/// [Reference]: ../reference/statements.html#let-statements
dfeec247 794mod let_keyword {}
b7449926 795
416331ca
XL
796#[doc(keyword = "while")]
797//
798/// Loop while a condition is upheld.
799///
800/// A `while` expression is used for predicate loops. The `while` expression runs the conditional
801/// expression before running the loop body, then runs the loop body if the conditional
802/// expression evaluates to `true`, or exits the loop otherwise.
803///
804/// ```rust
805/// let mut counter = 0;
806///
807/// while counter < 10 {
808/// println!("{}", counter);
809/// counter += 1;
810/// }
811/// ```
812///
813/// Like the [`for`] expression, we can use `break` and `continue`. A `while` expression
814/// cannot break with a value and always evaluates to `()` unlike [`loop`].
815///
816/// ```rust
817/// let mut i = 1;
818///
819/// while i < 100 {
820/// i *= 2;
821/// if i == 64 {
822/// break; // Exit when `i` is 64.
823/// }
824/// }
825/// ```
826///
827/// As `if` expressions have their pattern matching variant in `if let`, so too do `while`
828/// expressions with `while let`. The `while let` expression matches the pattern against the
829/// expression, then runs the loop body if pattern matching succeeds, or exits the loop otherwise.
830/// We can use `break` and `continue` in `while let` expressions just like in `while`.
831///
832/// ```rust
833/// let mut counter = Some(0);
834///
835/// while let Some(i) = counter {
836/// if i == 10 {
837/// counter = None;
838/// } else {
839/// println!("{}", i);
840/// counter = Some (i + 1);
841/// }
842/// }
843/// ```
844///
845/// For more information on `while` and loops in general, see the [reference].
846///
fc512014
XL
847/// See also, [`for`], [`loop`].
848///
416331ca
XL
849/// [`for`]: keyword.for.html
850/// [`loop`]: keyword.loop.html
851/// [reference]: ../reference/expressions/loop-expr.html#predicate-loops
dfeec247 852mod while_keyword {}
416331ca 853
0bf4aa26 854#[doc(keyword = "loop")]
b7449926 855//
48663c56 856/// Loop indefinitely.
b7449926 857///
0bf4aa26
XL
858/// `loop` is used to define the simplest kind of loop supported in Rust. It runs the code inside
859/// it until the code uses `break` or the program exits.
b7449926 860///
0bf4aa26
XL
861/// ```rust
862/// loop {
863/// println!("hello world forever!");
864/// # break;
865/// }
b7449926 866///
e1599b0c 867/// let mut i = 1;
0bf4aa26
XL
868/// loop {
869/// println!("i is {}", i);
e1599b0c 870/// if i > 100 {
0bf4aa26
XL
871/// break;
872/// }
e1599b0c 873/// i *= 2;
0bf4aa26 874/// }
e1599b0c 875/// assert_eq!(i, 128);
b7449926 876/// ```
0bf4aa26
XL
877///
878/// Unlike the other kinds of loops in Rust (`while`, `while let`, and `for`), loops can be used as
879/// expressions that return values via `break`.
880///
881/// ```rust
882/// let mut i = 1;
883/// let something = loop {
884/// i *= 2;
885/// if i > 100 {
886/// break i;
887/// }
888/// };
889/// assert_eq!(something, 128);
890/// ```
891///
892/// Every `break` in a loop has to have the same type. When it's not explicitly giving something,
893/// `break;` returns `()`.
894///
895/// For more information on `loop` and loops in general, see the [Reference].
896///
fc512014
XL
897/// See also, [`for`], [`while`].
898///
899/// [`for`]: keyword.for.html
900/// [`while`]: keyword.while.html
48663c56 901/// [Reference]: ../reference/expressions/loop-expr.html
dfeec247 902mod loop_keyword {}
0bf4aa26 903
48663c56
XL
904#[doc(keyword = "match")]
905//
906/// Control flow based on pattern matching.
907///
60c5eb7d
XL
908/// `match` can be used to run code conditionally. Every pattern must
909/// be handled exhaustively either explicitly or by using wildcards like
910/// `_` in the `match`. Since `match` is an expression, values can also be
911/// returned.
48663c56 912///
60c5eb7d
XL
913/// ```rust
914/// let opt = Option::None::<usize>;
915/// let x = match opt {
916/// Some(int) => int,
917/// None => 10,
918/// };
919/// assert_eq!(x, 10);
920///
921/// let a_number = Option::Some(10);
922/// match a_number {
923/// Some(x) if x <= 5 => println!("0 to 5 num = {}", x),
924/// Some(x @ 6..=10) => println!("6 to 10 num = {}", x),
925/// None => panic!(),
926/// // all other numbers
927/// _ => panic!(),
928/// }
929/// ```
930///
931/// `match` can be used to gain access to the inner members of an enum
932/// and use them directly.
933///
934/// ```rust
935/// enum Outer {
936/// Double(Option<u8>, Option<String>),
937/// Single(Option<u8>),
938/// Empty
939/// }
940///
941/// let get_inner = Outer::Double(None, Some(String::new()));
942/// match get_inner {
943/// Outer::Double(None, Some(st)) => println!("{}", st),
944/// Outer::Single(opt) => println!("{:?}", opt),
945/// _ => panic!(),
946/// }
947/// ```
948///
949/// For more information on `match` and matching in general, see the [Reference].
950///
951/// [Reference]: ../reference/expressions/match-expr.html
dfeec247 952mod match_keyword {}
48663c56
XL
953
954#[doc(keyword = "mod")]
955//
956/// Organize code into [modules].
957///
f035d41b
XL
958/// Use `mod` to create new [modules] to encapsulate code, including other
959/// modules:
960///
961/// ```
962/// mod foo {
963/// mod bar {
964/// type MyType = (u8, u8);
965/// fn baz() {}
966/// }
967/// }
968/// ```
969///
970/// Like [`struct`]s and [`enum`]s, a module and its content are private by
136023e0 971/// default, inaccessible to code outside of the module.
48663c56 972///
f035d41b
XL
973/// To learn more about allowing access, see the documentation for the [`pub`]
974/// keyword.
975///
976/// [`enum`]: keyword.enum.html
977/// [`pub`]: keyword.pub.html
978/// [`struct`]: keyword.struct.html
48663c56 979/// [modules]: ../reference/items/modules.html
dfeec247 980mod mod_keyword {}
48663c56
XL
981
982#[doc(keyword = "move")]
983//
984/// Capture a [closure]'s environment by value.
985///
60c5eb7d 986/// `move` converts any variables captured by reference or mutable reference
17df50a5 987/// to variables captured by value.
48663c56 988///
60c5eb7d 989/// ```rust
17df50a5
XL
990/// let data = vec![1, 2, 3];
991/// let closure = move || println!("captured {:?} by value", data);
992///
993/// // data is no longer available, it is owned by the closure
60c5eb7d
XL
994/// ```
995///
3dfed10e
XL
996/// Note: `move` closures may still implement [`Fn`] or [`FnMut`], even though
997/// they capture variables by `move`. This is because the traits implemented by
998/// a closure type are determined by *what* the closure does with captured
999/// values, not *how* it captures them:
1000///
1001/// ```rust
1002/// fn create_fn() -> impl Fn() {
1003/// let text = "Fn".to_owned();
3dfed10e
XL
1004/// move || println!("This is a: {}", text)
1005/// }
1006///
17df50a5
XL
1007/// let fn_plain = create_fn();
1008/// fn_plain();
3dfed10e
XL
1009/// ```
1010///
60c5eb7d
XL
1011/// `move` is often used when [threads] are involved.
1012///
1013/// ```rust
17df50a5 1014/// let data = vec![1, 2, 3];
60c5eb7d
XL
1015///
1016/// std::thread::spawn(move || {
17df50a5 1017/// println!("captured {:?} by value", data)
60c5eb7d
XL
1018/// }).join().unwrap();
1019///
17df50a5 1020/// // data was moved to the spawned thread, so we cannot use it here
60c5eb7d
XL
1021/// ```
1022///
74b04a01
XL
1023/// `move` is also valid before an async block.
1024///
1025/// ```rust
17df50a5 1026/// let capture = "hello".to_owned();
74b04a01
XL
1027/// let block = async move {
1028/// println!("rust says {} from async block", capture);
1029/// };
1030/// ```
1031///
cdc7bbd5
XL
1032/// For more information on the `move` keyword, see the [closures][closure] section
1033/// of the Rust book or the [threads] section.
60c5eb7d 1034///
60c5eb7d
XL
1035/// [closure]: ../book/ch13-01-closures.html
1036/// [threads]: ../book/ch16-01-threads.html#using-move-closures-with-threads
dfeec247 1037mod move_keyword {}
48663c56
XL
1038
1039#[doc(keyword = "mut")]
1040//
f035d41b 1041/// A mutable variable, reference, or pointer.
48663c56 1042///
f035d41b
XL
1043/// `mut` can be used in several situations. The first is mutable variables,
1044/// which can be used anywhere you can bind a value to a variable name. Some
1045/// examples:
48663c56 1046///
f035d41b
XL
1047/// ```rust
1048/// // A mutable variable in the parameter list of a function.
1049/// fn foo(mut x: u8, y: u8) -> u8 {
1050/// x += y;
1051/// x
1052/// }
1053///
1054/// // Modifying a mutable variable.
1055/// # #[allow(unused_assignments)]
1056/// let mut a = 5;
1057/// a = 6;
1058///
1059/// assert_eq!(foo(3, 4), 7);
1060/// assert_eq!(a, 6);
1061/// ```
1062///
1063/// The second is mutable references. They can be created from `mut` variables
1064/// and must be unique: no other variables can have a mutable reference, nor a
1065/// shared reference.
1066///
1067/// ```rust
1068/// // Taking a mutable reference.
1069/// fn push_two(v: &mut Vec<u8>) {
1070/// v.push(2);
1071/// }
1072///
1073/// // A mutable reference cannot be taken to a non-mutable variable.
1074/// let mut v = vec![0, 1];
1075/// // Passing a mutable reference.
1076/// push_two(&mut v);
1077///
1078/// assert_eq!(v, vec![0, 1, 2]);
1079/// ```
1080///
1081/// ```rust,compile_fail,E0502
1082/// let mut v = vec![0, 1];
1083/// let mut_ref_v = &mut v;
1084/// ##[allow(unused)]
1085/// let ref_v = &v;
1086/// mut_ref_v.push(2);
1087/// ```
1088///
1089/// Mutable raw pointers work much like mutable references, with the added
1090/// possibility of not pointing to a valid object. The syntax is `*mut Type`.
1091///
136023e0 1092/// More information on mutable references and pointers can be found in the [Reference].
f035d41b
XL
1093///
1094/// [Reference]: ../reference/types/pointer.html#mutable-references-mut
dfeec247 1095mod mut_keyword {}
48663c56
XL
1096
1097#[doc(keyword = "pub")]
1098//
1099/// Make an item visible to others.
1100///
ba9703b0
XL
1101/// The keyword `pub` makes any module, function, or data structure accessible from inside
1102/// of external modules. The `pub` keyword may also be used in a `use` declaration to re-export
1103/// an identifier from a namespace.
48663c56 1104///
ba9703b0
XL
1105/// For more information on the `pub` keyword, please see the visibility section
1106/// of the [reference] and for some examples, see [Rust by Example].
1107///
1108/// [reference]:../reference/visibility-and-privacy.html?highlight=pub#visibility-and-privacy
1109/// [Rust by Example]:../rust-by-example/mod/visibility.html
dfeec247 1110mod pub_keyword {}
48663c56
XL
1111
1112#[doc(keyword = "ref")]
1113//
1114/// Bind by reference during pattern matching.
1115///
3dfed10e
XL
1116/// `ref` annotates pattern bindings to make them borrow rather than move.
1117/// It is **not** a part of the pattern as far as matching is concerned: it does
1118/// not affect *whether* a value is matched, only *how* it is matched.
48663c56 1119///
3dfed10e
XL
1120/// By default, [`match`] statements consume all they can, which can sometimes
1121/// be a problem, when you don't really need the value to be moved and owned:
1122///
1123/// ```compile_fail,E0382
1124/// let maybe_name = Some(String::from("Alice"));
1125/// // The variable 'maybe_name' is consumed here ...
1126/// match maybe_name {
1127/// Some(n) => println!("Hello, {}", n),
1128/// _ => println!("Hello, world"),
1129/// }
1130/// // ... and is now unavailable.
1131/// println!("Hello again, {}", maybe_name.unwrap_or("world".into()));
1132/// ```
1133///
1134/// Using the `ref` keyword, the value is only borrowed, not moved, making it
1135/// available for use after the [`match`] statement:
1136///
1137/// ```
1138/// let maybe_name = Some(String::from("Alice"));
1139/// // Using `ref`, the value is borrowed, not moved ...
1140/// match maybe_name {
1141/// Some(ref n) => println!("Hello, {}", n),
1142/// _ => println!("Hello, world"),
1143/// }
1144/// // ... so it's available here!
1145/// println!("Hello again, {}", maybe_name.unwrap_or("world".into()));
1146/// ```
1147///
1148/// # `&` vs `ref`
1149///
1150/// - `&` denotes that your pattern expects a reference to an object. Hence `&`
1151/// is a part of said pattern: `&Foo` matches different objects than `Foo` does.
1152///
1153/// - `ref` indicates that you want a reference to an unpacked value. It is not
1154/// matched against: `Foo(ref foo)` matches the same objects as `Foo(foo)`.
1155///
1156/// See also the [Reference] for more information.
1157///
1158/// [`match`]: keyword.match.html
1159/// [Reference]: ../reference/patterns.html#identifier-patterns
dfeec247 1160mod ref_keyword {}
48663c56
XL
1161
1162#[doc(keyword = "return")]
1163//
1164/// Return a value from a function.
1165///
f035d41b 1166/// A `return` marks the end of an execution path in a function:
48663c56 1167///
f035d41b
XL
1168/// ```
1169/// fn foo() -> i32 {
1170/// return 3;
1171/// }
1172/// assert_eq!(foo(), 3);
1173/// ```
1174///
1175/// `return` is not needed when the returned value is the last expression in the
1176/// function. In this case the `;` is omitted:
1177///
1178/// ```
1179/// fn foo() -> i32 {
1180/// 3
1181/// }
1182/// assert_eq!(foo(), 3);
1183/// ```
1184///
1185/// `return` returns from the function immediately (an "early return"):
1186///
1187/// ```no_run
1188/// use std::fs::File;
1189/// use std::io::{Error, ErrorKind, Read, Result};
1190///
1191/// fn main() -> Result<()> {
1192/// let mut file = match File::open("foo.txt") {
1193/// Ok(f) => f,
1194/// Err(e) => return Err(e),
1195/// };
1196///
1197/// let mut contents = String::new();
1198/// let size = match file.read_to_string(&mut contents) {
1199/// Ok(s) => s,
1200/// Err(e) => return Err(e),
1201/// };
1202///
1203/// if contents.contains("impossible!") {
1204/// return Err(Error::new(ErrorKind::Other, "oh no!"));
1205/// }
1206///
1207/// if size > 9000 {
1208/// return Err(Error::new(ErrorKind::Other, "over 9000!"));
1209/// }
1210///
1211/// assert_eq!(contents, "Hello, world!");
1212/// Ok(())
1213/// }
1214/// ```
dfeec247 1215mod return_keyword {}
48663c56
XL
1216
1217#[doc(keyword = "self")]
1218//
1219/// The receiver of a method, or the current module.
1220///
f035d41b
XL
1221/// `self` is used in two situations: referencing the current module and marking
1222/// the receiver of a method.
48663c56 1223///
f035d41b
XL
1224/// In paths, `self` can be used to refer to the current module, either in a
1225/// [`use`] statement or in a path to access an element:
1226///
1227/// ```
1228/// # #![allow(unused_imports)]
1229/// use std::io::{self, Read};
1230/// ```
1231///
1232/// Is functionally the same as:
1233///
1234/// ```
1235/// # #![allow(unused_imports)]
1236/// use std::io;
1237/// use std::io::Read;
1238/// ```
1239///
1240/// Using `self` to access an element in the current module:
1241///
1242/// ```
1243/// # #![allow(dead_code)]
1244/// # fn main() {}
1245/// fn foo() {}
1246/// fn bar() {
1247/// self::foo()
1248/// }
1249/// ```
1250///
1251/// `self` as the current receiver for a method allows to omit the parameter
1252/// type most of the time. With the exception of this particularity, `self` is
1253/// used much like any other parameter:
1254///
1255/// ```
1256/// struct Foo(i32);
1257///
1258/// impl Foo {
1259/// // No `self`.
1260/// fn new() -> Self {
1261/// Self(0)
1262/// }
1263///
1264/// // Consuming `self`.
1265/// fn consume(self) -> Self {
1266/// Self(self.0 + 1)
1267/// }
1268///
1269/// // Borrowing `self`.
1270/// fn borrow(&self) -> &i32 {
1271/// &self.0
1272/// }
1273///
1274/// // Borrowing `self` mutably.
1275/// fn borrow_mut(&mut self) -> &mut i32 {
1276/// &mut self.0
1277/// }
1278/// }
1279///
1280/// // This method must be called with a `Type::` prefix.
1281/// let foo = Foo::new();
1282/// assert_eq!(foo.0, 0);
1283///
1284/// // Those two calls produces the same result.
1285/// let foo = Foo::consume(foo);
1286/// assert_eq!(foo.0, 1);
1287/// let foo = foo.consume();
1288/// assert_eq!(foo.0, 2);
1289///
1290/// // Borrowing is handled automatically with the second syntax.
1291/// let borrow_1 = Foo::borrow(&foo);
1292/// let borrow_2 = foo.borrow();
1293/// assert_eq!(borrow_1, borrow_2);
1294///
1295/// // Borrowing mutably is handled automatically too with the second syntax.
1296/// let mut foo = Foo::new();
1297/// *Foo::borrow_mut(&mut foo) += 1;
1298/// assert_eq!(foo.0, 1);
1299/// *foo.borrow_mut() += 1;
1300/// assert_eq!(foo.0, 2);
1301/// ```
1302///
1303/// Note that this automatic conversion when calling `foo.method()` is not
1304/// limited to the examples above. See the [Reference] for more information.
1305///
1306/// [`use`]: keyword.use.html
1307/// [Reference]: ../reference/items/associated-items.html#methods
dfeec247 1308mod self_keyword {}
48663c56 1309
36d6ef2b
XL
1310// FIXME: Once rustdoc can handle URL conflicts on case insensitive file systems, we can remove the
1311// three next lines and put back: `#[doc(keyword = "Self")]`.
1312#[doc(alias = "Self")]
1313#[allow(rustc::existing_doc_keyword)]
1314#[doc(keyword = "SelfTy")]
48663c56
XL
1315//
1316/// The implementing type within a [`trait`] or [`impl`] block, or the current type within a type
1317/// definition.
1318///
f035d41b
XL
1319/// Within a type definition:
1320///
1321/// ```
1322/// # #![allow(dead_code)]
1323/// struct Node {
1324/// elem: i32,
1325/// // `Self` is a `Node` here.
1326/// next: Option<Box<Self>>,
1327/// }
1328/// ```
1329///
1330/// In an [`impl`] block:
1331///
1332/// ```
1333/// struct Foo(i32);
1334///
1335/// impl Foo {
1336/// fn new() -> Self {
1337/// Self(0)
1338/// }
1339/// }
1340///
1341/// assert_eq!(Foo::new().0, Foo(0).0);
1342/// ```
1343///
1344/// Generic parameters are implicit with `Self`:
1345///
1346/// ```
1347/// # #![allow(dead_code)]
1348/// struct Wrap<T> {
1349/// elem: T,
1350/// }
1351///
1352/// impl<T> Wrap<T> {
1353/// fn new(elem: T) -> Self {
1354/// Self { elem }
1355/// }
1356/// }
1357/// ```
1358///
1359/// In a [`trait`] definition and related [`impl`] block:
1360///
1361/// ```
1362/// trait Example {
1363/// fn example() -> Self;
1364/// }
1365///
1366/// struct Foo(i32);
1367///
1368/// impl Example for Foo {
1369/// fn example() -> Self {
1370/// Self(42)
1371/// }
1372/// }
1373///
1374/// assert_eq!(Foo::example().0, Foo(42).0);
1375/// ```
48663c56
XL
1376///
1377/// [`impl`]: keyword.impl.html
1378/// [`trait`]: keyword.trait.html
dfeec247 1379mod self_upper_keyword {}
48663c56
XL
1380
1381#[doc(keyword = "static")]
1382//
f035d41b
XL
1383/// A static item is a value which is valid for the entire duration of your
1384/// program (a `'static` lifetime).
48663c56 1385///
f035d41b
XL
1386/// On the surface, `static` items seem very similar to [`const`]s: both contain
1387/// a value, both require type annotations and both can only be initialized with
1388/// constant functions and values. However, `static`s are notably different in
1389/// that they represent a location in memory. That means that you can have
1390/// references to `static` items and potentially even modify them, making them
1391/// essentially global variables.
48663c56 1392///
f035d41b
XL
1393/// Static items do not call [`drop`] at the end of the program.
1394///
1395/// There are two types of `static` items: those declared in association with
1396/// the [`mut`] keyword and those without.
1397///
1398/// Static items cannot be moved:
1399///
1400/// ```rust,compile_fail,E0507
1401/// static VEC: Vec<u32> = vec![];
1402///
1403/// fn move_vec(v: Vec<u32>) -> Vec<u32> {
1404/// v
1405/// }
1406///
1407/// // This line causes an error
1408/// move_vec(VEC);
1409/// ```
1410///
1411/// # Simple `static`s
1412///
1413/// Accessing non-[`mut`] `static` items is considered safe, but some
1414/// restrictions apply. Most notably, the type of a `static` value needs to
1415/// implement the [`Sync`] trait, ruling out interior mutability containers
1416/// like [`RefCell`]. See the [Reference] for more information.
1417///
1418/// ```rust
1419/// static FOO: [i32; 5] = [1, 2, 3, 4, 5];
1420///
1421/// let r1 = &FOO as *const _;
1422/// let r2 = &FOO as *const _;
3dfed10e 1423/// // With a strictly read-only static, references will have the same address
f035d41b
XL
1424/// assert_eq!(r1, r2);
1425/// // A static item can be used just like a variable in many cases
1426/// println!("{:?}", FOO);
1427/// ```
1428///
1429/// # Mutable `static`s
1430///
1431/// If a `static` item is declared with the [`mut`] keyword, then it is allowed
1432/// to be modified by the program. However, accessing mutable `static`s can
1433/// cause undefined behavior in a number of ways, for example due to data races
1434/// in a multithreaded context. As such, all accesses to mutable `static`s
1435/// require an [`unsafe`] block.
1436///
1437/// Despite their unsafety, mutable `static`s are necessary in many contexts:
1438/// they can be used to represent global state shared by the whole program or in
1439/// [`extern`] blocks to bind to variables from C libraries.
1440///
1441/// In an [`extern`] block:
1442///
1443/// ```rust,no_run
1444/// # #![allow(dead_code)]
1445/// extern "C" {
1446/// static mut ERROR_MESSAGE: *mut std::os::raw::c_char;
1447/// }
1448/// ```
1449///
1450/// Mutable `static`s, just like simple `static`s, have some restrictions that
1451/// apply to them. See the [Reference] for more information.
1452///
1453/// [`const`]: keyword.const.html
1454/// [`extern`]: keyword.extern.html
1455/// [`mut`]: keyword.mut.html
1456/// [`unsafe`]: keyword.unsafe.html
3dfed10e 1457/// [`RefCell`]: cell::RefCell
f035d41b 1458/// [Reference]: ../reference/items/static-items.html
dfeec247 1459mod static_keyword {}
48663c56 1460
0bf4aa26
XL
1461#[doc(keyword = "struct")]
1462//
48663c56 1463/// A type that is composed of other types.
0bf4aa26 1464///
a1dfa0c6 1465/// Structs in Rust come in three flavors: Structs with named fields, tuple structs, and unit
0bf4aa26
XL
1466/// structs.
1467///
1468/// ```rust
1469/// struct Regular {
1470/// field1: f32,
b7449926 1471/// field2: String,
0bf4aa26
XL
1472/// pub field3: bool
1473/// }
1474///
1475/// struct Tuple(u32, String);
1476///
1477/// struct Unit;
1478/// ```
1479///
1480/// Regular structs are the most commonly used. Each field defined within them has a name and a
1481/// type, and once defined can be accessed using `example_struct.field` syntax. The fields of a
1482/// struct share its mutability, so `foo.bar = 2;` would only be valid if `foo` was mutable. Adding
1483/// `pub` to a field makes it visible to code in other modules, as well as allowing it to be
1484/// directly accessed and modified.
1485///
1486/// Tuple structs are similar to regular structs, but its fields have no names. They are used like
9fa01778 1487/// tuples, with deconstruction possible via `let TupleStruct(x, y) = foo;` syntax. For accessing
0bf4aa26
XL
1488/// individual variables, the same syntax is used as with regular tuples, namely `foo.0`, `foo.1`,
1489/// etc, starting at zero.
1490///
1491/// Unit structs are most commonly used as marker. They have a size of zero bytes, but unlike empty
1492/// enums they can be instantiated, making them isomorphic to the unit type `()`. Unit structs are
1493/// useful when you need to implement a trait on something, but don't need to store any data inside
1494/// it.
1495///
1496/// # Instantiation
1497///
1498/// Structs can be instantiated in different ways, all of which can be mixed and
1499/// matched as needed. The most common way to make a new struct is via a constructor method such as
1500/// `new()`, but when that isn't available (or you're writing the constructor itself), struct
1501/// literal syntax is used:
1502///
1503/// ```rust
1504/// # struct Foo { field1: f32, field2: String, etc: bool }
1505/// let example = Foo {
1506/// field1: 42.0,
1507/// field2: "blah".to_string(),
1508/// etc: true,
1509/// };
1510/// ```
1511///
1512/// It's only possible to directly instantiate a struct using struct literal syntax when all of its
1513/// fields are visible to you.
1514///
1515/// There are a handful of shortcuts provided to make writing constructors more convenient, most
1516/// common of which is the Field Init shorthand. When there is a variable and a field of the same
1517/// name, the assignment can be simplified from `field: field` into simply `field`. The following
1518/// example of a hypothetical constructor demonstrates this:
1519///
1520/// ```rust
1521/// struct User {
1522/// name: String,
1523/// admin: bool,
1524/// }
1525///
1526/// impl User {
1527/// pub fn new(name: String) -> Self {
1528/// Self {
1529/// name,
1530/// admin: false,
1531/// }
1532/// }
b7449926
XL
1533/// }
1534/// ```
1535///
0bf4aa26
XL
1536/// Another shortcut for struct instantiation is available, used when you need to make a new
1537/// struct that has the same values as most of a previous struct of the same type, called struct
1538/// update syntax:
1539///
1540/// ```rust
1541/// # struct Foo { field1: String, field2: () }
1542/// # let thing = Foo { field1: "".to_string(), field2: () };
1543/// let updated_thing = Foo {
1544/// field1: "a new value".to_string(),
1545/// ..thing
1546/// };
1547/// ```
1548///
1549/// Tuple structs are instantiated in the same way as tuples themselves, except with the struct's
1550/// name as a prefix: `Foo(123, false, 0.1)`.
1551///
1552/// Empty structs are instantiated with just their name, and don't need anything else. `let thing =
1553/// EmptyStruct;`
1554///
1555/// # Style conventions
1556///
1557/// Structs are always written in CamelCase, with few exceptions. While the trailing comma on a
1558/// struct's list of fields can be omitted, it's usually kept for convenience in adding and
1559/// removing fields down the line.
1560///
1561/// For more information on structs, take a look at the [Rust Book][book] or the
1562/// [Reference][reference].
b7449926 1563///
3dfed10e 1564/// [`PhantomData`]: marker::PhantomData
48663c56
XL
1565/// [book]: ../book/ch05-01-defining-structs.html
1566/// [reference]: ../reference/items/structs.html
dfeec247 1567mod struct_keyword {}
48663c56
XL
1568
1569#[doc(keyword = "super")]
1570//
1571/// The parent of the current [module].
1572///
f035d41b
XL
1573/// ```rust
1574/// # #![allow(dead_code)]
1575/// # fn main() {}
1576/// mod a {
1577/// pub fn foo() {}
1578/// }
1579/// mod b {
1580/// pub fn foo() {
1581/// super::a::foo(); // call a's foo function
1582/// }
1583/// }
1584/// ```
1585///
1586/// It is also possible to use `super` multiple times: `super::super::foo`,
1587/// going up the ancestor chain.
1588///
1589/// See the [Reference] for more information.
48663c56
XL
1590///
1591/// [module]: ../reference/items/modules.html
f035d41b 1592/// [Reference]: ../reference/paths.html#super
dfeec247 1593mod super_keyword {}
48663c56
XL
1594
1595#[doc(keyword = "trait")]
1596//
3dfed10e
XL
1597/// A common interface for a group of types.
1598///
1599/// A `trait` is like an interface that data types can implement. When a type
1600/// implements a trait it can be treated abstractly as that trait using generics
1601/// or trait objects.
1602///
1603/// Traits can be made up of three varieties of associated items:
1604///
1605/// - functions and methods
1606/// - types
1607/// - constants
1608///
1609/// Traits may also contain additional type parameters. Those type parameters
1610/// or the trait itself can be constrained by other traits.
1611///
1612/// Traits can serve as markers or carry other logical semantics that
1613/// aren't expressed through their items. When a type implements that
1614/// trait it is promising to uphold its contract. [`Send`] and [`Sync`] are two
1615/// such marker traits present in the standard library.
1616///
1617/// See the [Reference][Ref-Traits] for a lot more information on traits.
1618///
1619/// # Examples
1620///
1621/// Traits are declared using the `trait` keyword. Types can implement them
1622/// using [`impl`] `Trait` [`for`] `Type`:
1623///
1624/// ```rust
1625/// trait Zero {
1626/// const ZERO: Self;
1627/// fn is_zero(&self) -> bool;
1628/// }
1629///
1630/// impl Zero for i32 {
1631/// const ZERO: Self = 0;
1632///
1633/// fn is_zero(&self) -> bool {
1634/// *self == Self::ZERO
1635/// }
1636/// }
1637///
1638/// assert_eq!(i32::ZERO, 0);
1639/// assert!(i32::ZERO.is_zero());
1640/// assert!(!4.is_zero());
1641/// ```
1642///
1643/// With an associated type:
1644///
1645/// ```rust
1646/// trait Builder {
1647/// type Built;
1648///
1649/// fn build(&self) -> Self::Built;
1650/// }
1651/// ```
1652///
1653/// Traits can be generic, with constraints or without:
1654///
1655/// ```rust
1656/// trait MaybeFrom<T> {
1657/// fn maybe_from(value: T) -> Option<Self>
1658/// where
1659/// Self: Sized;
1660/// }
1661/// ```
1662///
1663/// Traits can build upon the requirements of other traits. In the example
1664/// below `Iterator` is a **supertrait** and `ThreeIterator` is a **subtrait**:
1665///
1666/// ```rust
1667/// trait ThreeIterator: std::iter::Iterator {
1668/// fn next_three(&mut self) -> Option<[Self::Item; 3]>;
1669/// }
1670/// ```
1671///
1672/// Traits can be used in functions, as parameters:
1673///
1674/// ```rust
1675/// # #![allow(dead_code)]
1676/// fn debug_iter<I: Iterator>(it: I) where I::Item: std::fmt::Debug {
1677/// for elem in it {
1678/// println!("{:#?}", elem);
1679/// }
1680/// }
1681///
1682/// // u8_len_1, u8_len_2 and u8_len_3 are equivalent
1683///
1684/// fn u8_len_1(val: impl Into<Vec<u8>>) -> usize {
1685/// val.into().len()
1686/// }
1687///
1688/// fn u8_len_2<T: Into<Vec<u8>>>(val: T) -> usize {
1689/// val.into().len()
1690/// }
1691///
1692/// fn u8_len_3<T>(val: T) -> usize
1693/// where
1694/// T: Into<Vec<u8>>,
1695/// {
1696/// val.into().len()
1697/// }
1698/// ```
1699///
1700/// Or as return types:
1701///
1702/// ```rust
1703/// # #![allow(dead_code)]
1704/// fn from_zero_to(v: u8) -> impl Iterator<Item = u8> {
1705/// (0..v).into_iter()
1706/// }
1707/// ```
1708///
1709/// The use of the [`impl`] keyword in this position allows the function writer
1710/// to hide the concrete type as an implementation detail which can change
1711/// without breaking user's code.
1712///
1713/// # Trait objects
1714///
1715/// A *trait object* is an opaque value of another type that implements a set of
1716/// traits. A trait object implements all specified traits as well as their
1717/// supertraits (if any).
1718///
1719/// The syntax is the following: `dyn BaseTrait + AutoTrait1 + ... AutoTraitN`.
1720/// Only one `BaseTrait` can be used so this will not compile:
1721///
1722/// ```rust,compile_fail,E0225
1723/// trait A {}
1724/// trait B {}
1725///
1726/// let _: Box<dyn A + B>;
1727/// ```
1728///
1729/// Neither will this, which is a syntax error:
1730///
1731/// ```rust,compile_fail
1732/// trait A {}
1733/// trait B {}
1734///
1735/// let _: Box<dyn A + dyn B>;
1736/// ```
1737///
1738/// On the other hand, this is correct:
1739///
1740/// ```rust
1741/// trait A {}
1742///
1743/// let _: Box<dyn A + Send + Sync>;
1744/// ```
1745///
1746/// The [Reference][Ref-Trait-Objects] has more information about trait objects,
1747/// their limitations and the differences between editions.
1748///
1749/// # Unsafe traits
48663c56 1750///
3dfed10e
XL
1751/// Some traits may be unsafe to implement. Using the [`unsafe`] keyword in
1752/// front of the trait's declaration is used to mark this:
48663c56 1753///
3dfed10e
XL
1754/// ```rust
1755/// unsafe trait UnsafeTrait {}
1756///
1757/// unsafe impl UnsafeTrait for i32 {}
1758/// ```
1759///
1760/// # Differences between the 2015 and 2018 editions
1761///
fc512014 1762/// In the 2015 edition the parameters pattern was not needed for traits:
3dfed10e
XL
1763///
1764/// ```rust,edition2015
cdc7bbd5 1765/// # #![allow(anonymous_parameters)]
3dfed10e
XL
1766/// trait Tr {
1767/// fn f(i32);
1768/// }
1769/// ```
1770///
1771/// This behavior is no longer valid in edition 2018.
1772///
1773/// [`for`]: keyword.for.html
1774/// [`impl`]: keyword.impl.html
1775/// [`unsafe`]: keyword.unsafe.html
1776/// [Ref-Traits]: ../reference/items/traits.html
1777/// [Ref-Trait-Objects]: ../reference/types/trait-object.html
dfeec247 1778mod trait_keyword {}
48663c56
XL
1779
1780#[doc(keyword = "true")]
1781//
1782/// A value of type [`bool`] representing logical **true**.
1783///
74b04a01
XL
1784/// Logically `true` is not equal to [`false`].
1785///
1786/// ## Control structures that check for **true**
1787///
1788/// Several of Rust's control structures will check for a `bool` condition evaluating to **true**.
1789///
1790/// * The condition in an [`if`] expression must be of type `bool`.
1791/// Whenever that condition evaluates to **true**, the `if` expression takes
1792/// on the value of the first block. If however, the condition evaluates
1793/// to `false`, the expression takes on value of the `else` block if there is one.
1794///
1795/// * [`while`] is another control flow construct expecting a `bool`-typed condition.
1796/// As long as the condition evaluates to **true**, the `while` loop will continually
1797/// evaluate its associated block.
48663c56 1798///
74b04a01
XL
1799/// * [`match`] arms can have guard clauses on them.
1800///
1801/// [`if`]: keyword.if.html
1802/// [`while`]: keyword.while.html
1803/// [`match`]: ../reference/expressions/match-expr.html#match-guards
1804/// [`false`]: keyword.false.html
dfeec247 1805mod true_keyword {}
48663c56
XL
1806
1807#[doc(keyword = "type")]
1808//
1809/// Define an alias for an existing type.
1810///
f035d41b 1811/// The syntax is `type Name = ExistingType;`.
48663c56 1812///
f035d41b
XL
1813/// # Examples
1814///
1815/// `type` does **not** create a new type:
1816///
1817/// ```rust
1818/// type Meters = u32;
1819/// type Kilograms = u32;
1820///
1821/// let m: Meters = 3;
1822/// let k: Kilograms = 3;
1823///
1824/// assert_eq!(m, k);
1825/// ```
1826///
1827/// In traits, `type` is used to declare an [associated type]:
1828///
1829/// ```rust
1830/// trait Iterator {
1831/// // associated type declaration
1832/// type Item;
1833/// fn next(&mut self) -> Option<Self::Item>;
1834/// }
1835///
1836/// struct Once<T>(Option<T>);
1837///
1838/// impl<T> Iterator for Once<T> {
1839/// // associated type definition
1840/// type Item = T;
1841/// fn next(&mut self) -> Option<Self::Item> {
1842/// self.0.take()
1843/// }
1844/// }
1845/// ```
1846///
1847/// [`trait`]: keyword.trait.html
1848/// [associated type]: ../reference/items/associated-items.html#associated-types
dfeec247 1849mod type_keyword {}
48663c56
XL
1850
1851#[doc(keyword = "unsafe")]
1852//
3dfed10e
XL
1853/// Code or interfaces whose [memory safety] cannot be verified by the type
1854/// system.
1855///
1856/// The `unsafe` keyword has two uses: to declare the existence of contracts the
1857/// compiler can't check (`unsafe fn` and `unsafe trait`), and to declare that a
1858/// programmer has checked that these contracts have been upheld (`unsafe {}`
1859/// and `unsafe impl`, but also `unsafe fn` -- see below). They are not mutually
1860/// exclusive, as can be seen in `unsafe fn`.
1861///
1862/// # Unsafe abilities
1863///
1864/// **No matter what, Safe Rust can't cause Undefined Behavior**. This is
1865/// referred to as [soundness]: a well-typed program actually has the desired
1866/// properties. The [Nomicon][nomicon-soundness] has a more detailed explanation
1867/// on the subject.
1868///
1869/// To ensure soundness, Safe Rust is restricted enough that it can be
1870/// automatically checked. Sometimes, however, it is necessary to write code
1871/// that is correct for reasons which are too clever for the compiler to
1872/// understand. In those cases, you need to use Unsafe Rust.
1873///
1874/// Here are the abilities Unsafe Rust has in addition to Safe Rust:
1875///
1876/// - Dereference [raw pointers]
1877/// - Implement `unsafe` [`trait`]s
1878/// - Call `unsafe` functions
1879/// - Mutate [`static`]s (including [`extern`]al ones)
1880/// - Access fields of [`union`]s
1881///
1882/// However, this extra power comes with extra responsibilities: it is now up to
1883/// you to ensure soundness. The `unsafe` keyword helps by clearly marking the
1884/// pieces of code that need to worry about this.
1885///
1886/// ## The different meanings of `unsafe`
1887///
1888/// Not all uses of `unsafe` are equivalent: some are here to mark the existence
1889/// of a contract the programmer must check, others are to say "I have checked
1890/// the contract, go ahead and do this". The following
1891/// [discussion on Rust Internals] has more in-depth explanations about this but
1892/// here is a summary of the main points:
1893///
1894/// - `unsafe fn`: calling this function means abiding by a contract the
1895/// compiler cannot enforce.
1896/// - `unsafe trait`: implementing the [`trait`] means abiding by a
1897/// contract the compiler cannot enforce.
1898/// - `unsafe {}`: the contract necessary to call the operations inside the
1899/// block has been checked by the programmer and is guaranteed to be respected.
1900/// - `unsafe impl`: the contract necessary to implement the trait has been
1901/// checked by the programmer and is guaranteed to be respected.
1902///
1903/// `unsafe fn` also acts like an `unsafe {}` block
1904/// around the code inside the function. This means it is not just a signal to
1905/// the caller, but also promises that the preconditions for the operations
1906/// inside the function are upheld. Mixing these two meanings can be confusing
1907/// and [proposal]s exist to use `unsafe {}` blocks inside such functions when
1908/// making `unsafe` operations.
1909///
1910/// See the [Rustnomicon] and the [Reference] for more informations.
1911///
1912/// # Examples
1913///
1914/// ## Marking elements as `unsafe`
1915///
1916/// `unsafe` can be used on functions. Note that functions and statics declared
1917/// in [`extern`] blocks are implicitly marked as `unsafe` (but not functions
1918/// declared as `extern "something" fn ...`). Mutable statics are always unsafe,
1919/// wherever they are declared. Methods can also be declared as `unsafe`:
1920///
1921/// ```rust
1922/// # #![allow(dead_code)]
1923/// static mut FOO: &str = "hello";
1924///
1925/// unsafe fn unsafe_fn() {}
1926///
1927/// extern "C" {
1928/// fn unsafe_extern_fn();
1929/// static BAR: *mut u32;
1930/// }
1931///
1932/// trait SafeTraitWithUnsafeMethod {
1933/// unsafe fn unsafe_method(&self);
1934/// }
1935///
1936/// struct S;
1937///
1938/// impl S {
1939/// unsafe fn unsafe_method_on_struct() {}
1940/// }
1941/// ```
1942///
1943/// Traits can also be declared as `unsafe`:
1944///
1945/// ```rust
1946/// unsafe trait UnsafeTrait {}
1947/// ```
1948///
1949/// Since `unsafe fn` and `unsafe trait` indicate that there is a safety
1950/// contract that the compiler cannot enforce, documenting it is important. The
1951/// standard library has many examples of this, like the following which is an
1952/// extract from [`Vec::set_len`]. The `# Safety` section explains the contract
1953/// that must be fulfilled to safely call the function.
1954///
1955/// ```rust,ignore (stub-to-show-doc-example)
1956/// /// Forces the length of the vector to `new_len`.
1957/// ///
1958/// /// This is a low-level operation that maintains none of the normal
1959/// /// invariants of the type. Normally changing the length of a vector
1960/// /// is done using one of the safe operations instead, such as
1961/// /// `truncate`, `resize`, `extend`, or `clear`.
1962/// ///
1963/// /// # Safety
1964/// ///
1965/// /// - `new_len` must be less than or equal to `capacity()`.
1966/// /// - The elements at `old_len..new_len` must be initialized.
1967/// pub unsafe fn set_len(&mut self, new_len: usize)
1968/// ```
1969///
1970/// ## Using `unsafe {}` blocks and `impl`s
1971///
1972/// Performing `unsafe` operations requires an `unsafe {}` block:
1973///
1974/// ```rust
1975/// # #![allow(dead_code)]
1976/// /// Dereference the given pointer.
1977/// ///
1978/// /// # Safety
1979/// ///
1980/// /// `ptr` must be aligned and must not be dangling.
1981/// unsafe fn deref_unchecked(ptr: *const i32) -> i32 {
1982/// *ptr
1983/// }
1984///
1985/// let a = 3;
1986/// let b = &a as *const _;
1987/// // SAFETY: `a` has not been dropped and references are always aligned,
1988/// // so `b` is a valid address.
1989/// unsafe { assert_eq!(*b, deref_unchecked(b)); };
1990/// ```
1991///
1992/// Traits marked as `unsafe` must be [`impl`]emented using `unsafe impl`. This
1993/// makes a guarantee to other `unsafe` code that the implementation satisfies
1994/// the trait's safety contract. The [Send] and [Sync] traits are examples of
1995/// this behaviour in the standard library.
1996///
1997/// ```rust
1998/// /// Implementors of this trait must guarantee an element is always
1999/// /// accessible with index 3.
2000/// unsafe trait ThreeIndexable<T> {
2001/// /// Returns a reference to the element with index 3 in `&self`.
2002/// fn three(&self) -> &T;
2003/// }
2004///
2005/// // The implementation of `ThreeIndexable` for `[T; 4]` is `unsafe`
2006/// // because the implementor must abide by a contract the compiler cannot
2007/// // check but as a programmer we know there will always be a valid element
2008/// // at index 3 to access.
2009/// unsafe impl<T> ThreeIndexable<T> for [T; 4] {
2010/// fn three(&self) -> &T {
2011/// // SAFETY: implementing the trait means there always is an element
2012/// // with index 3 accessible.
2013/// unsafe { self.get_unchecked(3) }
2014/// }
2015/// }
48663c56 2016///
3dfed10e
XL
2017/// let a = [1, 2, 4, 8];
2018/// assert_eq!(a.three(), &8);
2019/// ```
48663c56 2020///
3dfed10e
XL
2021/// [`extern`]: keyword.extern.html
2022/// [`trait`]: keyword.trait.html
2023/// [`static`]: keyword.static.html
2024/// [`union`]: keyword.union.html
2025/// [`impl`]: keyword.impl.html
2026/// [raw pointers]: ../reference/types/pointer.html
48663c56 2027/// [memory safety]: ../book/ch19-01-unsafe-rust.html
3dfed10e
XL
2028/// [Rustnomicon]: ../nomicon/index.html
2029/// [nomicon-soundness]: ../nomicon/safe-unsafe-meaning.html
2030/// [soundness]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#soundness-of-code--of-a-library
2031/// [Reference]: ../reference/unsafety.html
2032/// [proposal]: https://github.com/rust-lang/rfcs/pull/2585
2033/// [discussion on Rust Internals]: https://internals.rust-lang.org/t/what-does-unsafe-mean/6696
dfeec247 2034mod unsafe_keyword {}
48663c56
XL
2035
2036#[doc(keyword = "use")]
2037//
2038/// Import or rename items from other crates or modules.
2039///
f035d41b
XL
2040/// Usually a `use` keyword is used to shorten the path required to refer to a module item.
2041/// The keyword may appear in modules, blocks and even functions, usually at the top.
2042///
2043/// The most basic usage of the keyword is `use path::to::item;`,
2044/// though a number of convenient shortcuts are supported:
2045///
2046/// * Simultaneously binding a list of paths with a common prefix,
2047/// using the glob-like brace syntax `use a::b::{c, d, e::f, g::h::i};`
2048/// * Simultaneously binding a list of paths with a common prefix and their common parent module,
2049/// using the [`self`] keyword, such as `use a::b::{self, c, d::e};`
2050/// * Rebinding the target name as a new local name, using the syntax `use p::q::r as x;`.
2051/// This can also be used with the last two features: `use a::b::{self as ab, c as abc}`.
2052/// * Binding all paths matching a given prefix,
2053/// using the asterisk wildcard syntax `use a::b::*;`.
2054/// * Nesting groups of the previous features multiple times,
2055/// such as `use a::b::{self as ab, c, d::{*, e::f}};`
2056/// * Reexporting with visibility modifiers such as `pub use a::b;`
2057/// * Importing with `_` to only import the methods of a trait without binding it to a name
2058/// (to avoid conflict for example): `use ::std::io::Read as _;`.
2059///
2060/// Using path qualifiers like [`crate`], [`super`] or [`self`] is supported: `use crate::a::b;`.
2061///
2062/// Note that when the wildcard `*` is used on a type, it does not import its methods (though
2063/// for `enum`s it imports the variants, as shown in the example below).
2064///
2065/// ```compile_fail,edition2018
2066/// enum ExampleEnum {
2067/// VariantA,
2068/// VariantB,
2069/// }
48663c56 2070///
f035d41b
XL
2071/// impl ExampleEnum {
2072/// fn new() -> Self {
2073/// Self::VariantA
2074/// }
2075/// }
2076///
2077/// use ExampleEnum::*;
2078///
2079/// // Compiles.
2080/// let _ = VariantA;
2081///
2082/// // Does not compile !
2083/// let n = new();
2084/// ```
2085///
2086/// For more information on `use` and paths in general, see the [Reference].
2087///
2088/// The differences about paths and the `use` keyword between the 2015 and 2018 editions
2089/// can also be found in the [Reference].
2090///
2091/// [`crate`]: keyword.crate.html
2092/// [`self`]: keyword.self.html
2093/// [`super`]: keyword.super.html
2094/// [Reference]: ../reference/items/use-declarations.html
dfeec247 2095mod use_keyword {}
48663c56
XL
2096
2097#[doc(keyword = "where")]
2098//
2099/// Add constraints that must be upheld to use an item.
2100///
3dfed10e
XL
2101/// `where` allows specifying constraints on lifetime and generic parameters.
2102/// The [RFC] introducing `where` contains detailed informations about the
2103/// keyword.
2104///
2105/// # Examples
2106///
2107/// `where` can be used for constraints with traits:
2108///
2109/// ```rust
2110/// fn new<T: Default>() -> T {
2111/// T::default()
2112/// }
2113///
2114/// fn new_where<T>() -> T
2115/// where
2116/// T: Default,
2117/// {
2118/// T::default()
2119/// }
2120///
2121/// assert_eq!(0.0, new());
2122/// assert_eq!(0.0, new_where());
2123///
2124/// assert_eq!(0, new());
2125/// assert_eq!(0, new_where());
2126/// ```
2127///
2128/// `where` can also be used for lifetimes.
2129///
2130/// This compiles because `longer` outlives `shorter`, thus the constraint is
2131/// respected:
2132///
2133/// ```rust
2134/// fn select<'short, 'long>(s1: &'short str, s2: &'long str, second: bool) -> &'short str
2135/// where
2136/// 'long: 'short,
2137/// {
2138/// if second { s2 } else { s1 }
2139/// }
2140///
2141/// let outer = String::from("Long living ref");
2142/// let longer = &outer;
2143/// {
2144/// let inner = String::from("Short living ref");
2145/// let shorter = &inner;
2146///
2147/// assert_eq!(select(shorter, longer, false), shorter);
2148/// assert_eq!(select(shorter, longer, true), longer);
2149/// }
2150/// ```
2151///
2152/// On the other hand, this will not compile because the `where 'b: 'a` clause
2153/// is missing: the `'b` lifetime is not known to live at least as long as `'a`
2154/// which means this function cannot ensure it always returns a valid reference:
2155///
2156/// ```rust,compile_fail,E0623
2157/// fn select<'a, 'b>(s1: &'a str, s2: &'b str, second: bool) -> &'a str
2158/// {
2159/// if second { s2 } else { s1 }
2160/// }
2161/// ```
2162///
2163/// `where` can also be used to express more complicated constraints that cannot
2164/// be written with the `<T: Trait>` syntax:
2165///
2166/// ```rust
2167/// fn first_or_default<I>(mut i: I) -> I::Item
2168/// where
2169/// I: Iterator,
2170/// I::Item: Default,
2171/// {
2172/// i.next().unwrap_or_else(I::Item::default)
2173/// }
2174///
2175/// assert_eq!(first_or_default(vec![1, 2, 3].into_iter()), 1);
2176/// assert_eq!(first_or_default(Vec::<i32>::new().into_iter()), 0);
2177/// ```
2178///
2179/// `where` is available anywhere generic and lifetime parameters are available,
2180/// as can be seen with the [`Cow`](crate::borrow::Cow) type from the standard
2181/// library:
2182///
2183/// ```rust
2184/// # #![allow(dead_code)]
2185/// pub enum Cow<'a, B>
2186/// where
2187/// B: 'a + ToOwned + ?Sized,
2188/// {
2189/// Borrowed(&'a B),
2190/// Owned(<B as ToOwned>::Owned),
2191/// }
2192/// ```
48663c56 2193///
3dfed10e 2194/// [RFC]: https://github.com/rust-lang/rfcs/blob/master/text/0135-where.md
dfeec247 2195mod where_keyword {}
48663c56 2196
48663c56
XL
2197// 2018 Edition keywords
2198
fc512014 2199#[doc(alias = "promise")]
48663c56
XL
2200#[doc(keyword = "async")]
2201//
2202/// Return a [`Future`] instead of blocking the current thread.
2203///
dfeec247
XL
2204/// Use `async` in front of `fn`, `closure`, or a `block` to turn the marked code into a `Future`.
2205/// As such the code will not be run immediately, but will only be evaluated when the returned
2206/// future is `.await`ed.
2207///
2208/// We have written an [async book] detailing async/await and trade-offs compared to using threads.
2209///
2210/// ## Editions
2211///
2212/// `async` is a keyword from the 2018 edition onwards.
2213///
2214/// It is available for use in stable rust from version 1.39 onwards.
48663c56 2215///
3dfed10e 2216/// [`Future`]: future::Future
dfeec247
XL
2217/// [async book]: https://rust-lang.github.io/async-book/
2218mod async_keyword {}
48663c56 2219
48663c56
XL
2220#[doc(keyword = "await")]
2221//
2222/// Suspend execution until the result of a [`Future`] is ready.
2223///
dfeec247
XL
2224/// `.await`ing a future will suspend the current function's execution until the `executor`
2225/// has run the future to completion.
2226///
2227/// Read the [async book] for details on how async/await and executors work.
2228///
2229/// ## Editions
2230///
2231/// `await` is a keyword from the 2018 edition onwards.
2232///
2233/// It is available for use in stable rust from version 1.39 onwards.
48663c56 2234///
3dfed10e 2235/// [`Future`]: future::Future
dfeec247
XL
2236/// [async book]: https://rust-lang.github.io/async-book/
2237mod await_keyword {}
48663c56
XL
2238
2239#[doc(keyword = "dyn")]
2240//
74b04a01 2241/// `dyn` is a prefix of a [trait object]'s type.
48663c56 2242///
74b04a01
XL
2243/// The `dyn` keyword is used to highlight that calls to methods on the associated `Trait`
2244/// are dynamically dispatched. To use the trait this way, it must be 'object safe'.
2245///
2246/// Unlike generic parameters or `impl Trait`, the compiler does not know the concrete type that
2247/// is being passed. That is, the type has been [erased].
2248/// As such, a `dyn Trait` reference contains _two_ pointers.
2249/// One pointer goes to the data (e.g., an instance of a struct).
2250/// Another pointer goes to a map of method call names to function pointers
2251/// (known as a virtual method table or vtable).
2252///
2253/// At run-time, when a method needs to be called on the `dyn Trait`, the vtable is consulted to get
2254/// the function pointer and then that function pointer is called.
2255///
136023e0
XL
2256/// See the Reference for more information on [trait objects][ref-trait-obj]
2257/// and [object safety][ref-obj-safety].
2258///
74b04a01
XL
2259/// ## Trade-offs
2260///
2261/// The above indirection is the additional runtime cost of calling a function on a `dyn Trait`.
2262/// Methods called by dynamic dispatch generally cannot be inlined by the compiler.
2263///
2264/// However, `dyn Trait` is likely to produce smaller code than `impl Trait` / generic parameters as
2265/// the method won't be duplicated for each concrete type.
2266///
48663c56 2267/// [trait object]: ../book/ch17-02-trait-objects.html
136023e0
XL
2268/// [ref-trait-obj]: ../reference/types/trait-object.html
2269/// [ref-obj-safety]: ../reference/items/traits.html#object-safety
74b04a01 2270/// [erased]: https://en.wikipedia.org/wiki/Type_erasure
dfeec247 2271mod dyn_keyword {}
48663c56
XL
2272
2273#[doc(keyword = "union")]
2274//
2275/// The [Rust equivalent of a C-style union][union].
2276///
f035d41b
XL
2277/// A `union` looks like a [`struct`] in terms of declaration, but all of its
2278/// fields exist in the same memory, superimposed over one another. For instance,
2279/// if we wanted some bits in memory that we sometimes interpret as a `u32` and
2280/// sometimes as an `f32`, we could write:
48663c56 2281///
f035d41b
XL
2282/// ```rust
2283/// union IntOrFloat {
2284/// i: u32,
2285/// f: f32,
2286/// }
2287///
2288/// let mut u = IntOrFloat { f: 1.0 };
94222f64 2289/// // Reading the fields of a union is always unsafe
f035d41b
XL
2290/// assert_eq!(unsafe { u.i }, 1065353216);
2291/// // Updating through any of the field will modify all of them
2292/// u.i = 1073741824;
2293/// assert_eq!(unsafe { u.f }, 2.0);
2294/// ```
2295///
2296/// # Matching on unions
2297///
2298/// It is possible to use pattern matching on `union`s. A single field name must
2299/// be used and it must match the name of one of the `union`'s field.
2300/// Like reading from a `union`, pattern matching on a `union` requires `unsafe`.
2301///
2302/// ```rust
2303/// union IntOrFloat {
2304/// i: u32,
2305/// f: f32,
2306/// }
2307///
2308/// let u = IntOrFloat { f: 1.0 };
2309///
2310/// unsafe {
2311/// match u {
2312/// IntOrFloat { i: 10 } => println!("Found exactly ten!"),
2313/// // Matching the field `f` provides an `f32`.
2314/// IntOrFloat { f } => println!("Found f = {} !", f),
2315/// }
2316/// }
2317/// ```
2318///
2319/// # References to union fields
2320///
2321/// All fields in a `union` are all at the same place in memory which means
2322/// borrowing one borrows the entire `union`, for the same lifetime:
2323///
2324/// ```rust,compile_fail,E0502
2325/// union IntOrFloat {
2326/// i: u32,
2327/// f: f32,
2328/// }
2329///
2330/// let mut u = IntOrFloat { f: 1.0 };
2331///
2332/// let f = unsafe { &u.f };
2333/// // This will not compile because the field has already been borrowed, even
2334/// // if only immutably
2335/// let i = unsafe { &mut u.i };
2336///
2337/// *i = 10;
2338/// println!("f = {} and i = {}", f, i);
2339/// ```
2340///
2341/// See the [Reference][union] for more informations on `union`s.
2342///
2343/// [`struct`]: keyword.struct.html
48663c56 2344/// [union]: ../reference/items/unions.html
dfeec247 2345mod union_keyword {}