]> git.proxmox.com Git - mirror_qemu.git/blame - linux-headers/linux/vfio.h
Merge remote-tracking branch 'remotes/jsnow-gitlab/tags/python-pull-request' into...
[mirror_qemu.git] / linux-headers / linux / vfio.h
CommitLineData
dd873966 1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
883f0b85
AW
2/*
3 * VFIO API definition
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
d4834ff9
AG
12#ifndef VFIO_H
13#define VFIO_H
883f0b85
AW
14
15#include <linux/types.h>
16#include <linux/ioctl.h>
17
18#define VFIO_API_VERSION 0
19
20
21/* Kernel & User level defines for VFIO IOCTLs. */
22
23/* Extensions */
24
25#define VFIO_TYPE1_IOMMU 1
c5daeae1 26#define VFIO_SPAPR_TCE_IOMMU 2
9ffd2685
CH
27#define VFIO_TYPE1v2_IOMMU 3
28/*
29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This
30 * capability is subject to change as groups are added or removed.
31 */
32#define VFIO_DMA_CC_IOMMU 4
883f0b85 33
a9fd1654
JF
34/* Check if EEH is supported */
35#define VFIO_EEH 5
36
444b1996
AB
37/* Two-stage IOMMU */
38#define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */
39
25b8b39b
AK
40#define VFIO_SPAPR_TCE_v2_IOMMU 7
41
66fb2d54
CH
42/*
43 * The No-IOMMU IOMMU offers no translation or isolation for devices and
44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU
45 * code will taint the host kernel and should be used with extreme caution.
46 */
47#define VFIO_NOIOMMU_IOMMU 8
48
278f064e
EH
49/* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50#define VFIO_UNMAP_ALL 9
51
52/* Supports the vaddr flag for DMA map and unmap */
53#define VFIO_UPDATE_VADDR 10
54
883f0b85
AW
55/*
56 * The IOCTL interface is designed for extensibility by embedding the
57 * structure length (argsz) and flags into structures passed between
58 * kernel and userspace. We therefore use the _IO() macro for these
59 * defines to avoid implicitly embedding a size into the ioctl request.
60 * As structure fields are added, argsz will increase to match and flag
61 * bits will be defined to indicate additional fields with valid data.
62 * It's *always* the caller's responsibility to indicate the size of
63 * the structure passed by setting argsz appropriately.
64 */
65
66#define VFIO_TYPE (';')
67#define VFIO_BASE 100
68
b89485a5
PB
69/*
70 * For extension of INFO ioctls, VFIO makes use of a capability chain
71 * designed after PCI/e capabilities. A flag bit indicates whether
72 * this capability chain is supported and a field defined in the fixed
73 * structure defines the offset of the first capability in the chain.
74 * This field is only valid when the corresponding bit in the flags
75 * bitmap is set. This offset field is relative to the start of the
76 * INFO buffer, as is the next field within each capability header.
77 * The id within the header is a shared address space per INFO ioctl,
78 * while the version field is specific to the capability id. The
79 * contents following the header are specific to the capability id.
80 */
81struct vfio_info_cap_header {
82 __u16 id; /* Identifies capability */
83 __u16 version; /* Version specific to the capability ID */
84 __u32 next; /* Offset of next capability */
85};
86
87/*
88 * Callers of INFO ioctls passing insufficiently sized buffers will see
89 * the capability chain flag bit set, a zero value for the first capability
90 * offset (if available within the provided argsz), and argsz will be
91 * updated to report the necessary buffer size. For compatibility, the
92 * INFO ioctl will not report error in this case, but the capability chain
93 * will not be available.
94 */
95
883f0b85
AW
96/* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
97
98/**
99 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
100 *
101 * Report the version of the VFIO API. This allows us to bump the entire
102 * API version should we later need to add or change features in incompatible
103 * ways.
104 * Return: VFIO_API_VERSION
105 * Availability: Always
106 */
107#define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0)
108
109/**
110 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
111 *
112 * Check whether an extension is supported.
113 * Return: 0 if not supported, 1 (or some other positive integer) if supported.
114 * Availability: Always
115 */
116#define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1)
117
118/**
119 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
120 *
121 * Set the iommu to the given type. The type must be supported by an
122 * iommu driver as verified by calling CHECK_EXTENSION using the same
123 * type. A group must be set to this file descriptor before this
124 * ioctl is available. The IOMMU interfaces enabled by this call are
125 * specific to the value set.
126 * Return: 0 on success, -errno on failure
127 * Availability: When VFIO group attached
128 */
129#define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2)
130
131/* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
132
133/**
134 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
135 * struct vfio_group_status)
136 *
137 * Retrieve information about the group. Fills in provided
138 * struct vfio_group_info. Caller sets argsz.
139 * Return: 0 on succes, -errno on failure.
140 * Availability: Always
141 */
142struct vfio_group_status {
143 __u32 argsz;
144 __u32 flags;
145#define VFIO_GROUP_FLAGS_VIABLE (1 << 0)
146#define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1)
147};
148#define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3)
149
150/**
151 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
152 *
153 * Set the container for the VFIO group to the open VFIO file
154 * descriptor provided. Groups may only belong to a single
155 * container. Containers may, at their discretion, support multiple
156 * groups. Only when a container is set are all of the interfaces
157 * of the VFIO file descriptor and the VFIO group file descriptor
158 * available to the user.
159 * Return: 0 on success, -errno on failure.
160 * Availability: Always
161 */
162#define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4)
163
164/**
165 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
166 *
167 * Remove the group from the attached container. This is the
168 * opposite of the SET_CONTAINER call and returns the group to
169 * an initial state. All device file descriptors must be released
170 * prior to calling this interface. When removing the last group
171 * from a container, the IOMMU will be disabled and all state lost,
172 * effectively also returning the VFIO file descriptor to an initial
173 * state.
174 * Return: 0 on success, -errno on failure.
175 * Availability: When attached to container
176 */
177#define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5)
178
179/**
180 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
181 *
182 * Return a new file descriptor for the device object described by
183 * the provided string. The string should match a device listed in
184 * the devices subdirectory of the IOMMU group sysfs entry. The
185 * group containing the device must already be added to this context.
186 * Return: new file descriptor on success, -errno on failure.
187 * Availability: When attached to container
188 */
189#define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6)
190
191/* --------------- IOCTLs for DEVICE file descriptors --------------- */
192
193/**
194 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
195 * struct vfio_device_info)
196 *
197 * Retrieve information about the device. Fills in provided
198 * struct vfio_device_info. Caller sets argsz.
199 * Return: 0 on success, -errno on failure.
200 */
201struct vfio_device_info {
202 __u32 argsz;
203 __u32 flags;
204#define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */
205#define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */
7a52ce8a
CH
206#define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */
207#define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */
74c98e20 208#define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */
8f3cd250 209#define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */
53ba2eee
MR
210#define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */
211#define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */
883f0b85
AW
212 __u32 num_regions; /* Max region index + 1 */
213 __u32 num_irqs; /* Max IRQ index + 1 */
53ba2eee 214 __u32 cap_offset; /* Offset within info struct of first cap */
883f0b85
AW
215};
216#define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7)
217
3a5eb5b4
PB
218/*
219 * Vendor driver using Mediated device framework should provide device_api
220 * attribute in supported type attribute groups. Device API string should be one
221 * of the following corresponding to device flags in vfio_device_info structure.
222 */
223
224#define VFIO_DEVICE_API_PCI_STRING "vfio-pci"
225#define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform"
226#define VFIO_DEVICE_API_AMBA_STRING "vfio-amba"
74c98e20 227#define VFIO_DEVICE_API_CCW_STRING "vfio-ccw"
8f3cd250 228#define VFIO_DEVICE_API_AP_STRING "vfio-ap"
3a5eb5b4 229
53ba2eee
MR
230/*
231 * The following capabilities are unique to s390 zPCI devices. Their contents
232 * are further-defined in vfio_zdev.h
233 */
234#define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1
235#define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2
236#define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3
237#define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4
238
883f0b85
AW
239/**
240 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
241 * struct vfio_region_info)
242 *
243 * Retrieve information about a device region. Caller provides
244 * struct vfio_region_info with index value set. Caller sets argsz.
245 * Implementation of region mapping is bus driver specific. This is
246 * intended to describe MMIO, I/O port, as well as bus specific
247 * regions (ex. PCI config space). Zero sized regions may be used
248 * to describe unimplemented regions (ex. unimplemented PCI BARs).
249 * Return: 0 on success, -errno on failure.
250 */
251struct vfio_region_info {
252 __u32 argsz;
253 __u32 flags;
254#define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */
255#define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */
256#define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */
b89485a5 257#define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */
883f0b85 258 __u32 index; /* Region index */
b89485a5 259 __u32 cap_offset; /* Offset within info struct of first cap */
883f0b85
AW
260 __u64 size; /* Region size (bytes) */
261 __u64 offset; /* Region offset from start of device fd */
262};
263#define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8)
264
b89485a5
PB
265/*
266 * The sparse mmap capability allows finer granularity of specifying areas
267 * within a region with mmap support. When specified, the user should only
268 * mmap the offset ranges specified by the areas array. mmaps outside of the
269 * areas specified may fail (such as the range covering a PCI MSI-X table) or
270 * may result in improper device behavior.
271 *
272 * The structures below define version 1 of this capability.
273 */
274#define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1
275
276struct vfio_region_sparse_mmap_area {
277 __u64 offset; /* Offset of mmap'able area within region */
278 __u64 size; /* Size of mmap'able area */
279};
280
281struct vfio_region_info_cap_sparse_mmap {
282 struct vfio_info_cap_header header;
283 __u32 nr_areas;
284 __u32 reserved;
285 struct vfio_region_sparse_mmap_area areas[];
286};
287
288/*
289 * The device specific type capability allows regions unique to a specific
290 * device or class of devices to be exposed. This helps solve the problem for
291 * vfio bus drivers of defining which region indexes correspond to which region
292 * on the device, without needing to resort to static indexes, as done by
293 * vfio-pci. For instance, if we were to go back in time, we might remove
294 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
295 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
296 * make a "VGA" device specific type to describe the VGA access space. This
297 * means that non-VGA devices wouldn't need to waste this index, and thus the
298 * address space associated with it due to implementation of device file
299 * descriptor offsets in vfio-pci.
300 *
301 * The current implementation is now part of the user ABI, so we can't use this
302 * for VGA, but there are other upcoming use cases, such as opregions for Intel
303 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll
304 * use this for future additions.
305 *
306 * The structure below defines version 1 of this capability.
307 */
308#define VFIO_REGION_INFO_CAP_TYPE 2
309
310struct vfio_region_info_cap_type {
311 struct vfio_info_cap_header header;
312 __u32 type; /* global per bus driver */
313 __u32 subtype; /* type specific */
314};
315
f363d039
EA
316/*
317 * List of region types, global per bus driver.
318 * If you introduce a new type, please add it here.
319 */
320
321/* PCI region type containing a PCI vendor part */
b89485a5
PB
322#define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31)
323#define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff)
f363d039
EA
324#define VFIO_REGION_TYPE_GFX (1)
325#define VFIO_REGION_TYPE_CCW (2)
f76b348e 326#define VFIO_REGION_TYPE_MIGRATION (3)
f363d039
EA
327
328/* sub-types for VFIO_REGION_TYPE_PCI_* */
b89485a5 329
f363d039 330/* 8086 vendor PCI sub-types */
b89485a5
PB
331#define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1)
332#define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2)
333#define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3)
334
f363d039
EA
335/* 10de vendor PCI sub-types */
336/*
337 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
278f064e
EH
338 *
339 * Deprecated, region no longer provided
f363d039
EA
340 */
341#define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1)
342
343/* 1014 vendor PCI sub-types */
344/*
345 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
346 * to do TLB invalidation on a GPU.
278f064e
EH
347 *
348 * Deprecated, region no longer provided
f363d039
EA
349 */
350#define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1)
351
352/* sub-types for VFIO_REGION_TYPE_GFX */
da054c64
PB
353#define VFIO_REGION_SUBTYPE_GFX_EDID (1)
354
355/**
356 * struct vfio_region_gfx_edid - EDID region layout.
357 *
358 * Set display link state and EDID blob.
359 *
360 * The EDID blob has monitor information such as brand, name, serial
361 * number, physical size, supported video modes and more.
362 *
363 * This special region allows userspace (typically qemu) set a virtual
364 * EDID for the virtual monitor, which allows a flexible display
365 * configuration.
366 *
367 * For the edid blob spec look here:
368 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
369 *
370 * On linux systems you can find the EDID blob in sysfs:
371 * /sys/class/drm/${card}/${connector}/edid
372 *
373 * You can use the edid-decode ulility (comes with xorg-x11-utils) to
374 * decode the EDID blob.
375 *
376 * @edid_offset: location of the edid blob, relative to the
377 * start of the region (readonly).
378 * @edid_max_size: max size of the edid blob (readonly).
379 * @edid_size: actual edid size (read/write).
380 * @link_state: display link state (read/write).
381 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
382 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
383 * @max_xres: max display width (0 == no limitation, readonly).
384 * @max_yres: max display height (0 == no limitation, readonly).
385 *
386 * EDID update protocol:
387 * (1) set link-state to down.
388 * (2) update edid blob and size.
389 * (3) set link-state to up.
390 */
391struct vfio_region_gfx_edid {
392 __u32 edid_offset;
393 __u32 edid_max_size;
394 __u32 edid_size;
395 __u32 max_xres;
396 __u32 max_yres;
397 __u32 link_state;
398#define VFIO_DEVICE_GFX_LINK_STATE_UP 1
399#define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2
400};
401
f363d039 402/* sub-types for VFIO_REGION_TYPE_CCW */
d9cb4336 403#define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1)
f76b348e
CH
404#define VFIO_REGION_SUBTYPE_CCW_SCHIB (2)
405#define VFIO_REGION_SUBTYPE_CCW_CRW (3)
406
407/* sub-types for VFIO_REGION_TYPE_MIGRATION */
408#define VFIO_REGION_SUBTYPE_MIGRATION (1)
409
410/*
411 * The structure vfio_device_migration_info is placed at the 0th offset of
412 * the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related
413 * migration information. Field accesses from this structure are only supported
414 * at their native width and alignment. Otherwise, the result is undefined and
415 * vendor drivers should return an error.
416 *
417 * device_state: (read/write)
418 * - The user application writes to this field to inform the vendor driver
419 * about the device state to be transitioned to.
420 * - The vendor driver should take the necessary actions to change the
421 * device state. After successful transition to a given state, the
422 * vendor driver should return success on write(device_state, state)
423 * system call. If the device state transition fails, the vendor driver
424 * should return an appropriate -errno for the fault condition.
425 * - On the user application side, if the device state transition fails,
426 * that is, if write(device_state, state) returns an error, read
427 * device_state again to determine the current state of the device from
428 * the vendor driver.
429 * - The vendor driver should return previous state of the device unless
430 * the vendor driver has encountered an internal error, in which case
431 * the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR.
432 * - The user application must use the device reset ioctl to recover the
433 * device from VFIO_DEVICE_STATE_ERROR state. If the device is
434 * indicated to be in a valid device state by reading device_state, the
435 * user application may attempt to transition the device to any valid
436 * state reachable from the current state or terminate itself.
437 *
438 * device_state consists of 3 bits:
439 * - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear,
440 * it indicates the _STOP state. When the device state is changed to
441 * _STOP, driver should stop the device before write() returns.
442 * - If bit 1 is set, it indicates the _SAVING state, which means that the
443 * driver should start gathering device state information that will be
444 * provided to the VFIO user application to save the device's state.
445 * - If bit 2 is set, it indicates the _RESUMING state, which means that
446 * the driver should prepare to resume the device. Data provided through
447 * the migration region should be used to resume the device.
448 * Bits 3 - 31 are reserved for future use. To preserve them, the user
449 * application should perform a read-modify-write operation on this
450 * field when modifying the specified bits.
451 *
452 * +------- _RESUMING
453 * |+------ _SAVING
454 * ||+----- _RUNNING
455 * |||
456 * 000b => Device Stopped, not saving or resuming
457 * 001b => Device running, which is the default state
458 * 010b => Stop the device & save the device state, stop-and-copy state
459 * 011b => Device running and save the device state, pre-copy state
460 * 100b => Device stopped and the device state is resuming
461 * 101b => Invalid state
462 * 110b => Error state
463 * 111b => Invalid state
464 *
465 * State transitions:
466 *
467 * _RESUMING _RUNNING Pre-copy Stop-and-copy _STOP
468 * (100b) (001b) (011b) (010b) (000b)
469 * 0. Running or default state
470 * |
471 *
472 * 1. Normal Shutdown (optional)
473 * |------------------------------------->|
474 *
475 * 2. Save the state or suspend
476 * |------------------------->|---------->|
477 *
478 * 3. Save the state during live migration
479 * |----------->|------------>|---------->|
480 *
481 * 4. Resuming
482 * |<---------|
483 *
484 * 5. Resumed
485 * |--------->|
486 *
53ba2eee 487 * 0. Default state of VFIO device is _RUNNING when the user application starts.
f76b348e
CH
488 * 1. During normal shutdown of the user application, the user application may
489 * optionally change the VFIO device state from _RUNNING to _STOP. This
490 * transition is optional. The vendor driver must support this transition but
491 * must not require it.
492 * 2. When the user application saves state or suspends the application, the
493 * device state transitions from _RUNNING to stop-and-copy and then to _STOP.
494 * On state transition from _RUNNING to stop-and-copy, driver must stop the
495 * device, save the device state and send it to the application through the
496 * migration region. The sequence to be followed for such transition is given
497 * below.
498 * 3. In live migration of user application, the state transitions from _RUNNING
499 * to pre-copy, to stop-and-copy, and to _STOP.
500 * On state transition from _RUNNING to pre-copy, the driver should start
501 * gathering the device state while the application is still running and send
502 * the device state data to application through the migration region.
503 * On state transition from pre-copy to stop-and-copy, the driver must stop
504 * the device, save the device state and send it to the user application
505 * through the migration region.
506 * Vendor drivers must support the pre-copy state even for implementations
507 * where no data is provided to the user before the stop-and-copy state. The
508 * user must not be required to consume all migration data before the device
509 * transitions to a new state, including the stop-and-copy state.
510 * The sequence to be followed for above two transitions is given below.
511 * 4. To start the resuming phase, the device state should be transitioned from
512 * the _RUNNING to the _RESUMING state.
513 * In the _RESUMING state, the driver should use the device state data
514 * received through the migration region to resume the device.
515 * 5. After providing saved device data to the driver, the application should
516 * change the state from _RESUMING to _RUNNING.
517 *
518 * reserved:
519 * Reads on this field return zero and writes are ignored.
520 *
521 * pending_bytes: (read only)
522 * The number of pending bytes still to be migrated from the vendor driver.
523 *
524 * data_offset: (read only)
525 * The user application should read data_offset field from the migration
526 * region. The user application should read the device data from this
527 * offset within the migration region during the _SAVING state or write
528 * the device data during the _RESUMING state. See below for details of
529 * sequence to be followed.
530 *
531 * data_size: (read/write)
532 * The user application should read data_size to get the size in bytes of
533 * the data copied in the migration region during the _SAVING state and
534 * write the size in bytes of the data copied in the migration region
535 * during the _RESUMING state.
536 *
537 * The format of the migration region is as follows:
538 * ------------------------------------------------------------------
539 * |vfio_device_migration_info| data section |
540 * | | /////////////////////////////// |
541 * ------------------------------------------------------------------
542 * ^ ^
543 * offset 0-trapped part data_offset
544 *
545 * The structure vfio_device_migration_info is always followed by the data
546 * section in the region, so data_offset will always be nonzero. The offset
547 * from where the data is copied is decided by the kernel driver. The data
548 * section can be trapped, mmapped, or partitioned, depending on how the kernel
549 * driver defines the data section. The data section partition can be defined
550 * as mapped by the sparse mmap capability. If mmapped, data_offset must be
551 * page aligned, whereas initial section which contains the
552 * vfio_device_migration_info structure, might not end at the offset, which is
553 * page aligned. The user is not required to access through mmap regardless
554 * of the capabilities of the region mmap.
555 * The vendor driver should determine whether and how to partition the data
556 * section. The vendor driver should return data_offset accordingly.
557 *
558 * The sequence to be followed while in pre-copy state and stop-and-copy state
559 * is as follows:
560 * a. Read pending_bytes, indicating the start of a new iteration to get device
561 * data. Repeated read on pending_bytes at this stage should have no side
562 * effects.
563 * If pending_bytes == 0, the user application should not iterate to get data
564 * for that device.
565 * If pending_bytes > 0, perform the following steps.
566 * b. Read data_offset, indicating that the vendor driver should make data
567 * available through the data section. The vendor driver should return this
568 * read operation only after data is available from (region + data_offset)
569 * to (region + data_offset + data_size).
570 * c. Read data_size, which is the amount of data in bytes available through
571 * the migration region.
572 * Read on data_offset and data_size should return the offset and size of
573 * the current buffer if the user application reads data_offset and
574 * data_size more than once here.
575 * d. Read data_size bytes of data from (region + data_offset) from the
576 * migration region.
577 * e. Process the data.
578 * f. Read pending_bytes, which indicates that the data from the previous
579 * iteration has been read. If pending_bytes > 0, go to step b.
580 *
581 * The user application can transition from the _SAVING|_RUNNING
582 * (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the
583 * number of pending bytes. The user application should iterate in _SAVING
584 * (stop-and-copy) until pending_bytes is 0.
585 *
586 * The sequence to be followed while _RESUMING device state is as follows:
587 * While data for this device is available, repeat the following steps:
588 * a. Read data_offset from where the user application should write data.
589 * b. Write migration data starting at the migration region + data_offset for
590 * the length determined by data_size from the migration source.
591 * c. Write data_size, which indicates to the vendor driver that data is
592 * written in the migration region. Vendor driver must return this write
593 * operations on consuming data. Vendor driver should apply the
594 * user-provided migration region data to the device resume state.
595 *
596 * If an error occurs during the above sequences, the vendor driver can return
597 * an error code for next read() or write() operation, which will terminate the
598 * loop. The user application should then take the next necessary action, for
599 * example, failing migration or terminating the user application.
600 *
601 * For the user application, data is opaque. The user application should write
602 * data in the same order as the data is received and the data should be of
603 * same transaction size at the source.
604 */
605
606struct vfio_device_migration_info {
607 __u32 device_state; /* VFIO device state */
608#define VFIO_DEVICE_STATE_STOP (0)
609#define VFIO_DEVICE_STATE_RUNNING (1 << 0)
610#define VFIO_DEVICE_STATE_SAVING (1 << 1)
611#define VFIO_DEVICE_STATE_RESUMING (1 << 2)
612#define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_RUNNING | \
613 VFIO_DEVICE_STATE_SAVING | \
614 VFIO_DEVICE_STATE_RESUMING)
615
616#define VFIO_DEVICE_STATE_VALID(state) \
617 (state & VFIO_DEVICE_STATE_RESUMING ? \
618 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1)
619
620#define VFIO_DEVICE_STATE_IS_ERROR(state) \
621 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \
622 VFIO_DEVICE_STATE_RESUMING))
623
624#define VFIO_DEVICE_STATE_SET_ERROR(state) \
625 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \
626 VFIO_DEVICE_STATE_RESUMING)
627
628 __u32 reserved;
629 __u64 pending_bytes;
630 __u64 data_offset;
631 __u64 data_size;
632};
d9cb4336 633
9f2d175d
PB
634/*
635 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
636 * which allows direct access to non-MSIX registers which happened to be within
637 * the same system page.
638 *
639 * Even though the userspace gets direct access to the MSIX data, the existing
640 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
641 */
642#define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3
643
da054c64
PB
644/*
645 * Capability with compressed real address (aka SSA - small system address)
646 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
647 * and by the userspace to associate a NVLink bridge with a GPU.
278f064e
EH
648 *
649 * Deprecated, capability no longer provided
da054c64
PB
650 */
651#define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4
652
653struct vfio_region_info_cap_nvlink2_ssatgt {
654 struct vfio_info_cap_header header;
655 __u64 tgt;
656};
657
658/*
659 * Capability with an NVLink link speed. The value is read by
660 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
661 * property in the device tree. The value is fixed in the hardware
662 * and failing to provide the correct value results in the link
663 * not working with no indication from the driver why.
278f064e
EH
664 *
665 * Deprecated, capability no longer provided
da054c64
PB
666 */
667#define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5
668
669struct vfio_region_info_cap_nvlink2_lnkspd {
670 struct vfio_info_cap_header header;
671 __u32 link_speed;
672 __u32 __pad;
673};
674
883f0b85
AW
675/**
676 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
677 * struct vfio_irq_info)
678 *
679 * Retrieve information about a device IRQ. Caller provides
680 * struct vfio_irq_info with index value set. Caller sets argsz.
681 * Implementation of IRQ mapping is bus driver specific. Indexes
682 * using multiple IRQs are primarily intended to support MSI-like
683 * interrupt blocks. Zero count irq blocks may be used to describe
684 * unimplemented interrupt types.
685 *
686 * The EVENTFD flag indicates the interrupt index supports eventfd based
687 * signaling.
688 *
689 * The MASKABLE flags indicates the index supports MASK and UNMASK
690 * actions described below.
691 *
692 * AUTOMASKED indicates that after signaling, the interrupt line is
693 * automatically masked by VFIO and the user needs to unmask the line
694 * to receive new interrupts. This is primarily intended to distinguish
695 * level triggered interrupts.
696 *
697 * The NORESIZE flag indicates that the interrupt lines within the index
698 * are setup as a set and new subindexes cannot be enabled without first
699 * disabling the entire index. This is used for interrupts like PCI MSI
700 * and MSI-X where the driver may only use a subset of the available
701 * indexes, but VFIO needs to enable a specific number of vectors
702 * upfront. In the case of MSI-X, where the user can enable MSI-X and
703 * then add and unmask vectors, it's up to userspace to make the decision
704 * whether to allocate the maximum supported number of vectors or tear
705 * down setup and incrementally increase the vectors as each is enabled.
706 */
707struct vfio_irq_info {
708 __u32 argsz;
709 __u32 flags;
710#define VFIO_IRQ_INFO_EVENTFD (1 << 0)
711#define VFIO_IRQ_INFO_MASKABLE (1 << 1)
712#define VFIO_IRQ_INFO_AUTOMASKED (1 << 2)
713#define VFIO_IRQ_INFO_NORESIZE (1 << 3)
714 __u32 index; /* IRQ index */
715 __u32 count; /* Number of IRQs within this index */
716};
717#define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9)
718
719/**
720 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
721 *
722 * Set signaling, masking, and unmasking of interrupts. Caller provides
723 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate
724 * the range of subindexes being specified.
725 *
726 * The DATA flags specify the type of data provided. If DATA_NONE, the
727 * operation performs the specified action immediately on the specified
728 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]:
729 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
730 *
731 * DATA_BOOL allows sparse support for the same on arrays of interrupts.
732 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
733 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
734 * data = {1,0,1}
735 *
736 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
737 * A value of -1 can be used to either de-assign interrupts if already
738 * assigned or skip un-assigned interrupts. For example, to set an eventfd
739 * to be trigger for interrupts [0,0] and [0,2]:
740 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
741 * data = {fd1, -1, fd2}
742 * If index [0,1] is previously set, two count = 1 ioctls calls would be
743 * required to set [0,0] and [0,2] without changing [0,1].
744 *
745 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
746 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
747 * from userspace (ie. simulate hardware triggering).
748 *
749 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
750 * enables the interrupt index for the device. Individual subindex interrupts
751 * can be disabled using the -1 value for DATA_EVENTFD or the index can be
752 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
753 *
754 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
755 * ACTION_TRIGGER specifies kernel->user signaling.
756 */
757struct vfio_irq_set {
758 __u32 argsz;
759 __u32 flags;
760#define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */
761#define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */
762#define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */
763#define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */
764#define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */
765#define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */
766 __u32 index;
767 __u32 start;
768 __u32 count;
769 __u8 data[];
770};
771#define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10)
772
773#define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \
774 VFIO_IRQ_SET_DATA_BOOL | \
775 VFIO_IRQ_SET_DATA_EVENTFD)
776#define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \
777 VFIO_IRQ_SET_ACTION_UNMASK | \
778 VFIO_IRQ_SET_ACTION_TRIGGER)
779/**
780 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
781 *
782 * Reset a device.
783 */
784#define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11)
785
786/*
787 * The VFIO-PCI bus driver makes use of the following fixed region and
788 * IRQ index mapping. Unimplemented regions return a size of zero.
789 * Unimplemented IRQ types return a count of zero.
790 */
791
792enum {
793 VFIO_PCI_BAR0_REGION_INDEX,
794 VFIO_PCI_BAR1_REGION_INDEX,
795 VFIO_PCI_BAR2_REGION_INDEX,
796 VFIO_PCI_BAR3_REGION_INDEX,
797 VFIO_PCI_BAR4_REGION_INDEX,
798 VFIO_PCI_BAR5_REGION_INDEX,
799 VFIO_PCI_ROM_REGION_INDEX,
800 VFIO_PCI_CONFIG_REGION_INDEX,
010ca0b3
AW
801 /*
802 * Expose VGA regions defined for PCI base class 03, subclass 00.
803 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
804 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented
805 * range is found at it's identity mapped offset from the region
806 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas
807 * between described ranges are unimplemented.
808 */
809 VFIO_PCI_VGA_REGION_INDEX,
b89485a5
PB
810 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
811 /* device specific cap to define content. */
883f0b85
AW
812};
813
814enum {
815 VFIO_PCI_INTX_IRQ_INDEX,
816 VFIO_PCI_MSI_IRQ_INDEX,
817 VFIO_PCI_MSIX_IRQ_INDEX,
e098b453 818 VFIO_PCI_ERR_IRQ_INDEX,
47cbe50c 819 VFIO_PCI_REQ_IRQ_INDEX,
883f0b85
AW
820 VFIO_PCI_NUM_IRQS
821};
822
74c98e20
CH
823/*
824 * The vfio-ccw bus driver makes use of the following fixed region and
825 * IRQ index mapping. Unimplemented regions return a size of zero.
826 * Unimplemented IRQ types return a count of zero.
827 */
828
829enum {
830 VFIO_CCW_CONFIG_REGION_INDEX,
831 VFIO_CCW_NUM_REGIONS
832};
833
834enum {
835 VFIO_CCW_IO_IRQ_INDEX,
f76b348e 836 VFIO_CCW_CRW_IRQ_INDEX,
b3c818a4 837 VFIO_CCW_REQ_IRQ_INDEX,
74c98e20
CH
838 VFIO_CCW_NUM_IRQS
839};
840
4f265607
AJ
841/**
842 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12,
843 * struct vfio_pci_hot_reset_info)
844 *
845 * Return: 0 on success, -errno on failure:
846 * -enospc = insufficient buffer, -enodev = unsupported for device.
847 */
848struct vfio_pci_dependent_device {
849 __u32 group_id;
850 __u16 segment;
851 __u8 bus;
852 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */
853};
854
855struct vfio_pci_hot_reset_info {
856 __u32 argsz;
857 __u32 flags;
858 __u32 count;
859 struct vfio_pci_dependent_device devices[];
860};
861
862#define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
863
864/**
865 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
866 * struct vfio_pci_hot_reset)
867 *
868 * Return: 0 on success, -errno on failure.
869 */
870struct vfio_pci_hot_reset {
871 __u32 argsz;
872 __u32 flags;
873 __u32 count;
874 __s32 group_fds[];
875};
876
877#define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13)
878
9f2d175d
PB
879/**
880 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
881 * struct vfio_device_query_gfx_plane)
882 *
883 * Set the drm_plane_type and flags, then retrieve the gfx plane info.
884 *
885 * flags supported:
886 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
887 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
888 * support for dma-buf.
889 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
890 * to ask if the mdev supports region. 0 on support, -EINVAL on no
891 * support for region.
892 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
893 * with each call to query the plane info.
894 * - Others are invalid and return -EINVAL.
895 *
896 * Note:
897 * 1. Plane could be disabled by guest. In that case, success will be
898 * returned with zero-initialized drm_format, size, width and height
899 * fields.
900 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
901 *
902 * Return: 0 on success, -errno on other failure.
903 */
904struct vfio_device_gfx_plane_info {
905 __u32 argsz;
906 __u32 flags;
907#define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
908#define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
909#define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
910 /* in */
911 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */
912 /* out */
913 __u32 drm_format; /* drm format of plane */
914 __u64 drm_format_mod; /* tiled mode */
915 __u32 width; /* width of plane */
916 __u32 height; /* height of plane */
917 __u32 stride; /* stride of plane */
918 __u32 size; /* size of plane in bytes, align on page*/
919 __u32 x_pos; /* horizontal position of cursor plane */
920 __u32 y_pos; /* vertical position of cursor plane*/
921 __u32 x_hot; /* horizontal position of cursor hotspot */
922 __u32 y_hot; /* vertical position of cursor hotspot */
923 union {
924 __u32 region_index; /* region index */
925 __u32 dmabuf_id; /* dma-buf id */
926 };
927};
928
929#define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
930
931/**
932 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
933 *
934 * Return a new dma-buf file descriptor for an exposed guest framebuffer
935 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
936 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
937 */
938
939#define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
940
65a6d8dd
PM
941/**
942 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
943 * struct vfio_device_ioeventfd)
944 *
945 * Perform a write to the device at the specified device fd offset, with
946 * the specified data and width when the provided eventfd is triggered.
947 * vfio bus drivers may not support this for all regions, for all widths,
948 * or at all. vfio-pci currently only enables support for BAR regions,
949 * excluding the MSI-X vector table.
950 *
951 * Return: 0 on success, -errno on failure.
952 */
953struct vfio_device_ioeventfd {
954 __u32 argsz;
955 __u32 flags;
956#define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */
957#define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */
958#define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */
959#define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */
960#define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf)
961 __u64 offset; /* device fd offset of write */
962 __u64 data; /* data to be written */
963 __s32 fd; /* -1 for de-assignment */
964};
965
966#define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16)
967
dc6f8d45
CH
968/**
969 * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17,
970 * struct vfio_device_feature)
971 *
972 * Get, set, or probe feature data of the device. The feature is selected
973 * using the FEATURE_MASK portion of the flags field. Support for a feature
974 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe
975 * may optionally include the GET and/or SET bits to determine read vs write
976 * access of the feature respectively. Probing a feature will return success
977 * if the feature is supported and all of the optionally indicated GET/SET
978 * methods are supported. The format of the data portion of the structure is
979 * specific to the given feature. The data portion is not required for
980 * probing. GET and SET are mutually exclusive, except for use with PROBE.
981 *
982 * Return 0 on success, -errno on failure.
983 */
984struct vfio_device_feature {
985 __u32 argsz;
986 __u32 flags;
987#define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */
988#define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */
989#define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */
990#define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */
991 __u8 data[];
992};
993
994#define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17)
995
996/*
997 * Provide support for setting a PCI VF Token, which is used as a shared
998 * secret between PF and VF drivers. This feature may only be set on a
999 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
1000 * open VFs. Data provided when setting this feature is a 16-byte array
1001 * (__u8 b[16]), representing a UUID.
1002 */
1003#define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0)
1004
883f0b85
AW
1005/* -------- API for Type1 VFIO IOMMU -------- */
1006
1007/**
1008 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1009 *
1010 * Retrieve information about the IOMMU object. Fills in provided
1011 * struct vfio_iommu_info. Caller sets argsz.
1012 *
1013 * XXX Should we do these by CHECK_EXTENSION too?
1014 */
1015struct vfio_iommu_type1_info {
1016 __u32 argsz;
1017 __u32 flags;
1018#define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */
f363d039
EA
1019#define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */
1020 __u64 iova_pgsizes; /* Bitmap of supported page sizes */
1021 __u32 cap_offset; /* Offset within info struct of first cap */
1022};
1023
1024/*
1025 * The IOVA capability allows to report the valid IOVA range(s)
1026 * excluding any non-relaxable reserved regions exposed by
1027 * devices attached to the container. Any DMA map attempt
1028 * outside the valid iova range will return error.
1029 *
1030 * The structures below define version 1 of this capability.
1031 */
1032#define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1
1033
1034struct vfio_iova_range {
1035 __u64 start;
1036 __u64 end;
1037};
1038
1039struct vfio_iommu_type1_info_cap_iova_range {
1040 struct vfio_info_cap_header header;
1041 __u32 nr_iovas;
1042 __u32 reserved;
1043 struct vfio_iova_range iova_ranges[];
883f0b85
AW
1044};
1045
f76b348e
CH
1046/*
1047 * The migration capability allows to report supported features for migration.
1048 *
1049 * The structures below define version 1 of this capability.
1050 *
1051 * The existence of this capability indicates that IOMMU kernel driver supports
1052 * dirty page logging.
1053 *
1054 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1055 * page logging.
1056 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1057 * size in bytes that can be used by user applications when getting the dirty
1058 * bitmap.
1059 */
e6546342 1060#define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2
f76b348e
CH
1061
1062struct vfio_iommu_type1_info_cap_migration {
1063 struct vfio_info_cap_header header;
1064 __u32 flags;
1065 __u64 pgsize_bitmap;
1066 __u64 max_dirty_bitmap_size; /* in bytes */
1067};
1068
53ba2eee
MR
1069/*
1070 * The DMA available capability allows to report the current number of
1071 * simultaneously outstanding DMA mappings that are allowed.
1072 *
1073 * The structure below defines version 1 of this capability.
1074 *
1075 * avail: specifies the current number of outstanding DMA mappings allowed.
1076 */
1077#define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1078
1079struct vfio_iommu_type1_info_dma_avail {
1080 struct vfio_info_cap_header header;
1081 __u32 avail;
1082};
1083
883f0b85
AW
1084#define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1085
1086/**
1087 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1088 *
1089 * Map process virtual addresses to IO virtual addresses using the
1090 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
278f064e
EH
1091 *
1092 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova, and
1093 * unblock translation of host virtual addresses in the iova range. The vaddr
1094 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To
1095 * maintain memory consistency within the user application, the updated vaddr
1096 * must address the same memory object as originally mapped. Failure to do so
1097 * will result in user memory corruption and/or device misbehavior. iova and
1098 * size must match those in the original MAP_DMA call. Protection is not
1099 * changed, and the READ & WRITE flags must be 0.
883f0b85
AW
1100 */
1101struct vfio_iommu_type1_dma_map {
1102 __u32 argsz;
1103 __u32 flags;
1104#define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */
1105#define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */
278f064e 1106#define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
883f0b85
AW
1107 __u64 vaddr; /* Process virtual address */
1108 __u64 iova; /* IO virtual address */
1109 __u64 size; /* Size of mapping (bytes) */
1110};
1111
1112#define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1113
f76b348e
CH
1114struct vfio_bitmap {
1115 __u64 pgsize; /* page size for bitmap in bytes */
1116 __u64 size; /* in bytes */
1117 __u64 *data; /* one bit per page */
1118};
1119
883f0b85 1120/**
c5daeae1
AK
1121 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1122 * struct vfio_dma_unmap)
883f0b85
AW
1123 *
1124 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
c5daeae1
AK
1125 * Caller sets argsz. The actual unmapped size is returned in the size
1126 * field. No guarantee is made to the user that arbitrary unmaps of iova
1127 * or size different from those used in the original mapping call will
1128 * succeed.
278f064e 1129 *
f76b348e
CH
1130 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1131 * before unmapping IO virtual addresses. When this flag is set, the user must
1132 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1133 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1134 * A bit in the bitmap represents one page, of user provided page size in
1135 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1136 * indicates that the page at that offset from iova is dirty. A Bitmap of the
1137 * pages in the range of unmapped size is returned in the user-provided
1138 * vfio_bitmap.data.
278f064e
EH
1139 *
1140 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size
1141 * must be 0. This cannot be combined with the get-dirty-bitmap flag.
1142 *
1143 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1144 * virtual addresses in the iova range. Tasks that attempt to translate an
1145 * iova's vaddr will block. DMA to already-mapped pages continues. This
1146 * cannot be combined with the get-dirty-bitmap flag.
883f0b85
AW
1147 */
1148struct vfio_iommu_type1_dma_unmap {
1149 __u32 argsz;
1150 __u32 flags;
f76b348e 1151#define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
278f064e
EH
1152#define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1)
1153#define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2)
883f0b85
AW
1154 __u64 iova; /* IO virtual address */
1155 __u64 size; /* Size of mapping (bytes) */
f76b348e 1156 __u8 data[];
883f0b85
AW
1157};
1158
1159#define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1160
c5daeae1
AK
1161/*
1162 * IOCTLs to enable/disable IOMMU container usage.
1163 * No parameters are supported.
1164 */
1165#define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15)
1166#define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16)
1167
f76b348e
CH
1168/**
1169 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1170 * struct vfio_iommu_type1_dirty_bitmap)
1171 * IOCTL is used for dirty pages logging.
1172 * Caller should set flag depending on which operation to perform, details as
1173 * below:
1174 *
1175 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1176 * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1177 * the device; designed to be used when a migration is in progress. Dirty pages
1178 * are logged until logging is disabled by user application by calling the IOCTL
1179 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1180 *
1181 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1182 * the IOMMU driver to stop logging dirtied pages.
1183 *
1184 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1185 * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1186 * The user must specify the IOVA range and the pgsize through the structure
1187 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1188 * supports getting a bitmap of the smallest supported pgsize only and can be
1189 * modified in future to get a bitmap of any specified supported pgsize. The
1190 * user must provide a zeroed memory area for the bitmap memory and specify its
1191 * size in bitmap.size. One bit is used to represent one page consecutively
1192 * starting from iova offset. The user should provide page size in bitmap.pgsize
1193 * field. A bit set in the bitmap indicates that the page at that offset from
1194 * iova is dirty. The caller must set argsz to a value including the size of
1195 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1196 * actual bitmap. If dirty pages logging is not enabled, an error will be
1197 * returned.
1198 *
1199 * Only one of the flags _START, _STOP and _GET may be specified at a time.
1200 *
1201 */
1202struct vfio_iommu_type1_dirty_bitmap {
1203 __u32 argsz;
1204 __u32 flags;
1205#define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0)
1206#define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1)
1207#define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2)
1208 __u8 data[];
1209};
1210
1211struct vfio_iommu_type1_dirty_bitmap_get {
1212 __u64 iova; /* IO virtual address */
1213 __u64 size; /* Size of iova range */
1214 struct vfio_bitmap bitmap;
1215};
1216
1217#define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17)
1218
c5daeae1
AK
1219/* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1220
25b8b39b
AK
1221/*
1222 * The SPAPR TCE DDW info struct provides the information about
1223 * the details of Dynamic DMA window capability.
1224 *
1225 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1226 * @max_dynamic_windows_supported tells the maximum number of windows
1227 * which the platform can create.
1228 * @levels tells the maximum number of levels in multi-level IOMMU tables;
1229 * this allows splitting a table into smaller chunks which reduces
1230 * the amount of physically contiguous memory required for the table.
1231 */
1232struct vfio_iommu_spapr_tce_ddw_info {
1233 __u64 pgsizes; /* Bitmap of supported page sizes */
1234 __u32 max_dynamic_windows_supported;
1235 __u32 levels;
1236};
1237
c5daeae1
AK
1238/*
1239 * The SPAPR TCE info struct provides the information about the PCI bus
1240 * address ranges available for DMA, these values are programmed into
1241 * the hardware so the guest has to know that information.
1242 *
1243 * The DMA 32 bit window start is an absolute PCI bus address.
1244 * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1245 * addresses too so the window works as a filter rather than an offset
1246 * for IOVA addresses.
1247 *
25b8b39b
AK
1248 * Flags supported:
1249 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1250 * (DDW) support is present. @ddw is only supported when DDW is present.
c5daeae1
AK
1251 */
1252struct vfio_iommu_spapr_tce_info {
1253 __u32 argsz;
25b8b39b
AK
1254 __u32 flags;
1255#define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */
c5daeae1
AK
1256 __u32 dma32_window_start; /* 32 bit window start (bytes) */
1257 __u32 dma32_window_size; /* 32 bit window size (bytes) */
25b8b39b 1258 struct vfio_iommu_spapr_tce_ddw_info ddw;
c5daeae1
AK
1259};
1260
1261#define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1262
a9fd1654
JF
1263/*
1264 * EEH PE operation struct provides ways to:
1265 * - enable/disable EEH functionality;
1266 * - unfreeze IO/DMA for frozen PE;
1267 * - read PE state;
1268 * - reset PE;
25b8b39b
AK
1269 * - configure PE;
1270 * - inject EEH error.
a9fd1654 1271 */
25b8b39b
AK
1272struct vfio_eeh_pe_err {
1273 __u32 type;
1274 __u32 func;
1275 __u64 addr;
1276 __u64 mask;
1277};
1278
a9fd1654
JF
1279struct vfio_eeh_pe_op {
1280 __u32 argsz;
1281 __u32 flags;
1282 __u32 op;
25b8b39b
AK
1283 union {
1284 struct vfio_eeh_pe_err err;
1285 };
a9fd1654
JF
1286};
1287
1288#define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */
1289#define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */
1290#define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */
1291#define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */
1292#define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */
1293#define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */
1294#define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */
1295#define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */
1296#define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */
1297#define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */
1298#define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */
1299#define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */
1300#define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */
1301#define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */
25b8b39b 1302#define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */
a9fd1654
JF
1303
1304#define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21)
1305
25b8b39b
AK
1306/**
1307 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1308 *
1309 * Registers user space memory where DMA is allowed. It pins
1310 * user pages and does the locked memory accounting so
1311 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1312 * get faster.
1313 */
1314struct vfio_iommu_spapr_register_memory {
1315 __u32 argsz;
1316 __u32 flags;
1317 __u64 vaddr; /* Process virtual address */
1318 __u64 size; /* Size of mapping (bytes) */
1319};
1320#define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17)
1321
1322/**
1323 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1324 *
1325 * Unregisters user space memory registered with
1326 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1327 * Uses vfio_iommu_spapr_register_memory for parameters.
1328 */
1329#define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18)
1330
1331/**
1332 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1333 *
1334 * Creates an additional TCE table and programs it (sets a new DMA window)
1335 * to every IOMMU group in the container. It receives page shift, window
1336 * size and number of levels in the TCE table being created.
1337 *
1338 * It allocates and returns an offset on a PCI bus of the new DMA window.
1339 */
1340struct vfio_iommu_spapr_tce_create {
1341 __u32 argsz;
1342 __u32 flags;
1343 /* in */
1344 __u32 page_shift;
66fb2d54 1345 __u32 __resv1;
25b8b39b
AK
1346 __u64 window_size;
1347 __u32 levels;
66fb2d54 1348 __u32 __resv2;
25b8b39b
AK
1349 /* out */
1350 __u64 start_addr;
1351};
1352#define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19)
1353
1354/**
1355 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1356 *
1357 * Unprograms a TCE table from all groups in the container and destroys it.
1358 * It receives a PCI bus offset as a window id.
1359 */
1360struct vfio_iommu_spapr_tce_remove {
1361 __u32 argsz;
1362 __u32 flags;
1363 /* in */
1364 __u64 start_addr;
1365};
1366#define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20)
1367
c5daeae1
AK
1368/* ***************************************************************** */
1369
d4834ff9 1370#endif /* VFIO_H */