]> git.proxmox.com Git - rustc.git/blame - library/std/src/keyword_docs.rs
New upstream version 1.71.1+dfsg1
[rustc.git] / library / std / src / keyword_docs.rs
CommitLineData
0bf4aa26
XL
1#[doc(keyword = "as")]
2//
48663c56 3/// Cast between types, or rename an import.
0bf4aa26
XL
4///
5/// `as` is most commonly used to turn primitive types into other primitive types, but it has other
6/// uses that include turning pointers into addresses, addresses into pointers, and pointers into
7/// other pointers.
8///
9/// ```rust
10/// let thing1: u8 = 89.0 as u8;
11/// assert_eq!('B' as u32, 66);
12/// assert_eq!(thing1 as char, 'Y');
13/// let thing2: f32 = thing1 as f32 + 10.5;
14/// assert_eq!(true as u8 + thing2 as u8, 100);
15/// ```
16///
17/// In general, any cast that can be performed via ascribing the type can also be done using `as`,
29967ef6
XL
18/// so instead of writing `let x: u32 = 123`, you can write `let x = 123 as u32` (note: `let x: u32
19/// = 123` would be best in that situation). The same is not true in the other direction, however;
0bf4aa26
XL
20/// explicitly using `as` allows a few more coercions that aren't allowed implicitly, such as
21/// changing the type of a raw pointer or turning closures into raw pointers.
22///
fc512014
XL
23/// `as` can be seen as the primitive for `From` and `Into`: `as` only works with primitives
24/// (`u8`, `bool`, `str`, pointers, ...) whereas `From` and `Into` also works with types like
25/// `String` or `Vec`.
26///
27/// `as` can also be used with the `_` placeholder when the destination type can be inferred. Note
28/// that this can cause inference breakage and usually such code should use an explicit type for
29/// both clarity and stability. This is most useful when converting pointers using `as *const _` or
30/// `as *mut _` though the [`cast`][const-cast] method is recommended over `as *const _` and it is
31/// [the same][mut-cast] for `as *mut _`: those methods make the intent clearer.
32///
33/// `as` is also used to rename imports in [`use`] and [`extern crate`][`crate`] statements:
0bf4aa26 34///
29967ef6
XL
35/// ```
36/// # #[allow(unused_imports)]
37/// use std::{mem as memory, net as network};
38/// // Now you can use the names `memory` and `network` to refer to `std::mem` and `std::net`.
39/// ```
29967ef6 40/// For more information on what `as` is capable of, see the [Reference].
0bf4aa26 41///
48663c56 42/// [Reference]: ../reference/expressions/operator-expr.html#type-cast-expressions
fc512014 43/// [`crate`]: keyword.crate.html
29967ef6 44/// [`use`]: keyword.use.html
6a06907d 45/// [const-cast]: pointer::cast
fc512014 46/// [mut-cast]: primitive.pointer.html#method.cast-1
dfeec247 47mod as_keyword {}
0bf4aa26 48
48663c56
XL
49#[doc(keyword = "break")]
50//
51/// Exit early from a loop.
52///
e74abb32
XL
53/// When `break` is encountered, execution of the associated loop body is
54/// immediately terminated.
55///
56/// ```rust
57/// let mut last = 0;
58///
59/// for x in 1..100 {
60/// if x > 12 {
61/// break;
62/// }
63/// last = x;
64/// }
65///
66/// assert_eq!(last, 12);
5e7ed085 67/// println!("{last}");
e74abb32
XL
68/// ```
69///
70/// A break expression is normally associated with the innermost loop enclosing the
71/// `break` but a label can be used to specify which enclosing loop is affected.
72///
923072b8 73/// ```rust
e74abb32 74/// 'outer: for i in 1..=5 {
5e7ed085 75/// println!("outer iteration (i): {i}");
e74abb32 76///
60c5eb7d 77/// '_inner: for j in 1..=200 {
5e7ed085 78/// println!(" inner iteration (j): {j}");
e74abb32 79/// if j >= 3 {
c295e0f8 80/// // breaks from inner loop, lets outer loop continue.
e74abb32
XL
81/// break;
82/// }
83/// if i >= 2 {
84/// // breaks from outer loop, and directly to "Bye".
85/// break 'outer;
86/// }
87/// }
88/// }
89/// println!("Bye.");
923072b8 90/// ```
e74abb32
XL
91///
92/// When associated with `loop`, a break expression may be used to return a value from that loop.
93/// This is only valid with `loop` and not with any other type of loop.
94/// If no value is specified, `break;` returns `()`.
95/// Every `break` within a loop must return the same type.
96///
97/// ```rust
98/// let (mut a, mut b) = (1, 1);
99/// let result = loop {
100/// if b > 10 {
101/// break b;
102/// }
103/// let c = a + b;
104/// a = b;
105/// b = c;
106/// };
107/// // first number in Fibonacci sequence over 10:
108/// assert_eq!(result, 13);
5e7ed085 109/// println!("{result}");
e74abb32
XL
110/// ```
111///
112/// For more details consult the [Reference on "break expression"] and the [Reference on "break and
113/// loop values"].
114///
115/// [Reference on "break expression"]: ../reference/expressions/loop-expr.html#break-expressions
116/// [Reference on "break and loop values"]:
117/// ../reference/expressions/loop-expr.html#break-and-loop-values
dfeec247 118mod break_keyword {}
48663c56 119
0bf4aa26
XL
120#[doc(keyword = "const")]
121//
c295e0f8 122/// Compile-time constants, compile-time evaluable functions, and raw pointers.
29967ef6
XL
123///
124/// ## Compile-time constants
0bf4aa26
XL
125///
126/// Sometimes a certain value is used many times throughout a program, and it can become
127/// inconvenient to copy it over and over. What's more, it's not always possible or desirable to
128/// make it a variable that gets carried around to each function that needs it. In these cases, the
1b1a35ee 129/// `const` keyword provides a convenient alternative to code duplication:
0bf4aa26
XL
130///
131/// ```rust
132/// const THING: u32 = 0xABAD1DEA;
133///
134/// let foo = 123 + THING;
135/// ```
136///
1b1a35ee
XL
137/// Constants must be explicitly typed; unlike with `let`, you can't ignore their type and let the
138/// compiler figure it out. Any constant value can be defined in a `const`, which in practice happens
139/// to be most things that would be reasonable to have in a constant (barring `const fn`s). For
140/// example, you can't have a [`File`] as a `const`.
141///
142/// [`File`]: crate::fs::File
0bf4aa26
XL
143///
144/// The only lifetime allowed in a constant is `'static`, which is the lifetime that encompasses
145/// all others in a Rust program. For example, if you wanted to define a constant string, it would
146/// look like this:
147///
148/// ```rust
60c5eb7d 149/// const WORDS: &'static str = "hello rust!";
0bf4aa26
XL
150/// ```
151///
1b1a35ee 152/// Thanks to static lifetime elision, you usually don't have to explicitly use `'static`:
0bf4aa26
XL
153///
154/// ```rust
155/// const WORDS: &str = "hello convenience!";
156/// ```
157///
158/// `const` items looks remarkably similar to `static` items, which introduces some confusion as
159/// to which one should be used at which times. To put it simply, constants are inlined wherever
1b1a35ee
XL
160/// they're used, making using them identical to simply replacing the name of the `const` with its
161/// value. Static variables, on the other hand, point to a single location in memory, which all
0bf4aa26
XL
162/// accesses share. This means that, unlike with constants, they can't have destructors, and act as
163/// a single value across the entire codebase.
164///
1b1a35ee 165/// Constants, like statics, should always be in `SCREAMING_SNAKE_CASE`.
0bf4aa26 166///
29967ef6
XL
167/// For more detail on `const`, see the [Rust Book] or the [Reference].
168///
169/// ## Compile-time evaluable functions
170///
171/// The other main use of the `const` keyword is in `const fn`. This marks a function as being
172/// callable in the body of a `const` or `static` item and in array initializers (commonly called
173/// "const contexts"). `const fn` are restricted in the set of operations they can perform, to
174/// ensure that they can be evaluated at compile-time. See the [Reference][const-eval] for more
175/// detail.
176///
177/// Turning a `fn` into a `const fn` has no effect on run-time uses of that function.
178///
179/// ## Other uses of `const`
180///
0bf4aa26 181/// The `const` keyword is also used in raw pointers in combination with `mut`, as seen in `*const
1b1a35ee 182/// T` and `*mut T`. More about `const` as used in raw pointers can be read at the Rust docs for the [pointer primitive].
0bf4aa26 183///
6a06907d 184/// [pointer primitive]: pointer
3c0e092e 185/// [Rust Book]: ../book/ch03-01-variables-and-mutability.html#constants
48663c56 186/// [Reference]: ../reference/items/constant-items.html
29967ef6 187/// [const-eval]: ../reference/const_eval.html
dfeec247 188mod const_keyword {}
0bf4aa26 189
48663c56
XL
190#[doc(keyword = "continue")]
191//
192/// Skip to the next iteration of a loop.
193///
e74abb32
XL
194/// When `continue` is encountered, the current iteration is terminated, returning control to the
195/// loop head, typically continuing with the next iteration.
196///
923072b8 197/// ```rust
e74abb32
XL
198/// // Printing odd numbers by skipping even ones
199/// for number in 1..=10 {
200/// if number % 2 == 0 {
201/// continue;
202/// }
5e7ed085 203/// println!("{number}");
e74abb32 204/// }
923072b8 205/// ```
e74abb32
XL
206///
207/// Like `break`, `continue` is normally associated with the innermost enclosing loop, but labels
208/// may be used to specify the affected loop.
209///
923072b8 210/// ```rust
e74abb32
XL
211/// // Print Odd numbers under 30 with unit <= 5
212/// 'tens: for ten in 0..3 {
60c5eb7d 213/// '_units: for unit in 0..=9 {
e74abb32
XL
214/// if unit % 2 == 0 {
215/// continue;
216/// }
217/// if unit > 5 {
218/// continue 'tens;
219/// }
220/// println!("{}", ten * 10 + unit);
221/// }
222/// }
923072b8 223/// ```
e74abb32
XL
224///
225/// See [continue expressions] from the reference for more details.
226///
227/// [continue expressions]: ../reference/expressions/loop-expr.html#continue-expressions
dfeec247 228mod continue_keyword {}
48663c56 229
0bf4aa26
XL
230#[doc(keyword = "crate")]
231//
48663c56 232/// A Rust binary or library.
0bf4aa26
XL
233///
234/// The primary use of the `crate` keyword is as a part of `extern crate` declarations, which are
235/// used to specify a dependency on a crate external to the one it's declared in. Crates are the
236/// fundamental compilation unit of Rust code, and can be seen as libraries or projects. More can
237/// be read about crates in the [Reference].
238///
239/// ```rust ignore
240/// extern crate rand;
241/// extern crate my_crate as thing;
242/// extern crate std; // implicitly added to the root of every Rust project
243/// ```
244///
245/// The `as` keyword can be used to change what the crate is referred to as in your project. If a
246/// crate name includes a dash, it is implicitly imported with the dashes replaced by underscores.
247///
416331ca 248/// `crate` can also be used as in conjunction with `pub` to signify that the item it's attached to
0bf4aa26
XL
249/// is public only to other members of the same crate it's in.
250///
251/// ```rust
252/// # #[allow(unused_imports)]
253/// pub(crate) use std::io::Error as IoError;
254/// pub(crate) enum CoolMarkerType { }
255/// pub struct PublicThing {
256/// pub(crate) semi_secret_thing: bool,
257/// }
258/// ```
259///
416331ca
XL
260/// `crate` is also used to represent the absolute path of a module, where `crate` refers to the
261/// root of the current crate. For instance, `crate::foo::bar` refers to the name `bar` inside the
262/// module `foo`, from anywhere else in the same crate.
263///
48663c56 264/// [Reference]: ../reference/items/extern-crates.html
dfeec247 265mod crate_keyword {}
0bf4aa26 266
48663c56
XL
267#[doc(keyword = "else")]
268//
ba9703b0 269/// What expression to evaluate when an [`if`] condition evaluates to [`false`].
48663c56 270///
ba9703b0
XL
271/// `else` expressions are optional. When no else expressions are supplied it is assumed to evaluate
272/// to the unit type `()`.
273///
274/// The type that the `else` blocks evaluate to must be compatible with the type that the `if` block
275/// evaluates to.
276///
277/// As can be seen below, `else` must be followed by either: `if`, `if let`, or a block `{}` and it
278/// will return the value of that expression.
279///
280/// ```rust
281/// let result = if true == false {
282/// "oh no"
283/// } else if "something" == "other thing" {
284/// "oh dear"
285/// } else if let Some(200) = "blarg".parse::<i32>().ok() {
286/// "uh oh"
287/// } else {
288/// println!("Sneaky side effect.");
289/// "phew, nothing's broken"
290/// };
291/// ```
292///
293/// Here's another example but here we do not try and return an expression:
48663c56 294///
ba9703b0
XL
295/// ```rust
296/// if true == false {
297/// println!("oh no");
298/// } else if "something" == "other thing" {
299/// println!("oh dear");
300/// } else if let Some(200) = "blarg".parse::<i32>().ok() {
301/// println!("uh oh");
302/// } else {
303/// println!("phew, nothing's broken");
304/// }
305/// ```
306///
307/// The above is _still_ an expression but it will always evaluate to `()`.
308///
309/// There is possibly no limit to the number of `else` blocks that could follow an `if` expression
310/// however if you have several then a [`match`] expression might be preferable.
311///
312/// Read more about control flow in the [Rust Book].
313///
314/// [Rust Book]: ../book/ch03-05-control-flow.html#handling-multiple-conditions-with-else-if
315/// [`match`]: keyword.match.html
316/// [`false`]: keyword.false.html
48663c56 317/// [`if`]: keyword.if.html
dfeec247 318mod else_keyword {}
48663c56 319
0bf4aa26
XL
320#[doc(keyword = "enum")]
321//
48663c56 322/// A type that can be any one of several variants.
0bf4aa26
XL
323///
324/// Enums in Rust are similar to those of other compiled languages like C, but have important
325/// differences that make them considerably more powerful. What Rust calls enums are more commonly
48663c56
XL
326/// known as [Algebraic Data Types][ADT] if you're coming from a functional programming background.
327/// The important detail is that each enum variant can have data to go along with it.
0bf4aa26
XL
328///
329/// ```rust
330/// # struct Coord;
331/// enum SimpleEnum {
332/// FirstVariant,
333/// SecondVariant,
334/// ThirdVariant,
335/// }
336///
337/// enum Location {
338/// Unknown,
339/// Anonymous,
340/// Known(Coord),
341/// }
342///
343/// enum ComplexEnum {
344/// Nothing,
345/// Something(u32),
346/// LotsOfThings {
347/// usual_struct_stuff: bool,
348/// blah: String,
349/// }
350/// }
351///
352/// enum EmptyEnum { }
353/// ```
354///
355/// The first enum shown is the usual kind of enum you'd find in a C-style language. The second
356/// shows off a hypothetical example of something storing location data, with `Coord` being any
357/// other type that's needed, for example a struct. The third example demonstrates the kind of
358/// data a variant can store, ranging from nothing, to a tuple, to an anonymous struct.
359///
360/// Instantiating enum variants involves explicitly using the enum's name as its namespace,
361/// followed by one of its variants. `SimpleEnum::SecondVariant` would be an example from above.
362/// When data follows along with a variant, such as with rust's built-in [`Option`] type, the data
363/// is added as the type describes, for example `Option::Some(123)`. The same follows with
364/// struct-like variants, with things looking like `ComplexEnum::LotsOfThings { usual_struct_stuff:
29967ef6 365/// true, blah: "hello!".to_string(), }`. Empty Enums are similar to [`!`] in that they cannot be
0bf4aa26
XL
366/// instantiated at all, and are used mainly to mess with the type system in interesting ways.
367///
368/// For more information, take a look at the [Rust Book] or the [Reference]
369///
48663c56 370/// [ADT]: https://en.wikipedia.org/wiki/Algebraic_data_type
48663c56
XL
371/// [Rust Book]: ../book/ch06-01-defining-an-enum.html
372/// [Reference]: ../reference/items/enumerations.html
dfeec247 373mod enum_keyword {}
0bf4aa26
XL
374
375#[doc(keyword = "extern")]
376//
48663c56 377/// Link to or import external code.
0bf4aa26
XL
378///
379/// The `extern` keyword is used in two places in Rust. One is in conjunction with the [`crate`]
0731742a 380/// keyword to make your Rust code aware of other Rust crates in your project, i.e., `extern crate
0bf4aa26
XL
381/// lazy_static;`. The other use is in foreign function interfaces (FFI).
382///
383/// `extern` is used in two different contexts within FFI. The first is in the form of external
384/// blocks, for declaring function interfaces that Rust code can call foreign code by.
385///
386/// ```rust ignore
387/// #[link(name = "my_c_library")]
388/// extern "C" {
389/// fn my_c_function(x: i32) -> bool;
390/// }
391/// ```
392///
393/// This code would attempt to link with `libmy_c_library.so` on unix-like systems and
394/// `my_c_library.dll` on Windows at runtime, and panic if it can't find something to link to. Rust
395/// code could then use `my_c_function` as if it were any other unsafe Rust function. Working with
396/// non-Rust languages and FFI is inherently unsafe, so wrappers are usually built around C APIs.
397///
398/// The mirror use case of FFI is also done via the `extern` keyword:
399///
400/// ```rust
401/// #[no_mangle]
5869c6ff 402/// pub extern "C" fn callable_from_c(x: i32) -> bool {
0bf4aa26
XL
403/// x % 3 == 0
404/// }
405/// ```
406///
407/// If compiled as a dylib, the resulting .so could then be linked to from a C library, and the
408/// function could be used as if it was from any other library.
409///
410/// For more information on FFI, check the [Rust book] or the [Reference].
411///
412/// [Rust book]:
48663c56
XL
413/// ../book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
414/// [Reference]: ../reference/items/external-blocks.html
29967ef6 415/// [`crate`]: keyword.crate.html
dfeec247 416mod extern_keyword {}
0bf4aa26 417
48663c56
XL
418#[doc(keyword = "false")]
419//
420/// A value of type [`bool`] representing logical **false**.
421///
3dfed10e
XL
422/// `false` is the logical opposite of [`true`].
423///
424/// See the documentation for [`true`] for more information.
48663c56 425///
3dfed10e 426/// [`true`]: keyword.true.html
dfeec247 427mod false_keyword {}
48663c56 428
94b46f34
XL
429#[doc(keyword = "fn")]
430//
48663c56 431/// A function or function pointer.
94b46f34 432///
0bf4aa26
XL
433/// Functions are the primary way code is executed within Rust. Function blocks, usually just
434/// called functions, can be defined in a variety of different places and be assigned many
435/// different attributes and modifiers.
94b46f34 436///
0bf4aa26
XL
437/// Standalone functions that just sit within a module not attached to anything else are common,
438/// but most functions will end up being inside [`impl`] blocks, either on another type itself, or
439/// as a trait impl for that type.
94b46f34
XL
440///
441/// ```rust
0bf4aa26
XL
442/// fn standalone_function() {
443/// // code
444/// }
445///
446/// pub fn public_thing(argument: bool) -> String {
447/// // code
448/// # "".to_string()
449/// }
450///
451/// struct Thing {
452/// foo: i32,
453/// }
454///
455/// impl Thing {
456/// pub fn new() -> Self {
457/// Self {
458/// foo: 42,
459/// }
460/// }
94b46f34
XL
461/// }
462/// ```
463///
0bf4aa26
XL
464/// In addition to presenting fixed types in the form of `fn name(arg: type, ..) -> return_type`,
465/// functions can also declare a list of type parameters along with trait bounds that they fall
466/// into.
94b46f34 467///
0bf4aa26
XL
468/// ```rust
469/// fn generic_function<T: Clone>(x: T) -> (T, T, T) {
470/// (x.clone(), x.clone(), x.clone())
471/// }
472///
473/// fn generic_where<T>(x: T) -> T
9fa01778 474/// where T: std::ops::Add<Output = T> + Copy
0bf4aa26
XL
475/// {
476/// x + x + x
477/// }
478/// ```
479///
480/// Declaring trait bounds in the angle brackets is functionally identical to using a `where`
481/// clause. It's up to the programmer to decide which works better in each situation, but `where`
482/// tends to be better when things get longer than one line.
483///
484/// Along with being made public via `pub`, `fn` can also have an [`extern`] added for use in
485/// FFI.
486///
487/// For more information on the various types of functions and how they're used, consult the [Rust
488/// book] or the [Reference].
489///
490/// [`impl`]: keyword.impl.html
491/// [`extern`]: keyword.extern.html
48663c56
XL
492/// [Rust book]: ../book/ch03-03-how-functions-work.html
493/// [Reference]: ../reference/items/functions.html
dfeec247 494mod fn_keyword {}
b7449926 495
0bf4aa26 496#[doc(keyword = "for")]
b7449926 497//
48663c56
XL
498/// Iteration with [`in`], trait implementation with [`impl`], or [higher-ranked trait bounds]
499/// (`for<'a>`).
0bf4aa26 500///
532ac7d7
XL
501/// The `for` keyword is used in many syntactic locations:
502///
503/// * `for` is used in for-in-loops (see below).
504/// * `for` is used when implementing traits as in `impl Trait for Type` (see [`impl`] for more info
505/// on that).
506/// * `for` is also used for [higher-ranked trait bounds] as in `for<'a> &'a T: PartialEq<i32>`.
507///
508/// for-in-loops, or to be more precise, iterator loops, are a simple syntactic sugar over a common
3dfed10e
XL
509/// practice within Rust, which is to loop over anything that implements [`IntoIterator`] until the
510/// iterator returned by `.into_iter()` returns `None` (or the loop body uses `break`).
0bf4aa26
XL
511///
512/// ```rust
513/// for i in 0..5 {
514/// println!("{}", i * 2);
515/// }
b7449926 516///
0bf4aa26 517/// for i in std::iter::repeat(5) {
5e7ed085 518/// println!("turns out {i} never stops being 5");
0bf4aa26
XL
519/// break; // would loop forever otherwise
520/// }
b7449926 521///
0bf4aa26
XL
522/// 'outer: for x in 5..50 {
523/// for y in 0..10 {
524/// if x == y {
525/// break 'outer;
526/// }
527/// }
528/// }
529/// ```
530///
531/// As shown in the example above, `for` loops (along with all other loops) can be tagged, using
532/// similar syntax to lifetimes (only visually similar, entirely distinct in practice). Giving the
533/// same tag to `break` breaks the tagged loop, which is useful for inner loops. It is definitely
534/// not a goto.
535///
536/// A `for` loop expands as shown:
b7449926
XL
537///
538/// ```rust
0bf4aa26
XL
539/// # fn code() { }
540/// # let iterator = 0..2;
541/// for loop_variable in iterator {
542/// code()
543/// }
544/// ```
545///
546/// ```rust
547/// # fn code() { }
548/// # let iterator = 0..2;
549/// {
cdc7bbd5
XL
550/// let result = match IntoIterator::into_iter(iterator) {
551/// mut iter => loop {
cdc7bbd5 552/// match iter.next() {
cdc7bbd5 553/// None => break,
3c0e092e 554/// Some(loop_variable) => { code(); },
cdc7bbd5 555/// };
cdc7bbd5
XL
556/// },
557/// };
558/// result
0bf4aa26
XL
559/// }
560/// ```
561///
562/// More details on the functionality shown can be seen at the [`IntoIterator`] docs.
563///
564/// For more information on for-loops, see the [Rust book] or the [Reference].
565///
fc512014
XL
566/// See also, [`loop`], [`while`].
567///
48663c56 568/// [`in`]: keyword.in.html
0bf4aa26 569/// [`impl`]: keyword.impl.html
fc512014
XL
570/// [`loop`]: keyword.loop.html
571/// [`while`]: keyword.while.html
48663c56 572/// [higher-ranked trait bounds]: ../reference/trait-bounds.html#higher-ranked-trait-bounds
0bf4aa26 573/// [Rust book]:
48663c56
XL
574/// ../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
575/// [Reference]: ../reference/expressions/loop-expr.html#iterator-loops
dfeec247 576mod for_keyword {}
0bf4aa26
XL
577
578#[doc(keyword = "if")]
579//
48663c56 580/// Evaluate a block if a condition holds.
0bf4aa26
XL
581///
582/// `if` is a familiar construct to most programmers, and is the main way you'll often do logic in
583/// your code. However, unlike in most languages, `if` blocks can also act as expressions.
584///
585/// ```rust
586/// # let rude = true;
587/// if 1 == 2 {
588/// println!("whoops, mathematics broke");
589/// } else {
590/// println!("everything's fine!");
591/// }
592///
593/// let greeting = if rude {
594/// "sup nerd."
595/// } else {
596/// "hello, friend!"
597/// };
598///
599/// if let Ok(x) = "123".parse::<i32>() {
600/// println!("{} double that and you get {}!", greeting, x * 2);
601/// }
602/// ```
603///
604/// Shown above are the three typical forms an `if` block comes in. First is the usual kind of
605/// thing you'd see in many languages, with an optional `else` block. Second uses `if` as an
606/// expression, which is only possible if all branches return the same type. An `if` expression can
607/// be used everywhere you'd expect. The third kind of `if` block is an `if let` block, which
608/// behaves similarly to using a `match` expression:
609///
610/// ```rust
611/// if let Some(x) = Some(123) {
612/// // code
613/// # let _ = x;
614/// } else {
615/// // something else
616/// }
617///
618/// match Some(123) {
619/// Some(x) => {
620/// // code
621/// # let _ = x;
622/// },
623/// _ => {
624/// // something else
625/// },
626/// }
627/// ```
628///
629/// Each kind of `if` expression can be mixed and matched as needed.
630///
631/// ```rust
632/// if true == false {
633/// println!("oh no");
634/// } else if "something" == "other thing" {
635/// println!("oh dear");
636/// } else if let Some(200) = "blarg".parse::<i32>().ok() {
637/// println!("uh oh");
638/// } else {
639/// println!("phew, nothing's broken");
640/// }
641/// ```
642///
643/// The `if` keyword is used in one other place in Rust, namely as a part of pattern matching
644/// itself, allowing patterns such as `Some(x) if x > 200` to be used.
645///
646/// For more information on `if` expressions, see the [Rust book] or the [Reference].
647///
48663c56
XL
648/// [Rust book]: ../book/ch03-05-control-flow.html#if-expressions
649/// [Reference]: ../reference/expressions/if-expr.html
dfeec247 650mod if_keyword {}
0bf4aa26
XL
651
652#[doc(keyword = "impl")]
653//
48663c56 654/// Implement some functionality for a type.
0bf4aa26
XL
655///
656/// The `impl` keyword is primarily used to define implementations on types. Inherent
657/// implementations are standalone, while trait implementations are used to implement traits for
658/// types, or other traits.
659///
660/// Functions and consts can both be defined in an implementation. A function defined in an
661/// `impl` block can be standalone, meaning it would be called like `Foo::bar()`. If the function
662/// takes `self`, `&self`, or `&mut self` as its first argument, it can also be called using
663/// method-call syntax, a familiar feature to any object oriented programmer, like `foo.bar()`.
664///
665/// ```rust
666/// struct Example {
667/// number: i32,
668/// }
669///
670/// impl Example {
671/// fn boo() {
672/// println!("boo! Example::boo() was called!");
673/// }
674///
675/// fn answer(&mut self) {
676/// self.number += 42;
677/// }
678///
679/// fn get_number(&self) -> i32 {
680/// self.number
681/// }
682/// }
683///
684/// trait Thingy {
685/// fn do_thingy(&self);
686/// }
687///
688/// impl Thingy for Example {
689/// fn do_thingy(&self) {
690/// println!("doing a thing! also, number is {}!", self.number);
691/// }
692/// }
b7449926
XL
693/// ```
694///
0bf4aa26 695/// For more information on implementations, see the [Rust book][book1] or the [Reference].
b7449926 696///
0bf4aa26
XL
697/// The other use of the `impl` keyword is in `impl Trait` syntax, which can be seen as a shorthand
698/// for "a concrete type that implements this trait". Its primary use is working with closures,
699/// which have type definitions generated at compile time that can't be simply typed out.
700///
701/// ```rust
702/// fn thing_returning_closure() -> impl Fn(i32) -> bool {
703/// println!("here's a closure for you!");
704/// |x: i32| x % 3 == 0
705/// }
706/// ```
707///
708/// For more information on `impl Trait` syntax, see the [Rust book][book2].
709///
48663c56
XL
710/// [book1]: ../book/ch05-03-method-syntax.html
711/// [Reference]: ../reference/items/implementations.html
712/// [book2]: ../book/ch10-02-traits.html#returning-types-that-implement-traits
dfeec247 713mod impl_keyword {}
0bf4aa26 714
48663c56
XL
715#[doc(keyword = "in")]
716//
717/// Iterate over a series of values with [`for`].
718///
3dfed10e 719/// The expression immediately following `in` must implement the [`IntoIterator`] trait.
ba9703b0
XL
720///
721/// ## Literal Examples:
722///
fc512014
XL
723/// * `for _ in 1..3 {}` - Iterate over an exclusive range up to but excluding 3.
724/// * `for _ in 1..=3 {}` - Iterate over an inclusive range up to and including 3.
ba9703b0
XL
725///
726/// (Read more about [range patterns])
48663c56 727///
3dfed10e 728/// [`IntoIterator`]: ../book/ch13-04-performance.html
f9f354fc 729/// [range patterns]: ../reference/patterns.html?highlight=range#range-patterns
48663c56 730/// [`for`]: keyword.for.html
5e7ed085
FG
731///
732/// The other use of `in` is with the keyword `pub`. It allows users to declare an item as visible
733/// only within a given scope.
734///
735/// ## Literal Example:
736///
737/// * `pub(in crate::outer_mod) fn outer_mod_visible_fn() {}` - fn is visible in `outer_mod`
738///
739/// Starting with the 2018 edition, paths for `pub(in path)` must start with `crate`, `self` or
740/// `super`. The 2015 edition may also use paths starting with `::` or modules from the crate root.
741///
742/// For more information, see the [Reference].
743///
744/// [Reference]: ../reference/visibility-and-privacy.html#pubin-path-pubcrate-pubsuper-and-pubself
dfeec247 745mod in_keyword {}
48663c56 746
0bf4aa26
XL
747#[doc(keyword = "let")]
748//
48663c56 749/// Bind a value to a variable.
0bf4aa26
XL
750///
751/// The primary use for the `let` keyword is in `let` statements, which are used to introduce a new
752/// set of variables into the current scope, as given by a pattern.
b7449926
XL
753///
754/// ```rust
755/// # #![allow(unused_assignments)]
0bf4aa26
XL
756/// let thing1: i32 = 100;
757/// let thing2 = 200 + thing1;
758///
759/// let mut changing_thing = true;
760/// changing_thing = false;
b7449926 761///
0bf4aa26
XL
762/// let (part1, part2) = ("first", "second");
763///
764/// struct Example {
765/// a: bool,
766/// b: u64,
767/// }
768///
769/// let Example { a, b: _ } = Example {
770/// a: true,
771/// b: 10004,
772/// };
773/// assert!(a);
774/// ```
775///
776/// The pattern is most commonly a single variable, which means no pattern matching is done and
777/// the expression given is bound to the variable. Apart from that, patterns used in `let` bindings
778/// can be as complicated as needed, given that the pattern is exhaustive. See the [Rust
779/// book][book1] for more information on pattern matching. The type of the pattern is optionally
780/// given afterwards, but if left blank is automatically inferred by the compiler if possible.
781///
782/// Variables in Rust are immutable by default, and require the `mut` keyword to be made mutable.
783///
784/// Multiple variables can be defined with the same name, known as shadowing. This doesn't affect
785/// the original variable in any way beyond being unable to directly access it beyond the point of
786/// shadowing. It continues to remain in scope, getting dropped only when it falls out of scope.
787/// Shadowed variables don't need to have the same type as the variables shadowing them.
788///
789/// ```rust
790/// let shadowing_example = true;
791/// let shadowing_example = 123.4;
792/// let shadowing_example = shadowing_example as u32;
5e7ed085 793/// let mut shadowing_example = format!("cool! {shadowing_example}");
0bf4aa26 794/// shadowing_example += " something else!"; // not shadowing
b7449926
XL
795/// ```
796///
0bf4aa26
XL
797/// Other places the `let` keyword is used include along with [`if`], in the form of `if let`
798/// expressions. They're useful if the pattern being matched isn't exhaustive, such as with
799/// enumerations. `while let` also exists, which runs a loop with a pattern matched value until
800/// that pattern can't be matched.
b7449926 801///
48663c56 802/// For more information on the `let` keyword, see the [Rust book][book2] or the [Reference]
0bf4aa26 803///
48663c56 804/// [book1]: ../book/ch06-02-match.html
0bf4aa26 805/// [`if`]: keyword.if.html
48663c56
XL
806/// [book2]: ../book/ch18-01-all-the-places-for-patterns.html#let-statements
807/// [Reference]: ../reference/statements.html#let-statements
dfeec247 808mod let_keyword {}
b7449926 809
416331ca
XL
810#[doc(keyword = "while")]
811//
812/// Loop while a condition is upheld.
813///
814/// A `while` expression is used for predicate loops. The `while` expression runs the conditional
815/// expression before running the loop body, then runs the loop body if the conditional
816/// expression evaluates to `true`, or exits the loop otherwise.
817///
818/// ```rust
819/// let mut counter = 0;
820///
821/// while counter < 10 {
5e7ed085 822/// println!("{counter}");
416331ca
XL
823/// counter += 1;
824/// }
825/// ```
826///
827/// Like the [`for`] expression, we can use `break` and `continue`. A `while` expression
828/// cannot break with a value and always evaluates to `()` unlike [`loop`].
829///
830/// ```rust
831/// let mut i = 1;
832///
833/// while i < 100 {
834/// i *= 2;
835/// if i == 64 {
836/// break; // Exit when `i` is 64.
837/// }
838/// }
839/// ```
840///
841/// As `if` expressions have their pattern matching variant in `if let`, so too do `while`
842/// expressions with `while let`. The `while let` expression matches the pattern against the
843/// expression, then runs the loop body if pattern matching succeeds, or exits the loop otherwise.
844/// We can use `break` and `continue` in `while let` expressions just like in `while`.
845///
846/// ```rust
847/// let mut counter = Some(0);
848///
849/// while let Some(i) = counter {
850/// if i == 10 {
851/// counter = None;
852/// } else {
5e7ed085 853/// println!("{i}");
416331ca
XL
854/// counter = Some (i + 1);
855/// }
856/// }
857/// ```
858///
859/// For more information on `while` and loops in general, see the [reference].
860///
fc512014
XL
861/// See also, [`for`], [`loop`].
862///
416331ca
XL
863/// [`for`]: keyword.for.html
864/// [`loop`]: keyword.loop.html
865/// [reference]: ../reference/expressions/loop-expr.html#predicate-loops
dfeec247 866mod while_keyword {}
416331ca 867
0bf4aa26 868#[doc(keyword = "loop")]
b7449926 869//
48663c56 870/// Loop indefinitely.
b7449926 871///
0bf4aa26
XL
872/// `loop` is used to define the simplest kind of loop supported in Rust. It runs the code inside
873/// it until the code uses `break` or the program exits.
b7449926 874///
0bf4aa26
XL
875/// ```rust
876/// loop {
877/// println!("hello world forever!");
878/// # break;
879/// }
b7449926 880///
e1599b0c 881/// let mut i = 1;
0bf4aa26 882/// loop {
5e7ed085 883/// println!("i is {i}");
e1599b0c 884/// if i > 100 {
0bf4aa26
XL
885/// break;
886/// }
e1599b0c 887/// i *= 2;
0bf4aa26 888/// }
e1599b0c 889/// assert_eq!(i, 128);
b7449926 890/// ```
0bf4aa26
XL
891///
892/// Unlike the other kinds of loops in Rust (`while`, `while let`, and `for`), loops can be used as
893/// expressions that return values via `break`.
894///
895/// ```rust
896/// let mut i = 1;
897/// let something = loop {
898/// i *= 2;
899/// if i > 100 {
900/// break i;
901/// }
902/// };
903/// assert_eq!(something, 128);
904/// ```
905///
906/// Every `break` in a loop has to have the same type. When it's not explicitly giving something,
907/// `break;` returns `()`.
908///
909/// For more information on `loop` and loops in general, see the [Reference].
910///
fc512014
XL
911/// See also, [`for`], [`while`].
912///
913/// [`for`]: keyword.for.html
914/// [`while`]: keyword.while.html
48663c56 915/// [Reference]: ../reference/expressions/loop-expr.html
dfeec247 916mod loop_keyword {}
0bf4aa26 917
48663c56
XL
918#[doc(keyword = "match")]
919//
920/// Control flow based on pattern matching.
921///
60c5eb7d
XL
922/// `match` can be used to run code conditionally. Every pattern must
923/// be handled exhaustively either explicitly or by using wildcards like
924/// `_` in the `match`. Since `match` is an expression, values can also be
925/// returned.
48663c56 926///
60c5eb7d
XL
927/// ```rust
928/// let opt = Option::None::<usize>;
929/// let x = match opt {
930/// Some(int) => int,
931/// None => 10,
932/// };
933/// assert_eq!(x, 10);
934///
935/// let a_number = Option::Some(10);
936/// match a_number {
5e7ed085
FG
937/// Some(x) if x <= 5 => println!("0 to 5 num = {x}"),
938/// Some(x @ 6..=10) => println!("6 to 10 num = {x}"),
60c5eb7d
XL
939/// None => panic!(),
940/// // all other numbers
941/// _ => panic!(),
942/// }
943/// ```
944///
945/// `match` can be used to gain access to the inner members of an enum
946/// and use them directly.
947///
948/// ```rust
949/// enum Outer {
950/// Double(Option<u8>, Option<String>),
951/// Single(Option<u8>),
952/// Empty
953/// }
954///
955/// let get_inner = Outer::Double(None, Some(String::new()));
956/// match get_inner {
5e7ed085
FG
957/// Outer::Double(None, Some(st)) => println!("{st}"),
958/// Outer::Single(opt) => println!("{opt:?}"),
60c5eb7d
XL
959/// _ => panic!(),
960/// }
961/// ```
962///
963/// For more information on `match` and matching in general, see the [Reference].
964///
965/// [Reference]: ../reference/expressions/match-expr.html
dfeec247 966mod match_keyword {}
48663c56
XL
967
968#[doc(keyword = "mod")]
969//
970/// Organize code into [modules].
971///
f035d41b
XL
972/// Use `mod` to create new [modules] to encapsulate code, including other
973/// modules:
974///
975/// ```
976/// mod foo {
977/// mod bar {
978/// type MyType = (u8, u8);
979/// fn baz() {}
980/// }
981/// }
982/// ```
983///
984/// Like [`struct`]s and [`enum`]s, a module and its content are private by
136023e0 985/// default, inaccessible to code outside of the module.
48663c56 986///
f035d41b
XL
987/// To learn more about allowing access, see the documentation for the [`pub`]
988/// keyword.
989///
990/// [`enum`]: keyword.enum.html
991/// [`pub`]: keyword.pub.html
992/// [`struct`]: keyword.struct.html
48663c56 993/// [modules]: ../reference/items/modules.html
dfeec247 994mod mod_keyword {}
48663c56
XL
995
996#[doc(keyword = "move")]
997//
998/// Capture a [closure]'s environment by value.
999///
60c5eb7d 1000/// `move` converts any variables captured by reference or mutable reference
17df50a5 1001/// to variables captured by value.
48663c56 1002///
60c5eb7d 1003/// ```rust
17df50a5 1004/// let data = vec![1, 2, 3];
5e7ed085 1005/// let closure = move || println!("captured {data:?} by value");
17df50a5
XL
1006///
1007/// // data is no longer available, it is owned by the closure
60c5eb7d
XL
1008/// ```
1009///
3dfed10e
XL
1010/// Note: `move` closures may still implement [`Fn`] or [`FnMut`], even though
1011/// they capture variables by `move`. This is because the traits implemented by
1012/// a closure type are determined by *what* the closure does with captured
1013/// values, not *how* it captures them:
1014///
1015/// ```rust
1016/// fn create_fn() -> impl Fn() {
1017/// let text = "Fn".to_owned();
5e7ed085 1018/// move || println!("This is a: {text}")
3dfed10e
XL
1019/// }
1020///
17df50a5
XL
1021/// let fn_plain = create_fn();
1022/// fn_plain();
3dfed10e
XL
1023/// ```
1024///
60c5eb7d
XL
1025/// `move` is often used when [threads] are involved.
1026///
1027/// ```rust
17df50a5 1028/// let data = vec![1, 2, 3];
60c5eb7d
XL
1029///
1030/// std::thread::spawn(move || {
5e7ed085 1031/// println!("captured {data:?} by value")
60c5eb7d
XL
1032/// }).join().unwrap();
1033///
17df50a5 1034/// // data was moved to the spawned thread, so we cannot use it here
60c5eb7d
XL
1035/// ```
1036///
74b04a01
XL
1037/// `move` is also valid before an async block.
1038///
1039/// ```rust
17df50a5 1040/// let capture = "hello".to_owned();
74b04a01 1041/// let block = async move {
5e7ed085 1042/// println!("rust says {capture} from async block");
74b04a01
XL
1043/// };
1044/// ```
1045///
cdc7bbd5
XL
1046/// For more information on the `move` keyword, see the [closures][closure] section
1047/// of the Rust book or the [threads] section.
60c5eb7d 1048///
60c5eb7d
XL
1049/// [closure]: ../book/ch13-01-closures.html
1050/// [threads]: ../book/ch16-01-threads.html#using-move-closures-with-threads
dfeec247 1051mod move_keyword {}
48663c56
XL
1052
1053#[doc(keyword = "mut")]
1054//
f035d41b 1055/// A mutable variable, reference, or pointer.
48663c56 1056///
f035d41b
XL
1057/// `mut` can be used in several situations. The first is mutable variables,
1058/// which can be used anywhere you can bind a value to a variable name. Some
1059/// examples:
48663c56 1060///
f035d41b
XL
1061/// ```rust
1062/// // A mutable variable in the parameter list of a function.
1063/// fn foo(mut x: u8, y: u8) -> u8 {
1064/// x += y;
1065/// x
1066/// }
1067///
1068/// // Modifying a mutable variable.
1069/// # #[allow(unused_assignments)]
1070/// let mut a = 5;
1071/// a = 6;
1072///
1073/// assert_eq!(foo(3, 4), 7);
1074/// assert_eq!(a, 6);
1075/// ```
1076///
1077/// The second is mutable references. They can be created from `mut` variables
1078/// and must be unique: no other variables can have a mutable reference, nor a
1079/// shared reference.
1080///
1081/// ```rust
1082/// // Taking a mutable reference.
1083/// fn push_two(v: &mut Vec<u8>) {
1084/// v.push(2);
1085/// }
1086///
1087/// // A mutable reference cannot be taken to a non-mutable variable.
1088/// let mut v = vec![0, 1];
1089/// // Passing a mutable reference.
1090/// push_two(&mut v);
1091///
1092/// assert_eq!(v, vec![0, 1, 2]);
1093/// ```
1094///
1095/// ```rust,compile_fail,E0502
1096/// let mut v = vec![0, 1];
1097/// let mut_ref_v = &mut v;
1098/// ##[allow(unused)]
1099/// let ref_v = &v;
1100/// mut_ref_v.push(2);
1101/// ```
1102///
1103/// Mutable raw pointers work much like mutable references, with the added
1104/// possibility of not pointing to a valid object. The syntax is `*mut Type`.
1105///
136023e0 1106/// More information on mutable references and pointers can be found in the [Reference].
f035d41b
XL
1107///
1108/// [Reference]: ../reference/types/pointer.html#mutable-references-mut
dfeec247 1109mod mut_keyword {}
48663c56
XL
1110
1111#[doc(keyword = "pub")]
1112//
1113/// Make an item visible to others.
1114///
ba9703b0
XL
1115/// The keyword `pub` makes any module, function, or data structure accessible from inside
1116/// of external modules. The `pub` keyword may also be used in a `use` declaration to re-export
1117/// an identifier from a namespace.
48663c56 1118///
ba9703b0
XL
1119/// For more information on the `pub` keyword, please see the visibility section
1120/// of the [reference] and for some examples, see [Rust by Example].
1121///
1122/// [reference]:../reference/visibility-and-privacy.html?highlight=pub#visibility-and-privacy
1123/// [Rust by Example]:../rust-by-example/mod/visibility.html
dfeec247 1124mod pub_keyword {}
48663c56
XL
1125
1126#[doc(keyword = "ref")]
1127//
1128/// Bind by reference during pattern matching.
1129///
3dfed10e
XL
1130/// `ref` annotates pattern bindings to make them borrow rather than move.
1131/// It is **not** a part of the pattern as far as matching is concerned: it does
1132/// not affect *whether* a value is matched, only *how* it is matched.
48663c56 1133///
3dfed10e
XL
1134/// By default, [`match`] statements consume all they can, which can sometimes
1135/// be a problem, when you don't really need the value to be moved and owned:
1136///
1137/// ```compile_fail,E0382
1138/// let maybe_name = Some(String::from("Alice"));
1139/// // The variable 'maybe_name' is consumed here ...
1140/// match maybe_name {
5e7ed085 1141/// Some(n) => println!("Hello, {n}"),
3dfed10e
XL
1142/// _ => println!("Hello, world"),
1143/// }
1144/// // ... and is now unavailable.
1145/// println!("Hello again, {}", maybe_name.unwrap_or("world".into()));
1146/// ```
1147///
1148/// Using the `ref` keyword, the value is only borrowed, not moved, making it
1149/// available for use after the [`match`] statement:
1150///
1151/// ```
1152/// let maybe_name = Some(String::from("Alice"));
1153/// // Using `ref`, the value is borrowed, not moved ...
1154/// match maybe_name {
5e7ed085 1155/// Some(ref n) => println!("Hello, {n}"),
3dfed10e
XL
1156/// _ => println!("Hello, world"),
1157/// }
1158/// // ... so it's available here!
1159/// println!("Hello again, {}", maybe_name.unwrap_or("world".into()));
1160/// ```
1161///
1162/// # `&` vs `ref`
1163///
1164/// - `&` denotes that your pattern expects a reference to an object. Hence `&`
1165/// is a part of said pattern: `&Foo` matches different objects than `Foo` does.
1166///
1167/// - `ref` indicates that you want a reference to an unpacked value. It is not
1168/// matched against: `Foo(ref foo)` matches the same objects as `Foo(foo)`.
1169///
1170/// See also the [Reference] for more information.
1171///
1172/// [`match`]: keyword.match.html
1173/// [Reference]: ../reference/patterns.html#identifier-patterns
dfeec247 1174mod ref_keyword {}
48663c56
XL
1175
1176#[doc(keyword = "return")]
1177//
1178/// Return a value from a function.
1179///
f035d41b 1180/// A `return` marks the end of an execution path in a function:
48663c56 1181///
f035d41b
XL
1182/// ```
1183/// fn foo() -> i32 {
1184/// return 3;
1185/// }
1186/// assert_eq!(foo(), 3);
1187/// ```
1188///
1189/// `return` is not needed when the returned value is the last expression in the
1190/// function. In this case the `;` is omitted:
1191///
1192/// ```
1193/// fn foo() -> i32 {
1194/// 3
1195/// }
1196/// assert_eq!(foo(), 3);
1197/// ```
1198///
1199/// `return` returns from the function immediately (an "early return"):
1200///
1201/// ```no_run
1202/// use std::fs::File;
1203/// use std::io::{Error, ErrorKind, Read, Result};
1204///
1205/// fn main() -> Result<()> {
1206/// let mut file = match File::open("foo.txt") {
1207/// Ok(f) => f,
1208/// Err(e) => return Err(e),
1209/// };
1210///
1211/// let mut contents = String::new();
1212/// let size = match file.read_to_string(&mut contents) {
1213/// Ok(s) => s,
1214/// Err(e) => return Err(e),
1215/// };
1216///
1217/// if contents.contains("impossible!") {
1218/// return Err(Error::new(ErrorKind::Other, "oh no!"));
1219/// }
1220///
1221/// if size > 9000 {
1222/// return Err(Error::new(ErrorKind::Other, "over 9000!"));
1223/// }
1224///
1225/// assert_eq!(contents, "Hello, world!");
1226/// Ok(())
1227/// }
1228/// ```
dfeec247 1229mod return_keyword {}
48663c56
XL
1230
1231#[doc(keyword = "self")]
1232//
1233/// The receiver of a method, or the current module.
1234///
f035d41b
XL
1235/// `self` is used in two situations: referencing the current module and marking
1236/// the receiver of a method.
48663c56 1237///
f035d41b
XL
1238/// In paths, `self` can be used to refer to the current module, either in a
1239/// [`use`] statement or in a path to access an element:
1240///
1241/// ```
1242/// # #![allow(unused_imports)]
1243/// use std::io::{self, Read};
1244/// ```
1245///
1246/// Is functionally the same as:
1247///
1248/// ```
1249/// # #![allow(unused_imports)]
1250/// use std::io;
1251/// use std::io::Read;
1252/// ```
1253///
1254/// Using `self` to access an element in the current module:
1255///
1256/// ```
1257/// # #![allow(dead_code)]
1258/// # fn main() {}
1259/// fn foo() {}
1260/// fn bar() {
1261/// self::foo()
1262/// }
1263/// ```
1264///
1265/// `self` as the current receiver for a method allows to omit the parameter
1266/// type most of the time. With the exception of this particularity, `self` is
1267/// used much like any other parameter:
1268///
1269/// ```
1270/// struct Foo(i32);
1271///
1272/// impl Foo {
1273/// // No `self`.
1274/// fn new() -> Self {
1275/// Self(0)
1276/// }
1277///
1278/// // Consuming `self`.
1279/// fn consume(self) -> Self {
1280/// Self(self.0 + 1)
1281/// }
1282///
1283/// // Borrowing `self`.
1284/// fn borrow(&self) -> &i32 {
1285/// &self.0
1286/// }
1287///
1288/// // Borrowing `self` mutably.
1289/// fn borrow_mut(&mut self) -> &mut i32 {
1290/// &mut self.0
1291/// }
1292/// }
1293///
1294/// // This method must be called with a `Type::` prefix.
1295/// let foo = Foo::new();
1296/// assert_eq!(foo.0, 0);
1297///
1298/// // Those two calls produces the same result.
1299/// let foo = Foo::consume(foo);
1300/// assert_eq!(foo.0, 1);
1301/// let foo = foo.consume();
1302/// assert_eq!(foo.0, 2);
1303///
1304/// // Borrowing is handled automatically with the second syntax.
1305/// let borrow_1 = Foo::borrow(&foo);
1306/// let borrow_2 = foo.borrow();
1307/// assert_eq!(borrow_1, borrow_2);
1308///
1309/// // Borrowing mutably is handled automatically too with the second syntax.
1310/// let mut foo = Foo::new();
1311/// *Foo::borrow_mut(&mut foo) += 1;
1312/// assert_eq!(foo.0, 1);
1313/// *foo.borrow_mut() += 1;
1314/// assert_eq!(foo.0, 2);
1315/// ```
1316///
1317/// Note that this automatic conversion when calling `foo.method()` is not
1318/// limited to the examples above. See the [Reference] for more information.
1319///
1320/// [`use`]: keyword.use.html
1321/// [Reference]: ../reference/items/associated-items.html#methods
dfeec247 1322mod self_keyword {}
48663c56 1323
36d6ef2b
XL
1324// FIXME: Once rustdoc can handle URL conflicts on case insensitive file systems, we can remove the
1325// three next lines and put back: `#[doc(keyword = "Self")]`.
1326#[doc(alias = "Self")]
1327#[allow(rustc::existing_doc_keyword)]
1328#[doc(keyword = "SelfTy")]
48663c56
XL
1329//
1330/// The implementing type within a [`trait`] or [`impl`] block, or the current type within a type
1331/// definition.
1332///
f035d41b
XL
1333/// Within a type definition:
1334///
1335/// ```
1336/// # #![allow(dead_code)]
1337/// struct Node {
1338/// elem: i32,
1339/// // `Self` is a `Node` here.
1340/// next: Option<Box<Self>>,
1341/// }
1342/// ```
1343///
1344/// In an [`impl`] block:
1345///
1346/// ```
1347/// struct Foo(i32);
1348///
1349/// impl Foo {
1350/// fn new() -> Self {
1351/// Self(0)
1352/// }
1353/// }
1354///
1355/// assert_eq!(Foo::new().0, Foo(0).0);
1356/// ```
1357///
1358/// Generic parameters are implicit with `Self`:
1359///
1360/// ```
1361/// # #![allow(dead_code)]
1362/// struct Wrap<T> {
1363/// elem: T,
1364/// }
1365///
1366/// impl<T> Wrap<T> {
1367/// fn new(elem: T) -> Self {
1368/// Self { elem }
1369/// }
1370/// }
1371/// ```
1372///
1373/// In a [`trait`] definition and related [`impl`] block:
1374///
1375/// ```
1376/// trait Example {
1377/// fn example() -> Self;
1378/// }
1379///
1380/// struct Foo(i32);
1381///
1382/// impl Example for Foo {
1383/// fn example() -> Self {
1384/// Self(42)
1385/// }
1386/// }
1387///
1388/// assert_eq!(Foo::example().0, Foo(42).0);
1389/// ```
48663c56
XL
1390///
1391/// [`impl`]: keyword.impl.html
1392/// [`trait`]: keyword.trait.html
dfeec247 1393mod self_upper_keyword {}
48663c56
XL
1394
1395#[doc(keyword = "static")]
1396//
f035d41b
XL
1397/// A static item is a value which is valid for the entire duration of your
1398/// program (a `'static` lifetime).
48663c56 1399///
f035d41b
XL
1400/// On the surface, `static` items seem very similar to [`const`]s: both contain
1401/// a value, both require type annotations and both can only be initialized with
1402/// constant functions and values. However, `static`s are notably different in
1403/// that they represent a location in memory. That means that you can have
1404/// references to `static` items and potentially even modify them, making them
1405/// essentially global variables.
48663c56 1406///
f035d41b
XL
1407/// Static items do not call [`drop`] at the end of the program.
1408///
1409/// There are two types of `static` items: those declared in association with
1410/// the [`mut`] keyword and those without.
1411///
1412/// Static items cannot be moved:
1413///
1414/// ```rust,compile_fail,E0507
1415/// static VEC: Vec<u32> = vec![];
1416///
1417/// fn move_vec(v: Vec<u32>) -> Vec<u32> {
1418/// v
1419/// }
1420///
1421/// // This line causes an error
1422/// move_vec(VEC);
1423/// ```
1424///
1425/// # Simple `static`s
1426///
1427/// Accessing non-[`mut`] `static` items is considered safe, but some
1428/// restrictions apply. Most notably, the type of a `static` value needs to
1429/// implement the [`Sync`] trait, ruling out interior mutability containers
1430/// like [`RefCell`]. See the [Reference] for more information.
1431///
1432/// ```rust
1433/// static FOO: [i32; 5] = [1, 2, 3, 4, 5];
1434///
1435/// let r1 = &FOO as *const _;
1436/// let r2 = &FOO as *const _;
3dfed10e 1437/// // With a strictly read-only static, references will have the same address
f035d41b
XL
1438/// assert_eq!(r1, r2);
1439/// // A static item can be used just like a variable in many cases
5e7ed085 1440/// println!("{FOO:?}");
f035d41b
XL
1441/// ```
1442///
1443/// # Mutable `static`s
1444///
1445/// If a `static` item is declared with the [`mut`] keyword, then it is allowed
1446/// to be modified by the program. However, accessing mutable `static`s can
1447/// cause undefined behavior in a number of ways, for example due to data races
1448/// in a multithreaded context. As such, all accesses to mutable `static`s
1449/// require an [`unsafe`] block.
1450///
1451/// Despite their unsafety, mutable `static`s are necessary in many contexts:
1452/// they can be used to represent global state shared by the whole program or in
1453/// [`extern`] blocks to bind to variables from C libraries.
1454///
1455/// In an [`extern`] block:
1456///
1457/// ```rust,no_run
1458/// # #![allow(dead_code)]
1459/// extern "C" {
1460/// static mut ERROR_MESSAGE: *mut std::os::raw::c_char;
1461/// }
1462/// ```
1463///
1464/// Mutable `static`s, just like simple `static`s, have some restrictions that
1465/// apply to them. See the [Reference] for more information.
1466///
1467/// [`const`]: keyword.const.html
1468/// [`extern`]: keyword.extern.html
1469/// [`mut`]: keyword.mut.html
1470/// [`unsafe`]: keyword.unsafe.html
3dfed10e 1471/// [`RefCell`]: cell::RefCell
f035d41b 1472/// [Reference]: ../reference/items/static-items.html
dfeec247 1473mod static_keyword {}
48663c56 1474
0bf4aa26
XL
1475#[doc(keyword = "struct")]
1476//
48663c56 1477/// A type that is composed of other types.
0bf4aa26 1478///
a1dfa0c6 1479/// Structs in Rust come in three flavors: Structs with named fields, tuple structs, and unit
0bf4aa26
XL
1480/// structs.
1481///
1482/// ```rust
1483/// struct Regular {
1484/// field1: f32,
b7449926 1485/// field2: String,
0bf4aa26
XL
1486/// pub field3: bool
1487/// }
1488///
1489/// struct Tuple(u32, String);
1490///
1491/// struct Unit;
1492/// ```
1493///
1494/// Regular structs are the most commonly used. Each field defined within them has a name and a
1495/// type, and once defined can be accessed using `example_struct.field` syntax. The fields of a
1496/// struct share its mutability, so `foo.bar = 2;` would only be valid if `foo` was mutable. Adding
1497/// `pub` to a field makes it visible to code in other modules, as well as allowing it to be
1498/// directly accessed and modified.
1499///
1500/// Tuple structs are similar to regular structs, but its fields have no names. They are used like
9fa01778 1501/// tuples, with deconstruction possible via `let TupleStruct(x, y) = foo;` syntax. For accessing
0bf4aa26
XL
1502/// individual variables, the same syntax is used as with regular tuples, namely `foo.0`, `foo.1`,
1503/// etc, starting at zero.
1504///
1505/// Unit structs are most commonly used as marker. They have a size of zero bytes, but unlike empty
1506/// enums they can be instantiated, making them isomorphic to the unit type `()`. Unit structs are
1507/// useful when you need to implement a trait on something, but don't need to store any data inside
1508/// it.
1509///
1510/// # Instantiation
1511///
1512/// Structs can be instantiated in different ways, all of which can be mixed and
1513/// matched as needed. The most common way to make a new struct is via a constructor method such as
1514/// `new()`, but when that isn't available (or you're writing the constructor itself), struct
1515/// literal syntax is used:
1516///
1517/// ```rust
1518/// # struct Foo { field1: f32, field2: String, etc: bool }
1519/// let example = Foo {
1520/// field1: 42.0,
1521/// field2: "blah".to_string(),
1522/// etc: true,
1523/// };
1524/// ```
1525///
1526/// It's only possible to directly instantiate a struct using struct literal syntax when all of its
1527/// fields are visible to you.
1528///
1529/// There are a handful of shortcuts provided to make writing constructors more convenient, most
1530/// common of which is the Field Init shorthand. When there is a variable and a field of the same
1531/// name, the assignment can be simplified from `field: field` into simply `field`. The following
1532/// example of a hypothetical constructor demonstrates this:
1533///
1534/// ```rust
1535/// struct User {
1536/// name: String,
1537/// admin: bool,
1538/// }
1539///
1540/// impl User {
1541/// pub fn new(name: String) -> Self {
1542/// Self {
1543/// name,
1544/// admin: false,
1545/// }
1546/// }
b7449926
XL
1547/// }
1548/// ```
1549///
0bf4aa26
XL
1550/// Another shortcut for struct instantiation is available, used when you need to make a new
1551/// struct that has the same values as most of a previous struct of the same type, called struct
1552/// update syntax:
1553///
1554/// ```rust
1555/// # struct Foo { field1: String, field2: () }
1556/// # let thing = Foo { field1: "".to_string(), field2: () };
1557/// let updated_thing = Foo {
1558/// field1: "a new value".to_string(),
1559/// ..thing
1560/// };
1561/// ```
1562///
1563/// Tuple structs are instantiated in the same way as tuples themselves, except with the struct's
1564/// name as a prefix: `Foo(123, false, 0.1)`.
1565///
1566/// Empty structs are instantiated with just their name, and don't need anything else. `let thing =
1567/// EmptyStruct;`
1568///
1569/// # Style conventions
1570///
9ffffee4 1571/// Structs are always written in UpperCamelCase, with few exceptions. While the trailing comma on a
0bf4aa26
XL
1572/// struct's list of fields can be omitted, it's usually kept for convenience in adding and
1573/// removing fields down the line.
1574///
1575/// For more information on structs, take a look at the [Rust Book][book] or the
1576/// [Reference][reference].
b7449926 1577///
3dfed10e 1578/// [`PhantomData`]: marker::PhantomData
48663c56
XL
1579/// [book]: ../book/ch05-01-defining-structs.html
1580/// [reference]: ../reference/items/structs.html
dfeec247 1581mod struct_keyword {}
48663c56
XL
1582
1583#[doc(keyword = "super")]
1584//
1585/// The parent of the current [module].
1586///
f035d41b
XL
1587/// ```rust
1588/// # #![allow(dead_code)]
1589/// # fn main() {}
1590/// mod a {
1591/// pub fn foo() {}
1592/// }
1593/// mod b {
1594/// pub fn foo() {
1595/// super::a::foo(); // call a's foo function
1596/// }
1597/// }
1598/// ```
1599///
1600/// It is also possible to use `super` multiple times: `super::super::foo`,
1601/// going up the ancestor chain.
1602///
1603/// See the [Reference] for more information.
48663c56
XL
1604///
1605/// [module]: ../reference/items/modules.html
f035d41b 1606/// [Reference]: ../reference/paths.html#super
dfeec247 1607mod super_keyword {}
48663c56
XL
1608
1609#[doc(keyword = "trait")]
1610//
3dfed10e
XL
1611/// A common interface for a group of types.
1612///
1613/// A `trait` is like an interface that data types can implement. When a type
1614/// implements a trait it can be treated abstractly as that trait using generics
1615/// or trait objects.
1616///
1617/// Traits can be made up of three varieties of associated items:
1618///
1619/// - functions and methods
1620/// - types
1621/// - constants
1622///
1623/// Traits may also contain additional type parameters. Those type parameters
1624/// or the trait itself can be constrained by other traits.
1625///
1626/// Traits can serve as markers or carry other logical semantics that
1627/// aren't expressed through their items. When a type implements that
1628/// trait it is promising to uphold its contract. [`Send`] and [`Sync`] are two
1629/// such marker traits present in the standard library.
1630///
1631/// See the [Reference][Ref-Traits] for a lot more information on traits.
1632///
1633/// # Examples
1634///
1635/// Traits are declared using the `trait` keyword. Types can implement them
1636/// using [`impl`] `Trait` [`for`] `Type`:
1637///
1638/// ```rust
1639/// trait Zero {
1640/// const ZERO: Self;
1641/// fn is_zero(&self) -> bool;
1642/// }
1643///
1644/// impl Zero for i32 {
1645/// const ZERO: Self = 0;
1646///
1647/// fn is_zero(&self) -> bool {
1648/// *self == Self::ZERO
1649/// }
1650/// }
1651///
1652/// assert_eq!(i32::ZERO, 0);
1653/// assert!(i32::ZERO.is_zero());
1654/// assert!(!4.is_zero());
1655/// ```
1656///
1657/// With an associated type:
1658///
1659/// ```rust
1660/// trait Builder {
1661/// type Built;
1662///
1663/// fn build(&self) -> Self::Built;
1664/// }
1665/// ```
1666///
1667/// Traits can be generic, with constraints or without:
1668///
1669/// ```rust
1670/// trait MaybeFrom<T> {
1671/// fn maybe_from(value: T) -> Option<Self>
1672/// where
1673/// Self: Sized;
1674/// }
1675/// ```
1676///
1677/// Traits can build upon the requirements of other traits. In the example
1678/// below `Iterator` is a **supertrait** and `ThreeIterator` is a **subtrait**:
1679///
1680/// ```rust
353b0b11 1681/// trait ThreeIterator: Iterator {
3dfed10e
XL
1682/// fn next_three(&mut self) -> Option<[Self::Item; 3]>;
1683/// }
1684/// ```
1685///
1686/// Traits can be used in functions, as parameters:
1687///
1688/// ```rust
1689/// # #![allow(dead_code)]
1690/// fn debug_iter<I: Iterator>(it: I) where I::Item: std::fmt::Debug {
1691/// for elem in it {
5e7ed085 1692/// println!("{elem:#?}");
3dfed10e
XL
1693/// }
1694/// }
1695///
1696/// // u8_len_1, u8_len_2 and u8_len_3 are equivalent
1697///
1698/// fn u8_len_1(val: impl Into<Vec<u8>>) -> usize {
1699/// val.into().len()
1700/// }
1701///
1702/// fn u8_len_2<T: Into<Vec<u8>>>(val: T) -> usize {
1703/// val.into().len()
1704/// }
1705///
1706/// fn u8_len_3<T>(val: T) -> usize
1707/// where
1708/// T: Into<Vec<u8>>,
1709/// {
1710/// val.into().len()
1711/// }
1712/// ```
1713///
1714/// Or as return types:
1715///
1716/// ```rust
1717/// # #![allow(dead_code)]
1718/// fn from_zero_to(v: u8) -> impl Iterator<Item = u8> {
1719/// (0..v).into_iter()
1720/// }
1721/// ```
1722///
1723/// The use of the [`impl`] keyword in this position allows the function writer
1724/// to hide the concrete type as an implementation detail which can change
1725/// without breaking user's code.
1726///
1727/// # Trait objects
1728///
1729/// A *trait object* is an opaque value of another type that implements a set of
1730/// traits. A trait object implements all specified traits as well as their
1731/// supertraits (if any).
1732///
1733/// The syntax is the following: `dyn BaseTrait + AutoTrait1 + ... AutoTraitN`.
1734/// Only one `BaseTrait` can be used so this will not compile:
1735///
1736/// ```rust,compile_fail,E0225
1737/// trait A {}
1738/// trait B {}
1739///
1740/// let _: Box<dyn A + B>;
1741/// ```
1742///
1743/// Neither will this, which is a syntax error:
1744///
1745/// ```rust,compile_fail
1746/// trait A {}
1747/// trait B {}
1748///
1749/// let _: Box<dyn A + dyn B>;
1750/// ```
1751///
1752/// On the other hand, this is correct:
1753///
1754/// ```rust
1755/// trait A {}
1756///
1757/// let _: Box<dyn A + Send + Sync>;
1758/// ```
1759///
1760/// The [Reference][Ref-Trait-Objects] has more information about trait objects,
1761/// their limitations and the differences between editions.
1762///
1763/// # Unsafe traits
48663c56 1764///
3dfed10e
XL
1765/// Some traits may be unsafe to implement. Using the [`unsafe`] keyword in
1766/// front of the trait's declaration is used to mark this:
48663c56 1767///
3dfed10e
XL
1768/// ```rust
1769/// unsafe trait UnsafeTrait {}
1770///
1771/// unsafe impl UnsafeTrait for i32 {}
1772/// ```
1773///
1774/// # Differences between the 2015 and 2018 editions
1775///
fc512014 1776/// In the 2015 edition the parameters pattern was not needed for traits:
3dfed10e
XL
1777///
1778/// ```rust,edition2015
cdc7bbd5 1779/// # #![allow(anonymous_parameters)]
3dfed10e
XL
1780/// trait Tr {
1781/// fn f(i32);
1782/// }
1783/// ```
1784///
1785/// This behavior is no longer valid in edition 2018.
1786///
1787/// [`for`]: keyword.for.html
1788/// [`impl`]: keyword.impl.html
1789/// [`unsafe`]: keyword.unsafe.html
1790/// [Ref-Traits]: ../reference/items/traits.html
1791/// [Ref-Trait-Objects]: ../reference/types/trait-object.html
dfeec247 1792mod trait_keyword {}
48663c56
XL
1793
1794#[doc(keyword = "true")]
1795//
1796/// A value of type [`bool`] representing logical **true**.
1797///
74b04a01
XL
1798/// Logically `true` is not equal to [`false`].
1799///
1800/// ## Control structures that check for **true**
1801///
1802/// Several of Rust's control structures will check for a `bool` condition evaluating to **true**.
1803///
1804/// * The condition in an [`if`] expression must be of type `bool`.
1805/// Whenever that condition evaluates to **true**, the `if` expression takes
1806/// on the value of the first block. If however, the condition evaluates
1807/// to `false`, the expression takes on value of the `else` block if there is one.
1808///
1809/// * [`while`] is another control flow construct expecting a `bool`-typed condition.
1810/// As long as the condition evaluates to **true**, the `while` loop will continually
1811/// evaluate its associated block.
48663c56 1812///
74b04a01
XL
1813/// * [`match`] arms can have guard clauses on them.
1814///
1815/// [`if`]: keyword.if.html
1816/// [`while`]: keyword.while.html
1817/// [`match`]: ../reference/expressions/match-expr.html#match-guards
1818/// [`false`]: keyword.false.html
dfeec247 1819mod true_keyword {}
48663c56
XL
1820
1821#[doc(keyword = "type")]
1822//
1823/// Define an alias for an existing type.
1824///
f035d41b 1825/// The syntax is `type Name = ExistingType;`.
48663c56 1826///
f035d41b
XL
1827/// # Examples
1828///
1829/// `type` does **not** create a new type:
1830///
1831/// ```rust
1832/// type Meters = u32;
1833/// type Kilograms = u32;
1834///
1835/// let m: Meters = 3;
1836/// let k: Kilograms = 3;
1837///
1838/// assert_eq!(m, k);
1839/// ```
1840///
1841/// In traits, `type` is used to declare an [associated type]:
1842///
1843/// ```rust
1844/// trait Iterator {
1845/// // associated type declaration
1846/// type Item;
1847/// fn next(&mut self) -> Option<Self::Item>;
1848/// }
1849///
1850/// struct Once<T>(Option<T>);
1851///
1852/// impl<T> Iterator for Once<T> {
1853/// // associated type definition
1854/// type Item = T;
1855/// fn next(&mut self) -> Option<Self::Item> {
1856/// self.0.take()
1857/// }
1858/// }
1859/// ```
1860///
1861/// [`trait`]: keyword.trait.html
1862/// [associated type]: ../reference/items/associated-items.html#associated-types
dfeec247 1863mod type_keyword {}
48663c56
XL
1864
1865#[doc(keyword = "unsafe")]
1866//
3dfed10e
XL
1867/// Code or interfaces whose [memory safety] cannot be verified by the type
1868/// system.
1869///
2b03887a
FG
1870/// The `unsafe` keyword has two uses:
1871/// - to declare the existence of contracts the compiler can't check (`unsafe fn` and `unsafe
1872/// trait`),
1873/// - and to declare that a programmer has checked that these contracts have been upheld (`unsafe
1874/// {}` and `unsafe impl`, but also `unsafe fn` -- see below).
1875///
1876/// They are not mutually exclusive, as can be seen in `unsafe fn`: the body of an `unsafe fn` is,
1877/// by default, treated like an unsafe block. The `unsafe_op_in_unsafe_fn` lint can be enabled to
1878/// change that.
3dfed10e
XL
1879///
1880/// # Unsafe abilities
1881///
1882/// **No matter what, Safe Rust can't cause Undefined Behavior**. This is
1883/// referred to as [soundness]: a well-typed program actually has the desired
1884/// properties. The [Nomicon][nomicon-soundness] has a more detailed explanation
1885/// on the subject.
1886///
1887/// To ensure soundness, Safe Rust is restricted enough that it can be
1888/// automatically checked. Sometimes, however, it is necessary to write code
1889/// that is correct for reasons which are too clever for the compiler to
1890/// understand. In those cases, you need to use Unsafe Rust.
1891///
1892/// Here are the abilities Unsafe Rust has in addition to Safe Rust:
1893///
1894/// - Dereference [raw pointers]
1895/// - Implement `unsafe` [`trait`]s
1896/// - Call `unsafe` functions
1897/// - Mutate [`static`]s (including [`extern`]al ones)
1898/// - Access fields of [`union`]s
1899///
1900/// However, this extra power comes with extra responsibilities: it is now up to
1901/// you to ensure soundness. The `unsafe` keyword helps by clearly marking the
1902/// pieces of code that need to worry about this.
1903///
1904/// ## The different meanings of `unsafe`
1905///
1906/// Not all uses of `unsafe` are equivalent: some are here to mark the existence
1907/// of a contract the programmer must check, others are to say "I have checked
1908/// the contract, go ahead and do this". The following
1909/// [discussion on Rust Internals] has more in-depth explanations about this but
1910/// here is a summary of the main points:
1911///
1912/// - `unsafe fn`: calling this function means abiding by a contract the
1913/// compiler cannot enforce.
1914/// - `unsafe trait`: implementing the [`trait`] means abiding by a
1915/// contract the compiler cannot enforce.
1916/// - `unsafe {}`: the contract necessary to call the operations inside the
1917/// block has been checked by the programmer and is guaranteed to be respected.
1918/// - `unsafe impl`: the contract necessary to implement the trait has been
1919/// checked by the programmer and is guaranteed to be respected.
1920///
2b03887a 1921/// By default, `unsafe fn` also acts like an `unsafe {}` block
3dfed10e
XL
1922/// around the code inside the function. This means it is not just a signal to
1923/// the caller, but also promises that the preconditions for the operations
2b03887a
FG
1924/// inside the function are upheld. Mixing these two meanings can be confusing, so the
1925/// `unsafe_op_in_unsafe_fn` lint can be enabled to warn against that and require explicit unsafe
1926/// blocks even inside `unsafe fn`.
3dfed10e 1927///
49aad941 1928/// See the [Rustonomicon] and the [Reference] for more information.
3dfed10e
XL
1929///
1930/// # Examples
1931///
1932/// ## Marking elements as `unsafe`
1933///
1934/// `unsafe` can be used on functions. Note that functions and statics declared
1935/// in [`extern`] blocks are implicitly marked as `unsafe` (but not functions
1936/// declared as `extern "something" fn ...`). Mutable statics are always unsafe,
1937/// wherever they are declared. Methods can also be declared as `unsafe`:
1938///
1939/// ```rust
1940/// # #![allow(dead_code)]
1941/// static mut FOO: &str = "hello";
1942///
1943/// unsafe fn unsafe_fn() {}
1944///
1945/// extern "C" {
1946/// fn unsafe_extern_fn();
1947/// static BAR: *mut u32;
1948/// }
1949///
1950/// trait SafeTraitWithUnsafeMethod {
1951/// unsafe fn unsafe_method(&self);
1952/// }
1953///
1954/// struct S;
1955///
1956/// impl S {
1957/// unsafe fn unsafe_method_on_struct() {}
1958/// }
1959/// ```
1960///
1961/// Traits can also be declared as `unsafe`:
1962///
1963/// ```rust
1964/// unsafe trait UnsafeTrait {}
1965/// ```
1966///
1967/// Since `unsafe fn` and `unsafe trait` indicate that there is a safety
1968/// contract that the compiler cannot enforce, documenting it is important. The
1969/// standard library has many examples of this, like the following which is an
1970/// extract from [`Vec::set_len`]. The `# Safety` section explains the contract
1971/// that must be fulfilled to safely call the function.
1972///
1973/// ```rust,ignore (stub-to-show-doc-example)
1974/// /// Forces the length of the vector to `new_len`.
1975/// ///
1976/// /// This is a low-level operation that maintains none of the normal
1977/// /// invariants of the type. Normally changing the length of a vector
1978/// /// is done using one of the safe operations instead, such as
1979/// /// `truncate`, `resize`, `extend`, or `clear`.
1980/// ///
1981/// /// # Safety
1982/// ///
1983/// /// - `new_len` must be less than or equal to `capacity()`.
1984/// /// - The elements at `old_len..new_len` must be initialized.
1985/// pub unsafe fn set_len(&mut self, new_len: usize)
1986/// ```
1987///
1988/// ## Using `unsafe {}` blocks and `impl`s
1989///
1990/// Performing `unsafe` operations requires an `unsafe {}` block:
1991///
1992/// ```rust
1993/// # #![allow(dead_code)]
2b03887a
FG
1994/// #![deny(unsafe_op_in_unsafe_fn)]
1995///
3dfed10e
XL
1996/// /// Dereference the given pointer.
1997/// ///
1998/// /// # Safety
1999/// ///
2000/// /// `ptr` must be aligned and must not be dangling.
2001/// unsafe fn deref_unchecked(ptr: *const i32) -> i32 {
2b03887a
FG
2002/// // SAFETY: the caller is required to ensure that `ptr` is aligned and dereferenceable.
2003/// unsafe { *ptr }
3dfed10e
XL
2004/// }
2005///
2006/// let a = 3;
2007/// let b = &a as *const _;
2008/// // SAFETY: `a` has not been dropped and references are always aligned,
2009/// // so `b` is a valid address.
2010/// unsafe { assert_eq!(*b, deref_unchecked(b)); };
2011/// ```
2012///
2b03887a
FG
2013/// ## `unsafe` and traits
2014///
2015/// The interactions of `unsafe` and traits can be surprising, so let us contrast the
2016/// two combinations of safe `fn` in `unsafe trait` and `unsafe fn` in safe trait using two
2017/// examples:
2018///
2019/// ```rust
2020/// /// # Safety
2021/// ///
2022/// /// `make_even` must return an even number.
2023/// unsafe trait MakeEven {
2024/// fn make_even(&self) -> i32;
2025/// }
2026///
2027/// // SAFETY: Our `make_even` always returns something even.
2028/// unsafe impl MakeEven for i32 {
2029/// fn make_even(&self) -> i32 {
2030/// self << 1
2031/// }
2032/// }
2033///
2034/// fn use_make_even(x: impl MakeEven) {
2035/// if x.make_even() % 2 == 1 {
2036/// // SAFETY: this can never happen, because all `MakeEven` implementations
2037/// // ensure that `make_even` returns something even.
2038/// unsafe { std::hint::unreachable_unchecked() };
2039/// }
2040/// }
2041/// ```
2042///
2043/// Note how the safety contract of the trait is upheld by the implementation, and is itself used to
2044/// uphold the safety contract of the unsafe function `unreachable_unchecked` called by
2045/// `use_make_even`. `make_even` itself is a safe function because its *callers* do not have to
2046/// worry about any contract, only the *implementation* of `MakeEven` is required to uphold a
2047/// certain contract. `use_make_even` is safe because it can use the promise made by `MakeEven`
2048/// implementations to uphold the safety contract of the `unsafe fn unreachable_unchecked` it calls.
2049///
2050/// It is also possible to have `unsafe fn` in a regular safe `trait`:
3dfed10e
XL
2051///
2052/// ```rust
2b03887a
FG
2053/// # #![feature(never_type)]
2054/// #![deny(unsafe_op_in_unsafe_fn)]
2055///
2056/// trait Indexable {
2057/// const LEN: usize;
2058///
2059/// /// # Safety
2060/// ///
2061/// /// The caller must ensure that `idx < LEN`.
2062/// unsafe fn idx_unchecked(&self, idx: usize) -> i32;
2063/// }
2064///
2065/// // The implementation for `i32` doesn't need to do any contract reasoning.
2066/// impl Indexable for i32 {
2067/// const LEN: usize = 1;
2068///
2069/// unsafe fn idx_unchecked(&self, idx: usize) -> i32 {
2070/// debug_assert_eq!(idx, 0);
2071/// *self
2072/// }
2073/// }
2074///
2075/// // The implementation for arrays exploits the function contract to
2076/// // make use of `get_unchecked` on slices and avoid a run-time check.
2077/// impl Indexable for [i32; 42] {
2078/// const LEN: usize = 42;
2079///
2080/// unsafe fn idx_unchecked(&self, idx: usize) -> i32 {
2081/// // SAFETY: As per this trait's documentation, the caller ensures
2082/// // that `idx < 42`.
2083/// unsafe { *self.get_unchecked(idx) }
3dfed10e
XL
2084/// }
2085/// }
48663c56 2086///
2b03887a
FG
2087/// // The implementation for the never type declares a length of 0,
2088/// // which means `idx_unchecked` can never be called.
2089/// impl Indexable for ! {
2090/// const LEN: usize = 0;
2091///
2092/// unsafe fn idx_unchecked(&self, idx: usize) -> i32 {
2093/// // SAFETY: As per this trait's documentation, the caller ensures
2094/// // that `idx < 0`, which is impossible, so this is dead code.
2095/// unsafe { std::hint::unreachable_unchecked() }
2096/// }
2097/// }
2098///
2099/// fn use_indexable<I: Indexable>(x: I, idx: usize) -> i32 {
2100/// if idx < I::LEN {
2101/// // SAFETY: We have checked that `idx < I::LEN`.
2102/// unsafe { x.idx_unchecked(idx) }
2103/// } else {
2104/// panic!("index out-of-bounds")
2105/// }
2106/// }
3dfed10e 2107/// ```
48663c56 2108///
2b03887a
FG
2109/// This time, `use_indexable` is safe because it uses a run-time check to discharge the safety
2110/// contract of `idx_unchecked`. Implementing `Indexable` is safe because when writing
2111/// `idx_unchecked`, we don't have to worry: our *callers* need to discharge a proof obligation
2112/// (like `use_indexable` does), but the *implementation* of `get_unchecked` has no proof obligation
2113/// to contend with. Of course, the implementation of `Indexable` may choose to call other unsafe
2114/// operations, and then it needs an `unsafe` *block* to indicate it discharged the proof
2115/// obligations of its callees. (We enabled `unsafe_op_in_unsafe_fn`, so the body of `idx_unchecked`
2116/// is not implicitly an unsafe block.) For that purpose it can make use of the contract that all
2117/// its callers must uphold -- the fact that `idx < LEN`.
2118///
2119/// Formally speaking, an `unsafe fn` in a trait is a function with *preconditions* that go beyond
2120/// those encoded by the argument types (such as `idx < LEN`), whereas an `unsafe trait` can declare
2121/// that some of its functions have *postconditions* that go beyond those encoded in the return type
2122/// (such as returning an even integer). If a trait needs a function with both extra precondition
2123/// and extra postcondition, then it needs an `unsafe fn` in an `unsafe trait`.
2124///
3dfed10e
XL
2125/// [`extern`]: keyword.extern.html
2126/// [`trait`]: keyword.trait.html
2127/// [`static`]: keyword.static.html
2128/// [`union`]: keyword.union.html
2129/// [`impl`]: keyword.impl.html
2130/// [raw pointers]: ../reference/types/pointer.html
48663c56 2131/// [memory safety]: ../book/ch19-01-unsafe-rust.html
49aad941 2132/// [Rustonomicon]: ../nomicon/index.html
3dfed10e
XL
2133/// [nomicon-soundness]: ../nomicon/safe-unsafe-meaning.html
2134/// [soundness]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#soundness-of-code--of-a-library
2135/// [Reference]: ../reference/unsafety.html
3dfed10e 2136/// [discussion on Rust Internals]: https://internals.rust-lang.org/t/what-does-unsafe-mean/6696
dfeec247 2137mod unsafe_keyword {}
48663c56
XL
2138
2139#[doc(keyword = "use")]
2140//
2141/// Import or rename items from other crates or modules.
2142///
f035d41b
XL
2143/// Usually a `use` keyword is used to shorten the path required to refer to a module item.
2144/// The keyword may appear in modules, blocks and even functions, usually at the top.
2145///
2146/// The most basic usage of the keyword is `use path::to::item;`,
2147/// though a number of convenient shortcuts are supported:
2148///
2149/// * Simultaneously binding a list of paths with a common prefix,
2150/// using the glob-like brace syntax `use a::b::{c, d, e::f, g::h::i};`
2151/// * Simultaneously binding a list of paths with a common prefix and their common parent module,
2152/// using the [`self`] keyword, such as `use a::b::{self, c, d::e};`
2153/// * Rebinding the target name as a new local name, using the syntax `use p::q::r as x;`.
2154/// This can also be used with the last two features: `use a::b::{self as ab, c as abc}`.
2155/// * Binding all paths matching a given prefix,
2156/// using the asterisk wildcard syntax `use a::b::*;`.
2157/// * Nesting groups of the previous features multiple times,
2158/// such as `use a::b::{self as ab, c, d::{*, e::f}};`
2159/// * Reexporting with visibility modifiers such as `pub use a::b;`
2160/// * Importing with `_` to only import the methods of a trait without binding it to a name
2161/// (to avoid conflict for example): `use ::std::io::Read as _;`.
2162///
2163/// Using path qualifiers like [`crate`], [`super`] or [`self`] is supported: `use crate::a::b;`.
2164///
2165/// Note that when the wildcard `*` is used on a type, it does not import its methods (though
2166/// for `enum`s it imports the variants, as shown in the example below).
2167///
2168/// ```compile_fail,edition2018
2169/// enum ExampleEnum {
2170/// VariantA,
2171/// VariantB,
2172/// }
48663c56 2173///
f035d41b
XL
2174/// impl ExampleEnum {
2175/// fn new() -> Self {
2176/// Self::VariantA
2177/// }
2178/// }
2179///
2180/// use ExampleEnum::*;
2181///
2182/// // Compiles.
2183/// let _ = VariantA;
2184///
2185/// // Does not compile !
2186/// let n = new();
2187/// ```
2188///
2189/// For more information on `use` and paths in general, see the [Reference].
2190///
2191/// The differences about paths and the `use` keyword between the 2015 and 2018 editions
2192/// can also be found in the [Reference].
2193///
2194/// [`crate`]: keyword.crate.html
2195/// [`self`]: keyword.self.html
2196/// [`super`]: keyword.super.html
2197/// [Reference]: ../reference/items/use-declarations.html
dfeec247 2198mod use_keyword {}
48663c56
XL
2199
2200#[doc(keyword = "where")]
2201//
2202/// Add constraints that must be upheld to use an item.
2203///
3dfed10e 2204/// `where` allows specifying constraints on lifetime and generic parameters.
f2b60f7d 2205/// The [RFC] introducing `where` contains detailed information about the
3dfed10e
XL
2206/// keyword.
2207///
2208/// # Examples
2209///
2210/// `where` can be used for constraints with traits:
2211///
2212/// ```rust
2213/// fn new<T: Default>() -> T {
2214/// T::default()
2215/// }
2216///
2217/// fn new_where<T>() -> T
2218/// where
2219/// T: Default,
2220/// {
2221/// T::default()
2222/// }
2223///
2224/// assert_eq!(0.0, new());
2225/// assert_eq!(0.0, new_where());
2226///
2227/// assert_eq!(0, new());
2228/// assert_eq!(0, new_where());
2229/// ```
2230///
2231/// `where` can also be used for lifetimes.
2232///
2233/// This compiles because `longer` outlives `shorter`, thus the constraint is
2234/// respected:
2235///
2236/// ```rust
2237/// fn select<'short, 'long>(s1: &'short str, s2: &'long str, second: bool) -> &'short str
2238/// where
2239/// 'long: 'short,
2240/// {
2241/// if second { s2 } else { s1 }
2242/// }
2243///
2244/// let outer = String::from("Long living ref");
2245/// let longer = &outer;
2246/// {
2247/// let inner = String::from("Short living ref");
2248/// let shorter = &inner;
2249///
2250/// assert_eq!(select(shorter, longer, false), shorter);
2251/// assert_eq!(select(shorter, longer, true), longer);
2252/// }
2253/// ```
2254///
2255/// On the other hand, this will not compile because the `where 'b: 'a` clause
2256/// is missing: the `'b` lifetime is not known to live at least as long as `'a`
2257/// which means this function cannot ensure it always returns a valid reference:
2258///
923072b8 2259/// ```rust,compile_fail
3dfed10e
XL
2260/// fn select<'a, 'b>(s1: &'a str, s2: &'b str, second: bool) -> &'a str
2261/// {
2262/// if second { s2 } else { s1 }
2263/// }
2264/// ```
2265///
2266/// `where` can also be used to express more complicated constraints that cannot
2267/// be written with the `<T: Trait>` syntax:
2268///
2269/// ```rust
2270/// fn first_or_default<I>(mut i: I) -> I::Item
2271/// where
2272/// I: Iterator,
2273/// I::Item: Default,
2274/// {
2275/// i.next().unwrap_or_else(I::Item::default)
2276/// }
2277///
5099ac24 2278/// assert_eq!(first_or_default([1, 2, 3].into_iter()), 1);
3dfed10e
XL
2279/// assert_eq!(first_or_default(Vec::<i32>::new().into_iter()), 0);
2280/// ```
2281///
2282/// `where` is available anywhere generic and lifetime parameters are available,
2283/// as can be seen with the [`Cow`](crate::borrow::Cow) type from the standard
2284/// library:
2285///
2286/// ```rust
2287/// # #![allow(dead_code)]
2288/// pub enum Cow<'a, B>
2289/// where
49aad941 2290/// B: ToOwned + ?Sized,
923072b8 2291/// {
3dfed10e
XL
2292/// Borrowed(&'a B),
2293/// Owned(<B as ToOwned>::Owned),
2294/// }
2295/// ```
48663c56 2296///
3dfed10e 2297/// [RFC]: https://github.com/rust-lang/rfcs/blob/master/text/0135-where.md
dfeec247 2298mod where_keyword {}
48663c56 2299
48663c56
XL
2300// 2018 Edition keywords
2301
fc512014 2302#[doc(alias = "promise")]
48663c56
XL
2303#[doc(keyword = "async")]
2304//
2305/// Return a [`Future`] instead of blocking the current thread.
2306///
dfeec247
XL
2307/// Use `async` in front of `fn`, `closure`, or a `block` to turn the marked code into a `Future`.
2308/// As such the code will not be run immediately, but will only be evaluated when the returned
5e7ed085 2309/// future is [`.await`]ed.
dfeec247 2310///
5e7ed085 2311/// We have written an [async book] detailing `async`/`await` and trade-offs compared to using threads.
dfeec247
XL
2312///
2313/// ## Editions
2314///
2315/// `async` is a keyword from the 2018 edition onwards.
2316///
5e7ed085 2317/// It is available for use in stable Rust from version 1.39 onwards.
48663c56 2318///
3dfed10e 2319/// [`Future`]: future::Future
5e7ed085 2320/// [`.await`]: ../std/keyword.await.html
dfeec247
XL
2321/// [async book]: https://rust-lang.github.io/async-book/
2322mod async_keyword {}
48663c56 2323
48663c56
XL
2324#[doc(keyword = "await")]
2325//
2326/// Suspend execution until the result of a [`Future`] is ready.
2327///
5e7ed085 2328/// `.await`ing a future will suspend the current function's execution until the executor
dfeec247
XL
2329/// has run the future to completion.
2330///
5e7ed085 2331/// Read the [async book] for details on how [`async`]/`await` and executors work.
dfeec247
XL
2332///
2333/// ## Editions
2334///
2335/// `await` is a keyword from the 2018 edition onwards.
2336///
5e7ed085 2337/// It is available for use in stable Rust from version 1.39 onwards.
48663c56 2338///
3dfed10e 2339/// [`Future`]: future::Future
dfeec247 2340/// [async book]: https://rust-lang.github.io/async-book/
5e7ed085 2341/// [`async`]: ../std/keyword.async.html
dfeec247 2342mod await_keyword {}
48663c56
XL
2343
2344#[doc(keyword = "dyn")]
2345//
74b04a01 2346/// `dyn` is a prefix of a [trait object]'s type.
48663c56 2347///
74b04a01 2348/// The `dyn` keyword is used to highlight that calls to methods on the associated `Trait`
923072b8 2349/// are [dynamically dispatched]. To use the trait this way, it must be 'object safe'.
74b04a01
XL
2350///
2351/// Unlike generic parameters or `impl Trait`, the compiler does not know the concrete type that
2352/// is being passed. That is, the type has been [erased].
2353/// As such, a `dyn Trait` reference contains _two_ pointers.
2354/// One pointer goes to the data (e.g., an instance of a struct).
2355/// Another pointer goes to a map of method call names to function pointers
2356/// (known as a virtual method table or vtable).
2357///
2358/// At run-time, when a method needs to be called on the `dyn Trait`, the vtable is consulted to get
2359/// the function pointer and then that function pointer is called.
2360///
136023e0
XL
2361/// See the Reference for more information on [trait objects][ref-trait-obj]
2362/// and [object safety][ref-obj-safety].
2363///
74b04a01
XL
2364/// ## Trade-offs
2365///
2366/// The above indirection is the additional runtime cost of calling a function on a `dyn Trait`.
2367/// Methods called by dynamic dispatch generally cannot be inlined by the compiler.
2368///
2369/// However, `dyn Trait` is likely to produce smaller code than `impl Trait` / generic parameters as
2370/// the method won't be duplicated for each concrete type.
2371///
48663c56 2372/// [trait object]: ../book/ch17-02-trait-objects.html
923072b8 2373/// [dynamically dispatched]: https://en.wikipedia.org/wiki/Dynamic_dispatch
136023e0
XL
2374/// [ref-trait-obj]: ../reference/types/trait-object.html
2375/// [ref-obj-safety]: ../reference/items/traits.html#object-safety
74b04a01 2376/// [erased]: https://en.wikipedia.org/wiki/Type_erasure
dfeec247 2377mod dyn_keyword {}
48663c56
XL
2378
2379#[doc(keyword = "union")]
2380//
2381/// The [Rust equivalent of a C-style union][union].
2382///
f035d41b
XL
2383/// A `union` looks like a [`struct`] in terms of declaration, but all of its
2384/// fields exist in the same memory, superimposed over one another. For instance,
2385/// if we wanted some bits in memory that we sometimes interpret as a `u32` and
2386/// sometimes as an `f32`, we could write:
48663c56 2387///
f035d41b
XL
2388/// ```rust
2389/// union IntOrFloat {
2390/// i: u32,
2391/// f: f32,
2392/// }
2393///
2394/// let mut u = IntOrFloat { f: 1.0 };
94222f64 2395/// // Reading the fields of a union is always unsafe
f035d41b
XL
2396/// assert_eq!(unsafe { u.i }, 1065353216);
2397/// // Updating through any of the field will modify all of them
2398/// u.i = 1073741824;
2399/// assert_eq!(unsafe { u.f }, 2.0);
2400/// ```
2401///
2402/// # Matching on unions
2403///
2404/// It is possible to use pattern matching on `union`s. A single field name must
2405/// be used and it must match the name of one of the `union`'s field.
2406/// Like reading from a `union`, pattern matching on a `union` requires `unsafe`.
2407///
2408/// ```rust
2409/// union IntOrFloat {
2410/// i: u32,
2411/// f: f32,
2412/// }
2413///
2414/// let u = IntOrFloat { f: 1.0 };
2415///
2416/// unsafe {
2417/// match u {
2418/// IntOrFloat { i: 10 } => println!("Found exactly ten!"),
2419/// // Matching the field `f` provides an `f32`.
5e7ed085 2420/// IntOrFloat { f } => println!("Found f = {f} !"),
f035d41b
XL
2421/// }
2422/// }
2423/// ```
2424///
2425/// # References to union fields
2426///
2427/// All fields in a `union` are all at the same place in memory which means
2428/// borrowing one borrows the entire `union`, for the same lifetime:
2429///
2430/// ```rust,compile_fail,E0502
2431/// union IntOrFloat {
2432/// i: u32,
2433/// f: f32,
2434/// }
2435///
2436/// let mut u = IntOrFloat { f: 1.0 };
2437///
2438/// let f = unsafe { &u.f };
2439/// // This will not compile because the field has already been borrowed, even
2440/// // if only immutably
2441/// let i = unsafe { &mut u.i };
2442///
2443/// *i = 10;
5e7ed085 2444/// println!("f = {f} and i = {i}");
f035d41b
XL
2445/// ```
2446///
f2b60f7d 2447/// See the [Reference][union] for more information on `union`s.
f035d41b
XL
2448///
2449/// [`struct`]: keyword.struct.html
48663c56 2450/// [union]: ../reference/items/unions.html
dfeec247 2451mod union_keyword {}