]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
Merge remote-tracking branch 'remotes/thuth-gitlab/tags/pull-request-2021-03-09'...
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
76cad711 9#include "disas/disas.h"
ce543844 10#include "qemu/bitops.h"
f348b6d1 11#include "qemu/path.h"
dc5e9ac7 12#include "qemu/queue.h"
c6a2377f 13#include "qemu/guest-random.h"
6fd59449 14#include "qemu/units.h"
ee947430 15#include "qemu/selfmap.h"
c7f17e7b 16#include "qapi/error.h"
31e31b8a 17
e58ffeb3 18#ifdef _ARCH_PPC64
a6cc84f4 19#undef ARCH_DLINFO
20#undef ELF_PLATFORM
21#undef ELF_HWCAP
ad6919dc 22#undef ELF_HWCAP2
a6cc84f4 23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
d97ef72e
RH
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
49};
50
51/*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57enum {
d97ef72e
RH
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
cb33da57
BS
81};
82
83/*
84 * Return the base personality without flags.
85 */
d97ef72e 86#define personality(pers) (pers & PER_MASK)
cb33da57 87
3cb10cfa
CL
88int info_is_fdpic(struct image_info *info)
89{
90 return info->personality == PER_LINUX_FDPIC;
91}
92
83fb7adf
FB
93/* this flag is uneffective under linux too, should be deleted */
94#ifndef MAP_DENYWRITE
95#define MAP_DENYWRITE 0
96#endif
97
98/* should probably go in elf.h */
99#ifndef ELIBBAD
100#define ELIBBAD 80
101#endif
102
28490231
RH
103#ifdef TARGET_WORDS_BIGENDIAN
104#define ELF_DATA ELFDATA2MSB
105#else
106#define ELF_DATA ELFDATA2LSB
107#endif
108
a29f998d 109#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
110typedef abi_ullong target_elf_greg_t;
111#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
112#else
113typedef abi_ulong target_elf_greg_t;
114#define tswapreg(ptr) tswapal(ptr)
115#endif
116
21e807fa 117#ifdef USE_UID16
1ddd592f
PB
118typedef abi_ushort target_uid_t;
119typedef abi_ushort target_gid_t;
21e807fa 120#else
f8fd4fc4
PB
121typedef abi_uint target_uid_t;
122typedef abi_uint target_gid_t;
21e807fa 123#endif
f8fd4fc4 124typedef abi_int target_pid_t;
21e807fa 125
30ac07d4
FB
126#ifdef TARGET_I386
127
15338fd7
FB
128#define ELF_PLATFORM get_elf_platform()
129
130static const char *get_elf_platform(void)
131{
132 static char elf_platform[] = "i386";
a2247f8e 133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
134 if (family > 6)
135 family = 6;
136 if (family >= 3)
137 elf_platform[1] = '0' + family;
138 return elf_platform;
139}
140
141#define ELF_HWCAP get_elf_hwcap()
142
143static uint32_t get_elf_hwcap(void)
144{
a2247f8e
AF
145 X86CPU *cpu = X86_CPU(thread_cpu);
146
147 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
148}
149
84409ddb
JM
150#ifdef TARGET_X86_64
151#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
152
153#define ELF_CLASS ELFCLASS64
84409ddb
JM
154#define ELF_ARCH EM_X86_64
155
156static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157{
158 regs->rax = 0;
159 regs->rsp = infop->start_stack;
160 regs->rip = infop->entry;
161}
162
9edc5d79 163#define ELF_NREG 27
c227f099 164typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
165
166/*
167 * Note that ELF_NREG should be 29 as there should be place for
168 * TRAPNO and ERR "registers" as well but linux doesn't dump
169 * those.
170 *
171 * See linux kernel: arch/x86/include/asm/elf.h
172 */
05390248 173static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
174{
175 (*regs)[0] = env->regs[15];
176 (*regs)[1] = env->regs[14];
177 (*regs)[2] = env->regs[13];
178 (*regs)[3] = env->regs[12];
179 (*regs)[4] = env->regs[R_EBP];
180 (*regs)[5] = env->regs[R_EBX];
181 (*regs)[6] = env->regs[11];
182 (*regs)[7] = env->regs[10];
183 (*regs)[8] = env->regs[9];
184 (*regs)[9] = env->regs[8];
185 (*regs)[10] = env->regs[R_EAX];
186 (*regs)[11] = env->regs[R_ECX];
187 (*regs)[12] = env->regs[R_EDX];
188 (*regs)[13] = env->regs[R_ESI];
189 (*regs)[14] = env->regs[R_EDI];
190 (*regs)[15] = env->regs[R_EAX]; /* XXX */
191 (*regs)[16] = env->eip;
192 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193 (*regs)[18] = env->eflags;
194 (*regs)[19] = env->regs[R_ESP];
195 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202}
203
84409ddb
JM
204#else
205
30ac07d4
FB
206#define ELF_START_MMAP 0x80000000
207
30ac07d4
FB
208/*
209 * This is used to ensure we don't load something for the wrong architecture.
210 */
211#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212
213/*
214 * These are used to set parameters in the core dumps.
215 */
d97ef72e 216#define ELF_CLASS ELFCLASS32
d97ef72e 217#define ELF_ARCH EM_386
30ac07d4 218
d97ef72e
RH
219static inline void init_thread(struct target_pt_regs *regs,
220 struct image_info *infop)
b346ff46
FB
221{
222 regs->esp = infop->start_stack;
223 regs->eip = infop->entry;
e5fe0c52
PB
224
225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226 starts %edx contains a pointer to a function which might be
227 registered using `atexit'. This provides a mean for the
228 dynamic linker to call DT_FINI functions for shared libraries
229 that have been loaded before the code runs.
230
231 A value of 0 tells we have no such handler. */
232 regs->edx = 0;
b346ff46 233}
9edc5d79 234
9edc5d79 235#define ELF_NREG 17
c227f099 236typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
237
238/*
239 * Note that ELF_NREG should be 19 as there should be place for
240 * TRAPNO and ERR "registers" as well but linux doesn't dump
241 * those.
242 *
243 * See linux kernel: arch/x86/include/asm/elf.h
244 */
05390248 245static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
246{
247 (*regs)[0] = env->regs[R_EBX];
248 (*regs)[1] = env->regs[R_ECX];
249 (*regs)[2] = env->regs[R_EDX];
250 (*regs)[3] = env->regs[R_ESI];
251 (*regs)[4] = env->regs[R_EDI];
252 (*regs)[5] = env->regs[R_EBP];
253 (*regs)[6] = env->regs[R_EAX];
254 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258 (*regs)[11] = env->regs[R_EAX]; /* XXX */
259 (*regs)[12] = env->eip;
260 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261 (*regs)[14] = env->eflags;
262 (*regs)[15] = env->regs[R_ESP];
263 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264}
84409ddb 265#endif
b346ff46 266
9edc5d79 267#define USE_ELF_CORE_DUMP
d97ef72e 268#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
269
270#endif
271
272#ifdef TARGET_ARM
273
24e76ff0
PM
274#ifndef TARGET_AARCH64
275/* 32 bit ARM definitions */
276
b346ff46
FB
277#define ELF_START_MMAP 0x80000000
278
b597c3f7 279#define ELF_ARCH EM_ARM
d97ef72e 280#define ELF_CLASS ELFCLASS32
b346ff46 281
d97ef72e
RH
282static inline void init_thread(struct target_pt_regs *regs,
283 struct image_info *infop)
b346ff46 284{
992f48a0 285 abi_long stack = infop->start_stack;
b346ff46 286 memset(regs, 0, sizeof(*regs));
99033cae 287
167e4cdc
PM
288 regs->uregs[16] = ARM_CPU_MODE_USR;
289 if (infop->entry & 1) {
290 regs->uregs[16] |= CPSR_T;
291 }
292 regs->uregs[15] = infop->entry & 0xfffffffe;
293 regs->uregs[13] = infop->start_stack;
2f619698 294 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
295 get_user_ual(regs->uregs[2], stack + 8); /* envp */
296 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 297 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 298 regs->uregs[0] = 0;
e5fe0c52 299 /* For uClinux PIC binaries. */
863cf0b7 300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 301 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
302
303 /* Support ARM FDPIC. */
304 if (info_is_fdpic(infop)) {
305 /* As described in the ABI document, r7 points to the loadmap info
306 * prepared by the kernel. If an interpreter is needed, r8 points
307 * to the interpreter loadmap and r9 points to the interpreter
308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309 * r9 points to the main program PT_DYNAMIC info.
310 */
311 regs->uregs[7] = infop->loadmap_addr;
312 if (infop->interpreter_loadmap_addr) {
313 /* Executable is dynamically loaded. */
314 regs->uregs[8] = infop->interpreter_loadmap_addr;
315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316 } else {
317 regs->uregs[8] = 0;
318 regs->uregs[9] = infop->pt_dynamic_addr;
319 }
320 }
b346ff46
FB
321}
322
edf8e2af 323#define ELF_NREG 18
c227f099 324typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 325
05390248 326static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 327{
86cd7b2d
PB
328 (*regs)[0] = tswapreg(env->regs[0]);
329 (*regs)[1] = tswapreg(env->regs[1]);
330 (*regs)[2] = tswapreg(env->regs[2]);
331 (*regs)[3] = tswapreg(env->regs[3]);
332 (*regs)[4] = tswapreg(env->regs[4]);
333 (*regs)[5] = tswapreg(env->regs[5]);
334 (*regs)[6] = tswapreg(env->regs[6]);
335 (*regs)[7] = tswapreg(env->regs[7]);
336 (*regs)[8] = tswapreg(env->regs[8]);
337 (*regs)[9] = tswapreg(env->regs[9]);
338 (*regs)[10] = tswapreg(env->regs[10]);
339 (*regs)[11] = tswapreg(env->regs[11]);
340 (*regs)[12] = tswapreg(env->regs[12]);
341 (*regs)[13] = tswapreg(env->regs[13]);
342 (*regs)[14] = tswapreg(env->regs[14]);
343 (*regs)[15] = tswapreg(env->regs[15]);
344
345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
347}
348
30ac07d4 349#define USE_ELF_CORE_DUMP
d97ef72e 350#define ELF_EXEC_PAGESIZE 4096
30ac07d4 351
afce2927
FB
352enum
353{
d97ef72e
RH
354 ARM_HWCAP_ARM_SWP = 1 << 0,
355 ARM_HWCAP_ARM_HALF = 1 << 1,
356 ARM_HWCAP_ARM_THUMB = 1 << 2,
357 ARM_HWCAP_ARM_26BIT = 1 << 3,
358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359 ARM_HWCAP_ARM_FPA = 1 << 5,
360 ARM_HWCAP_ARM_VFP = 1 << 6,
361 ARM_HWCAP_ARM_EDSP = 1 << 7,
362 ARM_HWCAP_ARM_JAVA = 1 << 8,
363 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
364 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
365 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
366 ARM_HWCAP_ARM_NEON = 1 << 12,
367 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
369 ARM_HWCAP_ARM_TLS = 1 << 15,
370 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
371 ARM_HWCAP_ARM_IDIVA = 1 << 17,
372 ARM_HWCAP_ARM_IDIVT = 1 << 18,
373 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
374 ARM_HWCAP_ARM_LPAE = 1 << 20,
375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
376};
377
ad6919dc
PM
378enum {
379 ARM_HWCAP2_ARM_AES = 1 << 0,
380 ARM_HWCAP2_ARM_PMULL = 1 << 1,
381 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
382 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
383 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
384};
385
6b1275ff
PM
386/* The commpage only exists for 32 bit kernels */
387
ee947430 388#define ARM_COMMPAGE (intptr_t)0xffff0f00u
806d1021 389
ee947430
AB
390static bool init_guest_commpage(void)
391{
3e8f1628 392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
ee947430 393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
5c3e87f3 394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 395
ee947430
AB
396 if (addr == MAP_FAILED) {
397 perror("Allocating guest commpage");
398 exit(EXIT_FAILURE);
97cc7560 399 }
ee947430
AB
400 if (addr != want) {
401 return false;
97cc7560
DDAG
402 }
403
ee947430 404 /* Set kernel helper versions; rest of page is 0. */
3e8f1628 405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
97cc7560 406
ee947430 407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 408 perror("Protecting guest commpage");
ee947430 409 exit(EXIT_FAILURE);
97cc7560 410 }
ee947430 411 return true;
97cc7560 412}
adf050b1
BC
413
414#define ELF_HWCAP get_elf_hwcap()
ad6919dc 415#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
416
417static uint32_t get_elf_hwcap(void)
418{
a2247f8e 419 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
420 uint32_t hwcaps = 0;
421
422 hwcaps |= ARM_HWCAP_ARM_SWP;
423 hwcaps |= ARM_HWCAP_ARM_HALF;
424 hwcaps |= ARM_HWCAP_ARM_THUMB;
425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
426
427 /* probe for the extra features */
428#define GET_FEATURE(feat, hwcap) \
a2247f8e 429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
430
431#define GET_FEATURE_ID(feat, hwcap) \
432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433
24682654
PM
434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444
445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPv3;
448 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449 hwcaps |= ARM_HWCAP_ARM_VFPD32;
450 } else {
451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452 }
453 }
454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
455
456 return hwcaps;
457}
afce2927 458
ad6919dc
PM
459static uint32_t get_elf_hwcap2(void)
460{
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
463
962fcbf2
RH
464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
469 return hwcaps;
470}
471
472#undef GET_FEATURE
962fcbf2 473#undef GET_FEATURE_ID
ad6919dc 474
13ec4ec3
RH
475#define ELF_PLATFORM get_elf_platform()
476
477static const char *get_elf_platform(void)
478{
479 CPUARMState *env = thread_cpu->env_ptr;
480
481#ifdef TARGET_WORDS_BIGENDIAN
482# define END "b"
483#else
484# define END "l"
485#endif
486
487 if (arm_feature(env, ARM_FEATURE_V8)) {
488 return "v8" END;
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 if (arm_feature(env, ARM_FEATURE_M)) {
491 return "v7m" END;
492 } else {
493 return "v7" END;
494 }
495 } else if (arm_feature(env, ARM_FEATURE_V6)) {
496 return "v6" END;
497 } else if (arm_feature(env, ARM_FEATURE_V5)) {
498 return "v5" END;
499 } else {
500 return "v4" END;
501 }
502
503#undef END
504}
505
24e76ff0
PM
506#else
507/* 64 bit ARM definitions */
508#define ELF_START_MMAP 0x80000000
509
b597c3f7 510#define ELF_ARCH EM_AARCH64
24e76ff0 511#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
512#ifdef TARGET_WORDS_BIGENDIAN
513# define ELF_PLATFORM "aarch64_be"
514#else
515# define ELF_PLATFORM "aarch64"
516#endif
24e76ff0
PM
517
518static inline void init_thread(struct target_pt_regs *regs,
519 struct image_info *infop)
520{
521 abi_long stack = infop->start_stack;
522 memset(regs, 0, sizeof(*regs));
523
524 regs->pc = infop->entry & ~0x3ULL;
525 regs->sp = stack;
526}
527
528#define ELF_NREG 34
529typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
530
531static void elf_core_copy_regs(target_elf_gregset_t *regs,
532 const CPUARMState *env)
533{
534 int i;
535
536 for (i = 0; i < 32; i++) {
537 (*regs)[i] = tswapreg(env->xregs[i]);
538 }
539 (*regs)[32] = tswapreg(env->pc);
540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541}
542
543#define USE_ELF_CORE_DUMP
544#define ELF_EXEC_PAGESIZE 4096
545
546enum {
547 ARM_HWCAP_A64_FP = 1 << 0,
548 ARM_HWCAP_A64_ASIMD = 1 << 1,
549 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
550 ARM_HWCAP_A64_AES = 1 << 3,
551 ARM_HWCAP_A64_PMULL = 1 << 4,
552 ARM_HWCAP_A64_SHA1 = 1 << 5,
553 ARM_HWCAP_A64_SHA2 = 1 << 6,
554 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
555 ARM_HWCAP_A64_ATOMICS = 1 << 8,
556 ARM_HWCAP_A64_FPHP = 1 << 9,
557 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
558 ARM_HWCAP_A64_CPUID = 1 << 11,
559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
560 ARM_HWCAP_A64_JSCVT = 1 << 13,
561 ARM_HWCAP_A64_FCMA = 1 << 14,
562 ARM_HWCAP_A64_LRCPC = 1 << 15,
563 ARM_HWCAP_A64_DCPOP = 1 << 16,
564 ARM_HWCAP_A64_SHA3 = 1 << 17,
565 ARM_HWCAP_A64_SM3 = 1 << 18,
566 ARM_HWCAP_A64_SM4 = 1 << 19,
567 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
568 ARM_HWCAP_A64_SHA512 = 1 << 21,
569 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
571 ARM_HWCAP_A64_DIT = 1 << 24,
572 ARM_HWCAP_A64_USCAT = 1 << 25,
573 ARM_HWCAP_A64_ILRCPC = 1 << 26,
574 ARM_HWCAP_A64_FLAGM = 1 << 27,
575 ARM_HWCAP_A64_SSBS = 1 << 28,
576 ARM_HWCAP_A64_SB = 1 << 29,
577 ARM_HWCAP_A64_PACA = 1 << 30,
578 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
579
580 ARM_HWCAP2_A64_DCPODP = 1 << 0,
581 ARM_HWCAP2_A64_SVE2 = 1 << 1,
582 ARM_HWCAP2_A64_SVEAES = 1 << 2,
583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
586 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
588 ARM_HWCAP2_A64_FRINT = 1 << 8,
24e76ff0
PM
589};
590
2041df4a
RH
591#define ELF_HWCAP get_elf_hwcap()
592#define ELF_HWCAP2 get_elf_hwcap2()
593
594#define GET_FEATURE_ID(feat, hwcap) \
595 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
596
597static uint32_t get_elf_hwcap(void)
598{
599 ARMCPU *cpu = ARM_CPU(thread_cpu);
600 uint32_t hwcaps = 0;
601
602 hwcaps |= ARM_HWCAP_A64_FP;
603 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 604 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
605
606 /* probe for the extra features */
962fcbf2
RH
607
608 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
609 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
610 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
611 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
612 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
613 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
614 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
615 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
616 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 617 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
618 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
619 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
620 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
621 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 622 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 623 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
624 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
625 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 626 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 627 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 628 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 629 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 630 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 631
2041df4a
RH
632 return hwcaps;
633}
634
635static uint32_t get_elf_hwcap2(void)
636{
637 ARMCPU *cpu = ARM_CPU(thread_cpu);
638 uint32_t hwcaps = 0;
639
0d57b499 640 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
2041df4a
RH
641 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
642 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
24e76ff0
PM
643
644 return hwcaps;
645}
646
2041df4a
RH
647#undef GET_FEATURE_ID
648
24e76ff0
PM
649#endif /* not TARGET_AARCH64 */
650#endif /* TARGET_ARM */
30ac07d4 651
853d6f7a 652#ifdef TARGET_SPARC
a315a145 653#ifdef TARGET_SPARC64
853d6f7a
FB
654
655#define ELF_START_MMAP 0x80000000
cf973e46
AT
656#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
657 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 658#ifndef TARGET_ABI32
cb33da57 659#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
660#else
661#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662#endif
853d6f7a 663
a315a145 664#define ELF_CLASS ELFCLASS64
5ef54116
FB
665#define ELF_ARCH EM_SPARCV9
666
d97ef72e 667#define STACK_BIAS 2047
a315a145 668
d97ef72e
RH
669static inline void init_thread(struct target_pt_regs *regs,
670 struct image_info *infop)
a315a145 671{
992f48a0 672#ifndef TARGET_ABI32
a315a145 673 regs->tstate = 0;
992f48a0 674#endif
a315a145
FB
675 regs->pc = infop->entry;
676 regs->npc = regs->pc + 4;
677 regs->y = 0;
992f48a0
BS
678#ifdef TARGET_ABI32
679 regs->u_regs[14] = infop->start_stack - 16 * 4;
680#else
cb33da57
BS
681 if (personality(infop->personality) == PER_LINUX32)
682 regs->u_regs[14] = infop->start_stack - 16 * 4;
683 else
684 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 685#endif
a315a145
FB
686}
687
688#else
689#define ELF_START_MMAP 0x80000000
cf973e46
AT
690#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
691 | HWCAP_SPARC_MULDIV)
a315a145 692
853d6f7a 693#define ELF_CLASS ELFCLASS32
853d6f7a
FB
694#define ELF_ARCH EM_SPARC
695
d97ef72e
RH
696static inline void init_thread(struct target_pt_regs *regs,
697 struct image_info *infop)
853d6f7a 698{
f5155289
FB
699 regs->psr = 0;
700 regs->pc = infop->entry;
701 regs->npc = regs->pc + 4;
702 regs->y = 0;
703 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
704}
705
a315a145 706#endif
853d6f7a
FB
707#endif
708
67867308
FB
709#ifdef TARGET_PPC
710
4ecd4d16 711#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
712#define ELF_START_MMAP 0x80000000
713
e85e7c6e 714#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
715
716#define elf_check_arch(x) ( (x) == EM_PPC64 )
717
d97ef72e 718#define ELF_CLASS ELFCLASS64
84409ddb
JM
719
720#else
721
d97ef72e 722#define ELF_CLASS ELFCLASS32
84409ddb
JM
723
724#endif
725
d97ef72e 726#define ELF_ARCH EM_PPC
67867308 727
df84e4f3
NF
728/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729 See arch/powerpc/include/asm/cputable.h. */
730enum {
3efa9a67 731 QEMU_PPC_FEATURE_32 = 0x80000000,
732 QEMU_PPC_FEATURE_64 = 0x40000000,
733 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746 QEMU_PPC_FEATURE_CELL = 0x00010000,
747 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748 QEMU_PPC_FEATURE_SMT = 0x00004000,
749 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751 QEMU_PPC_FEATURE_PA6T = 0x00000800,
752 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
757
758 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
760
761 /* Feature definitions in AT_HWCAP2. */
762 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
768 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
771 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
df84e4f3
NF
775};
776
777#define ELF_HWCAP get_elf_hwcap()
778
779static uint32_t get_elf_hwcap(void)
780{
a2247f8e 781 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
782 uint32_t features = 0;
783
784 /* We don't have to be terribly complete here; the high points are
785 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 786#define GET_FEATURE(flag, feature) \
a2247f8e 787 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
788#define GET_FEATURE2(flags, feature) \
789 do { \
790 if ((cpu->env.insns_flags2 & flags) == flags) { \
791 features |= feature; \
792 } \
793 } while (0)
3efa9a67 794 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
802 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 807#undef GET_FEATURE
0e019746 808#undef GET_FEATURE2
df84e4f3
NF
809
810 return features;
811}
812
a60438dd
TM
813#define ELF_HWCAP2 get_elf_hwcap2()
814
815static uint32_t get_elf_hwcap2(void)
816{
817 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818 uint32_t features = 0;
819
820#define GET_FEATURE(flag, feature) \
821 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822#define GET_FEATURE2(flag, feature) \
823 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
824
825 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
828 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829 QEMU_PPC_FEATURE2_VEC_CRYPTO);
830 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831 QEMU_PPC_FEATURE2_DARN);
a60438dd
TM
832
833#undef GET_FEATURE
834#undef GET_FEATURE2
835
836 return features;
837}
838
f5155289
FB
839/*
840 * The requirements here are:
841 * - keep the final alignment of sp (sp & 0xf)
842 * - make sure the 32-bit value at the first 16 byte aligned position of
843 * AUXV is greater than 16 for glibc compatibility.
844 * AT_IGNOREPPC is used for that.
845 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
847 */
0bccf03d 848#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
849#define ARCH_DLINFO \
850 do { \
623e250a 851 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 852 /* \
82991bed
PM
853 * Handle glibc compatibility: these magic entries must \
854 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
855 */ \
856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
857 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
858 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 861 } while (0)
f5155289 862
67867308
FB
863static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
864{
67867308 865 _regs->gpr[1] = infop->start_stack;
e85e7c6e 866#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 867 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
868 uint64_t val;
869 get_user_u64(val, infop->entry + 8);
870 _regs->gpr[2] = val + infop->load_bias;
871 get_user_u64(val, infop->entry);
872 infop->entry = val + infop->load_bias;
d90b94cd
DK
873 } else {
874 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
875 }
84409ddb 876#endif
67867308
FB
877 _regs->nip = infop->entry;
878}
879
e2f3e741
NF
880/* See linux kernel: arch/powerpc/include/asm/elf.h. */
881#define ELF_NREG 48
882typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
883
05390248 884static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
885{
886 int i;
887 target_ulong ccr = 0;
888
889 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 890 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
891 }
892
86cd7b2d
PB
893 (*regs)[32] = tswapreg(env->nip);
894 (*regs)[33] = tswapreg(env->msr);
895 (*regs)[35] = tswapreg(env->ctr);
896 (*regs)[36] = tswapreg(env->lr);
897 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
898
899 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
901 }
86cd7b2d 902 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
903}
904
905#define USE_ELF_CORE_DUMP
d97ef72e 906#define ELF_EXEC_PAGESIZE 4096
67867308
FB
907
908#endif
909
048f6b4d
FB
910#ifdef TARGET_MIPS
911
912#define ELF_START_MMAP 0x80000000
913
388bb21a
TS
914#ifdef TARGET_MIPS64
915#define ELF_CLASS ELFCLASS64
916#else
048f6b4d 917#define ELF_CLASS ELFCLASS32
388bb21a 918#endif
048f6b4d
FB
919#define ELF_ARCH EM_MIPS
920
f72541f3
AM
921#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
922
ace3d654
CMAB
923#ifdef TARGET_ABI_MIPSN32
924#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925#else
926#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927#endif
928
d97ef72e
RH
929static inline void init_thread(struct target_pt_regs *regs,
930 struct image_info *infop)
048f6b4d 931{
623a930e 932 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
933 regs->cp0_epc = infop->entry;
934 regs->regs[29] = infop->start_stack;
935}
936
51e52606
NF
937/* See linux kernel: arch/mips/include/asm/elf.h. */
938#define ELF_NREG 45
939typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
940
941/* See linux kernel: arch/mips/include/asm/reg.h. */
942enum {
943#ifdef TARGET_MIPS64
944 TARGET_EF_R0 = 0,
945#else
946 TARGET_EF_R0 = 6,
947#endif
948 TARGET_EF_R26 = TARGET_EF_R0 + 26,
949 TARGET_EF_R27 = TARGET_EF_R0 + 27,
950 TARGET_EF_LO = TARGET_EF_R0 + 32,
951 TARGET_EF_HI = TARGET_EF_R0 + 33,
952 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
956};
957
958/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 959static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
960{
961 int i;
962
963 for (i = 0; i < TARGET_EF_R0; i++) {
964 (*regs)[i] = 0;
965 }
966 (*regs)[TARGET_EF_R0] = 0;
967
968 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 969 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
970 }
971
972 (*regs)[TARGET_EF_R26] = 0;
973 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
974 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
980}
981
982#define USE_ELF_CORE_DUMP
388bb21a
TS
983#define ELF_EXEC_PAGESIZE 4096
984
46a1ee4f
JC
985/* See arch/mips/include/uapi/asm/hwcap.h. */
986enum {
987 HWCAP_MIPS_R6 = (1 << 0),
988 HWCAP_MIPS_MSA = (1 << 1),
9ea313ba
PMD
989 HWCAP_MIPS_CRC32 = (1 << 2),
990 HWCAP_MIPS_MIPS16 = (1 << 3),
991 HWCAP_MIPS_MDMX = (1 << 4),
992 HWCAP_MIPS_MIPS3D = (1 << 5),
993 HWCAP_MIPS_SMARTMIPS = (1 << 6),
994 HWCAP_MIPS_DSP = (1 << 7),
995 HWCAP_MIPS_DSP2 = (1 << 8),
996 HWCAP_MIPS_DSP3 = (1 << 9),
997 HWCAP_MIPS_MIPS16E2 = (1 << 10),
998 HWCAP_LOONGSON_MMI = (1 << 11),
999 HWCAP_LOONGSON_EXT = (1 << 12),
1000 HWCAP_LOONGSON_EXT2 = (1 << 13),
1001 HWCAP_LOONGSON_CPUCFG = (1 << 14),
46a1ee4f
JC
1002};
1003
1004#define ELF_HWCAP get_elf_hwcap()
1005
7d9a3d96 1006#define GET_FEATURE_INSN(_flag, _hwcap) \
6dd97bfc
PMD
1007 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1008
388765a0
PMD
1009#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1011
ce543844
PMD
1012#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013 do { \
1014 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015 hwcaps |= _hwcap; \
1016 } \
1017 } while (0)
1018
46a1ee4f
JC
1019static uint32_t get_elf_hwcap(void)
1020{
1021 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022 uint32_t hwcaps = 0;
1023
ce543844
PMD
1024 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025 2, HWCAP_MIPS_R6);
388765a0 1026 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
53673d0f
PMD
1027 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1028 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
46a1ee4f 1029
46a1ee4f
JC
1030 return hwcaps;
1031}
1032
ce543844 1033#undef GET_FEATURE_REG_EQU
388765a0 1034#undef GET_FEATURE_REG_SET
7d9a3d96 1035#undef GET_FEATURE_INSN
6dd97bfc 1036
048f6b4d
FB
1037#endif /* TARGET_MIPS */
1038
b779e29e
EI
1039#ifdef TARGET_MICROBLAZE
1040
1041#define ELF_START_MMAP 0x80000000
1042
0d5d4699 1043#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1044
1045#define ELF_CLASS ELFCLASS32
0d5d4699 1046#define ELF_ARCH EM_MICROBLAZE
b779e29e 1047
d97ef72e
RH
1048static inline void init_thread(struct target_pt_regs *regs,
1049 struct image_info *infop)
b779e29e
EI
1050{
1051 regs->pc = infop->entry;
1052 regs->r1 = infop->start_stack;
1053
1054}
1055
b779e29e
EI
1056#define ELF_EXEC_PAGESIZE 4096
1057
e4cbd44d
EI
1058#define USE_ELF_CORE_DUMP
1059#define ELF_NREG 38
1060typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1061
1062/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1063static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1064{
1065 int i, pos = 0;
1066
1067 for (i = 0; i < 32; i++) {
86cd7b2d 1068 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1069 }
1070
af20a93a 1071 (*regs)[pos++] = tswapreg(env->pc);
1074c0fb 1072 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
af20a93a
RH
1073 (*regs)[pos++] = 0;
1074 (*regs)[pos++] = tswapreg(env->ear);
1075 (*regs)[pos++] = 0;
1076 (*regs)[pos++] = tswapreg(env->esr);
e4cbd44d
EI
1077}
1078
b779e29e
EI
1079#endif /* TARGET_MICROBLAZE */
1080
a0a839b6
MV
1081#ifdef TARGET_NIOS2
1082
1083#define ELF_START_MMAP 0x80000000
1084
1085#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1086
1087#define ELF_CLASS ELFCLASS32
1088#define ELF_ARCH EM_ALTERA_NIOS2
1089
1090static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1091{
1092 regs->ea = infop->entry;
1093 regs->sp = infop->start_stack;
1094 regs->estatus = 0x3;
1095}
1096
1097#define ELF_EXEC_PAGESIZE 4096
1098
1099#define USE_ELF_CORE_DUMP
1100#define ELF_NREG 49
1101typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1102
1103/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1104static void elf_core_copy_regs(target_elf_gregset_t *regs,
1105 const CPUNios2State *env)
1106{
1107 int i;
1108
1109 (*regs)[0] = -1;
1110 for (i = 1; i < 8; i++) /* r0-r7 */
1111 (*regs)[i] = tswapreg(env->regs[i + 7]);
1112
1113 for (i = 8; i < 16; i++) /* r8-r15 */
1114 (*regs)[i] = tswapreg(env->regs[i - 8]);
1115
1116 for (i = 16; i < 24; i++) /* r16-r23 */
1117 (*regs)[i] = tswapreg(env->regs[i + 7]);
1118 (*regs)[24] = -1; /* R_ET */
1119 (*regs)[25] = -1; /* R_BT */
1120 (*regs)[26] = tswapreg(env->regs[R_GP]);
1121 (*regs)[27] = tswapreg(env->regs[R_SP]);
1122 (*regs)[28] = tswapreg(env->regs[R_FP]);
1123 (*regs)[29] = tswapreg(env->regs[R_EA]);
1124 (*regs)[30] = -1; /* R_SSTATUS */
1125 (*regs)[31] = tswapreg(env->regs[R_RA]);
1126
1127 (*regs)[32] = tswapreg(env->regs[R_PC]);
1128
1129 (*regs)[33] = -1; /* R_STATUS */
1130 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1131
1132 for (i = 35; i < 49; i++) /* ... */
1133 (*regs)[i] = -1;
1134}
1135
1136#endif /* TARGET_NIOS2 */
1137
d962783e
JL
1138#ifdef TARGET_OPENRISC
1139
1140#define ELF_START_MMAP 0x08000000
1141
d962783e
JL
1142#define ELF_ARCH EM_OPENRISC
1143#define ELF_CLASS ELFCLASS32
1144#define ELF_DATA ELFDATA2MSB
1145
1146static inline void init_thread(struct target_pt_regs *regs,
1147 struct image_info *infop)
1148{
1149 regs->pc = infop->entry;
1150 regs->gpr[1] = infop->start_stack;
1151}
1152
1153#define USE_ELF_CORE_DUMP
1154#define ELF_EXEC_PAGESIZE 8192
1155
1156/* See linux kernel arch/openrisc/include/asm/elf.h. */
1157#define ELF_NREG 34 /* gprs and pc, sr */
1158typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1159
1160static void elf_core_copy_regs(target_elf_gregset_t *regs,
1161 const CPUOpenRISCState *env)
1162{
1163 int i;
1164
1165 for (i = 0; i < 32; i++) {
d89e71e8 1166 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1167 }
86cd7b2d 1168 (*regs)[32] = tswapreg(env->pc);
84775c43 1169 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1170}
1171#define ELF_HWCAP 0
1172#define ELF_PLATFORM NULL
1173
1174#endif /* TARGET_OPENRISC */
1175
fdf9b3e8
FB
1176#ifdef TARGET_SH4
1177
1178#define ELF_START_MMAP 0x80000000
1179
fdf9b3e8 1180#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1181#define ELF_ARCH EM_SH
1182
d97ef72e
RH
1183static inline void init_thread(struct target_pt_regs *regs,
1184 struct image_info *infop)
fdf9b3e8 1185{
d97ef72e
RH
1186 /* Check other registers XXXXX */
1187 regs->pc = infop->entry;
1188 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1189}
1190
7631c97e
NF
1191/* See linux kernel: arch/sh/include/asm/elf.h. */
1192#define ELF_NREG 23
1193typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1194
1195/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1196enum {
1197 TARGET_REG_PC = 16,
1198 TARGET_REG_PR = 17,
1199 TARGET_REG_SR = 18,
1200 TARGET_REG_GBR = 19,
1201 TARGET_REG_MACH = 20,
1202 TARGET_REG_MACL = 21,
1203 TARGET_REG_SYSCALL = 22
1204};
1205
d97ef72e 1206static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1207 const CPUSH4State *env)
7631c97e
NF
1208{
1209 int i;
1210
1211 for (i = 0; i < 16; i++) {
72cd500b 1212 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1213 }
1214
86cd7b2d
PB
1215 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1216 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1217 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1218 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1219 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1220 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1221 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1222}
1223
1224#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1225#define ELF_EXEC_PAGESIZE 4096
1226
e42fd944
RH
1227enum {
1228 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1229 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1230 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1231 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1232 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1233 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1234 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1235 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1236 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1237 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1238};
1239
1240#define ELF_HWCAP get_elf_hwcap()
1241
1242static uint32_t get_elf_hwcap(void)
1243{
1244 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1245 uint32_t hwcap = 0;
1246
1247 hwcap |= SH_CPU_HAS_FPU;
1248
1249 if (cpu->env.features & SH_FEATURE_SH4A) {
1250 hwcap |= SH_CPU_HAS_LLSC;
1251 }
1252
1253 return hwcap;
1254}
1255
fdf9b3e8
FB
1256#endif
1257
48733d19
TS
1258#ifdef TARGET_CRIS
1259
1260#define ELF_START_MMAP 0x80000000
1261
48733d19 1262#define ELF_CLASS ELFCLASS32
48733d19
TS
1263#define ELF_ARCH EM_CRIS
1264
d97ef72e
RH
1265static inline void init_thread(struct target_pt_regs *regs,
1266 struct image_info *infop)
48733d19 1267{
d97ef72e 1268 regs->erp = infop->entry;
48733d19
TS
1269}
1270
48733d19
TS
1271#define ELF_EXEC_PAGESIZE 8192
1272
1273#endif
1274
e6e5906b
PB
1275#ifdef TARGET_M68K
1276
1277#define ELF_START_MMAP 0x80000000
1278
d97ef72e 1279#define ELF_CLASS ELFCLASS32
d97ef72e 1280#define ELF_ARCH EM_68K
e6e5906b
PB
1281
1282/* ??? Does this need to do anything?
d97ef72e 1283 #define ELF_PLAT_INIT(_r) */
e6e5906b 1284
d97ef72e
RH
1285static inline void init_thread(struct target_pt_regs *regs,
1286 struct image_info *infop)
e6e5906b
PB
1287{
1288 regs->usp = infop->start_stack;
1289 regs->sr = 0;
1290 regs->pc = infop->entry;
1291}
1292
7a93cc55
NF
1293/* See linux kernel: arch/m68k/include/asm/elf.h. */
1294#define ELF_NREG 20
1295typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1296
05390248 1297static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1298{
86cd7b2d
PB
1299 (*regs)[0] = tswapreg(env->dregs[1]);
1300 (*regs)[1] = tswapreg(env->dregs[2]);
1301 (*regs)[2] = tswapreg(env->dregs[3]);
1302 (*regs)[3] = tswapreg(env->dregs[4]);
1303 (*regs)[4] = tswapreg(env->dregs[5]);
1304 (*regs)[5] = tswapreg(env->dregs[6]);
1305 (*regs)[6] = tswapreg(env->dregs[7]);
1306 (*regs)[7] = tswapreg(env->aregs[0]);
1307 (*regs)[8] = tswapreg(env->aregs[1]);
1308 (*regs)[9] = tswapreg(env->aregs[2]);
1309 (*regs)[10] = tswapreg(env->aregs[3]);
1310 (*regs)[11] = tswapreg(env->aregs[4]);
1311 (*regs)[12] = tswapreg(env->aregs[5]);
1312 (*regs)[13] = tswapreg(env->aregs[6]);
1313 (*regs)[14] = tswapreg(env->dregs[0]);
1314 (*regs)[15] = tswapreg(env->aregs[7]);
1315 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1316 (*regs)[17] = tswapreg(env->sr);
1317 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1318 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1319}
1320
1321#define USE_ELF_CORE_DUMP
d97ef72e 1322#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1323
1324#endif
1325
7a3148a9
JM
1326#ifdef TARGET_ALPHA
1327
1328#define ELF_START_MMAP (0x30000000000ULL)
1329
7a3148a9 1330#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1331#define ELF_ARCH EM_ALPHA
1332
d97ef72e
RH
1333static inline void init_thread(struct target_pt_regs *regs,
1334 struct image_info *infop)
7a3148a9
JM
1335{
1336 regs->pc = infop->entry;
1337 regs->ps = 8;
1338 regs->usp = infop->start_stack;
7a3148a9
JM
1339}
1340
7a3148a9
JM
1341#define ELF_EXEC_PAGESIZE 8192
1342
1343#endif /* TARGET_ALPHA */
1344
a4c075f1
UH
1345#ifdef TARGET_S390X
1346
1347#define ELF_START_MMAP (0x20000000000ULL)
1348
a4c075f1
UH
1349#define ELF_CLASS ELFCLASS64
1350#define ELF_DATA ELFDATA2MSB
1351#define ELF_ARCH EM_S390
1352
6d88baf1
DH
1353#include "elf.h"
1354
1355#define ELF_HWCAP get_elf_hwcap()
1356
1357#define GET_FEATURE(_feat, _hwcap) \
1358 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1359
1360static uint32_t get_elf_hwcap(void)
1361{
1362 /*
1363 * Let's assume we always have esan3 and zarch.
1364 * 31-bit processes can use 64-bit registers (high gprs).
1365 */
1366 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1367
1368 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1369 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1370 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1371 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1372 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1373 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1374 hwcap |= HWCAP_S390_ETF3EH;
1375 }
1376 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1377
1378 return hwcap;
1379}
1380
a4c075f1
UH
1381static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1382{
1383 regs->psw.addr = infop->entry;
1384 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1385 regs->gprs[15] = infop->start_stack;
1386}
1387
1388#endif /* TARGET_S390X */
1389
47ae93cd
MC
1390#ifdef TARGET_RISCV
1391
1392#define ELF_START_MMAP 0x80000000
1393#define ELF_ARCH EM_RISCV
1394
1395#ifdef TARGET_RISCV32
1396#define ELF_CLASS ELFCLASS32
1397#else
1398#define ELF_CLASS ELFCLASS64
1399#endif
1400
1401static inline void init_thread(struct target_pt_regs *regs,
1402 struct image_info *infop)
1403{
1404 regs->sepc = infop->entry;
1405 regs->sp = infop->start_stack;
1406}
1407
1408#define ELF_EXEC_PAGESIZE 4096
1409
1410#endif /* TARGET_RISCV */
1411
7c248bcd
RH
1412#ifdef TARGET_HPPA
1413
1414#define ELF_START_MMAP 0x80000000
1415#define ELF_CLASS ELFCLASS32
1416#define ELF_ARCH EM_PARISC
1417#define ELF_PLATFORM "PARISC"
1418#define STACK_GROWS_DOWN 0
1419#define STACK_ALIGNMENT 64
1420
1421static inline void init_thread(struct target_pt_regs *regs,
1422 struct image_info *infop)
1423{
1424 regs->iaoq[0] = infop->entry;
1425 regs->iaoq[1] = infop->entry + 4;
1426 regs->gr[23] = 0;
1427 regs->gr[24] = infop->arg_start;
1428 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1429 /* The top-of-stack contains a linkage buffer. */
1430 regs->gr[30] = infop->start_stack + 64;
1431 regs->gr[31] = infop->entry;
1432}
1433
1434#endif /* TARGET_HPPA */
1435
ba7651fb
MF
1436#ifdef TARGET_XTENSA
1437
1438#define ELF_START_MMAP 0x20000000
1439
1440#define ELF_CLASS ELFCLASS32
1441#define ELF_ARCH EM_XTENSA
1442
1443static inline void init_thread(struct target_pt_regs *regs,
1444 struct image_info *infop)
1445{
1446 regs->windowbase = 0;
1447 regs->windowstart = 1;
1448 regs->areg[1] = infop->start_stack;
1449 regs->pc = infop->entry;
1450}
1451
1452/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1453#define ELF_NREG 128
1454typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1455
1456enum {
1457 TARGET_REG_PC,
1458 TARGET_REG_PS,
1459 TARGET_REG_LBEG,
1460 TARGET_REG_LEND,
1461 TARGET_REG_LCOUNT,
1462 TARGET_REG_SAR,
1463 TARGET_REG_WINDOWSTART,
1464 TARGET_REG_WINDOWBASE,
1465 TARGET_REG_THREADPTR,
1466 TARGET_REG_AR0 = 64,
1467};
1468
1469static void elf_core_copy_regs(target_elf_gregset_t *regs,
1470 const CPUXtensaState *env)
1471{
1472 unsigned i;
1473
1474 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1475 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1476 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1477 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1478 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1479 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1480 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1481 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1482 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1483 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1484 for (i = 0; i < env->config->nareg; ++i) {
1485 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1486 }
1487}
1488
1489#define USE_ELF_CORE_DUMP
1490#define ELF_EXEC_PAGESIZE 4096
1491
1492#endif /* TARGET_XTENSA */
1493
d2a56bd2
TS
1494#ifdef TARGET_HEXAGON
1495
1496#define ELF_START_MMAP 0x20000000
1497
1498#define ELF_CLASS ELFCLASS32
1499#define ELF_ARCH EM_HEXAGON
1500
1501static inline void init_thread(struct target_pt_regs *regs,
1502 struct image_info *infop)
1503{
1504 regs->sepc = infop->entry;
1505 regs->sp = infop->start_stack;
1506}
1507
1508#endif /* TARGET_HEXAGON */
1509
15338fd7
FB
1510#ifndef ELF_PLATFORM
1511#define ELF_PLATFORM (NULL)
1512#endif
1513
75be901c
PC
1514#ifndef ELF_MACHINE
1515#define ELF_MACHINE ELF_ARCH
1516#endif
1517
d276a604
PC
1518#ifndef elf_check_arch
1519#define elf_check_arch(x) ((x) == ELF_ARCH)
1520#endif
1521
ace3d654
CMAB
1522#ifndef elf_check_abi
1523#define elf_check_abi(x) (1)
1524#endif
1525
15338fd7
FB
1526#ifndef ELF_HWCAP
1527#define ELF_HWCAP 0
1528#endif
1529
7c4ee5bc
RH
1530#ifndef STACK_GROWS_DOWN
1531#define STACK_GROWS_DOWN 1
1532#endif
1533
1534#ifndef STACK_ALIGNMENT
1535#define STACK_ALIGNMENT 16
1536#endif
1537
992f48a0 1538#ifdef TARGET_ABI32
cb33da57 1539#undef ELF_CLASS
992f48a0 1540#define ELF_CLASS ELFCLASS32
cb33da57
BS
1541#undef bswaptls
1542#define bswaptls(ptr) bswap32s(ptr)
1543#endif
1544
31e31b8a 1545#include "elf.h"
09bfb054 1546
e8384b37
RH
1547/* We must delay the following stanzas until after "elf.h". */
1548#if defined(TARGET_AARCH64)
1549
1550static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1551 const uint32_t *data,
1552 struct image_info *info,
1553 Error **errp)
1554{
1555 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1556 if (pr_datasz != sizeof(uint32_t)) {
1557 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1558 return false;
1559 }
1560 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1561 info->note_flags = *data;
1562 }
1563 return true;
1564}
1565#define ARCH_USE_GNU_PROPERTY 1
1566
1567#else
1568
83f990eb
RH
1569static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1570 const uint32_t *data,
1571 struct image_info *info,
1572 Error **errp)
1573{
1574 g_assert_not_reached();
1575}
1576#define ARCH_USE_GNU_PROPERTY 0
1577
e8384b37
RH
1578#endif
1579
09bfb054
FB
1580struct exec
1581{
d97ef72e
RH
1582 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1583 unsigned int a_text; /* length of text, in bytes */
1584 unsigned int a_data; /* length of data, in bytes */
1585 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1586 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1587 unsigned int a_entry; /* start address */
1588 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1589 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1590};
1591
1592
1593#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1594#define OMAGIC 0407
1595#define NMAGIC 0410
1596#define ZMAGIC 0413
1597#define QMAGIC 0314
1598
31e31b8a 1599/* Necessary parameters */
94894ff2
SB
1600#define TARGET_ELF_EXEC_PAGESIZE \
1601 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1602 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1603#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1604#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1605 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1606#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1607
e0d1673d 1608#define DLINFO_ITEMS 16
31e31b8a 1609
09bfb054
FB
1610static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1611{
d97ef72e 1612 memcpy(to, from, n);
09bfb054 1613}
d691f669 1614
31e31b8a 1615#ifdef BSWAP_NEEDED
92a31b1f 1616static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1617{
d97ef72e
RH
1618 bswap16s(&ehdr->e_type); /* Object file type */
1619 bswap16s(&ehdr->e_machine); /* Architecture */
1620 bswap32s(&ehdr->e_version); /* Object file version */
1621 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1622 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1623 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1624 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1625 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1626 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1627 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1628 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1629 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1630 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1631}
1632
991f8f0c 1633static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1634{
991f8f0c
RH
1635 int i;
1636 for (i = 0; i < phnum; ++i, ++phdr) {
1637 bswap32s(&phdr->p_type); /* Segment type */
1638 bswap32s(&phdr->p_flags); /* Segment flags */
1639 bswaptls(&phdr->p_offset); /* Segment file offset */
1640 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1641 bswaptls(&phdr->p_paddr); /* Segment physical address */
1642 bswaptls(&phdr->p_filesz); /* Segment size in file */
1643 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1644 bswaptls(&phdr->p_align); /* Segment alignment */
1645 }
31e31b8a 1646}
689f936f 1647
991f8f0c 1648static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1649{
991f8f0c
RH
1650 int i;
1651 for (i = 0; i < shnum; ++i, ++shdr) {
1652 bswap32s(&shdr->sh_name);
1653 bswap32s(&shdr->sh_type);
1654 bswaptls(&shdr->sh_flags);
1655 bswaptls(&shdr->sh_addr);
1656 bswaptls(&shdr->sh_offset);
1657 bswaptls(&shdr->sh_size);
1658 bswap32s(&shdr->sh_link);
1659 bswap32s(&shdr->sh_info);
1660 bswaptls(&shdr->sh_addralign);
1661 bswaptls(&shdr->sh_entsize);
1662 }
689f936f
FB
1663}
1664
7a3148a9 1665static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1666{
1667 bswap32s(&sym->st_name);
7a3148a9
JM
1668 bswaptls(&sym->st_value);
1669 bswaptls(&sym->st_size);
689f936f
FB
1670 bswap16s(&sym->st_shndx);
1671}
5dd0db52
SM
1672
1673#ifdef TARGET_MIPS
1674static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1675{
1676 bswap16s(&abiflags->version);
1677 bswap32s(&abiflags->ases);
1678 bswap32s(&abiflags->isa_ext);
1679 bswap32s(&abiflags->flags1);
1680 bswap32s(&abiflags->flags2);
1681}
1682#endif
991f8f0c
RH
1683#else
1684static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1685static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1686static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1687static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1688#ifdef TARGET_MIPS
1689static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1690#endif
31e31b8a
FB
1691#endif
1692
edf8e2af 1693#ifdef USE_ELF_CORE_DUMP
9349b4f9 1694static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1695#endif /* USE_ELF_CORE_DUMP */
682674b8 1696static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1697
9058abdd
RH
1698/* Verify the portions of EHDR within E_IDENT for the target.
1699 This can be performed before bswapping the entire header. */
1700static bool elf_check_ident(struct elfhdr *ehdr)
1701{
1702 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1703 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1704 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1705 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1706 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1707 && ehdr->e_ident[EI_DATA] == ELF_DATA
1708 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1709}
1710
1711/* Verify the portions of EHDR outside of E_IDENT for the target.
1712 This has to wait until after bswapping the header. */
1713static bool elf_check_ehdr(struct elfhdr *ehdr)
1714{
1715 return (elf_check_arch(ehdr->e_machine)
ace3d654 1716 && elf_check_abi(ehdr->e_flags)
9058abdd
RH
1717 && ehdr->e_ehsize == sizeof(struct elfhdr)
1718 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1719 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1720}
1721
31e31b8a 1722/*
e5fe0c52 1723 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1724 * memory to free pages in kernel mem. These are in a format ready
1725 * to be put directly into the top of new user memory.
1726 *
1727 */
59baae9a
SB
1728static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1729 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1730{
59baae9a 1731 char *tmp;
7c4ee5bc 1732 int len, i;
59baae9a 1733 abi_ulong top = p;
31e31b8a
FB
1734
1735 if (!p) {
d97ef72e 1736 return 0; /* bullet-proofing */
31e31b8a 1737 }
59baae9a 1738
7c4ee5bc
RH
1739 if (STACK_GROWS_DOWN) {
1740 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1741 for (i = argc - 1; i >= 0; --i) {
1742 tmp = argv[i];
1743 if (!tmp) {
1744 fprintf(stderr, "VFS: argc is wrong");
1745 exit(-1);
1746 }
1747 len = strlen(tmp) + 1;
1748 tmp += len;
59baae9a 1749
7c4ee5bc
RH
1750 if (len > (p - stack_limit)) {
1751 return 0;
1752 }
1753 while (len) {
1754 int bytes_to_copy = (len > offset) ? offset : len;
1755 tmp -= bytes_to_copy;
1756 p -= bytes_to_copy;
1757 offset -= bytes_to_copy;
1758 len -= bytes_to_copy;
1759
1760 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1761
1762 if (offset == 0) {
1763 memcpy_to_target(p, scratch, top - p);
1764 top = p;
1765 offset = TARGET_PAGE_SIZE;
1766 }
1767 }
d97ef72e 1768 }
7c4ee5bc
RH
1769 if (p != top) {
1770 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1771 }
7c4ee5bc
RH
1772 } else {
1773 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1774 for (i = 0; i < argc; ++i) {
1775 tmp = argv[i];
1776 if (!tmp) {
1777 fprintf(stderr, "VFS: argc is wrong");
1778 exit(-1);
1779 }
1780 len = strlen(tmp) + 1;
1781 if (len > (stack_limit - p)) {
1782 return 0;
1783 }
1784 while (len) {
1785 int bytes_to_copy = (len > remaining) ? remaining : len;
1786
1787 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1788
1789 tmp += bytes_to_copy;
1790 remaining -= bytes_to_copy;
1791 p += bytes_to_copy;
1792 len -= bytes_to_copy;
1793
1794 if (remaining == 0) {
1795 memcpy_to_target(top, scratch, p - top);
1796 top = p;
1797 remaining = TARGET_PAGE_SIZE;
1798 }
d97ef72e
RH
1799 }
1800 }
7c4ee5bc
RH
1801 if (p != top) {
1802 memcpy_to_target(top, scratch, p - top);
1803 }
59baae9a
SB
1804 }
1805
31e31b8a
FB
1806 return p;
1807}
1808
59baae9a
SB
1809/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1810 * argument/environment space. Newer kernels (>2.6.33) allow more,
1811 * dependent on stack size, but guarantee at least 32 pages for
1812 * backwards compatibility.
1813 */
1814#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1815
1816static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1817 struct image_info *info)
53a5960a 1818{
59baae9a 1819 abi_ulong size, error, guard;
31e31b8a 1820
703e0e89 1821 size = guest_stack_size;
59baae9a
SB
1822 if (size < STACK_LOWER_LIMIT) {
1823 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1824 }
1825 guard = TARGET_PAGE_SIZE;
1826 if (guard < qemu_real_host_page_size) {
1827 guard = qemu_real_host_page_size;
1828 }
1829
1830 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1831 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1832 if (error == -1) {
60dcbcb5 1833 perror("mmap stack");
09bfb054
FB
1834 exit(-1);
1835 }
31e31b8a 1836
60dcbcb5 1837 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1838 if (STACK_GROWS_DOWN) {
1839 target_mprotect(error, guard, PROT_NONE);
1840 info->stack_limit = error + guard;
1841 return info->stack_limit + size - sizeof(void *);
1842 } else {
1843 target_mprotect(error + size, guard, PROT_NONE);
1844 info->stack_limit = error + size;
1845 return error;
1846 }
31e31b8a
FB
1847}
1848
cf129f3a
RH
1849/* Map and zero the bss. We need to explicitly zero any fractional pages
1850 after the data section (i.e. bss). */
1851static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1852{
cf129f3a
RH
1853 uintptr_t host_start, host_map_start, host_end;
1854
1855 last_bss = TARGET_PAGE_ALIGN(last_bss);
1856
1857 /* ??? There is confusion between qemu_real_host_page_size and
1858 qemu_host_page_size here and elsewhere in target_mmap, which
1859 may lead to the end of the data section mapping from the file
1860 not being mapped. At least there was an explicit test and
1861 comment for that here, suggesting that "the file size must
1862 be known". The comment probably pre-dates the introduction
1863 of the fstat system call in target_mmap which does in fact
1864 find out the size. What isn't clear is if the workaround
1865 here is still actually needed. For now, continue with it,
1866 but merge it with the "normal" mmap that would allocate the bss. */
1867
3e8f1628
RH
1868 host_start = (uintptr_t) g2h_untagged(elf_bss);
1869 host_end = (uintptr_t) g2h_untagged(last_bss);
0c2d70c4 1870 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1871
1872 if (host_map_start < host_end) {
1873 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1874 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1875 if (p == MAP_FAILED) {
1876 perror("cannot mmap brk");
1877 exit(-1);
853d6f7a 1878 }
f46e9a0b 1879 }
853d6f7a 1880
f46e9a0b
TM
1881 /* Ensure that the bss page(s) are valid */
1882 if ((page_get_flags(last_bss-1) & prot) != prot) {
1883 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1884 }
31e31b8a 1885
cf129f3a
RH
1886 if (host_start < host_map_start) {
1887 memset((void *)host_start, 0, host_map_start - host_start);
1888 }
1889}
53a5960a 1890
cf58affe
CL
1891#ifdef TARGET_ARM
1892static int elf_is_fdpic(struct elfhdr *exec)
1893{
1894 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1895}
1896#else
a99856cd
CL
1897/* Default implementation, always false. */
1898static int elf_is_fdpic(struct elfhdr *exec)
1899{
1900 return 0;
1901}
cf58affe 1902#endif
a99856cd 1903
1af02e83
MF
1904static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1905{
1906 uint16_t n;
1907 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1908
1909 /* elf32_fdpic_loadseg */
1910 n = info->nsegs;
1911 while (n--) {
1912 sp -= 12;
1913 put_user_u32(loadsegs[n].addr, sp+0);
1914 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1915 put_user_u32(loadsegs[n].p_memsz, sp+8);
1916 }
1917
1918 /* elf32_fdpic_loadmap */
1919 sp -= 4;
1920 put_user_u16(0, sp+0); /* version */
1921 put_user_u16(info->nsegs, sp+2); /* nsegs */
1922
1923 info->personality = PER_LINUX_FDPIC;
1924 info->loadmap_addr = sp;
1925
1926 return sp;
1927}
1af02e83 1928
992f48a0 1929static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1930 struct elfhdr *exec,
1931 struct image_info *info,
1932 struct image_info *interp_info)
31e31b8a 1933{
d97ef72e 1934 abi_ulong sp;
7c4ee5bc 1935 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1936 int size;
14322bad
LA
1937 int i;
1938 abi_ulong u_rand_bytes;
1939 uint8_t k_rand_bytes[16];
d97ef72e
RH
1940 abi_ulong u_platform;
1941 const char *k_platform;
1942 const int n = sizeof(elf_addr_t);
1943
1944 sp = p;
1af02e83 1945
1af02e83
MF
1946 /* Needs to be before we load the env/argc/... */
1947 if (elf_is_fdpic(exec)) {
1948 /* Need 4 byte alignment for these structs */
1949 sp &= ~3;
1950 sp = loader_build_fdpic_loadmap(info, sp);
1951 info->other_info = interp_info;
1952 if (interp_info) {
1953 interp_info->other_info = info;
1954 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1955 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1956 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1957 } else {
1958 info->interpreter_loadmap_addr = 0;
1959 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1960 }
1961 }
1af02e83 1962
d97ef72e
RH
1963 u_platform = 0;
1964 k_platform = ELF_PLATFORM;
1965 if (k_platform) {
1966 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1967 if (STACK_GROWS_DOWN) {
1968 sp -= (len + n - 1) & ~(n - 1);
1969 u_platform = sp;
1970 /* FIXME - check return value of memcpy_to_target() for failure */
1971 memcpy_to_target(sp, k_platform, len);
1972 } else {
1973 memcpy_to_target(sp, k_platform, len);
1974 u_platform = sp;
1975 sp += len + 1;
1976 }
1977 }
1978
1979 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1980 * the argv and envp pointers.
1981 */
1982 if (STACK_GROWS_DOWN) {
1983 sp = QEMU_ALIGN_DOWN(sp, 16);
1984 } else {
1985 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1986 }
14322bad
LA
1987
1988 /*
c6a2377f 1989 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 1990 */
c6a2377f 1991 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
1992 if (STACK_GROWS_DOWN) {
1993 sp -= 16;
1994 u_rand_bytes = sp;
1995 /* FIXME - check return value of memcpy_to_target() for failure */
1996 memcpy_to_target(sp, k_rand_bytes, 16);
1997 } else {
1998 memcpy_to_target(sp, k_rand_bytes, 16);
1999 u_rand_bytes = sp;
2000 sp += 16;
2001 }
14322bad 2002
d97ef72e
RH
2003 size = (DLINFO_ITEMS + 1) * 2;
2004 if (k_platform)
2005 size += 2;
f5155289 2006#ifdef DLINFO_ARCH_ITEMS
d97ef72e 2007 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
2008#endif
2009#ifdef ELF_HWCAP2
2010 size += 2;
f5155289 2011#endif
f516511e
PM
2012 info->auxv_len = size * n;
2013
d97ef72e 2014 size += envc + argc + 2;
b9329d4b 2015 size += 1; /* argc itself */
d97ef72e 2016 size *= n;
7c4ee5bc
RH
2017
2018 /* Allocate space and finalize stack alignment for entry now. */
2019 if (STACK_GROWS_DOWN) {
2020 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2021 sp = u_argc;
2022 } else {
2023 u_argc = sp;
2024 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2025 }
2026
2027 u_argv = u_argc + n;
2028 u_envp = u_argv + (argc + 1) * n;
2029 u_auxv = u_envp + (envc + 1) * n;
2030 info->saved_auxv = u_auxv;
2031 info->arg_start = u_argv;
2032 info->arg_end = u_argv + argc * n;
d97ef72e
RH
2033
2034 /* This is correct because Linux defines
2035 * elf_addr_t as Elf32_Off / Elf64_Off
2036 */
2037#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2038 put_user_ual(id, u_auxv); u_auxv += n; \
2039 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2040 } while(0)
2041
82991bed
PM
2042#ifdef ARCH_DLINFO
2043 /*
2044 * ARCH_DLINFO must come first so platform specific code can enforce
2045 * special alignment requirements on the AUXV if necessary (eg. PPC).
2046 */
2047 ARCH_DLINFO;
2048#endif
f516511e
PM
2049 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2050 * on info->auxv_len will trigger.
2051 */
8e62a717 2052 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2053 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2054 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2055 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2056 /* Target doesn't support host page size alignment */
2057 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2058 } else {
2059 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2060 qemu_host_page_size)));
2061 }
8e62a717 2062 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2063 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2064 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2065 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2066 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2067 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2068 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2069 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2070 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2071 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2072 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2073 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2074
ad6919dc
PM
2075#ifdef ELF_HWCAP2
2076 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2077#endif
2078
7c4ee5bc 2079 if (u_platform) {
d97ef72e 2080 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2081 }
7c4ee5bc 2082 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2083#undef NEW_AUX_ENT
2084
f516511e
PM
2085 /* Check that our initial calculation of the auxv length matches how much
2086 * we actually put into it.
2087 */
2088 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2089
2090 put_user_ual(argc, u_argc);
2091
2092 p = info->arg_strings;
2093 for (i = 0; i < argc; ++i) {
2094 put_user_ual(p, u_argv);
2095 u_argv += n;
2096 p += target_strlen(p) + 1;
2097 }
2098 put_user_ual(0, u_argv);
2099
2100 p = info->env_strings;
2101 for (i = 0; i < envc; ++i) {
2102 put_user_ual(p, u_envp);
2103 u_envp += n;
2104 p += target_strlen(p) + 1;
2105 }
2106 put_user_ual(0, u_envp);
edf8e2af 2107
d97ef72e 2108 return sp;
31e31b8a
FB
2109}
2110
ee947430
AB
2111#ifndef ARM_COMMPAGE
2112#define ARM_COMMPAGE 0
2113#define init_guest_commpage() true
8756e136 2114#endif
dce10401 2115
ee947430
AB
2116static void pgb_fail_in_use(const char *image_name)
2117{
2118 error_report("%s: requires virtual address space that is in use "
2119 "(omit the -B option or choose a different value)",
2120 image_name);
2121 exit(EXIT_FAILURE);
2122}
dce10401 2123
ee947430
AB
2124static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2125 abi_ulong guest_hiaddr, long align)
2126{
2127 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2128 void *addr, *test;
2a53535a 2129
ee947430 2130 if (!QEMU_IS_ALIGNED(guest_base, align)) {
5ca870b9 2131 fprintf(stderr, "Requested guest base %p does not satisfy "
ee947430 2132 "host minimum alignment (0x%lx)\n",
5ca870b9 2133 (void *)guest_base, align);
ee947430
AB
2134 exit(EXIT_FAILURE);
2135 }
2136
2137 /* Sanity check the guest binary. */
2138 if (reserved_va) {
2139 if (guest_hiaddr > reserved_va) {
2140 error_report("%s: requires more than reserved virtual "
2141 "address space (0x%" PRIx64 " > 0x%lx)",
2142 image_name, (uint64_t)guest_hiaddr, reserved_va);
2143 exit(EXIT_FAILURE);
2a53535a 2144 }
ee947430 2145 } else {
a932eec4 2146#if HOST_LONG_BITS < TARGET_ABI_BITS
ee947430
AB
2147 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2148 error_report("%s: requires more virtual address space "
2149 "than the host can provide (0x%" PRIx64 ")",
2150 image_name, (uint64_t)guest_hiaddr - guest_base);
2151 exit(EXIT_FAILURE);
2a53535a 2152 }
a932eec4 2153#endif
2a53535a 2154 }
2a53535a 2155
ee947430
AB
2156 /*
2157 * Expand the allocation to the entire reserved_va.
2158 * Exclude the mmap_min_addr hole.
2159 */
2160 if (reserved_va) {
2161 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2162 : mmap_min_addr - guest_base);
2163 guest_hiaddr = reserved_va;
2164 }
806d1021 2165
ee947430 2166 /* Reserve the address space for the binary, or reserved_va. */
3e8f1628 2167 test = g2h_untagged(guest_loaddr);
ee947430
AB
2168 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2169 if (test != addr) {
2170 pgb_fail_in_use(image_name);
2171 }
2172}
2173
ad592e37
AB
2174/**
2175 * pgd_find_hole_fallback: potential mmap address
2176 * @guest_size: size of available space
2177 * @brk: location of break
2178 * @align: memory alignment
2179 *
2180 * This is a fallback method for finding a hole in the host address
2181 * space if we don't have the benefit of being able to access
2182 * /proc/self/map. It can potentially take a very long time as we can
2183 * only dumbly iterate up the host address space seeing if the
2184 * allocation would work.
2185 */
5c3e87f3
AB
2186static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2187 long align, uintptr_t offset)
ad592e37
AB
2188{
2189 uintptr_t base;
2190
2191 /* Start (aligned) at the bottom and work our way up */
2192 base = ROUND_UP(mmap_min_addr, align);
2193
2194 while (true) {
2195 uintptr_t align_start, end;
2196 align_start = ROUND_UP(base, align);
5c3e87f3 2197 end = align_start + guest_size + offset;
ad592e37
AB
2198
2199 /* if brk is anywhere in the range give ourselves some room to grow. */
2200 if (align_start <= brk && brk < end) {
2201 base = brk + (16 * MiB);
2202 continue;
2203 } else if (align_start + guest_size < align_start) {
2204 /* we have run out of space */
2205 return -1;
2206 } else {
2667e069
AB
2207 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2208 MAP_FIXED_NOREPLACE;
ad592e37
AB
2209 void * mmap_start = mmap((void *) align_start, guest_size,
2210 PROT_NONE, flags, -1, 0);
2211 if (mmap_start != MAP_FAILED) {
2212 munmap((void *) align_start, guest_size);
36d2dbc7
PM
2213 if (MAP_FIXED_NOREPLACE != 0 ||
2214 mmap_start == (void *) align_start) {
2667e069
AB
2215 return (uintptr_t) mmap_start + offset;
2216 }
ad592e37
AB
2217 }
2218 base += qemu_host_page_size;
2219 }
2220 }
2221}
2222
ee947430
AB
2223/* Return value for guest_base, or -1 if no hole found. */
2224static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
5c3e87f3 2225 long align, uintptr_t offset)
ee947430
AB
2226{
2227 GSList *maps, *iter;
2228 uintptr_t this_start, this_end, next_start, brk;
2229 intptr_t ret = -1;
2230
2231 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2232
2233 maps = read_self_maps();
dce10401 2234
ee947430
AB
2235 /* Read brk after we've read the maps, which will malloc. */
2236 brk = (uintptr_t)sbrk(0);
2237
ad592e37 2238 if (!maps) {
5c3e87f3 2239 return pgd_find_hole_fallback(guest_size, brk, align, offset);
ad592e37
AB
2240 }
2241
ee947430
AB
2242 /* The first hole is before the first map entry. */
2243 this_start = mmap_min_addr;
2244
2245 for (iter = maps; iter;
2246 this_start = next_start, iter = g_slist_next(iter)) {
2247 uintptr_t align_start, hole_size;
2248
2249 this_end = ((MapInfo *)iter->data)->start;
2250 next_start = ((MapInfo *)iter->data)->end;
5c3e87f3 2251 align_start = ROUND_UP(this_start + offset, align);
ee947430
AB
2252
2253 /* Skip holes that are too small. */
2254 if (align_start >= this_end) {
2255 continue;
2256 }
2257 hole_size = this_end - align_start;
2258 if (hole_size < guest_size) {
2259 continue;
aac362e4
LS
2260 }
2261
ee947430
AB
2262 /* If this hole contains brk, give ourselves some room to grow. */
2263 if (this_start <= brk && brk < this_end) {
2264 hole_size -= guest_size;
2265 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2266 align_start += 1 * GiB;
2267 } else if (hole_size >= 16 * MiB) {
2268 align_start += 16 * MiB;
2269 } else {
2270 align_start = (this_end - guest_size) & -align;
2271 if (align_start < this_start) {
2272 continue;
2273 }
806d1021 2274 }
806d1021
MI
2275 }
2276
ee947430
AB
2277 /* Record the lowest successful match. */
2278 if (ret < 0) {
2279 ret = align_start - guest_loaddr;
dce10401 2280 }
ee947430
AB
2281 /* If this hole contains the identity map, select it. */
2282 if (align_start <= guest_loaddr &&
2283 guest_loaddr + guest_size <= this_end) {
2284 ret = 0;
b859040d 2285 }
ee947430
AB
2286 /* If this hole ends above the identity map, stop looking. */
2287 if (this_end >= guest_loaddr) {
2288 break;
dce10401
MI
2289 }
2290 }
ee947430 2291 free_self_maps(maps);
dce10401 2292
ee947430 2293 return ret;
dce10401
MI
2294}
2295
ee947430
AB
2296static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2297 abi_ulong orig_hiaddr, long align)
f3ed1f5d 2298{
ee947430
AB
2299 uintptr_t loaddr = orig_loaddr;
2300 uintptr_t hiaddr = orig_hiaddr;
5c3e87f3 2301 uintptr_t offset = 0;
ee947430 2302 uintptr_t addr;
f3ed1f5d 2303
ee947430
AB
2304 if (hiaddr != orig_hiaddr) {
2305 error_report("%s: requires virtual address space that the "
2306 "host cannot provide (0x%" PRIx64 ")",
2307 image_name, (uint64_t)orig_hiaddr);
2308 exit(EXIT_FAILURE);
2309 }
f3ed1f5d 2310
ee947430
AB
2311 loaddr &= -align;
2312 if (ARM_COMMPAGE) {
2313 /*
2314 * Extend the allocation to include the commpage.
5c3e87f3
AB
2315 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2316 * need to ensure there is space bellow the guest_base so we
2317 * can map the commpage in the place needed when the address
2318 * arithmetic wraps around.
ee947430
AB
2319 */
2320 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
5c3e87f3 2321 hiaddr = (uintptr_t) 4 << 30;
f3ed1f5d 2322 } else {
5c3e87f3 2323 offset = -(ARM_COMMPAGE & -align);
f3ed1f5d 2324 }
ee947430 2325 }
dce10401 2326
5c3e87f3 2327 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
ee947430
AB
2328 if (addr == -1) {
2329 /*
2330 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2331 * that can satisfy both. But as the normal arm32 link base address
2332 * is ~32k, and we extend down to include the commpage, making the
2333 * overhead only ~96k, this is unlikely.
dce10401 2334 */
ee947430
AB
2335 error_report("%s: Unable to allocate %#zx bytes of "
2336 "virtual address space", image_name,
2337 (size_t)(hiaddr - loaddr));
2338 exit(EXIT_FAILURE);
2339 }
2340
2341 guest_base = addr;
2342}
dce10401 2343
ee947430
AB
2344static void pgb_dynamic(const char *image_name, long align)
2345{
2346 /*
2347 * The executable is dynamic and does not require a fixed address.
2348 * All we need is a commpage that satisfies align.
2349 * If we do not need a commpage, leave guest_base == 0.
2350 */
2351 if (ARM_COMMPAGE) {
2352 uintptr_t addr, commpage;
2353
2354 /* 64-bit hosts should have used reserved_va. */
2355 assert(sizeof(uintptr_t) == 4);
2356
2357 /*
2358 * By putting the commpage at the first hole, that puts guest_base
2359 * just above that, and maximises the positive guest addresses.
2360 */
2361 commpage = ARM_COMMPAGE & -align;
5c3e87f3 2362 addr = pgb_find_hole(commpage, -commpage, align, 0);
ee947430
AB
2363 assert(addr != -1);
2364 guest_base = addr;
2365 }
2366}
2367
2368static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2369 abi_ulong guest_hiaddr, long align)
2370{
c1f6ad79 2371 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
ee947430
AB
2372 void *addr, *test;
2373
2374 if (guest_hiaddr > reserved_va) {
2375 error_report("%s: requires more than reserved virtual "
2376 "address space (0x%" PRIx64 " > 0x%lx)",
2377 image_name, (uint64_t)guest_hiaddr, reserved_va);
2378 exit(EXIT_FAILURE);
f3ed1f5d 2379 }
f3ed1f5d 2380
ee947430
AB
2381 /* Widen the "image" to the entire reserved address space. */
2382 pgb_static(image_name, 0, reserved_va, align);
2383
2667e069 2384 /* osdep.h defines this as 0 if it's missing */
c1f6ad79 2385 flags |= MAP_FIXED_NOREPLACE;
c1f6ad79 2386
ee947430
AB
2387 /* Reserve the memory on the host. */
2388 assert(guest_base != 0);
3e8f1628 2389 test = g2h_untagged(0);
ee947430 2390 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
fb730c86 2391 if (addr == MAP_FAILED || addr != test) {
ee947430 2392 error_report("Unable to reserve 0x%lx bytes of virtual address "
fb730c86
AB
2393 "space at %p (%s) for use as guest address space (check your"
2394 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2395 "using -R option)", reserved_va, test, strerror(errno));
ee947430
AB
2396 exit(EXIT_FAILURE);
2397 }
f3ed1f5d
PM
2398}
2399
ee947430
AB
2400void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2401 abi_ulong guest_hiaddr)
2402{
2403 /* In order to use host shmat, we must be able to honor SHMLBA. */
2404 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2405
2406 if (have_guest_base) {
2407 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2408 } else if (reserved_va) {
2409 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2410 } else if (guest_loaddr) {
2411 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2412 } else {
2413 pgb_dynamic(image_name, align);
2414 }
2415
2416 /* Reserve and initialize the commpage. */
2417 if (!init_guest_commpage()) {
2418 /*
2419 * With have_guest_base, the user has selected the address and
2420 * we are trying to work with that. Otherwise, we have selected
2421 * free space and init_guest_commpage must succeeded.
2422 */
2423 assert(have_guest_base);
2424 pgb_fail_in_use(image_name);
2425 }
2426
2427 assert(QEMU_IS_ALIGNED(guest_base, align));
2428 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2429 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2430}
f3ed1f5d 2431
83f990eb
RH
2432enum {
2433 /* The string "GNU\0" as a magic number. */
2434 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2435 NOTE_DATA_SZ = 1 * KiB,
2436 NOTE_NAME_SZ = 4,
2437 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2438};
2439
2440/*
2441 * Process a single gnu_property entry.
2442 * Return false for error.
2443 */
2444static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2445 struct image_info *info, bool have_prev_type,
2446 uint32_t *prev_type, Error **errp)
2447{
2448 uint32_t pr_type, pr_datasz, step;
2449
2450 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2451 goto error_data;
2452 }
2453 datasz -= *off;
2454 data += *off / sizeof(uint32_t);
2455
2456 if (datasz < 2 * sizeof(uint32_t)) {
2457 goto error_data;
2458 }
2459 pr_type = data[0];
2460 pr_datasz = data[1];
2461 data += 2;
2462 datasz -= 2 * sizeof(uint32_t);
2463 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2464 if (step > datasz) {
2465 goto error_data;
2466 }
2467
2468 /* Properties are supposed to be unique and sorted on pr_type. */
2469 if (have_prev_type && pr_type <= *prev_type) {
2470 if (pr_type == *prev_type) {
2471 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2472 } else {
2473 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2474 }
2475 return false;
2476 }
2477 *prev_type = pr_type;
2478
2479 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2480 return false;
2481 }
2482
2483 *off += 2 * sizeof(uint32_t) + step;
2484 return true;
2485
2486 error_data:
2487 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2488 return false;
2489}
2490
2491/* Process NT_GNU_PROPERTY_TYPE_0. */
2492static bool parse_elf_properties(int image_fd,
2493 struct image_info *info,
2494 const struct elf_phdr *phdr,
2495 char bprm_buf[BPRM_BUF_SIZE],
2496 Error **errp)
2497{
2498 union {
2499 struct elf_note nhdr;
2500 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2501 } note;
2502
2503 int n, off, datasz;
2504 bool have_prev_type;
2505 uint32_t prev_type;
2506
2507 /* Unless the arch requires properties, ignore them. */
2508 if (!ARCH_USE_GNU_PROPERTY) {
2509 return true;
2510 }
2511
2512 /* If the properties are crazy large, that's too bad. */
2513 n = phdr->p_filesz;
2514 if (n > sizeof(note)) {
2515 error_setg(errp, "PT_GNU_PROPERTY too large");
2516 return false;
2517 }
2518 if (n < sizeof(note.nhdr)) {
2519 error_setg(errp, "PT_GNU_PROPERTY too small");
2520 return false;
2521 }
2522
2523 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2524 memcpy(&note, bprm_buf + phdr->p_offset, n);
2525 } else {
2526 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2527 if (len != n) {
2528 error_setg_errno(errp, errno, "Error reading file header");
2529 return false;
2530 }
2531 }
2532
2533 /*
2534 * The contents of a valid PT_GNU_PROPERTY is a sequence
2535 * of uint32_t -- swap them all now.
2536 */
2537#ifdef BSWAP_NEEDED
2538 for (int i = 0; i < n / 4; i++) {
2539 bswap32s(note.data + i);
2540 }
2541#endif
2542
2543 /*
2544 * Note that nhdr is 3 words, and that the "name" described by namesz
2545 * immediately follows nhdr and is thus at the 4th word. Further, all
2546 * of the inputs to the kernel's round_up are multiples of 4.
2547 */
2548 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2549 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2550 note.data[3] != GNU0_MAGIC) {
2551 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2552 return false;
2553 }
2554 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2555
2556 datasz = note.nhdr.n_descsz + off;
2557 if (datasz > n) {
2558 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2559 return false;
2560 }
2561
2562 have_prev_type = false;
2563 prev_type = 0;
2564 while (1) {
2565 if (off == datasz) {
2566 return true; /* end, exit ok */
2567 }
2568 if (!parse_elf_property(note.data, &off, datasz, info,
2569 have_prev_type, &prev_type, errp)) {
2570 return false;
2571 }
2572 have_prev_type = true;
2573 }
2574}
2575
8e62a717 2576/* Load an ELF image into the address space.
31e31b8a 2577
8e62a717
RH
2578 IMAGE_NAME is the filename of the image, to use in error messages.
2579 IMAGE_FD is the open file descriptor for the image.
2580
2581 BPRM_BUF is a copy of the beginning of the file; this of course
2582 contains the elf file header at offset 0. It is assumed that this
2583 buffer is sufficiently aligned to present no problems to the host
2584 in accessing data at aligned offsets within the buffer.
2585
2586 On return: INFO values will be filled in, as necessary or available. */
2587
2588static void load_elf_image(const char *image_name, int image_fd,
bf858897 2589 struct image_info *info, char **pinterp_name,
8e62a717 2590 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2591{
8e62a717
RH
2592 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2593 struct elf_phdr *phdr;
2594 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
e8384b37 2595 int i, retval, prot_exec;
c7f17e7b 2596 Error *err = NULL;
5fafdf24 2597
8e62a717 2598 /* First of all, some simple consistency checks */
8e62a717 2599 if (!elf_check_ident(ehdr)) {
c7f17e7b 2600 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717
RH
2601 goto exit_errmsg;
2602 }
2603 bswap_ehdr(ehdr);
2604 if (!elf_check_ehdr(ehdr)) {
c7f17e7b 2605 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717 2606 goto exit_errmsg;
d97ef72e 2607 }
5fafdf24 2608
8e62a717
RH
2609 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2610 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2611 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2612 } else {
8e62a717
RH
2613 phdr = (struct elf_phdr *) alloca(i);
2614 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2615 if (retval != i) {
8e62a717 2616 goto exit_read;
9955ffac 2617 }
d97ef72e 2618 }
8e62a717 2619 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2620
1af02e83
MF
2621 info->nsegs = 0;
2622 info->pt_dynamic_addr = 0;
1af02e83 2623
98c1076c
AB
2624 mmap_lock();
2625
8a1a5274
RH
2626 /*
2627 * Find the maximum size of the image and allocate an appropriate
2628 * amount of memory to handle that. Locate the interpreter, if any.
2629 */
682674b8 2630 loaddr = -1, hiaddr = 0;
33143c44 2631 info->alignment = 0;
8e62a717 2632 for (i = 0; i < ehdr->e_phnum; ++i) {
4d9d535a
RH
2633 struct elf_phdr *eppnt = phdr + i;
2634 if (eppnt->p_type == PT_LOAD) {
2635 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
682674b8
RH
2636 if (a < loaddr) {
2637 loaddr = a;
2638 }
4d9d535a 2639 a = eppnt->p_vaddr + eppnt->p_memsz;
682674b8
RH
2640 if (a > hiaddr) {
2641 hiaddr = a;
2642 }
1af02e83 2643 ++info->nsegs;
4d9d535a 2644 info->alignment |= eppnt->p_align;
8a1a5274
RH
2645 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2646 g_autofree char *interp_name = NULL;
2647
2648 if (*pinterp_name) {
c7f17e7b 2649 error_setg(&err, "Multiple PT_INTERP entries");
8a1a5274
RH
2650 goto exit_errmsg;
2651 }
c7f17e7b 2652
8a1a5274 2653 interp_name = g_malloc(eppnt->p_filesz);
8a1a5274
RH
2654
2655 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2656 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2657 eppnt->p_filesz);
2658 } else {
2659 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2660 eppnt->p_offset);
2661 if (retval != eppnt->p_filesz) {
c7f17e7b 2662 goto exit_read;
8a1a5274
RH
2663 }
2664 }
2665 if (interp_name[eppnt->p_filesz - 1] != 0) {
c7f17e7b 2666 error_setg(&err, "Invalid PT_INTERP entry");
8a1a5274
RH
2667 goto exit_errmsg;
2668 }
2669 *pinterp_name = g_steal_pointer(&interp_name);
83f990eb
RH
2670 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2671 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2672 goto exit_errmsg;
2673 }
682674b8
RH
2674 }
2675 }
2676
6fd59449
RH
2677 if (pinterp_name != NULL) {
2678 /*
2679 * This is the main executable.
2680 *
2681 * Reserve extra space for brk.
2682 * We hold on to this space while placing the interpreter
2683 * and the stack, lest they be placed immediately after
2684 * the data segment and block allocation from the brk.
2685 *
2686 * 16MB is chosen as "large enough" without being so large
2687 * as to allow the result to not fit with a 32-bit guest on
2688 * a 32-bit host.
2689 */
2690 info->reserve_brk = 16 * MiB;
2691 hiaddr += info->reserve_brk;
2692
2693 if (ehdr->e_type == ET_EXEC) {
2694 /*
2695 * Make sure that the low address does not conflict with
2696 * MMAP_MIN_ADDR or the QEMU application itself.
2697 */
2698 probe_guest_base(image_name, loaddr, hiaddr);
ee947430
AB
2699 } else {
2700 /*
2701 * The binary is dynamic, but we still need to
2702 * select guest_base. In this case we pass a size.
2703 */
2704 probe_guest_base(image_name, 0, hiaddr - loaddr);
d97ef72e 2705 }
6fd59449
RH
2706 }
2707
2708 /*
2709 * Reserve address space for all of this.
2710 *
2711 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2712 * exactly the address range that is required.
2713 *
2714 * Otherwise this is ET_DYN, and we are searching for a location
2715 * that can hold the memory space required. If the image is
2716 * pre-linked, LOADDR will be non-zero, and the kernel should
2717 * honor that address if it happens to be free.
2718 *
2719 * In both cases, we will overwrite pages in this range with mappings
2720 * from the executable.
2721 */
2722 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2723 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2724 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2725 -1, 0);
2726 if (load_addr == -1) {
c7f17e7b 2727 goto exit_mmap;
d97ef72e 2728 }
682674b8 2729 load_bias = load_addr - loaddr;
d97ef72e 2730
a99856cd 2731 if (elf_is_fdpic(ehdr)) {
1af02e83 2732 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2733 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2734
2735 for (i = 0; i < ehdr->e_phnum; ++i) {
2736 switch (phdr[i].p_type) {
2737 case PT_DYNAMIC:
2738 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2739 break;
2740 case PT_LOAD:
2741 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2742 loadsegs->p_vaddr = phdr[i].p_vaddr;
2743 loadsegs->p_memsz = phdr[i].p_memsz;
2744 ++loadsegs;
2745 break;
2746 }
2747 }
2748 }
1af02e83 2749
8e62a717 2750 info->load_bias = load_bias;
dc12567a
JK
2751 info->code_offset = load_bias;
2752 info->data_offset = load_bias;
8e62a717
RH
2753 info->load_addr = load_addr;
2754 info->entry = ehdr->e_entry + load_bias;
2755 info->start_code = -1;
2756 info->end_code = 0;
2757 info->start_data = -1;
2758 info->end_data = 0;
2759 info->brk = 0;
d8fd2954 2760 info->elf_flags = ehdr->e_flags;
8e62a717 2761
e8384b37
RH
2762 prot_exec = PROT_EXEC;
2763#ifdef TARGET_AARCH64
2764 /*
2765 * If the BTI feature is present, this indicates that the executable
2766 * pages of the startup binary should be mapped with PROT_BTI, so that
2767 * branch targets are enforced.
2768 *
2769 * The startup binary is either the interpreter or the static executable.
2770 * The interpreter is responsible for all pages of a dynamic executable.
2771 *
2772 * Elf notes are backward compatible to older cpus.
2773 * Do not enable BTI unless it is supported.
2774 */
2775 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2776 && (pinterp_name == NULL || *pinterp_name == 0)
2777 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2778 prot_exec |= TARGET_PROT_BTI;
2779 }
2780#endif
2781
8e62a717
RH
2782 for (i = 0; i < ehdr->e_phnum; i++) {
2783 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2784 if (eppnt->p_type == PT_LOAD) {
94894ff2 2785 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2786 int elf_prot = 0;
d97ef72e 2787
e5eaf570
RH
2788 if (eppnt->p_flags & PF_R) {
2789 elf_prot |= PROT_READ;
2790 }
2791 if (eppnt->p_flags & PF_W) {
2792 elf_prot |= PROT_WRITE;
2793 }
2794 if (eppnt->p_flags & PF_X) {
e8384b37 2795 elf_prot |= prot_exec;
e5eaf570 2796 }
d97ef72e 2797
682674b8
RH
2798 vaddr = load_bias + eppnt->p_vaddr;
2799 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2800 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
22d113b5
GM
2801
2802 vaddr_ef = vaddr + eppnt->p_filesz;
2803 vaddr_em = vaddr + eppnt->p_memsz;
682674b8 2804
d87146bc 2805 /*
22d113b5
GM
2806 * Some segments may be completely empty, with a non-zero p_memsz
2807 * but no backing file segment.
d87146bc
GM
2808 */
2809 if (eppnt->p_filesz != 0) {
22d113b5 2810 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
d87146bc
GM
2811 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2812 MAP_PRIVATE | MAP_FIXED,
2813 image_fd, eppnt->p_offset - vaddr_po);
2814
2815 if (error == -1) {
c7f17e7b 2816 goto exit_mmap;
d87146bc 2817 }
09bfb054 2818
22d113b5
GM
2819 /*
2820 * If the load segment requests extra zeros (e.g. bss), map it.
2821 */
2822 if (eppnt->p_filesz < eppnt->p_memsz) {
2823 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2824 }
2825 } else if (eppnt->p_memsz != 0) {
2826 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2827 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2828 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2829 -1, 0);
31e31b8a 2830
22d113b5
GM
2831 if (error == -1) {
2832 goto exit_mmap;
2833 }
cf129f3a 2834 }
8e62a717
RH
2835
2836 /* Find the full program boundaries. */
2837 if (elf_prot & PROT_EXEC) {
2838 if (vaddr < info->start_code) {
2839 info->start_code = vaddr;
2840 }
2841 if (vaddr_ef > info->end_code) {
2842 info->end_code = vaddr_ef;
2843 }
2844 }
2845 if (elf_prot & PROT_WRITE) {
2846 if (vaddr < info->start_data) {
2847 info->start_data = vaddr;
2848 }
2849 if (vaddr_ef > info->end_data) {
2850 info->end_data = vaddr_ef;
2851 }
8a045188
TB
2852 }
2853 if (vaddr_em > info->brk) {
2854 info->brk = vaddr_em;
8e62a717 2855 }
5dd0db52
SM
2856#ifdef TARGET_MIPS
2857 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2858 Mips_elf_abiflags_v0 abiflags;
2859 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 2860 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
5dd0db52
SM
2861 goto exit_errmsg;
2862 }
2863 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2864 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2865 sizeof(Mips_elf_abiflags_v0));
2866 } else {
2867 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2868 eppnt->p_offset);
2869 if (retval != sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 2870 goto exit_read;
5dd0db52
SM
2871 }
2872 }
2873 bswap_mips_abiflags(&abiflags);
c94cb6c9 2874 info->fp_abi = abiflags.fp_abi;
5dd0db52 2875#endif
d97ef72e 2876 }
682674b8 2877 }
5fafdf24 2878
8e62a717
RH
2879 if (info->end_data == 0) {
2880 info->start_data = info->end_code;
2881 info->end_data = info->end_code;
8e62a717
RH
2882 }
2883
682674b8 2884 if (qemu_log_enabled()) {
8e62a717 2885 load_symbols(ehdr, image_fd, load_bias);
682674b8 2886 }
31e31b8a 2887
98c1076c
AB
2888 mmap_unlock();
2889
8e62a717
RH
2890 close(image_fd);
2891 return;
2892
2893 exit_read:
2894 if (retval >= 0) {
c7f17e7b
RH
2895 error_setg(&err, "Incomplete read of file header");
2896 } else {
2897 error_setg_errno(&err, errno, "Error reading file header");
8e62a717 2898 }
c7f17e7b
RH
2899 goto exit_errmsg;
2900 exit_mmap:
2901 error_setg_errno(&err, errno, "Error mapping file");
2902 goto exit_errmsg;
8e62a717 2903 exit_errmsg:
c7f17e7b 2904 error_reportf_err(err, "%s: ", image_name);
8e62a717
RH
2905 exit(-1);
2906}
2907
2908static void load_elf_interp(const char *filename, struct image_info *info,
2909 char bprm_buf[BPRM_BUF_SIZE])
2910{
2911 int fd, retval;
808f6563 2912 Error *err = NULL;
8e62a717
RH
2913
2914 fd = open(path(filename), O_RDONLY);
2915 if (fd < 0) {
808f6563
RH
2916 error_setg_file_open(&err, errno, filename);
2917 error_report_err(err);
2918 exit(-1);
8e62a717 2919 }
31e31b8a 2920
8e62a717
RH
2921 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2922 if (retval < 0) {
808f6563
RH
2923 error_setg_errno(&err, errno, "Error reading file header");
2924 error_reportf_err(err, "%s: ", filename);
2925 exit(-1);
8e62a717 2926 }
808f6563 2927
8e62a717
RH
2928 if (retval < BPRM_BUF_SIZE) {
2929 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2930 }
2931
bf858897 2932 load_elf_image(filename, fd, info, NULL, bprm_buf);
31e31b8a
FB
2933}
2934
49918a75
PB
2935static int symfind(const void *s0, const void *s1)
2936{
c7c530cd 2937 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2938 struct elf_sym *sym = (struct elf_sym *)s1;
2939 int result = 0;
c7c530cd 2940 if (addr < sym->st_value) {
49918a75 2941 result = -1;
c7c530cd 2942 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2943 result = 1;
2944 }
2945 return result;
2946}
2947
2948static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2949{
2950#if ELF_CLASS == ELFCLASS32
2951 struct elf_sym *syms = s->disas_symtab.elf32;
2952#else
2953 struct elf_sym *syms = s->disas_symtab.elf64;
2954#endif
2955
2956 // binary search
49918a75
PB
2957 struct elf_sym *sym;
2958
c7c530cd 2959 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2960 if (sym != NULL) {
49918a75
PB
2961 return s->disas_strtab + sym->st_name;
2962 }
2963
2964 return "";
2965}
2966
2967/* FIXME: This should use elf_ops.h */
2968static int symcmp(const void *s0, const void *s1)
2969{
2970 struct elf_sym *sym0 = (struct elf_sym *)s0;
2971 struct elf_sym *sym1 = (struct elf_sym *)s1;
2972 return (sym0->st_value < sym1->st_value)
2973 ? -1
2974 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2975}
2976
689f936f 2977/* Best attempt to load symbols from this ELF object. */
682674b8 2978static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2979{
682674b8 2980 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2981 uint64_t segsz;
682674b8 2982 struct elf_shdr *shdr;
b9475279
CV
2983 char *strings = NULL;
2984 struct syminfo *s = NULL;
2985 struct elf_sym *new_syms, *syms = NULL;
689f936f 2986
682674b8
RH
2987 shnum = hdr->e_shnum;
2988 i = shnum * sizeof(struct elf_shdr);
2989 shdr = (struct elf_shdr *)alloca(i);
2990 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2991 return;
2992 }
2993
2994 bswap_shdr(shdr, shnum);
2995 for (i = 0; i < shnum; ++i) {
2996 if (shdr[i].sh_type == SHT_SYMTAB) {
2997 sym_idx = i;
2998 str_idx = shdr[i].sh_link;
49918a75
PB
2999 goto found;
3000 }
689f936f 3001 }
682674b8
RH
3002
3003 /* There will be no symbol table if the file was stripped. */
3004 return;
689f936f
FB
3005
3006 found:
682674b8 3007 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 3008 s = g_try_new(struct syminfo, 1);
682674b8 3009 if (!s) {
b9475279 3010 goto give_up;
682674b8 3011 }
5fafdf24 3012
1e06262d
PM
3013 segsz = shdr[str_idx].sh_size;
3014 s->disas_strtab = strings = g_try_malloc(segsz);
3015 if (!strings ||
3016 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 3017 goto give_up;
682674b8 3018 }
49918a75 3019
1e06262d
PM
3020 segsz = shdr[sym_idx].sh_size;
3021 syms = g_try_malloc(segsz);
3022 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 3023 goto give_up;
682674b8 3024 }
31e31b8a 3025
1e06262d
PM
3026 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3027 /* Implausibly large symbol table: give up rather than ploughing
3028 * on with the number of symbols calculation overflowing
3029 */
3030 goto give_up;
3031 }
3032 nsyms = segsz / sizeof(struct elf_sym);
682674b8 3033 for (i = 0; i < nsyms; ) {
49918a75 3034 bswap_sym(syms + i);
682674b8
RH
3035 /* Throw away entries which we do not need. */
3036 if (syms[i].st_shndx == SHN_UNDEF
3037 || syms[i].st_shndx >= SHN_LORESERVE
3038 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3039 if (i < --nsyms) {
49918a75
PB
3040 syms[i] = syms[nsyms];
3041 }
682674b8 3042 } else {
49918a75 3043#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
3044 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3045 syms[i].st_value &= ~(target_ulong)1;
0774bed1 3046#endif
682674b8
RH
3047 syms[i].st_value += load_bias;
3048 i++;
3049 }
0774bed1 3050 }
49918a75 3051
b9475279
CV
3052 /* No "useful" symbol. */
3053 if (nsyms == 0) {
3054 goto give_up;
3055 }
3056
5d5c9930
RH
3057 /* Attempt to free the storage associated with the local symbols
3058 that we threw away. Whether or not this has any effect on the
3059 memory allocation depends on the malloc implementation and how
3060 many symbols we managed to discard. */
0ef9ea29 3061 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 3062 if (new_syms == NULL) {
b9475279 3063 goto give_up;
5d5c9930 3064 }
8d79de6e 3065 syms = new_syms;
5d5c9930 3066
49918a75 3067 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 3068
49918a75
PB
3069 s->disas_num_syms = nsyms;
3070#if ELF_CLASS == ELFCLASS32
3071 s->disas_symtab.elf32 = syms;
49918a75
PB
3072#else
3073 s->disas_symtab.elf64 = syms;
49918a75 3074#endif
682674b8 3075 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
3076 s->next = syminfos;
3077 syminfos = s;
b9475279
CV
3078
3079 return;
3080
3081give_up:
0ef9ea29
PM
3082 g_free(s);
3083 g_free(strings);
3084 g_free(syms);
689f936f 3085}
31e31b8a 3086
768fe76e
YS
3087uint32_t get_elf_eflags(int fd)
3088{
3089 struct elfhdr ehdr;
3090 off_t offset;
3091 int ret;
3092
3093 /* Read ELF header */
3094 offset = lseek(fd, 0, SEEK_SET);
3095 if (offset == (off_t) -1) {
3096 return 0;
3097 }
3098 ret = read(fd, &ehdr, sizeof(ehdr));
3099 if (ret < sizeof(ehdr)) {
3100 return 0;
3101 }
3102 offset = lseek(fd, offset, SEEK_SET);
3103 if (offset == (off_t) -1) {
3104 return 0;
3105 }
3106
3107 /* Check ELF signature */
3108 if (!elf_check_ident(&ehdr)) {
3109 return 0;
3110 }
3111
3112 /* check header */
3113 bswap_ehdr(&ehdr);
3114 if (!elf_check_ehdr(&ehdr)) {
3115 return 0;
3116 }
3117
3118 /* return architecture id */
3119 return ehdr.e_flags;
3120}
3121
f0116c54 3122int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 3123{
8e62a717 3124 struct image_info interp_info;
31e31b8a 3125 struct elfhdr elf_ex;
8e62a717 3126 char *elf_interpreter = NULL;
59baae9a 3127 char *scratch;
31e31b8a 3128
abcac736
DS
3129 memset(&interp_info, 0, sizeof(interp_info));
3130#ifdef TARGET_MIPS
3131 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3132#endif
3133
bf858897 3134 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
3135
3136 load_elf_image(bprm->filename, bprm->fd, info,
3137 &elf_interpreter, bprm->buf);
31e31b8a 3138
bf858897
RH
3139 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3140 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3141 when we load the interpreter. */
3142 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 3143
59baae9a
SB
3144 /* Do this so that we can load the interpreter, if need be. We will
3145 change some of these later */
3146 bprm->p = setup_arg_pages(bprm, info);
3147
3148 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
3149 if (STACK_GROWS_DOWN) {
3150 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3151 bprm->p, info->stack_limit);
3152 info->file_string = bprm->p;
3153 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3154 bprm->p, info->stack_limit);
3155 info->env_strings = bprm->p;
3156 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3157 bprm->p, info->stack_limit);
3158 info->arg_strings = bprm->p;
3159 } else {
3160 info->arg_strings = bprm->p;
3161 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3162 bprm->p, info->stack_limit);
3163 info->env_strings = bprm->p;
3164 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3165 bprm->p, info->stack_limit);
3166 info->file_string = bprm->p;
3167 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3168 bprm->p, info->stack_limit);
3169 }
3170
59baae9a
SB
3171 g_free(scratch);
3172
e5fe0c52 3173 if (!bprm->p) {
bf858897
RH
3174 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3175 exit(-1);
379f6698 3176 }
379f6698 3177
8e62a717
RH
3178 if (elf_interpreter) {
3179 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 3180
8e62a717
RH
3181 /* If the program interpreter is one of these two, then assume
3182 an iBCS2 image. Otherwise assume a native linux image. */
3183
3184 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3185 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3186 info->personality = PER_SVR4;
31e31b8a 3187
8e62a717
RH
3188 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3189 and some applications "depend" upon this behavior. Since
3190 we do not have the power to recompile these, we emulate
3191 the SVr4 behavior. Sigh. */
3192 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 3193 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 3194 }
c94cb6c9
SM
3195#ifdef TARGET_MIPS
3196 info->interp_fp_abi = interp_info.fp_abi;
3197#endif
31e31b8a
FB
3198 }
3199
8e62a717
RH
3200 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3201 info, (elf_interpreter ? &interp_info : NULL));
3202 info->start_stack = bprm->p;
3203
3204 /* If we have an interpreter, set that as the program's entry point.
8e78064e 3205 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
3206 point as a function descriptor. Do this after creating elf tables
3207 so that we copy the original program entry point into the AUXV. */
3208 if (elf_interpreter) {
8e78064e 3209 info->load_bias = interp_info.load_bias;
8e62a717 3210 info->entry = interp_info.entry;
2b323087 3211 g_free(elf_interpreter);
8e62a717 3212 }
31e31b8a 3213
edf8e2af
MW
3214#ifdef USE_ELF_CORE_DUMP
3215 bprm->core_dump = &elf_core_dump;
3216#endif
3217
6fd59449
RH
3218 /*
3219 * If we reserved extra space for brk, release it now.
3220 * The implementation of do_brk in syscalls.c expects to be able
3221 * to mmap pages in this space.
3222 */
3223 if (info->reserve_brk) {
3224 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3225 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3226 target_munmap(start_brk, end_brk - start_brk);
3227 }
3228
31e31b8a
FB
3229 return 0;
3230}
3231
edf8e2af 3232#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
3233/*
3234 * Definitions to generate Intel SVR4-like core files.
a2547a13 3235 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
3236 * tacked on the front to prevent clashes with linux definitions,
3237 * and the typedef forms have been avoided. This is mostly like
3238 * the SVR4 structure, but more Linuxy, with things that Linux does
3239 * not support and which gdb doesn't really use excluded.
3240 *
3241 * Fields we don't dump (their contents is zero) in linux-user qemu
3242 * are marked with XXX.
3243 *
3244 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3245 *
3246 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 3247 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
3248 * the target resides):
3249 *
3250 * #define USE_ELF_CORE_DUMP
3251 *
3252 * Next you define type of register set used for dumping. ELF specification
3253 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3254 *
c227f099 3255 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 3256 * #define ELF_NREG <number of registers>
c227f099 3257 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 3258 *
edf8e2af
MW
3259 * Last step is to implement target specific function that copies registers
3260 * from given cpu into just specified register set. Prototype is:
3261 *
c227f099 3262 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3263 * const CPUArchState *env);
edf8e2af
MW
3264 *
3265 * Parameters:
3266 * regs - copy register values into here (allocated and zeroed by caller)
3267 * env - copy registers from here
3268 *
3269 * Example for ARM target is provided in this file.
3270 */
3271
3272/* An ELF note in memory */
3273struct memelfnote {
3274 const char *name;
3275 size_t namesz;
3276 size_t namesz_rounded;
3277 int type;
3278 size_t datasz;
80f5ce75 3279 size_t datasz_rounded;
edf8e2af
MW
3280 void *data;
3281 size_t notesz;
3282};
3283
a2547a13 3284struct target_elf_siginfo {
f8fd4fc4
PB
3285 abi_int si_signo; /* signal number */
3286 abi_int si_code; /* extra code */
3287 abi_int si_errno; /* errno */
edf8e2af
MW
3288};
3289
a2547a13
LD
3290struct target_elf_prstatus {
3291 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3292 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3293 abi_ulong pr_sigpend; /* XXX */
3294 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3295 target_pid_t pr_pid;
3296 target_pid_t pr_ppid;
3297 target_pid_t pr_pgrp;
3298 target_pid_t pr_sid;
edf8e2af
MW
3299 struct target_timeval pr_utime; /* XXX User time */
3300 struct target_timeval pr_stime; /* XXX System time */
3301 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3302 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3303 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3304 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3305};
3306
3307#define ELF_PRARGSZ (80) /* Number of chars for args */
3308
a2547a13 3309struct target_elf_prpsinfo {
edf8e2af
MW
3310 char pr_state; /* numeric process state */
3311 char pr_sname; /* char for pr_state */
3312 char pr_zomb; /* zombie */
3313 char pr_nice; /* nice val */
ca98ac83 3314 abi_ulong pr_flag; /* flags */
c227f099
AL
3315 target_uid_t pr_uid;
3316 target_gid_t pr_gid;
3317 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3318 /* Lots missing */
d7eb2b92 3319 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3320 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3321};
3322
3323/* Here is the structure in which status of each thread is captured. */
3324struct elf_thread_status {
72cf2d4f 3325 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3326 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3327#if 0
3328 elf_fpregset_t fpu; /* NT_PRFPREG */
3329 struct task_struct *thread;
3330 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3331#endif
3332 struct memelfnote notes[1];
3333 int num_notes;
3334};
3335
3336struct elf_note_info {
3337 struct memelfnote *notes;
a2547a13
LD
3338 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3339 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3340
b58deb34 3341 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3342#if 0
3343 /*
3344 * Current version of ELF coredump doesn't support
3345 * dumping fp regs etc.
3346 */
3347 elf_fpregset_t *fpu;
3348 elf_fpxregset_t *xfpu;
3349 int thread_status_size;
3350#endif
3351 int notes_size;
3352 int numnote;
3353};
3354
3355struct vm_area_struct {
1a1c4db9
MI
3356 target_ulong vma_start; /* start vaddr of memory region */
3357 target_ulong vma_end; /* end vaddr of memory region */
3358 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3359 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3360};
3361
3362struct mm_struct {
72cf2d4f 3363 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3364 int mm_count; /* number of mappings */
3365};
3366
3367static struct mm_struct *vma_init(void);
3368static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3369static int vma_add_mapping(struct mm_struct *, target_ulong,
3370 target_ulong, abi_ulong);
edf8e2af
MW
3371static int vma_get_mapping_count(const struct mm_struct *);
3372static struct vm_area_struct *vma_first(const struct mm_struct *);
3373static struct vm_area_struct *vma_next(struct vm_area_struct *);
3374static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3375static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3376 unsigned long flags);
edf8e2af
MW
3377
3378static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3379static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3380 unsigned int, void *);
a2547a13
LD
3381static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3382static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3383static void fill_auxv_note(struct memelfnote *, const TaskState *);
3384static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3385static size_t note_size(const struct memelfnote *);
3386static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3387static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3388static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3389static int core_dump_filename(const TaskState *, char *, size_t);
3390
3391static int dump_write(int, const void *, size_t);
3392static int write_note(struct memelfnote *, int);
3393static int write_note_info(struct elf_note_info *, int);
3394
3395#ifdef BSWAP_NEEDED
a2547a13 3396static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3397{
ca98ac83
PB
3398 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3399 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3400 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3401 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3402 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3403 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3404 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3405 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3406 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3407 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3408 /* cpu times are not filled, so we skip them */
3409 /* regs should be in correct format already */
3410 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3411}
3412
a2547a13 3413static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3414{
ca98ac83 3415 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3416 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3417 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3418 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3419 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3420 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3421 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3422}
991f8f0c
RH
3423
3424static void bswap_note(struct elf_note *en)
3425{
3426 bswap32s(&en->n_namesz);
3427 bswap32s(&en->n_descsz);
3428 bswap32s(&en->n_type);
3429}
3430#else
3431static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3432static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3433static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3434#endif /* BSWAP_NEEDED */
3435
3436/*
3437 * Minimal support for linux memory regions. These are needed
3438 * when we are finding out what memory exactly belongs to
3439 * emulated process. No locks needed here, as long as
3440 * thread that received the signal is stopped.
3441 */
3442
3443static struct mm_struct *vma_init(void)
3444{
3445 struct mm_struct *mm;
3446
7267c094 3447 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3448 return (NULL);
3449
3450 mm->mm_count = 0;
72cf2d4f 3451 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3452
3453 return (mm);
3454}
3455
3456static void vma_delete(struct mm_struct *mm)
3457{
3458 struct vm_area_struct *vma;
3459
3460 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3461 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3462 g_free(vma);
edf8e2af 3463 }
7267c094 3464 g_free(mm);
edf8e2af
MW
3465}
3466
1a1c4db9
MI
3467static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3468 target_ulong end, abi_ulong flags)
edf8e2af
MW
3469{
3470 struct vm_area_struct *vma;
3471
7267c094 3472 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3473 return (-1);
3474
3475 vma->vma_start = start;
3476 vma->vma_end = end;
3477 vma->vma_flags = flags;
3478
72cf2d4f 3479 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3480 mm->mm_count++;
3481
3482 return (0);
3483}
3484
3485static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3486{
72cf2d4f 3487 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3488}
3489
3490static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3491{
72cf2d4f 3492 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3493}
3494
3495static int vma_get_mapping_count(const struct mm_struct *mm)
3496{
3497 return (mm->mm_count);
3498}
3499
3500/*
3501 * Calculate file (dump) size of given memory region.
3502 */
3503static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3504{
3505 /* if we cannot even read the first page, skip it */
c7169b02 3506 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
edf8e2af
MW
3507 return (0);
3508
3509 /*
3510 * Usually we don't dump executable pages as they contain
3511 * non-writable code that debugger can read directly from
3512 * target library etc. However, thread stacks are marked
3513 * also executable so we read in first page of given region
3514 * and check whether it contains elf header. If there is
3515 * no elf header, we dump it.
3516 */
3517 if (vma->vma_flags & PROT_EXEC) {
3518 char page[TARGET_PAGE_SIZE];
3519
022625a8
PM
3520 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3521 return 0;
3522 }
edf8e2af
MW
3523 if ((page[EI_MAG0] == ELFMAG0) &&
3524 (page[EI_MAG1] == ELFMAG1) &&
3525 (page[EI_MAG2] == ELFMAG2) &&
3526 (page[EI_MAG3] == ELFMAG3)) {
3527 /*
3528 * Mappings are possibly from ELF binary. Don't dump
3529 * them.
3530 */
3531 return (0);
3532 }
3533 }
3534
3535 return (vma->vma_end - vma->vma_start);
3536}
3537
1a1c4db9 3538static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3539 unsigned long flags)
edf8e2af
MW
3540{
3541 struct mm_struct *mm = (struct mm_struct *)priv;
3542
edf8e2af
MW
3543 vma_add_mapping(mm, start, end, flags);
3544 return (0);
3545}
3546
3547static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3548 unsigned int sz, void *data)
edf8e2af
MW
3549{
3550 unsigned int namesz;
3551
3552 namesz = strlen(name) + 1;
3553 note->name = name;
3554 note->namesz = namesz;
3555 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3556 note->type = type;
80f5ce75
LV
3557 note->datasz = sz;
3558 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3559
edf8e2af
MW
3560 note->data = data;
3561
3562 /*
3563 * We calculate rounded up note size here as specified by
3564 * ELF document.
3565 */
3566 note->notesz = sizeof (struct elf_note) +
80f5ce75 3567 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3568}
3569
3570static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3571 uint32_t flags)
edf8e2af
MW
3572{
3573 (void) memset(elf, 0, sizeof(*elf));
3574
3575 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3576 elf->e_ident[EI_CLASS] = ELF_CLASS;
3577 elf->e_ident[EI_DATA] = ELF_DATA;
3578 elf->e_ident[EI_VERSION] = EV_CURRENT;
3579 elf->e_ident[EI_OSABI] = ELF_OSABI;
3580
3581 elf->e_type = ET_CORE;
3582 elf->e_machine = machine;
3583 elf->e_version = EV_CURRENT;
3584 elf->e_phoff = sizeof(struct elfhdr);
3585 elf->e_flags = flags;
3586 elf->e_ehsize = sizeof(struct elfhdr);
3587 elf->e_phentsize = sizeof(struct elf_phdr);
3588 elf->e_phnum = segs;
3589
edf8e2af 3590 bswap_ehdr(elf);
edf8e2af
MW
3591}
3592
3593static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3594{
3595 phdr->p_type = PT_NOTE;
3596 phdr->p_offset = offset;
3597 phdr->p_vaddr = 0;
3598 phdr->p_paddr = 0;
3599 phdr->p_filesz = sz;
3600 phdr->p_memsz = 0;
3601 phdr->p_flags = 0;
3602 phdr->p_align = 0;
3603
991f8f0c 3604 bswap_phdr(phdr, 1);
edf8e2af
MW
3605}
3606
3607static size_t note_size(const struct memelfnote *note)
3608{
3609 return (note->notesz);
3610}
3611
a2547a13 3612static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3613 const TaskState *ts, int signr)
edf8e2af
MW
3614{
3615 (void) memset(prstatus, 0, sizeof (*prstatus));
3616 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3617 prstatus->pr_pid = ts->ts_tid;
3618 prstatus->pr_ppid = getppid();
3619 prstatus->pr_pgrp = getpgrp();
3620 prstatus->pr_sid = getsid(0);
3621
edf8e2af 3622 bswap_prstatus(prstatus);
edf8e2af
MW
3623}
3624
a2547a13 3625static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3626{
900cfbca 3627 char *base_filename;
edf8e2af
MW
3628 unsigned int i, len;
3629
3630 (void) memset(psinfo, 0, sizeof (*psinfo));
3631
3632 len = ts->info->arg_end - ts->info->arg_start;
3633 if (len >= ELF_PRARGSZ)
3634 len = ELF_PRARGSZ - 1;
3635 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3636 return -EFAULT;
3637 for (i = 0; i < len; i++)
3638 if (psinfo->pr_psargs[i] == 0)
3639 psinfo->pr_psargs[i] = ' ';
3640 psinfo->pr_psargs[len] = 0;
3641
3642 psinfo->pr_pid = getpid();
3643 psinfo->pr_ppid = getppid();
3644 psinfo->pr_pgrp = getpgrp();
3645 psinfo->pr_sid = getsid(0);
3646 psinfo->pr_uid = getuid();
3647 psinfo->pr_gid = getgid();
3648
900cfbca
JM
3649 base_filename = g_path_get_basename(ts->bprm->filename);
3650 /*
3651 * Using strncpy here is fine: at max-length,
3652 * this field is not NUL-terminated.
3653 */
edf8e2af 3654 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3655 sizeof(psinfo->pr_fname));
edf8e2af 3656
900cfbca 3657 g_free(base_filename);
edf8e2af 3658 bswap_psinfo(psinfo);
edf8e2af
MW
3659 return (0);
3660}
3661
3662static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3663{
3664 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3665 elf_addr_t orig_auxv = auxv;
edf8e2af 3666 void *ptr;
125b0f55 3667 int len = ts->info->auxv_len;
edf8e2af
MW
3668
3669 /*
3670 * Auxiliary vector is stored in target process stack. It contains
3671 * {type, value} pairs that we need to dump into note. This is not
3672 * strictly necessary but we do it here for sake of completeness.
3673 */
3674
edf8e2af
MW
3675 /* read in whole auxv vector and copy it to memelfnote */
3676 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3677 if (ptr != NULL) {
3678 fill_note(note, "CORE", NT_AUXV, len, ptr);
3679 unlock_user(ptr, auxv, len);
3680 }
3681}
3682
3683/*
3684 * Constructs name of coredump file. We have following convention
3685 * for the name:
3686 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3687 *
3688 * Returns 0 in case of success, -1 otherwise (errno is set).
3689 */
3690static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3691 size_t bufsize)
edf8e2af
MW
3692{
3693 char timestamp[64];
edf8e2af
MW
3694 char *base_filename = NULL;
3695 struct timeval tv;
3696 struct tm tm;
3697
3698 assert(bufsize >= PATH_MAX);
3699
3700 if (gettimeofday(&tv, NULL) < 0) {
3701 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3702 strerror(errno));
edf8e2af
MW
3703 return (-1);
3704 }
3705
b8da57fa 3706 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3707 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3708 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3709 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3710 base_filename, timestamp, (int)getpid());
b8da57fa 3711 g_free(base_filename);
edf8e2af
MW
3712
3713 return (0);
3714}
3715
3716static int dump_write(int fd, const void *ptr, size_t size)
3717{
3718 const char *bufp = (const char *)ptr;
3719 ssize_t bytes_written, bytes_left;
3720 struct rlimit dumpsize;
3721 off_t pos;
3722
3723 bytes_written = 0;
3724 getrlimit(RLIMIT_CORE, &dumpsize);
3725 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3726 if (errno == ESPIPE) { /* not a seekable stream */
3727 bytes_left = size;
3728 } else {
3729 return pos;
3730 }
3731 } else {
3732 if (dumpsize.rlim_cur <= pos) {
3733 return -1;
3734 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3735 bytes_left = size;
3736 } else {
3737 size_t limit_left=dumpsize.rlim_cur - pos;
3738 bytes_left = limit_left >= size ? size : limit_left ;
3739 }
3740 }
3741
3742 /*
3743 * In normal conditions, single write(2) should do but
3744 * in case of socket etc. this mechanism is more portable.
3745 */
3746 do {
3747 bytes_written = write(fd, bufp, bytes_left);
3748 if (bytes_written < 0) {
3749 if (errno == EINTR)
3750 continue;
3751 return (-1);
3752 } else if (bytes_written == 0) { /* eof */
3753 return (-1);
3754 }
3755 bufp += bytes_written;
3756 bytes_left -= bytes_written;
3757 } while (bytes_left > 0);
3758
3759 return (0);
3760}
3761
3762static int write_note(struct memelfnote *men, int fd)
3763{
3764 struct elf_note en;
3765
3766 en.n_namesz = men->namesz;
3767 en.n_type = men->type;
3768 en.n_descsz = men->datasz;
3769
edf8e2af 3770 bswap_note(&en);
edf8e2af
MW
3771
3772 if (dump_write(fd, &en, sizeof(en)) != 0)
3773 return (-1);
3774 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3775 return (-1);
80f5ce75 3776 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3777 return (-1);
3778
3779 return (0);
3780}
3781
9349b4f9 3782static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3783{
29a0af61 3784 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3785 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3786 struct elf_thread_status *ets;
3787
7267c094 3788 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3789 ets->num_notes = 1; /* only prstatus is dumped */
3790 fill_prstatus(&ets->prstatus, ts, 0);
3791 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3792 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3793 &ets->prstatus);
edf8e2af 3794
72cf2d4f 3795 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3796
3797 info->notes_size += note_size(&ets->notes[0]);
3798}
3799
6afafa86
PM
3800static void init_note_info(struct elf_note_info *info)
3801{
3802 /* Initialize the elf_note_info structure so that it is at
3803 * least safe to call free_note_info() on it. Must be
3804 * called before calling fill_note_info().
3805 */
3806 memset(info, 0, sizeof (*info));
3807 QTAILQ_INIT(&info->thread_list);
3808}
3809
edf8e2af 3810static int fill_note_info(struct elf_note_info *info,
9349b4f9 3811 long signr, const CPUArchState *env)
edf8e2af
MW
3812{
3813#define NUMNOTES 3
29a0af61 3814 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3815 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3816 int i;
3817
c78d65e8 3818 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3819 if (info->notes == NULL)
3820 return (-ENOMEM);
7267c094 3821 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3822 if (info->prstatus == NULL)
3823 return (-ENOMEM);
7267c094 3824 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3825 if (info->prstatus == NULL)
3826 return (-ENOMEM);
3827
3828 /*
3829 * First fill in status (and registers) of current thread
3830 * including process info & aux vector.
3831 */
3832 fill_prstatus(info->prstatus, ts, signr);
3833 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3834 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3835 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3836 fill_psinfo(info->psinfo, ts);
3837 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3838 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3839 fill_auxv_note(&info->notes[2], ts);
3840 info->numnote = 3;
3841
3842 info->notes_size = 0;
3843 for (i = 0; i < info->numnote; i++)
3844 info->notes_size += note_size(&info->notes[i]);
3845
3846 /* read and fill status of all threads */
3847 cpu_list_lock();
bdc44640 3848 CPU_FOREACH(cpu) {
a2247f8e 3849 if (cpu == thread_cpu) {
edf8e2af 3850 continue;
182735ef
AF
3851 }
3852 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3853 }
3854 cpu_list_unlock();
3855
3856 return (0);
3857}
3858
3859static void free_note_info(struct elf_note_info *info)
3860{
3861 struct elf_thread_status *ets;
3862
72cf2d4f
BS
3863 while (!QTAILQ_EMPTY(&info->thread_list)) {
3864 ets = QTAILQ_FIRST(&info->thread_list);
3865 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3866 g_free(ets);
edf8e2af
MW
3867 }
3868
7267c094
AL
3869 g_free(info->prstatus);
3870 g_free(info->psinfo);
3871 g_free(info->notes);
edf8e2af
MW
3872}
3873
3874static int write_note_info(struct elf_note_info *info, int fd)
3875{
3876 struct elf_thread_status *ets;
3877 int i, error = 0;
3878
3879 /* write prstatus, psinfo and auxv for current thread */
3880 for (i = 0; i < info->numnote; i++)
3881 if ((error = write_note(&info->notes[i], fd)) != 0)
3882 return (error);
3883
3884 /* write prstatus for each thread */
52a53afe 3885 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3886 if ((error = write_note(&ets->notes[0], fd)) != 0)
3887 return (error);
3888 }
3889
3890 return (0);
3891}
3892
3893/*
3894 * Write out ELF coredump.
3895 *
3896 * See documentation of ELF object file format in:
3897 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3898 *
3899 * Coredump format in linux is following:
3900 *
3901 * 0 +----------------------+ \
3902 * | ELF header | ET_CORE |
3903 * +----------------------+ |
3904 * | ELF program headers | |--- headers
3905 * | - NOTE section | |
3906 * | - PT_LOAD sections | |
3907 * +----------------------+ /
3908 * | NOTEs: |
3909 * | - NT_PRSTATUS |
3910 * | - NT_PRSINFO |
3911 * | - NT_AUXV |
3912 * +----------------------+ <-- aligned to target page
3913 * | Process memory dump |
3914 * : :
3915 * . .
3916 * : :
3917 * | |
3918 * +----------------------+
3919 *
3920 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3921 * NT_PRSINFO -> struct elf_prpsinfo
3922 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3923 *
3924 * Format follows System V format as close as possible. Current
3925 * version limitations are as follows:
3926 * - no floating point registers are dumped
3927 *
3928 * Function returns 0 in case of success, negative errno otherwise.
3929 *
3930 * TODO: make this work also during runtime: it should be
3931 * possible to force coredump from running process and then
3932 * continue processing. For example qemu could set up SIGUSR2
3933 * handler (provided that target process haven't registered
3934 * handler for that) that does the dump when signal is received.
3935 */
9349b4f9 3936static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3937{
29a0af61 3938 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3939 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3940 struct vm_area_struct *vma = NULL;
3941 char corefile[PATH_MAX];
3942 struct elf_note_info info;
3943 struct elfhdr elf;
3944 struct elf_phdr phdr;
3945 struct rlimit dumpsize;
3946 struct mm_struct *mm = NULL;
3947 off_t offset = 0, data_offset = 0;
3948 int segs = 0;
3949 int fd = -1;
3950
6afafa86
PM
3951 init_note_info(&info);
3952
edf8e2af
MW
3953 errno = 0;
3954 getrlimit(RLIMIT_CORE, &dumpsize);
3955 if (dumpsize.rlim_cur == 0)
d97ef72e 3956 return 0;
edf8e2af
MW
3957
3958 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3959 return (-errno);
3960
3961 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3962 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3963 return (-errno);
3964
3965 /*
3966 * Walk through target process memory mappings and
3967 * set up structure containing this information. After
3968 * this point vma_xxx functions can be used.
3969 */
3970 if ((mm = vma_init()) == NULL)
3971 goto out;
3972
3973 walk_memory_regions(mm, vma_walker);
3974 segs = vma_get_mapping_count(mm);
3975
3976 /*
3977 * Construct valid coredump ELF header. We also
3978 * add one more segment for notes.
3979 */
3980 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3981 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3982 goto out;
3983
b6af0975 3984 /* fill in the in-memory version of notes */
edf8e2af
MW
3985 if (fill_note_info(&info, signr, env) < 0)
3986 goto out;
3987
3988 offset += sizeof (elf); /* elf header */
3989 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3990
3991 /* write out notes program header */
3992 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3993
3994 offset += info.notes_size;
3995 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3996 goto out;
3997
3998 /*
3999 * ELF specification wants data to start at page boundary so
4000 * we align it here.
4001 */
80f5ce75 4002 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
4003
4004 /*
4005 * Write program headers for memory regions mapped in
4006 * the target process.
4007 */
4008 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4009 (void) memset(&phdr, 0, sizeof (phdr));
4010
4011 phdr.p_type = PT_LOAD;
4012 phdr.p_offset = offset;
4013 phdr.p_vaddr = vma->vma_start;
4014 phdr.p_paddr = 0;
4015 phdr.p_filesz = vma_dump_size(vma);
4016 offset += phdr.p_filesz;
4017 phdr.p_memsz = vma->vma_end - vma->vma_start;
4018 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4019 if (vma->vma_flags & PROT_WRITE)
4020 phdr.p_flags |= PF_W;
4021 if (vma->vma_flags & PROT_EXEC)
4022 phdr.p_flags |= PF_X;
4023 phdr.p_align = ELF_EXEC_PAGESIZE;
4024
80f5ce75 4025 bswap_phdr(&phdr, 1);
772034b6
PM
4026 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4027 goto out;
4028 }
edf8e2af
MW
4029 }
4030
4031 /*
4032 * Next we write notes just after program headers. No
4033 * alignment needed here.
4034 */
4035 if (write_note_info(&info, fd) < 0)
4036 goto out;
4037
4038 /* align data to page boundary */
edf8e2af
MW
4039 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4040 goto out;
4041
4042 /*
4043 * Finally we can dump process memory into corefile as well.
4044 */
4045 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4046 abi_ulong addr;
4047 abi_ulong end;
4048
4049 end = vma->vma_start + vma_dump_size(vma);
4050
4051 for (addr = vma->vma_start; addr < end;
d97ef72e 4052 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
4053 char page[TARGET_PAGE_SIZE];
4054 int error;
4055
4056 /*
4057 * Read in page from target process memory and
4058 * write it to coredump file.
4059 */
4060 error = copy_from_user(page, addr, sizeof (page));
4061 if (error != 0) {
49995e17 4062 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 4063 addr);
edf8e2af
MW
4064 errno = -error;
4065 goto out;
4066 }
4067 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4068 goto out;
4069 }
4070 }
4071
d97ef72e 4072 out:
edf8e2af
MW
4073 free_note_info(&info);
4074 if (mm != NULL)
4075 vma_delete(mm);
4076 (void) close(fd);
4077
4078 if (errno != 0)
4079 return (-errno);
4080 return (0);
4081}
edf8e2af
MW
4082#endif /* USE_ELF_CORE_DUMP */
4083
e5fe0c52
PB
4084void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4085{
4086 init_thread(regs, infop);
4087}