]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
Merge remote-tracking branch 'remotes/thibault/tags/samuel-thibault' into staging
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
76cad711 9#include "disas/disas.h"
f348b6d1 10#include "qemu/path.h"
dc5e9ac7 11#include "qemu/queue.h"
c6a2377f 12#include "qemu/guest-random.h"
31e31b8a 13
e58ffeb3 14#ifdef _ARCH_PPC64
a6cc84f4 15#undef ARCH_DLINFO
16#undef ELF_PLATFORM
17#undef ELF_HWCAP
ad6919dc 18#undef ELF_HWCAP2
a6cc84f4 19#undef ELF_CLASS
20#undef ELF_DATA
21#undef ELF_ARCH
22#endif
23
edf8e2af
MW
24#define ELF_OSABI ELFOSABI_SYSV
25
cb33da57
BS
26/* from personality.h */
27
28/*
29 * Flags for bug emulation.
30 *
31 * These occupy the top three bytes.
32 */
33enum {
d97ef72e
RH
34 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
35 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
36 descriptors (signal handling) */
37 MMAP_PAGE_ZERO = 0x0100000,
38 ADDR_COMPAT_LAYOUT = 0x0200000,
39 READ_IMPLIES_EXEC = 0x0400000,
40 ADDR_LIMIT_32BIT = 0x0800000,
41 SHORT_INODE = 0x1000000,
42 WHOLE_SECONDS = 0x2000000,
43 STICKY_TIMEOUTS = 0x4000000,
44 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
45};
46
47/*
48 * Personality types.
49 *
50 * These go in the low byte. Avoid using the top bit, it will
51 * conflict with error returns.
52 */
53enum {
d97ef72e
RH
54 PER_LINUX = 0x0000,
55 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
56 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
57 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
58 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
60 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
61 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
62 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
63 PER_BSD = 0x0006,
64 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
65 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_LINUX32 = 0x0008,
67 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
68 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
69 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
70 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
71 PER_RISCOS = 0x000c,
72 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
73 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
74 PER_OSF4 = 0x000f, /* OSF/1 v4 */
75 PER_HPUX = 0x0010,
76 PER_MASK = 0x00ff,
cb33da57
BS
77};
78
79/*
80 * Return the base personality without flags.
81 */
d97ef72e 82#define personality(pers) (pers & PER_MASK)
cb33da57 83
3cb10cfa
CL
84int info_is_fdpic(struct image_info *info)
85{
86 return info->personality == PER_LINUX_FDPIC;
87}
88
83fb7adf
FB
89/* this flag is uneffective under linux too, should be deleted */
90#ifndef MAP_DENYWRITE
91#define MAP_DENYWRITE 0
92#endif
93
94/* should probably go in elf.h */
95#ifndef ELIBBAD
96#define ELIBBAD 80
97#endif
98
28490231
RH
99#ifdef TARGET_WORDS_BIGENDIAN
100#define ELF_DATA ELFDATA2MSB
101#else
102#define ELF_DATA ELFDATA2LSB
103#endif
104
a29f998d 105#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
106typedef abi_ullong target_elf_greg_t;
107#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
108#else
109typedef abi_ulong target_elf_greg_t;
110#define tswapreg(ptr) tswapal(ptr)
111#endif
112
21e807fa 113#ifdef USE_UID16
1ddd592f
PB
114typedef abi_ushort target_uid_t;
115typedef abi_ushort target_gid_t;
21e807fa 116#else
f8fd4fc4
PB
117typedef abi_uint target_uid_t;
118typedef abi_uint target_gid_t;
21e807fa 119#endif
f8fd4fc4 120typedef abi_int target_pid_t;
21e807fa 121
30ac07d4
FB
122#ifdef TARGET_I386
123
15338fd7
FB
124#define ELF_PLATFORM get_elf_platform()
125
126static const char *get_elf_platform(void)
127{
128 static char elf_platform[] = "i386";
a2247f8e 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
130 if (family > 6)
131 family = 6;
132 if (family >= 3)
133 elf_platform[1] = '0' + family;
134 return elf_platform;
135}
136
137#define ELF_HWCAP get_elf_hwcap()
138
139static uint32_t get_elf_hwcap(void)
140{
a2247f8e
AF
141 X86CPU *cpu = X86_CPU(thread_cpu);
142
143 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
144}
145
84409ddb
JM
146#ifdef TARGET_X86_64
147#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
148
149#define ELF_CLASS ELFCLASS64
84409ddb
JM
150#define ELF_ARCH EM_X86_64
151
152static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153{
154 regs->rax = 0;
155 regs->rsp = infop->start_stack;
156 regs->rip = infop->entry;
157}
158
9edc5d79 159#define ELF_NREG 27
c227f099 160typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
161
162/*
163 * Note that ELF_NREG should be 29 as there should be place for
164 * TRAPNO and ERR "registers" as well but linux doesn't dump
165 * those.
166 *
167 * See linux kernel: arch/x86/include/asm/elf.h
168 */
05390248 169static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
170{
171 (*regs)[0] = env->regs[15];
172 (*regs)[1] = env->regs[14];
173 (*regs)[2] = env->regs[13];
174 (*regs)[3] = env->regs[12];
175 (*regs)[4] = env->regs[R_EBP];
176 (*regs)[5] = env->regs[R_EBX];
177 (*regs)[6] = env->regs[11];
178 (*regs)[7] = env->regs[10];
179 (*regs)[8] = env->regs[9];
180 (*regs)[9] = env->regs[8];
181 (*regs)[10] = env->regs[R_EAX];
182 (*regs)[11] = env->regs[R_ECX];
183 (*regs)[12] = env->regs[R_EDX];
184 (*regs)[13] = env->regs[R_ESI];
185 (*regs)[14] = env->regs[R_EDI];
186 (*regs)[15] = env->regs[R_EAX]; /* XXX */
187 (*regs)[16] = env->eip;
188 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189 (*regs)[18] = env->eflags;
190 (*regs)[19] = env->regs[R_ESP];
191 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198}
199
84409ddb
JM
200#else
201
30ac07d4
FB
202#define ELF_START_MMAP 0x80000000
203
30ac07d4
FB
204/*
205 * This is used to ensure we don't load something for the wrong architecture.
206 */
207#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208
209/*
210 * These are used to set parameters in the core dumps.
211 */
d97ef72e 212#define ELF_CLASS ELFCLASS32
d97ef72e 213#define ELF_ARCH EM_386
30ac07d4 214
d97ef72e
RH
215static inline void init_thread(struct target_pt_regs *regs,
216 struct image_info *infop)
b346ff46
FB
217{
218 regs->esp = infop->start_stack;
219 regs->eip = infop->entry;
e5fe0c52
PB
220
221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222 starts %edx contains a pointer to a function which might be
223 registered using `atexit'. This provides a mean for the
224 dynamic linker to call DT_FINI functions for shared libraries
225 that have been loaded before the code runs.
226
227 A value of 0 tells we have no such handler. */
228 regs->edx = 0;
b346ff46 229}
9edc5d79 230
9edc5d79 231#define ELF_NREG 17
c227f099 232typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
233
234/*
235 * Note that ELF_NREG should be 19 as there should be place for
236 * TRAPNO and ERR "registers" as well but linux doesn't dump
237 * those.
238 *
239 * See linux kernel: arch/x86/include/asm/elf.h
240 */
05390248 241static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
242{
243 (*regs)[0] = env->regs[R_EBX];
244 (*regs)[1] = env->regs[R_ECX];
245 (*regs)[2] = env->regs[R_EDX];
246 (*regs)[3] = env->regs[R_ESI];
247 (*regs)[4] = env->regs[R_EDI];
248 (*regs)[5] = env->regs[R_EBP];
249 (*regs)[6] = env->regs[R_EAX];
250 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254 (*regs)[11] = env->regs[R_EAX]; /* XXX */
255 (*regs)[12] = env->eip;
256 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257 (*regs)[14] = env->eflags;
258 (*regs)[15] = env->regs[R_ESP];
259 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260}
84409ddb 261#endif
b346ff46 262
9edc5d79 263#define USE_ELF_CORE_DUMP
d97ef72e 264#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
265
266#endif
267
268#ifdef TARGET_ARM
269
24e76ff0
PM
270#ifndef TARGET_AARCH64
271/* 32 bit ARM definitions */
272
b346ff46
FB
273#define ELF_START_MMAP 0x80000000
274
b597c3f7 275#define ELF_ARCH EM_ARM
d97ef72e 276#define ELF_CLASS ELFCLASS32
b346ff46 277
d97ef72e
RH
278static inline void init_thread(struct target_pt_regs *regs,
279 struct image_info *infop)
b346ff46 280{
992f48a0 281 abi_long stack = infop->start_stack;
b346ff46 282 memset(regs, 0, sizeof(*regs));
99033cae 283
167e4cdc
PM
284 regs->uregs[16] = ARM_CPU_MODE_USR;
285 if (infop->entry & 1) {
286 regs->uregs[16] |= CPSR_T;
287 }
288 regs->uregs[15] = infop->entry & 0xfffffffe;
289 regs->uregs[13] = infop->start_stack;
2f619698 290 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
291 get_user_ual(regs->uregs[2], stack + 8); /* envp */
292 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 293 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 294 regs->uregs[0] = 0;
e5fe0c52 295 /* For uClinux PIC binaries. */
863cf0b7 296 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 297 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
298
299 /* Support ARM FDPIC. */
300 if (info_is_fdpic(infop)) {
301 /* As described in the ABI document, r7 points to the loadmap info
302 * prepared by the kernel. If an interpreter is needed, r8 points
303 * to the interpreter loadmap and r9 points to the interpreter
304 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
305 * r9 points to the main program PT_DYNAMIC info.
306 */
307 regs->uregs[7] = infop->loadmap_addr;
308 if (infop->interpreter_loadmap_addr) {
309 /* Executable is dynamically loaded. */
310 regs->uregs[8] = infop->interpreter_loadmap_addr;
311 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
312 } else {
313 regs->uregs[8] = 0;
314 regs->uregs[9] = infop->pt_dynamic_addr;
315 }
316 }
b346ff46
FB
317}
318
edf8e2af 319#define ELF_NREG 18
c227f099 320typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 321
05390248 322static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 323{
86cd7b2d
PB
324 (*regs)[0] = tswapreg(env->regs[0]);
325 (*regs)[1] = tswapreg(env->regs[1]);
326 (*regs)[2] = tswapreg(env->regs[2]);
327 (*regs)[3] = tswapreg(env->regs[3]);
328 (*regs)[4] = tswapreg(env->regs[4]);
329 (*regs)[5] = tswapreg(env->regs[5]);
330 (*regs)[6] = tswapreg(env->regs[6]);
331 (*regs)[7] = tswapreg(env->regs[7]);
332 (*regs)[8] = tswapreg(env->regs[8]);
333 (*regs)[9] = tswapreg(env->regs[9]);
334 (*regs)[10] = tswapreg(env->regs[10]);
335 (*regs)[11] = tswapreg(env->regs[11]);
336 (*regs)[12] = tswapreg(env->regs[12]);
337 (*regs)[13] = tswapreg(env->regs[13]);
338 (*regs)[14] = tswapreg(env->regs[14]);
339 (*regs)[15] = tswapreg(env->regs[15]);
340
341 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
342 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
343}
344
30ac07d4 345#define USE_ELF_CORE_DUMP
d97ef72e 346#define ELF_EXEC_PAGESIZE 4096
30ac07d4 347
afce2927
FB
348enum
349{
d97ef72e
RH
350 ARM_HWCAP_ARM_SWP = 1 << 0,
351 ARM_HWCAP_ARM_HALF = 1 << 1,
352 ARM_HWCAP_ARM_THUMB = 1 << 2,
353 ARM_HWCAP_ARM_26BIT = 1 << 3,
354 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
355 ARM_HWCAP_ARM_FPA = 1 << 5,
356 ARM_HWCAP_ARM_VFP = 1 << 6,
357 ARM_HWCAP_ARM_EDSP = 1 << 7,
358 ARM_HWCAP_ARM_JAVA = 1 << 8,
359 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
360 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
361 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
362 ARM_HWCAP_ARM_NEON = 1 << 12,
363 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
364 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
365 ARM_HWCAP_ARM_TLS = 1 << 15,
366 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
367 ARM_HWCAP_ARM_IDIVA = 1 << 17,
368 ARM_HWCAP_ARM_IDIVT = 1 << 18,
369 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
370 ARM_HWCAP_ARM_LPAE = 1 << 20,
371 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
372};
373
ad6919dc
PM
374enum {
375 ARM_HWCAP2_ARM_AES = 1 << 0,
376 ARM_HWCAP2_ARM_PMULL = 1 << 1,
377 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
378 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
379 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
380};
381
6b1275ff
PM
382/* The commpage only exists for 32 bit kernels */
383
806d1021
MI
384/* Return 1 if the proposed guest space is suitable for the guest.
385 * Return 0 if the proposed guest space isn't suitable, but another
386 * address space should be tried.
387 * Return -1 if there is no way the proposed guest space can be
388 * valid regardless of the base.
389 * The guest code may leave a page mapped and populate it if the
390 * address is suitable.
391 */
c3637eaf
LS
392static int init_guest_commpage(unsigned long guest_base,
393 unsigned long guest_size)
97cc7560
DDAG
394{
395 unsigned long real_start, test_page_addr;
396
397 /* We need to check that we can force a fault on access to the
398 * commpage at 0xffff0fxx
399 */
400 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
401
402 /* If the commpage lies within the already allocated guest space,
403 * then there is no way we can allocate it.
955e304f
LS
404 *
405 * You may be thinking that that this check is redundant because
406 * we already validated the guest size against MAX_RESERVED_VA;
407 * but if qemu_host_page_mask is unusually large, then
408 * test_page_addr may be lower.
806d1021
MI
409 */
410 if (test_page_addr >= guest_base
e568f9df 411 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
412 return -1;
413 }
414
97cc7560
DDAG
415 /* Note it needs to be writeable to let us initialise it */
416 real_start = (unsigned long)
417 mmap((void *)test_page_addr, qemu_host_page_size,
418 PROT_READ | PROT_WRITE,
419 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
420
421 /* If we can't map it then try another address */
422 if (real_start == -1ul) {
423 return 0;
424 }
425
426 if (real_start != test_page_addr) {
427 /* OS didn't put the page where we asked - unmap and reject */
428 munmap((void *)real_start, qemu_host_page_size);
429 return 0;
430 }
431
432 /* Leave the page mapped
433 * Populate it (mmap should have left it all 0'd)
434 */
435
436 /* Kernel helper versions */
437 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
438
439 /* Now it's populated make it RO */
440 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
441 perror("Protecting guest commpage");
442 exit(-1);
443 }
444
445 return 1; /* All good */
446}
adf050b1
BC
447
448#define ELF_HWCAP get_elf_hwcap()
ad6919dc 449#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
450
451static uint32_t get_elf_hwcap(void)
452{
a2247f8e 453 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
454 uint32_t hwcaps = 0;
455
456 hwcaps |= ARM_HWCAP_ARM_SWP;
457 hwcaps |= ARM_HWCAP_ARM_HALF;
458 hwcaps |= ARM_HWCAP_ARM_THUMB;
459 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
460
461 /* probe for the extra features */
462#define GET_FEATURE(feat, hwcap) \
a2247f8e 463 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
464
465#define GET_FEATURE_ID(feat, hwcap) \
466 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
467
24682654
PM
468 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
469 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
470 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
471 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
472 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
473 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
474 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
475 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
476 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
7e0cf8b4
RH
477 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
478 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
24682654
PM
479 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
480 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
481 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
482 * to our VFP_FP16 feature bit.
483 */
484 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
485 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
486
487 return hwcaps;
488}
afce2927 489
ad6919dc
PM
490static uint32_t get_elf_hwcap2(void)
491{
492 ARMCPU *cpu = ARM_CPU(thread_cpu);
493 uint32_t hwcaps = 0;
494
962fcbf2
RH
495 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
496 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
497 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
498 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
499 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
500 return hwcaps;
501}
502
503#undef GET_FEATURE
962fcbf2 504#undef GET_FEATURE_ID
ad6919dc 505
13ec4ec3
RH
506#define ELF_PLATFORM get_elf_platform()
507
508static const char *get_elf_platform(void)
509{
510 CPUARMState *env = thread_cpu->env_ptr;
511
512#ifdef TARGET_WORDS_BIGENDIAN
513# define END "b"
514#else
515# define END "l"
516#endif
517
518 if (arm_feature(env, ARM_FEATURE_V8)) {
519 return "v8" END;
520 } else if (arm_feature(env, ARM_FEATURE_V7)) {
521 if (arm_feature(env, ARM_FEATURE_M)) {
522 return "v7m" END;
523 } else {
524 return "v7" END;
525 }
526 } else if (arm_feature(env, ARM_FEATURE_V6)) {
527 return "v6" END;
528 } else if (arm_feature(env, ARM_FEATURE_V5)) {
529 return "v5" END;
530 } else {
531 return "v4" END;
532 }
533
534#undef END
535}
536
24e76ff0
PM
537#else
538/* 64 bit ARM definitions */
539#define ELF_START_MMAP 0x80000000
540
b597c3f7 541#define ELF_ARCH EM_AARCH64
24e76ff0 542#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
543#ifdef TARGET_WORDS_BIGENDIAN
544# define ELF_PLATFORM "aarch64_be"
545#else
546# define ELF_PLATFORM "aarch64"
547#endif
24e76ff0
PM
548
549static inline void init_thread(struct target_pt_regs *regs,
550 struct image_info *infop)
551{
552 abi_long stack = infop->start_stack;
553 memset(regs, 0, sizeof(*regs));
554
555 regs->pc = infop->entry & ~0x3ULL;
556 regs->sp = stack;
557}
558
559#define ELF_NREG 34
560typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
561
562static void elf_core_copy_regs(target_elf_gregset_t *regs,
563 const CPUARMState *env)
564{
565 int i;
566
567 for (i = 0; i < 32; i++) {
568 (*regs)[i] = tswapreg(env->xregs[i]);
569 }
570 (*regs)[32] = tswapreg(env->pc);
571 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
572}
573
574#define USE_ELF_CORE_DUMP
575#define ELF_EXEC_PAGESIZE 4096
576
577enum {
578 ARM_HWCAP_A64_FP = 1 << 0,
579 ARM_HWCAP_A64_ASIMD = 1 << 1,
580 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
581 ARM_HWCAP_A64_AES = 1 << 3,
582 ARM_HWCAP_A64_PMULL = 1 << 4,
583 ARM_HWCAP_A64_SHA1 = 1 << 5,
584 ARM_HWCAP_A64_SHA2 = 1 << 6,
585 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
586 ARM_HWCAP_A64_ATOMICS = 1 << 8,
587 ARM_HWCAP_A64_FPHP = 1 << 9,
588 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
589 ARM_HWCAP_A64_CPUID = 1 << 11,
590 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
591 ARM_HWCAP_A64_JSCVT = 1 << 13,
592 ARM_HWCAP_A64_FCMA = 1 << 14,
593 ARM_HWCAP_A64_LRCPC = 1 << 15,
594 ARM_HWCAP_A64_DCPOP = 1 << 16,
595 ARM_HWCAP_A64_SHA3 = 1 << 17,
596 ARM_HWCAP_A64_SM3 = 1 << 18,
597 ARM_HWCAP_A64_SM4 = 1 << 19,
598 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
599 ARM_HWCAP_A64_SHA512 = 1 << 21,
600 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
601 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
602 ARM_HWCAP_A64_DIT = 1 << 24,
603 ARM_HWCAP_A64_USCAT = 1 << 25,
604 ARM_HWCAP_A64_ILRCPC = 1 << 26,
605 ARM_HWCAP_A64_FLAGM = 1 << 27,
606 ARM_HWCAP_A64_SSBS = 1 << 28,
607 ARM_HWCAP_A64_SB = 1 << 29,
608 ARM_HWCAP_A64_PACA = 1 << 30,
609 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
610
611 ARM_HWCAP2_A64_DCPODP = 1 << 0,
612 ARM_HWCAP2_A64_SVE2 = 1 << 1,
613 ARM_HWCAP2_A64_SVEAES = 1 << 2,
614 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
615 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
616 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
617 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
618 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
619 ARM_HWCAP2_A64_FRINT = 1 << 8,
24e76ff0
PM
620};
621
2041df4a
RH
622#define ELF_HWCAP get_elf_hwcap()
623#define ELF_HWCAP2 get_elf_hwcap2()
624
625#define GET_FEATURE_ID(feat, hwcap) \
626 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
627
628static uint32_t get_elf_hwcap(void)
629{
630 ARMCPU *cpu = ARM_CPU(thread_cpu);
631 uint32_t hwcaps = 0;
632
633 hwcaps |= ARM_HWCAP_A64_FP;
634 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 635 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
636
637 /* probe for the extra features */
962fcbf2
RH
638
639 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
640 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
641 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
642 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
643 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
644 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
645 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
646 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
647 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 648 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
649 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
650 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
651 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
652 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 653 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 654 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
655 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
656 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 657 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 658 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
962fcbf2 659
2041df4a
RH
660 return hwcaps;
661}
662
663static uint32_t get_elf_hwcap2(void)
664{
665 ARMCPU *cpu = ARM_CPU(thread_cpu);
666 uint32_t hwcaps = 0;
667
668 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
669 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
24e76ff0
PM
670
671 return hwcaps;
672}
673
2041df4a
RH
674#undef GET_FEATURE_ID
675
24e76ff0
PM
676#endif /* not TARGET_AARCH64 */
677#endif /* TARGET_ARM */
30ac07d4 678
853d6f7a 679#ifdef TARGET_SPARC
a315a145 680#ifdef TARGET_SPARC64
853d6f7a
FB
681
682#define ELF_START_MMAP 0x80000000
cf973e46
AT
683#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
684 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 685#ifndef TARGET_ABI32
cb33da57 686#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
687#else
688#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
689#endif
853d6f7a 690
a315a145 691#define ELF_CLASS ELFCLASS64
5ef54116
FB
692#define ELF_ARCH EM_SPARCV9
693
d97ef72e 694#define STACK_BIAS 2047
a315a145 695
d97ef72e
RH
696static inline void init_thread(struct target_pt_regs *regs,
697 struct image_info *infop)
a315a145 698{
992f48a0 699#ifndef TARGET_ABI32
a315a145 700 regs->tstate = 0;
992f48a0 701#endif
a315a145
FB
702 regs->pc = infop->entry;
703 regs->npc = regs->pc + 4;
704 regs->y = 0;
992f48a0
BS
705#ifdef TARGET_ABI32
706 regs->u_regs[14] = infop->start_stack - 16 * 4;
707#else
cb33da57
BS
708 if (personality(infop->personality) == PER_LINUX32)
709 regs->u_regs[14] = infop->start_stack - 16 * 4;
710 else
711 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 712#endif
a315a145
FB
713}
714
715#else
716#define ELF_START_MMAP 0x80000000
cf973e46
AT
717#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
718 | HWCAP_SPARC_MULDIV)
a315a145 719
853d6f7a 720#define ELF_CLASS ELFCLASS32
853d6f7a
FB
721#define ELF_ARCH EM_SPARC
722
d97ef72e
RH
723static inline void init_thread(struct target_pt_regs *regs,
724 struct image_info *infop)
853d6f7a 725{
f5155289
FB
726 regs->psr = 0;
727 regs->pc = infop->entry;
728 regs->npc = regs->pc + 4;
729 regs->y = 0;
730 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
731}
732
a315a145 733#endif
853d6f7a
FB
734#endif
735
67867308
FB
736#ifdef TARGET_PPC
737
4ecd4d16 738#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
739#define ELF_START_MMAP 0x80000000
740
e85e7c6e 741#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
742
743#define elf_check_arch(x) ( (x) == EM_PPC64 )
744
d97ef72e 745#define ELF_CLASS ELFCLASS64
84409ddb
JM
746
747#else
748
d97ef72e 749#define ELF_CLASS ELFCLASS32
84409ddb
JM
750
751#endif
752
d97ef72e 753#define ELF_ARCH EM_PPC
67867308 754
df84e4f3
NF
755/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
756 See arch/powerpc/include/asm/cputable.h. */
757enum {
3efa9a67 758 QEMU_PPC_FEATURE_32 = 0x80000000,
759 QEMU_PPC_FEATURE_64 = 0x40000000,
760 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
761 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
762 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
763 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
764 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
765 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
766 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
767 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
768 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
769 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
770 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
771 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
772 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
773 QEMU_PPC_FEATURE_CELL = 0x00010000,
774 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
775 QEMU_PPC_FEATURE_SMT = 0x00004000,
776 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
777 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
778 QEMU_PPC_FEATURE_PA6T = 0x00000800,
779 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
780 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
781 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
782 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
783 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
784
785 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
786 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
787
788 /* Feature definitions in AT_HWCAP2. */
789 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
790 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
791 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
792 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
793 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
794 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
795 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
796 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 797 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
798 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
799 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
800 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
801 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
df84e4f3
NF
802};
803
804#define ELF_HWCAP get_elf_hwcap()
805
806static uint32_t get_elf_hwcap(void)
807{
a2247f8e 808 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
809 uint32_t features = 0;
810
811 /* We don't have to be terribly complete here; the high points are
812 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 813#define GET_FEATURE(flag, feature) \
a2247f8e 814 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
815#define GET_FEATURE2(flags, feature) \
816 do { \
817 if ((cpu->env.insns_flags2 & flags) == flags) { \
818 features |= feature; \
819 } \
820 } while (0)
3efa9a67 821 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
822 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
823 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
824 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
825 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
826 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
827 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
828 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
829 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
830 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
831 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
832 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
833 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 834#undef GET_FEATURE
0e019746 835#undef GET_FEATURE2
df84e4f3
NF
836
837 return features;
838}
839
a60438dd
TM
840#define ELF_HWCAP2 get_elf_hwcap2()
841
842static uint32_t get_elf_hwcap2(void)
843{
844 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
845 uint32_t features = 0;
846
847#define GET_FEATURE(flag, feature) \
848 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
849#define GET_FEATURE2(flag, feature) \
850 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
851
852 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
853 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
854 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
855 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
856 QEMU_PPC_FEATURE2_VEC_CRYPTO);
857 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
858 QEMU_PPC_FEATURE2_DARN);
a60438dd
TM
859
860#undef GET_FEATURE
861#undef GET_FEATURE2
862
863 return features;
864}
865
f5155289
FB
866/*
867 * The requirements here are:
868 * - keep the final alignment of sp (sp & 0xf)
869 * - make sure the 32-bit value at the first 16 byte aligned position of
870 * AUXV is greater than 16 for glibc compatibility.
871 * AT_IGNOREPPC is used for that.
872 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
873 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
874 */
0bccf03d 875#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
876#define ARCH_DLINFO \
877 do { \
623e250a 878 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 879 /* \
82991bed
PM
880 * Handle glibc compatibility: these magic entries must \
881 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
882 */ \
883 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
884 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
885 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
886 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
887 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 888 } while (0)
f5155289 889
67867308
FB
890static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
891{
67867308 892 _regs->gpr[1] = infop->start_stack;
e85e7c6e 893#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 894 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
895 uint64_t val;
896 get_user_u64(val, infop->entry + 8);
897 _regs->gpr[2] = val + infop->load_bias;
898 get_user_u64(val, infop->entry);
899 infop->entry = val + infop->load_bias;
d90b94cd
DK
900 } else {
901 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
902 }
84409ddb 903#endif
67867308
FB
904 _regs->nip = infop->entry;
905}
906
e2f3e741
NF
907/* See linux kernel: arch/powerpc/include/asm/elf.h. */
908#define ELF_NREG 48
909typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
910
05390248 911static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
912{
913 int i;
914 target_ulong ccr = 0;
915
916 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 917 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
918 }
919
86cd7b2d
PB
920 (*regs)[32] = tswapreg(env->nip);
921 (*regs)[33] = tswapreg(env->msr);
922 (*regs)[35] = tswapreg(env->ctr);
923 (*regs)[36] = tswapreg(env->lr);
924 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
925
926 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
927 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
928 }
86cd7b2d 929 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
930}
931
932#define USE_ELF_CORE_DUMP
d97ef72e 933#define ELF_EXEC_PAGESIZE 4096
67867308
FB
934
935#endif
936
048f6b4d
FB
937#ifdef TARGET_MIPS
938
939#define ELF_START_MMAP 0x80000000
940
388bb21a
TS
941#ifdef TARGET_MIPS64
942#define ELF_CLASS ELFCLASS64
943#else
048f6b4d 944#define ELF_CLASS ELFCLASS32
388bb21a 945#endif
048f6b4d
FB
946#define ELF_ARCH EM_MIPS
947
f72541f3
AM
948#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
949
d97ef72e
RH
950static inline void init_thread(struct target_pt_regs *regs,
951 struct image_info *infop)
048f6b4d 952{
623a930e 953 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
954 regs->cp0_epc = infop->entry;
955 regs->regs[29] = infop->start_stack;
956}
957
51e52606
NF
958/* See linux kernel: arch/mips/include/asm/elf.h. */
959#define ELF_NREG 45
960typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
961
962/* See linux kernel: arch/mips/include/asm/reg.h. */
963enum {
964#ifdef TARGET_MIPS64
965 TARGET_EF_R0 = 0,
966#else
967 TARGET_EF_R0 = 6,
968#endif
969 TARGET_EF_R26 = TARGET_EF_R0 + 26,
970 TARGET_EF_R27 = TARGET_EF_R0 + 27,
971 TARGET_EF_LO = TARGET_EF_R0 + 32,
972 TARGET_EF_HI = TARGET_EF_R0 + 33,
973 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
974 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
975 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
976 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
977};
978
979/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 980static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
981{
982 int i;
983
984 for (i = 0; i < TARGET_EF_R0; i++) {
985 (*regs)[i] = 0;
986 }
987 (*regs)[TARGET_EF_R0] = 0;
988
989 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 990 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
991 }
992
993 (*regs)[TARGET_EF_R26] = 0;
994 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
995 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
996 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
997 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
998 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
999 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1000 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
1001}
1002
1003#define USE_ELF_CORE_DUMP
388bb21a
TS
1004#define ELF_EXEC_PAGESIZE 4096
1005
46a1ee4f
JC
1006/* See arch/mips/include/uapi/asm/hwcap.h. */
1007enum {
1008 HWCAP_MIPS_R6 = (1 << 0),
1009 HWCAP_MIPS_MSA = (1 << 1),
1010};
1011
1012#define ELF_HWCAP get_elf_hwcap()
1013
1014static uint32_t get_elf_hwcap(void)
1015{
1016 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1017 uint32_t hwcaps = 0;
1018
1019#define GET_FEATURE(flag, hwcap) \
1020 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
1021
1022 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1023 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1024
1025#undef GET_FEATURE
1026
1027 return hwcaps;
1028}
1029
048f6b4d
FB
1030#endif /* TARGET_MIPS */
1031
b779e29e
EI
1032#ifdef TARGET_MICROBLAZE
1033
1034#define ELF_START_MMAP 0x80000000
1035
0d5d4699 1036#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1037
1038#define ELF_CLASS ELFCLASS32
0d5d4699 1039#define ELF_ARCH EM_MICROBLAZE
b779e29e 1040
d97ef72e
RH
1041static inline void init_thread(struct target_pt_regs *regs,
1042 struct image_info *infop)
b779e29e
EI
1043{
1044 regs->pc = infop->entry;
1045 regs->r1 = infop->start_stack;
1046
1047}
1048
b779e29e
EI
1049#define ELF_EXEC_PAGESIZE 4096
1050
e4cbd44d
EI
1051#define USE_ELF_CORE_DUMP
1052#define ELF_NREG 38
1053typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1054
1055/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1056static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1057{
1058 int i, pos = 0;
1059
1060 for (i = 0; i < 32; i++) {
86cd7b2d 1061 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1062 }
1063
1064 for (i = 0; i < 6; i++) {
86cd7b2d 1065 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
1066 }
1067}
1068
b779e29e
EI
1069#endif /* TARGET_MICROBLAZE */
1070
a0a839b6
MV
1071#ifdef TARGET_NIOS2
1072
1073#define ELF_START_MMAP 0x80000000
1074
1075#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1076
1077#define ELF_CLASS ELFCLASS32
1078#define ELF_ARCH EM_ALTERA_NIOS2
1079
1080static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1081{
1082 regs->ea = infop->entry;
1083 regs->sp = infop->start_stack;
1084 regs->estatus = 0x3;
1085}
1086
1087#define ELF_EXEC_PAGESIZE 4096
1088
1089#define USE_ELF_CORE_DUMP
1090#define ELF_NREG 49
1091typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1092
1093/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1094static void elf_core_copy_regs(target_elf_gregset_t *regs,
1095 const CPUNios2State *env)
1096{
1097 int i;
1098
1099 (*regs)[0] = -1;
1100 for (i = 1; i < 8; i++) /* r0-r7 */
1101 (*regs)[i] = tswapreg(env->regs[i + 7]);
1102
1103 for (i = 8; i < 16; i++) /* r8-r15 */
1104 (*regs)[i] = tswapreg(env->regs[i - 8]);
1105
1106 for (i = 16; i < 24; i++) /* r16-r23 */
1107 (*regs)[i] = tswapreg(env->regs[i + 7]);
1108 (*regs)[24] = -1; /* R_ET */
1109 (*regs)[25] = -1; /* R_BT */
1110 (*regs)[26] = tswapreg(env->regs[R_GP]);
1111 (*regs)[27] = tswapreg(env->regs[R_SP]);
1112 (*regs)[28] = tswapreg(env->regs[R_FP]);
1113 (*regs)[29] = tswapreg(env->regs[R_EA]);
1114 (*regs)[30] = -1; /* R_SSTATUS */
1115 (*regs)[31] = tswapreg(env->regs[R_RA]);
1116
1117 (*regs)[32] = tswapreg(env->regs[R_PC]);
1118
1119 (*regs)[33] = -1; /* R_STATUS */
1120 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1121
1122 for (i = 35; i < 49; i++) /* ... */
1123 (*regs)[i] = -1;
1124}
1125
1126#endif /* TARGET_NIOS2 */
1127
d962783e
JL
1128#ifdef TARGET_OPENRISC
1129
1130#define ELF_START_MMAP 0x08000000
1131
d962783e
JL
1132#define ELF_ARCH EM_OPENRISC
1133#define ELF_CLASS ELFCLASS32
1134#define ELF_DATA ELFDATA2MSB
1135
1136static inline void init_thread(struct target_pt_regs *regs,
1137 struct image_info *infop)
1138{
1139 regs->pc = infop->entry;
1140 regs->gpr[1] = infop->start_stack;
1141}
1142
1143#define USE_ELF_CORE_DUMP
1144#define ELF_EXEC_PAGESIZE 8192
1145
1146/* See linux kernel arch/openrisc/include/asm/elf.h. */
1147#define ELF_NREG 34 /* gprs and pc, sr */
1148typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1149
1150static void elf_core_copy_regs(target_elf_gregset_t *regs,
1151 const CPUOpenRISCState *env)
1152{
1153 int i;
1154
1155 for (i = 0; i < 32; i++) {
d89e71e8 1156 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1157 }
86cd7b2d 1158 (*regs)[32] = tswapreg(env->pc);
84775c43 1159 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1160}
1161#define ELF_HWCAP 0
1162#define ELF_PLATFORM NULL
1163
1164#endif /* TARGET_OPENRISC */
1165
fdf9b3e8
FB
1166#ifdef TARGET_SH4
1167
1168#define ELF_START_MMAP 0x80000000
1169
fdf9b3e8 1170#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1171#define ELF_ARCH EM_SH
1172
d97ef72e
RH
1173static inline void init_thread(struct target_pt_regs *regs,
1174 struct image_info *infop)
fdf9b3e8 1175{
d97ef72e
RH
1176 /* Check other registers XXXXX */
1177 regs->pc = infop->entry;
1178 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1179}
1180
7631c97e
NF
1181/* See linux kernel: arch/sh/include/asm/elf.h. */
1182#define ELF_NREG 23
1183typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1184
1185/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1186enum {
1187 TARGET_REG_PC = 16,
1188 TARGET_REG_PR = 17,
1189 TARGET_REG_SR = 18,
1190 TARGET_REG_GBR = 19,
1191 TARGET_REG_MACH = 20,
1192 TARGET_REG_MACL = 21,
1193 TARGET_REG_SYSCALL = 22
1194};
1195
d97ef72e 1196static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1197 const CPUSH4State *env)
7631c97e
NF
1198{
1199 int i;
1200
1201 for (i = 0; i < 16; i++) {
72cd500b 1202 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1203 }
1204
86cd7b2d
PB
1205 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1206 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1207 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1208 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1209 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1210 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1211 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1212}
1213
1214#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1215#define ELF_EXEC_PAGESIZE 4096
1216
e42fd944
RH
1217enum {
1218 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1219 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1220 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1221 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1222 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1223 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1224 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1225 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1226 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1227 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1228};
1229
1230#define ELF_HWCAP get_elf_hwcap()
1231
1232static uint32_t get_elf_hwcap(void)
1233{
1234 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1235 uint32_t hwcap = 0;
1236
1237 hwcap |= SH_CPU_HAS_FPU;
1238
1239 if (cpu->env.features & SH_FEATURE_SH4A) {
1240 hwcap |= SH_CPU_HAS_LLSC;
1241 }
1242
1243 return hwcap;
1244}
1245
fdf9b3e8
FB
1246#endif
1247
48733d19
TS
1248#ifdef TARGET_CRIS
1249
1250#define ELF_START_MMAP 0x80000000
1251
48733d19 1252#define ELF_CLASS ELFCLASS32
48733d19
TS
1253#define ELF_ARCH EM_CRIS
1254
d97ef72e
RH
1255static inline void init_thread(struct target_pt_regs *regs,
1256 struct image_info *infop)
48733d19 1257{
d97ef72e 1258 regs->erp = infop->entry;
48733d19
TS
1259}
1260
48733d19
TS
1261#define ELF_EXEC_PAGESIZE 8192
1262
1263#endif
1264
e6e5906b
PB
1265#ifdef TARGET_M68K
1266
1267#define ELF_START_MMAP 0x80000000
1268
d97ef72e 1269#define ELF_CLASS ELFCLASS32
d97ef72e 1270#define ELF_ARCH EM_68K
e6e5906b
PB
1271
1272/* ??? Does this need to do anything?
d97ef72e 1273 #define ELF_PLAT_INIT(_r) */
e6e5906b 1274
d97ef72e
RH
1275static inline void init_thread(struct target_pt_regs *regs,
1276 struct image_info *infop)
e6e5906b
PB
1277{
1278 regs->usp = infop->start_stack;
1279 regs->sr = 0;
1280 regs->pc = infop->entry;
1281}
1282
7a93cc55
NF
1283/* See linux kernel: arch/m68k/include/asm/elf.h. */
1284#define ELF_NREG 20
1285typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1286
05390248 1287static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1288{
86cd7b2d
PB
1289 (*regs)[0] = tswapreg(env->dregs[1]);
1290 (*regs)[1] = tswapreg(env->dregs[2]);
1291 (*regs)[2] = tswapreg(env->dregs[3]);
1292 (*regs)[3] = tswapreg(env->dregs[4]);
1293 (*regs)[4] = tswapreg(env->dregs[5]);
1294 (*regs)[5] = tswapreg(env->dregs[6]);
1295 (*regs)[6] = tswapreg(env->dregs[7]);
1296 (*regs)[7] = tswapreg(env->aregs[0]);
1297 (*regs)[8] = tswapreg(env->aregs[1]);
1298 (*regs)[9] = tswapreg(env->aregs[2]);
1299 (*regs)[10] = tswapreg(env->aregs[3]);
1300 (*regs)[11] = tswapreg(env->aregs[4]);
1301 (*regs)[12] = tswapreg(env->aregs[5]);
1302 (*regs)[13] = tswapreg(env->aregs[6]);
1303 (*regs)[14] = tswapreg(env->dregs[0]);
1304 (*regs)[15] = tswapreg(env->aregs[7]);
1305 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1306 (*regs)[17] = tswapreg(env->sr);
1307 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1308 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1309}
1310
1311#define USE_ELF_CORE_DUMP
d97ef72e 1312#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1313
1314#endif
1315
7a3148a9
JM
1316#ifdef TARGET_ALPHA
1317
1318#define ELF_START_MMAP (0x30000000000ULL)
1319
7a3148a9 1320#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1321#define ELF_ARCH EM_ALPHA
1322
d97ef72e
RH
1323static inline void init_thread(struct target_pt_regs *regs,
1324 struct image_info *infop)
7a3148a9
JM
1325{
1326 regs->pc = infop->entry;
1327 regs->ps = 8;
1328 regs->usp = infop->start_stack;
7a3148a9
JM
1329}
1330
7a3148a9
JM
1331#define ELF_EXEC_PAGESIZE 8192
1332
1333#endif /* TARGET_ALPHA */
1334
a4c075f1
UH
1335#ifdef TARGET_S390X
1336
1337#define ELF_START_MMAP (0x20000000000ULL)
1338
a4c075f1
UH
1339#define ELF_CLASS ELFCLASS64
1340#define ELF_DATA ELFDATA2MSB
1341#define ELF_ARCH EM_S390
1342
6d88baf1
DH
1343#include "elf.h"
1344
1345#define ELF_HWCAP get_elf_hwcap()
1346
1347#define GET_FEATURE(_feat, _hwcap) \
1348 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1349
1350static uint32_t get_elf_hwcap(void)
1351{
1352 /*
1353 * Let's assume we always have esan3 and zarch.
1354 * 31-bit processes can use 64-bit registers (high gprs).
1355 */
1356 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1357
1358 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1359 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1360 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1361 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1362 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1363 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1364 hwcap |= HWCAP_S390_ETF3EH;
1365 }
1366 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1367
1368 return hwcap;
1369}
1370
a4c075f1
UH
1371static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1372{
1373 regs->psw.addr = infop->entry;
1374 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1375 regs->gprs[15] = infop->start_stack;
1376}
1377
1378#endif /* TARGET_S390X */
1379
b16189b2
CG
1380#ifdef TARGET_TILEGX
1381
1382/* 42 bits real used address, a half for user mode */
1383#define ELF_START_MMAP (0x00000020000000000ULL)
1384
1385#define elf_check_arch(x) ((x) == EM_TILEGX)
1386
1387#define ELF_CLASS ELFCLASS64
1388#define ELF_DATA ELFDATA2LSB
1389#define ELF_ARCH EM_TILEGX
1390
1391static inline void init_thread(struct target_pt_regs *regs,
1392 struct image_info *infop)
1393{
1394 regs->pc = infop->entry;
1395 regs->sp = infop->start_stack;
1396
1397}
1398
1399#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1400
1401#endif /* TARGET_TILEGX */
1402
47ae93cd
MC
1403#ifdef TARGET_RISCV
1404
1405#define ELF_START_MMAP 0x80000000
1406#define ELF_ARCH EM_RISCV
1407
1408#ifdef TARGET_RISCV32
1409#define ELF_CLASS ELFCLASS32
1410#else
1411#define ELF_CLASS ELFCLASS64
1412#endif
1413
1414static inline void init_thread(struct target_pt_regs *regs,
1415 struct image_info *infop)
1416{
1417 regs->sepc = infop->entry;
1418 regs->sp = infop->start_stack;
1419}
1420
1421#define ELF_EXEC_PAGESIZE 4096
1422
1423#endif /* TARGET_RISCV */
1424
7c248bcd
RH
1425#ifdef TARGET_HPPA
1426
1427#define ELF_START_MMAP 0x80000000
1428#define ELF_CLASS ELFCLASS32
1429#define ELF_ARCH EM_PARISC
1430#define ELF_PLATFORM "PARISC"
1431#define STACK_GROWS_DOWN 0
1432#define STACK_ALIGNMENT 64
1433
1434static inline void init_thread(struct target_pt_regs *regs,
1435 struct image_info *infop)
1436{
1437 regs->iaoq[0] = infop->entry;
1438 regs->iaoq[1] = infop->entry + 4;
1439 regs->gr[23] = 0;
1440 regs->gr[24] = infop->arg_start;
1441 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1442 /* The top-of-stack contains a linkage buffer. */
1443 regs->gr[30] = infop->start_stack + 64;
1444 regs->gr[31] = infop->entry;
1445}
1446
1447#endif /* TARGET_HPPA */
1448
ba7651fb
MF
1449#ifdef TARGET_XTENSA
1450
1451#define ELF_START_MMAP 0x20000000
1452
1453#define ELF_CLASS ELFCLASS32
1454#define ELF_ARCH EM_XTENSA
1455
1456static inline void init_thread(struct target_pt_regs *regs,
1457 struct image_info *infop)
1458{
1459 regs->windowbase = 0;
1460 regs->windowstart = 1;
1461 regs->areg[1] = infop->start_stack;
1462 regs->pc = infop->entry;
1463}
1464
1465/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1466#define ELF_NREG 128
1467typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1468
1469enum {
1470 TARGET_REG_PC,
1471 TARGET_REG_PS,
1472 TARGET_REG_LBEG,
1473 TARGET_REG_LEND,
1474 TARGET_REG_LCOUNT,
1475 TARGET_REG_SAR,
1476 TARGET_REG_WINDOWSTART,
1477 TARGET_REG_WINDOWBASE,
1478 TARGET_REG_THREADPTR,
1479 TARGET_REG_AR0 = 64,
1480};
1481
1482static void elf_core_copy_regs(target_elf_gregset_t *regs,
1483 const CPUXtensaState *env)
1484{
1485 unsigned i;
1486
1487 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1488 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1489 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1490 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1491 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1492 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1493 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1494 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1495 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1496 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1497 for (i = 0; i < env->config->nareg; ++i) {
1498 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1499 }
1500}
1501
1502#define USE_ELF_CORE_DUMP
1503#define ELF_EXEC_PAGESIZE 4096
1504
1505#endif /* TARGET_XTENSA */
1506
15338fd7
FB
1507#ifndef ELF_PLATFORM
1508#define ELF_PLATFORM (NULL)
1509#endif
1510
75be901c
PC
1511#ifndef ELF_MACHINE
1512#define ELF_MACHINE ELF_ARCH
1513#endif
1514
d276a604
PC
1515#ifndef elf_check_arch
1516#define elf_check_arch(x) ((x) == ELF_ARCH)
1517#endif
1518
15338fd7
FB
1519#ifndef ELF_HWCAP
1520#define ELF_HWCAP 0
1521#endif
1522
7c4ee5bc
RH
1523#ifndef STACK_GROWS_DOWN
1524#define STACK_GROWS_DOWN 1
1525#endif
1526
1527#ifndef STACK_ALIGNMENT
1528#define STACK_ALIGNMENT 16
1529#endif
1530
992f48a0 1531#ifdef TARGET_ABI32
cb33da57 1532#undef ELF_CLASS
992f48a0 1533#define ELF_CLASS ELFCLASS32
cb33da57
BS
1534#undef bswaptls
1535#define bswaptls(ptr) bswap32s(ptr)
1536#endif
1537
31e31b8a 1538#include "elf.h"
09bfb054 1539
09bfb054
FB
1540struct exec
1541{
d97ef72e
RH
1542 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1543 unsigned int a_text; /* length of text, in bytes */
1544 unsigned int a_data; /* length of data, in bytes */
1545 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1546 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1547 unsigned int a_entry; /* start address */
1548 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1549 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1550};
1551
1552
1553#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1554#define OMAGIC 0407
1555#define NMAGIC 0410
1556#define ZMAGIC 0413
1557#define QMAGIC 0314
1558
31e31b8a 1559/* Necessary parameters */
94894ff2
SB
1560#define TARGET_ELF_EXEC_PAGESIZE \
1561 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1562 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1563#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1564#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1565 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1566#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1567
444cd5c3 1568#define DLINFO_ITEMS 15
31e31b8a 1569
09bfb054
FB
1570static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1571{
d97ef72e 1572 memcpy(to, from, n);
09bfb054 1573}
d691f669 1574
31e31b8a 1575#ifdef BSWAP_NEEDED
92a31b1f 1576static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1577{
d97ef72e
RH
1578 bswap16s(&ehdr->e_type); /* Object file type */
1579 bswap16s(&ehdr->e_machine); /* Architecture */
1580 bswap32s(&ehdr->e_version); /* Object file version */
1581 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1582 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1583 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1584 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1585 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1586 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1587 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1588 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1589 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1590 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1591}
1592
991f8f0c 1593static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1594{
991f8f0c
RH
1595 int i;
1596 for (i = 0; i < phnum; ++i, ++phdr) {
1597 bswap32s(&phdr->p_type); /* Segment type */
1598 bswap32s(&phdr->p_flags); /* Segment flags */
1599 bswaptls(&phdr->p_offset); /* Segment file offset */
1600 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1601 bswaptls(&phdr->p_paddr); /* Segment physical address */
1602 bswaptls(&phdr->p_filesz); /* Segment size in file */
1603 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1604 bswaptls(&phdr->p_align); /* Segment alignment */
1605 }
31e31b8a 1606}
689f936f 1607
991f8f0c 1608static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1609{
991f8f0c
RH
1610 int i;
1611 for (i = 0; i < shnum; ++i, ++shdr) {
1612 bswap32s(&shdr->sh_name);
1613 bswap32s(&shdr->sh_type);
1614 bswaptls(&shdr->sh_flags);
1615 bswaptls(&shdr->sh_addr);
1616 bswaptls(&shdr->sh_offset);
1617 bswaptls(&shdr->sh_size);
1618 bswap32s(&shdr->sh_link);
1619 bswap32s(&shdr->sh_info);
1620 bswaptls(&shdr->sh_addralign);
1621 bswaptls(&shdr->sh_entsize);
1622 }
689f936f
FB
1623}
1624
7a3148a9 1625static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1626{
1627 bswap32s(&sym->st_name);
7a3148a9
JM
1628 bswaptls(&sym->st_value);
1629 bswaptls(&sym->st_size);
689f936f
FB
1630 bswap16s(&sym->st_shndx);
1631}
5dd0db52
SM
1632
1633#ifdef TARGET_MIPS
1634static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1635{
1636 bswap16s(&abiflags->version);
1637 bswap32s(&abiflags->ases);
1638 bswap32s(&abiflags->isa_ext);
1639 bswap32s(&abiflags->flags1);
1640 bswap32s(&abiflags->flags2);
1641}
1642#endif
991f8f0c
RH
1643#else
1644static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1645static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1646static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1647static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1648#ifdef TARGET_MIPS
1649static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1650#endif
31e31b8a
FB
1651#endif
1652
edf8e2af 1653#ifdef USE_ELF_CORE_DUMP
9349b4f9 1654static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1655#endif /* USE_ELF_CORE_DUMP */
682674b8 1656static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1657
9058abdd
RH
1658/* Verify the portions of EHDR within E_IDENT for the target.
1659 This can be performed before bswapping the entire header. */
1660static bool elf_check_ident(struct elfhdr *ehdr)
1661{
1662 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1663 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1664 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1665 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1666 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1667 && ehdr->e_ident[EI_DATA] == ELF_DATA
1668 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1669}
1670
1671/* Verify the portions of EHDR outside of E_IDENT for the target.
1672 This has to wait until after bswapping the header. */
1673static bool elf_check_ehdr(struct elfhdr *ehdr)
1674{
1675 return (elf_check_arch(ehdr->e_machine)
1676 && ehdr->e_ehsize == sizeof(struct elfhdr)
1677 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1678 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1679}
1680
31e31b8a 1681/*
e5fe0c52 1682 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1683 * memory to free pages in kernel mem. These are in a format ready
1684 * to be put directly into the top of new user memory.
1685 *
1686 */
59baae9a
SB
1687static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1688 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1689{
59baae9a 1690 char *tmp;
7c4ee5bc 1691 int len, i;
59baae9a 1692 abi_ulong top = p;
31e31b8a
FB
1693
1694 if (!p) {
d97ef72e 1695 return 0; /* bullet-proofing */
31e31b8a 1696 }
59baae9a 1697
7c4ee5bc
RH
1698 if (STACK_GROWS_DOWN) {
1699 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1700 for (i = argc - 1; i >= 0; --i) {
1701 tmp = argv[i];
1702 if (!tmp) {
1703 fprintf(stderr, "VFS: argc is wrong");
1704 exit(-1);
1705 }
1706 len = strlen(tmp) + 1;
1707 tmp += len;
59baae9a 1708
7c4ee5bc
RH
1709 if (len > (p - stack_limit)) {
1710 return 0;
1711 }
1712 while (len) {
1713 int bytes_to_copy = (len > offset) ? offset : len;
1714 tmp -= bytes_to_copy;
1715 p -= bytes_to_copy;
1716 offset -= bytes_to_copy;
1717 len -= bytes_to_copy;
1718
1719 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1720
1721 if (offset == 0) {
1722 memcpy_to_target(p, scratch, top - p);
1723 top = p;
1724 offset = TARGET_PAGE_SIZE;
1725 }
1726 }
d97ef72e 1727 }
7c4ee5bc
RH
1728 if (p != top) {
1729 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1730 }
7c4ee5bc
RH
1731 } else {
1732 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1733 for (i = 0; i < argc; ++i) {
1734 tmp = argv[i];
1735 if (!tmp) {
1736 fprintf(stderr, "VFS: argc is wrong");
1737 exit(-1);
1738 }
1739 len = strlen(tmp) + 1;
1740 if (len > (stack_limit - p)) {
1741 return 0;
1742 }
1743 while (len) {
1744 int bytes_to_copy = (len > remaining) ? remaining : len;
1745
1746 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1747
1748 tmp += bytes_to_copy;
1749 remaining -= bytes_to_copy;
1750 p += bytes_to_copy;
1751 len -= bytes_to_copy;
1752
1753 if (remaining == 0) {
1754 memcpy_to_target(top, scratch, p - top);
1755 top = p;
1756 remaining = TARGET_PAGE_SIZE;
1757 }
d97ef72e
RH
1758 }
1759 }
7c4ee5bc
RH
1760 if (p != top) {
1761 memcpy_to_target(top, scratch, p - top);
1762 }
59baae9a
SB
1763 }
1764
31e31b8a
FB
1765 return p;
1766}
1767
59baae9a
SB
1768/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1769 * argument/environment space. Newer kernels (>2.6.33) allow more,
1770 * dependent on stack size, but guarantee at least 32 pages for
1771 * backwards compatibility.
1772 */
1773#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1774
1775static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1776 struct image_info *info)
53a5960a 1777{
59baae9a 1778 abi_ulong size, error, guard;
31e31b8a 1779
703e0e89 1780 size = guest_stack_size;
59baae9a
SB
1781 if (size < STACK_LOWER_LIMIT) {
1782 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1783 }
1784 guard = TARGET_PAGE_SIZE;
1785 if (guard < qemu_real_host_page_size) {
1786 guard = qemu_real_host_page_size;
1787 }
1788
1789 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1790 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1791 if (error == -1) {
60dcbcb5 1792 perror("mmap stack");
09bfb054
FB
1793 exit(-1);
1794 }
31e31b8a 1795
60dcbcb5 1796 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1797 if (STACK_GROWS_DOWN) {
1798 target_mprotect(error, guard, PROT_NONE);
1799 info->stack_limit = error + guard;
1800 return info->stack_limit + size - sizeof(void *);
1801 } else {
1802 target_mprotect(error + size, guard, PROT_NONE);
1803 info->stack_limit = error + size;
1804 return error;
1805 }
31e31b8a
FB
1806}
1807
cf129f3a
RH
1808/* Map and zero the bss. We need to explicitly zero any fractional pages
1809 after the data section (i.e. bss). */
1810static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1811{
cf129f3a
RH
1812 uintptr_t host_start, host_map_start, host_end;
1813
1814 last_bss = TARGET_PAGE_ALIGN(last_bss);
1815
1816 /* ??? There is confusion between qemu_real_host_page_size and
1817 qemu_host_page_size here and elsewhere in target_mmap, which
1818 may lead to the end of the data section mapping from the file
1819 not being mapped. At least there was an explicit test and
1820 comment for that here, suggesting that "the file size must
1821 be known". The comment probably pre-dates the introduction
1822 of the fstat system call in target_mmap which does in fact
1823 find out the size. What isn't clear is if the workaround
1824 here is still actually needed. For now, continue with it,
1825 but merge it with the "normal" mmap that would allocate the bss. */
1826
1827 host_start = (uintptr_t) g2h(elf_bss);
1828 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1829 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1830
1831 if (host_map_start < host_end) {
1832 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1833 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1834 if (p == MAP_FAILED) {
1835 perror("cannot mmap brk");
1836 exit(-1);
853d6f7a 1837 }
f46e9a0b 1838 }
853d6f7a 1839
f46e9a0b
TM
1840 /* Ensure that the bss page(s) are valid */
1841 if ((page_get_flags(last_bss-1) & prot) != prot) {
1842 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1843 }
31e31b8a 1844
cf129f3a
RH
1845 if (host_start < host_map_start) {
1846 memset((void *)host_start, 0, host_map_start - host_start);
1847 }
1848}
53a5960a 1849
cf58affe
CL
1850#ifdef TARGET_ARM
1851static int elf_is_fdpic(struct elfhdr *exec)
1852{
1853 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1854}
1855#else
a99856cd
CL
1856/* Default implementation, always false. */
1857static int elf_is_fdpic(struct elfhdr *exec)
1858{
1859 return 0;
1860}
cf58affe 1861#endif
a99856cd 1862
1af02e83
MF
1863static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1864{
1865 uint16_t n;
1866 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1867
1868 /* elf32_fdpic_loadseg */
1869 n = info->nsegs;
1870 while (n--) {
1871 sp -= 12;
1872 put_user_u32(loadsegs[n].addr, sp+0);
1873 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1874 put_user_u32(loadsegs[n].p_memsz, sp+8);
1875 }
1876
1877 /* elf32_fdpic_loadmap */
1878 sp -= 4;
1879 put_user_u16(0, sp+0); /* version */
1880 put_user_u16(info->nsegs, sp+2); /* nsegs */
1881
1882 info->personality = PER_LINUX_FDPIC;
1883 info->loadmap_addr = sp;
1884
1885 return sp;
1886}
1af02e83 1887
992f48a0 1888static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1889 struct elfhdr *exec,
1890 struct image_info *info,
1891 struct image_info *interp_info)
31e31b8a 1892{
d97ef72e 1893 abi_ulong sp;
7c4ee5bc 1894 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1895 int size;
14322bad
LA
1896 int i;
1897 abi_ulong u_rand_bytes;
1898 uint8_t k_rand_bytes[16];
d97ef72e
RH
1899 abi_ulong u_platform;
1900 const char *k_platform;
1901 const int n = sizeof(elf_addr_t);
1902
1903 sp = p;
1af02e83 1904
1af02e83
MF
1905 /* Needs to be before we load the env/argc/... */
1906 if (elf_is_fdpic(exec)) {
1907 /* Need 4 byte alignment for these structs */
1908 sp &= ~3;
1909 sp = loader_build_fdpic_loadmap(info, sp);
1910 info->other_info = interp_info;
1911 if (interp_info) {
1912 interp_info->other_info = info;
1913 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1914 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1915 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1916 } else {
1917 info->interpreter_loadmap_addr = 0;
1918 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1919 }
1920 }
1af02e83 1921
d97ef72e
RH
1922 u_platform = 0;
1923 k_platform = ELF_PLATFORM;
1924 if (k_platform) {
1925 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1926 if (STACK_GROWS_DOWN) {
1927 sp -= (len + n - 1) & ~(n - 1);
1928 u_platform = sp;
1929 /* FIXME - check return value of memcpy_to_target() for failure */
1930 memcpy_to_target(sp, k_platform, len);
1931 } else {
1932 memcpy_to_target(sp, k_platform, len);
1933 u_platform = sp;
1934 sp += len + 1;
1935 }
1936 }
1937
1938 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1939 * the argv and envp pointers.
1940 */
1941 if (STACK_GROWS_DOWN) {
1942 sp = QEMU_ALIGN_DOWN(sp, 16);
1943 } else {
1944 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1945 }
14322bad
LA
1946
1947 /*
c6a2377f 1948 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 1949 */
c6a2377f 1950 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
1951 if (STACK_GROWS_DOWN) {
1952 sp -= 16;
1953 u_rand_bytes = sp;
1954 /* FIXME - check return value of memcpy_to_target() for failure */
1955 memcpy_to_target(sp, k_rand_bytes, 16);
1956 } else {
1957 memcpy_to_target(sp, k_rand_bytes, 16);
1958 u_rand_bytes = sp;
1959 sp += 16;
1960 }
14322bad 1961
d97ef72e
RH
1962 size = (DLINFO_ITEMS + 1) * 2;
1963 if (k_platform)
1964 size += 2;
f5155289 1965#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1966 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1967#endif
1968#ifdef ELF_HWCAP2
1969 size += 2;
f5155289 1970#endif
f516511e
PM
1971 info->auxv_len = size * n;
1972
d97ef72e 1973 size += envc + argc + 2;
b9329d4b 1974 size += 1; /* argc itself */
d97ef72e 1975 size *= n;
7c4ee5bc
RH
1976
1977 /* Allocate space and finalize stack alignment for entry now. */
1978 if (STACK_GROWS_DOWN) {
1979 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1980 sp = u_argc;
1981 } else {
1982 u_argc = sp;
1983 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1984 }
1985
1986 u_argv = u_argc + n;
1987 u_envp = u_argv + (argc + 1) * n;
1988 u_auxv = u_envp + (envc + 1) * n;
1989 info->saved_auxv = u_auxv;
1990 info->arg_start = u_argv;
1991 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1992
1993 /* This is correct because Linux defines
1994 * elf_addr_t as Elf32_Off / Elf64_Off
1995 */
1996#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1997 put_user_ual(id, u_auxv); u_auxv += n; \
1998 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1999 } while(0)
2000
82991bed
PM
2001#ifdef ARCH_DLINFO
2002 /*
2003 * ARCH_DLINFO must come first so platform specific code can enforce
2004 * special alignment requirements on the AUXV if necessary (eg. PPC).
2005 */
2006 ARCH_DLINFO;
2007#endif
f516511e
PM
2008 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2009 * on info->auxv_len will trigger.
2010 */
8e62a717 2011 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2012 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2013 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2014 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2015 /* Target doesn't support host page size alignment */
2016 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2017 } else {
2018 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2019 qemu_host_page_size)));
2020 }
8e62a717 2021 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2022 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2023 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2024 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2025 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2026 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2027 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2028 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2029 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2030 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2031 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 2032
ad6919dc
PM
2033#ifdef ELF_HWCAP2
2034 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2035#endif
2036
7c4ee5bc 2037 if (u_platform) {
d97ef72e 2038 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2039 }
7c4ee5bc 2040 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2041#undef NEW_AUX_ENT
2042
f516511e
PM
2043 /* Check that our initial calculation of the auxv length matches how much
2044 * we actually put into it.
2045 */
2046 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2047
2048 put_user_ual(argc, u_argc);
2049
2050 p = info->arg_strings;
2051 for (i = 0; i < argc; ++i) {
2052 put_user_ual(p, u_argv);
2053 u_argv += n;
2054 p += target_strlen(p) + 1;
2055 }
2056 put_user_ual(0, u_argv);
2057
2058 p = info->env_strings;
2059 for (i = 0; i < envc; ++i) {
2060 put_user_ual(p, u_envp);
2061 u_envp += n;
2062 p += target_strlen(p) + 1;
2063 }
2064 put_user_ual(0, u_envp);
edf8e2af 2065
d97ef72e 2066 return sp;
31e31b8a
FB
2067}
2068
dce10401
MI
2069unsigned long init_guest_space(unsigned long host_start,
2070 unsigned long host_size,
2071 unsigned long guest_start,
2072 bool fixed)
2073{
30ab9ef2
RH
2074 /* In order to use host shmat, we must be able to honor SHMLBA. */
2075 unsigned long align = MAX(SHMLBA, qemu_host_page_size);
293f2060 2076 unsigned long current_start, aligned_start;
dce10401
MI
2077 int flags;
2078
2079 assert(host_start || host_size);
2080
2081 /* If just a starting address is given, then just verify that
2082 * address. */
2083 if (host_start && !host_size) {
8756e136 2084#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 2085 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
2086 return (unsigned long)-1;
2087 }
8756e136
LS
2088#endif
2089 return host_start;
dce10401
MI
2090 }
2091
2092 /* Setup the initial flags and start address. */
30ab9ef2 2093 current_start = host_start & -align;
dce10401
MI
2094 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2095 if (fixed) {
2096 flags |= MAP_FIXED;
2097 }
2098
2099 /* Otherwise, a non-zero size region of memory needs to be mapped
2100 * and validated. */
2a53535a
LS
2101
2102#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2103 /* On 32-bit ARM, we need to map not just the usable memory, but
2104 * also the commpage. Try to find a suitable place by allocating
2105 * a big chunk for all of it. If host_start, then the naive
2106 * strategy probably does good enough.
2107 */
2108 if (!host_start) {
2109 unsigned long guest_full_size, host_full_size, real_start;
2110
2111 guest_full_size =
2112 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2113 host_full_size = guest_full_size - guest_start;
2114 real_start = (unsigned long)
2115 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2116 if (real_start == (unsigned long)-1) {
2117 if (host_size < host_full_size - qemu_host_page_size) {
2118 /* We failed to map a continous segment, but we're
2119 * allowed to have a gap between the usable memory and
2120 * the commpage where other things can be mapped.
2121 * This sparseness gives us more flexibility to find
2122 * an address range.
2123 */
2124 goto naive;
2125 }
2126 return (unsigned long)-1;
2127 }
2128 munmap((void *)real_start, host_full_size);
30ab9ef2
RH
2129 if (real_start & (align - 1)) {
2130 /* The same thing again, but with extra
2a53535a
LS
2131 * so that we can shift around alignment.
2132 */
2133 unsigned long real_size = host_full_size + qemu_host_page_size;
2134 real_start = (unsigned long)
2135 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2136 if (real_start == (unsigned long)-1) {
2137 if (host_size < host_full_size - qemu_host_page_size) {
2138 goto naive;
2139 }
2140 return (unsigned long)-1;
2141 }
2142 munmap((void *)real_start, real_size);
30ab9ef2 2143 real_start = ROUND_UP(real_start, align);
2a53535a
LS
2144 }
2145 current_start = real_start;
2146 }
2147 naive:
2148#endif
2149
dce10401 2150 while (1) {
293f2060
LS
2151 unsigned long real_start, real_size, aligned_size;
2152 aligned_size = real_size = host_size;
806d1021 2153
dce10401
MI
2154 /* Do not use mmap_find_vma here because that is limited to the
2155 * guest address space. We are going to make the
2156 * guest address space fit whatever we're given.
2157 */
2158 real_start = (unsigned long)
2159 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2160 if (real_start == (unsigned long)-1) {
2161 return (unsigned long)-1;
2162 }
2163
aac362e4
LS
2164 /* Check to see if the address is valid. */
2165 if (host_start && real_start != current_start) {
2166 goto try_again;
2167 }
2168
806d1021 2169 /* Ensure the address is properly aligned. */
30ab9ef2 2170 if (real_start & (align - 1)) {
293f2060
LS
2171 /* Ideally, we adjust like
2172 *
2173 * pages: [ ][ ][ ][ ][ ]
2174 * old: [ real ]
2175 * [ aligned ]
2176 * new: [ real ]
2177 * [ aligned ]
2178 *
2179 * But if there is something else mapped right after it,
2180 * then obviously it won't have room to grow, and the
2181 * kernel will put the new larger real someplace else with
2182 * unknown alignment (if we made it to here, then
2183 * fixed=false). Which is why we grow real by a full page
2184 * size, instead of by part of one; so that even if we get
2185 * moved, we can still guarantee alignment. But this does
2186 * mean that there is a padding of < 1 page both before
2187 * and after the aligned range; the "after" could could
2188 * cause problems for ARM emulation where it could butt in
2189 * to where we need to put the commpage.
2190 */
806d1021 2191 munmap((void *)real_start, host_size);
293f2060 2192 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2193 real_start = (unsigned long)
2194 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2195 if (real_start == (unsigned long)-1) {
2196 return (unsigned long)-1;
2197 }
30ab9ef2 2198 aligned_start = ROUND_UP(real_start, align);
293f2060
LS
2199 } else {
2200 aligned_start = real_start;
806d1021
MI
2201 }
2202
8756e136 2203#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2204 /* On 32-bit ARM, we need to also be able to map the commpage. */
2205 int valid = init_guest_commpage(aligned_start - guest_start,
2206 aligned_size + guest_start);
2207 if (valid == -1) {
2208 munmap((void *)real_start, real_size);
2209 return (unsigned long)-1;
2210 } else if (valid == 0) {
2211 goto try_again;
dce10401 2212 }
7ad75eea
LS
2213#endif
2214
2215 /* If nothing has said `return -1` or `goto try_again` yet,
2216 * then the address we have is good.
2217 */
2218 break;
dce10401 2219
7ad75eea 2220 try_again:
dce10401
MI
2221 /* That address didn't work. Unmap and try a different one.
2222 * The address the host picked because is typically right at
2223 * the top of the host address space and leaves the guest with
2224 * no usable address space. Resort to a linear search. We
2225 * already compensated for mmap_min_addr, so this should not
2226 * happen often. Probably means we got unlucky and host
2227 * address space randomization put a shared library somewhere
2228 * inconvenient.
8c17d862
LS
2229 *
2230 * This is probably a good strategy if host_start, but is
2231 * probably a bad strategy if not, which means we got here
2232 * because of trouble with ARM commpage setup.
dce10401 2233 */
293f2060 2234 munmap((void *)real_start, real_size);
30ab9ef2 2235 current_start += align;
dce10401
MI
2236 if (host_start == current_start) {
2237 /* Theoretically possible if host doesn't have any suitably
2238 * aligned areas. Normally the first mmap will fail.
2239 */
2240 return (unsigned long)-1;
2241 }
2242 }
2243
13829020 2244 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2245
293f2060 2246 return aligned_start;
dce10401
MI
2247}
2248
f3ed1f5d
PM
2249static void probe_guest_base(const char *image_name,
2250 abi_ulong loaddr, abi_ulong hiaddr)
2251{
2252 /* Probe for a suitable guest base address, if the user has not set
2253 * it explicitly, and set guest_base appropriately.
2254 * In case of error we will print a suitable message and exit.
2255 */
f3ed1f5d
PM
2256 const char *errmsg;
2257 if (!have_guest_base && !reserved_va) {
2258 unsigned long host_start, real_start, host_size;
2259
2260 /* Round addresses to page boundaries. */
2261 loaddr &= qemu_host_page_mask;
2262 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2263
2264 if (loaddr < mmap_min_addr) {
2265 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2266 } else {
2267 host_start = loaddr;
2268 if (host_start != loaddr) {
2269 errmsg = "Address overflow loading ELF binary";
2270 goto exit_errmsg;
2271 }
2272 }
2273 host_size = hiaddr - loaddr;
dce10401
MI
2274
2275 /* Setup the initial guest memory space with ranges gleaned from
2276 * the ELF image that is being loaded.
2277 */
2278 real_start = init_guest_space(host_start, host_size, loaddr, false);
2279 if (real_start == (unsigned long)-1) {
2280 errmsg = "Unable to find space for application";
2281 goto exit_errmsg;
f3ed1f5d 2282 }
dce10401
MI
2283 guest_base = real_start - loaddr;
2284
13829020
PB
2285 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2286 TARGET_ABI_FMT_lx " to 0x%lx\n",
2287 loaddr, real_start);
f3ed1f5d
PM
2288 }
2289 return;
2290
f3ed1f5d
PM
2291exit_errmsg:
2292 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2293 exit(-1);
f3ed1f5d
PM
2294}
2295
2296
8e62a717 2297/* Load an ELF image into the address space.
31e31b8a 2298
8e62a717
RH
2299 IMAGE_NAME is the filename of the image, to use in error messages.
2300 IMAGE_FD is the open file descriptor for the image.
2301
2302 BPRM_BUF is a copy of the beginning of the file; this of course
2303 contains the elf file header at offset 0. It is assumed that this
2304 buffer is sufficiently aligned to present no problems to the host
2305 in accessing data at aligned offsets within the buffer.
2306
2307 On return: INFO values will be filled in, as necessary or available. */
2308
2309static void load_elf_image(const char *image_name, int image_fd,
bf858897 2310 struct image_info *info, char **pinterp_name,
8e62a717 2311 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2312{
8e62a717
RH
2313 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2314 struct elf_phdr *phdr;
2315 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2316 int i, retval;
2317 const char *errmsg;
5fafdf24 2318
8e62a717
RH
2319 /* First of all, some simple consistency checks */
2320 errmsg = "Invalid ELF image for this architecture";
2321 if (!elf_check_ident(ehdr)) {
2322 goto exit_errmsg;
2323 }
2324 bswap_ehdr(ehdr);
2325 if (!elf_check_ehdr(ehdr)) {
2326 goto exit_errmsg;
d97ef72e 2327 }
5fafdf24 2328
8e62a717
RH
2329 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2330 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2331 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2332 } else {
8e62a717
RH
2333 phdr = (struct elf_phdr *) alloca(i);
2334 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2335 if (retval != i) {
8e62a717 2336 goto exit_read;
9955ffac 2337 }
d97ef72e 2338 }
8e62a717 2339 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2340
1af02e83
MF
2341 info->nsegs = 0;
2342 info->pt_dynamic_addr = 0;
1af02e83 2343
98c1076c
AB
2344 mmap_lock();
2345
682674b8
RH
2346 /* Find the maximum size of the image and allocate an appropriate
2347 amount of memory to handle that. */
2348 loaddr = -1, hiaddr = 0;
33143c44 2349 info->alignment = 0;
8e62a717
RH
2350 for (i = 0; i < ehdr->e_phnum; ++i) {
2351 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2352 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2353 if (a < loaddr) {
2354 loaddr = a;
2355 }
ccf661f8 2356 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2357 if (a > hiaddr) {
2358 hiaddr = a;
2359 }
1af02e83 2360 ++info->nsegs;
33143c44 2361 info->alignment |= phdr[i].p_align;
682674b8
RH
2362 }
2363 }
2364
2365 load_addr = loaddr;
8e62a717 2366 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2367 /* The image indicates that it can be loaded anywhere. Find a
2368 location that can hold the memory space required. If the
2369 image is pre-linked, LOADDR will be non-zero. Since we do
2370 not supply MAP_FIXED here we'll use that address if and
2371 only if it remains available. */
2372 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2373 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2374 -1, 0);
2375 if (load_addr == -1) {
8e62a717 2376 goto exit_perror;
d97ef72e 2377 }
bf858897
RH
2378 } else if (pinterp_name != NULL) {
2379 /* This is the main executable. Make sure that the low
2380 address does not conflict with MMAP_MIN_ADDR or the
2381 QEMU application itself. */
f3ed1f5d 2382 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2383 }
682674b8 2384 load_bias = load_addr - loaddr;
d97ef72e 2385
a99856cd 2386 if (elf_is_fdpic(ehdr)) {
1af02e83 2387 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2388 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2389
2390 for (i = 0; i < ehdr->e_phnum; ++i) {
2391 switch (phdr[i].p_type) {
2392 case PT_DYNAMIC:
2393 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2394 break;
2395 case PT_LOAD:
2396 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2397 loadsegs->p_vaddr = phdr[i].p_vaddr;
2398 loadsegs->p_memsz = phdr[i].p_memsz;
2399 ++loadsegs;
2400 break;
2401 }
2402 }
2403 }
1af02e83 2404
8e62a717 2405 info->load_bias = load_bias;
dc12567a
JK
2406 info->code_offset = load_bias;
2407 info->data_offset = load_bias;
8e62a717
RH
2408 info->load_addr = load_addr;
2409 info->entry = ehdr->e_entry + load_bias;
2410 info->start_code = -1;
2411 info->end_code = 0;
2412 info->start_data = -1;
2413 info->end_data = 0;
2414 info->brk = 0;
d8fd2954 2415 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2416
2417 for (i = 0; i < ehdr->e_phnum; i++) {
2418 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2419 if (eppnt->p_type == PT_LOAD) {
94894ff2 2420 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2421 int elf_prot = 0;
d97ef72e
RH
2422
2423 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2424 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2425 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2426
682674b8
RH
2427 vaddr = load_bias + eppnt->p_vaddr;
2428 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2429 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2430 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2431
d87146bc
GM
2432 /*
2433 * Some segments may be completely empty without any backing file
2434 * segment, in that case just let zero_bss allocate an empty buffer
2435 * for it.
2436 */
2437 if (eppnt->p_filesz != 0) {
2438 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2439 MAP_PRIVATE | MAP_FIXED,
2440 image_fd, eppnt->p_offset - vaddr_po);
2441
2442 if (error == -1) {
2443 goto exit_perror;
2444 }
09bfb054 2445 }
09bfb054 2446
682674b8
RH
2447 vaddr_ef = vaddr + eppnt->p_filesz;
2448 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2449
cf129f3a 2450 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2451 if (vaddr_ef < vaddr_em) {
2452 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2453 }
8e62a717
RH
2454
2455 /* Find the full program boundaries. */
2456 if (elf_prot & PROT_EXEC) {
2457 if (vaddr < info->start_code) {
2458 info->start_code = vaddr;
2459 }
2460 if (vaddr_ef > info->end_code) {
2461 info->end_code = vaddr_ef;
2462 }
2463 }
2464 if (elf_prot & PROT_WRITE) {
2465 if (vaddr < info->start_data) {
2466 info->start_data = vaddr;
2467 }
2468 if (vaddr_ef > info->end_data) {
2469 info->end_data = vaddr_ef;
2470 }
2471 if (vaddr_em > info->brk) {
2472 info->brk = vaddr_em;
2473 }
2474 }
bf858897
RH
2475 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2476 char *interp_name;
2477
2478 if (*pinterp_name) {
2479 errmsg = "Multiple PT_INTERP entries";
2480 goto exit_errmsg;
2481 }
2482 interp_name = malloc(eppnt->p_filesz);
2483 if (!interp_name) {
2484 goto exit_perror;
2485 }
2486
2487 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2488 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2489 eppnt->p_filesz);
2490 } else {
2491 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2492 eppnt->p_offset);
2493 if (retval != eppnt->p_filesz) {
2494 goto exit_perror;
2495 }
2496 }
2497 if (interp_name[eppnt->p_filesz - 1] != 0) {
2498 errmsg = "Invalid PT_INTERP entry";
2499 goto exit_errmsg;
2500 }
2501 *pinterp_name = interp_name;
5dd0db52
SM
2502#ifdef TARGET_MIPS
2503 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2504 Mips_elf_abiflags_v0 abiflags;
2505 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2506 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2507 goto exit_errmsg;
2508 }
2509 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2510 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2511 sizeof(Mips_elf_abiflags_v0));
2512 } else {
2513 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2514 eppnt->p_offset);
2515 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2516 goto exit_perror;
2517 }
2518 }
2519 bswap_mips_abiflags(&abiflags);
c94cb6c9 2520 info->fp_abi = abiflags.fp_abi;
5dd0db52 2521#endif
d97ef72e 2522 }
682674b8 2523 }
5fafdf24 2524
8e62a717
RH
2525 if (info->end_data == 0) {
2526 info->start_data = info->end_code;
2527 info->end_data = info->end_code;
2528 info->brk = info->end_code;
2529 }
2530
682674b8 2531 if (qemu_log_enabled()) {
8e62a717 2532 load_symbols(ehdr, image_fd, load_bias);
682674b8 2533 }
31e31b8a 2534
98c1076c
AB
2535 mmap_unlock();
2536
8e62a717
RH
2537 close(image_fd);
2538 return;
2539
2540 exit_read:
2541 if (retval >= 0) {
2542 errmsg = "Incomplete read of file header";
2543 goto exit_errmsg;
2544 }
2545 exit_perror:
2546 errmsg = strerror(errno);
2547 exit_errmsg:
2548 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2549 exit(-1);
2550}
2551
2552static void load_elf_interp(const char *filename, struct image_info *info,
2553 char bprm_buf[BPRM_BUF_SIZE])
2554{
2555 int fd, retval;
2556
2557 fd = open(path(filename), O_RDONLY);
2558 if (fd < 0) {
2559 goto exit_perror;
2560 }
31e31b8a 2561
8e62a717
RH
2562 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2563 if (retval < 0) {
2564 goto exit_perror;
2565 }
2566 if (retval < BPRM_BUF_SIZE) {
2567 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2568 }
2569
bf858897 2570 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2571 return;
2572
2573 exit_perror:
2574 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2575 exit(-1);
31e31b8a
FB
2576}
2577
49918a75
PB
2578static int symfind(const void *s0, const void *s1)
2579{
c7c530cd 2580 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2581 struct elf_sym *sym = (struct elf_sym *)s1;
2582 int result = 0;
c7c530cd 2583 if (addr < sym->st_value) {
49918a75 2584 result = -1;
c7c530cd 2585 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2586 result = 1;
2587 }
2588 return result;
2589}
2590
2591static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2592{
2593#if ELF_CLASS == ELFCLASS32
2594 struct elf_sym *syms = s->disas_symtab.elf32;
2595#else
2596 struct elf_sym *syms = s->disas_symtab.elf64;
2597#endif
2598
2599 // binary search
49918a75
PB
2600 struct elf_sym *sym;
2601
c7c530cd 2602 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2603 if (sym != NULL) {
49918a75
PB
2604 return s->disas_strtab + sym->st_name;
2605 }
2606
2607 return "";
2608}
2609
2610/* FIXME: This should use elf_ops.h */
2611static int symcmp(const void *s0, const void *s1)
2612{
2613 struct elf_sym *sym0 = (struct elf_sym *)s0;
2614 struct elf_sym *sym1 = (struct elf_sym *)s1;
2615 return (sym0->st_value < sym1->st_value)
2616 ? -1
2617 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2618}
2619
689f936f 2620/* Best attempt to load symbols from this ELF object. */
682674b8 2621static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2622{
682674b8 2623 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2624 uint64_t segsz;
682674b8 2625 struct elf_shdr *shdr;
b9475279
CV
2626 char *strings = NULL;
2627 struct syminfo *s = NULL;
2628 struct elf_sym *new_syms, *syms = NULL;
689f936f 2629
682674b8
RH
2630 shnum = hdr->e_shnum;
2631 i = shnum * sizeof(struct elf_shdr);
2632 shdr = (struct elf_shdr *)alloca(i);
2633 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2634 return;
2635 }
2636
2637 bswap_shdr(shdr, shnum);
2638 for (i = 0; i < shnum; ++i) {
2639 if (shdr[i].sh_type == SHT_SYMTAB) {
2640 sym_idx = i;
2641 str_idx = shdr[i].sh_link;
49918a75
PB
2642 goto found;
2643 }
689f936f 2644 }
682674b8
RH
2645
2646 /* There will be no symbol table if the file was stripped. */
2647 return;
689f936f
FB
2648
2649 found:
682674b8 2650 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2651 s = g_try_new(struct syminfo, 1);
682674b8 2652 if (!s) {
b9475279 2653 goto give_up;
682674b8 2654 }
5fafdf24 2655
1e06262d
PM
2656 segsz = shdr[str_idx].sh_size;
2657 s->disas_strtab = strings = g_try_malloc(segsz);
2658 if (!strings ||
2659 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2660 goto give_up;
682674b8 2661 }
49918a75 2662
1e06262d
PM
2663 segsz = shdr[sym_idx].sh_size;
2664 syms = g_try_malloc(segsz);
2665 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2666 goto give_up;
682674b8 2667 }
31e31b8a 2668
1e06262d
PM
2669 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2670 /* Implausibly large symbol table: give up rather than ploughing
2671 * on with the number of symbols calculation overflowing
2672 */
2673 goto give_up;
2674 }
2675 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2676 for (i = 0; i < nsyms; ) {
49918a75 2677 bswap_sym(syms + i);
682674b8
RH
2678 /* Throw away entries which we do not need. */
2679 if (syms[i].st_shndx == SHN_UNDEF
2680 || syms[i].st_shndx >= SHN_LORESERVE
2681 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2682 if (i < --nsyms) {
49918a75
PB
2683 syms[i] = syms[nsyms];
2684 }
682674b8 2685 } else {
49918a75 2686#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2687 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2688 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2689#endif
682674b8
RH
2690 syms[i].st_value += load_bias;
2691 i++;
2692 }
0774bed1 2693 }
49918a75 2694
b9475279
CV
2695 /* No "useful" symbol. */
2696 if (nsyms == 0) {
2697 goto give_up;
2698 }
2699
5d5c9930
RH
2700 /* Attempt to free the storage associated with the local symbols
2701 that we threw away. Whether or not this has any effect on the
2702 memory allocation depends on the malloc implementation and how
2703 many symbols we managed to discard. */
0ef9ea29 2704 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2705 if (new_syms == NULL) {
b9475279 2706 goto give_up;
5d5c9930 2707 }
8d79de6e 2708 syms = new_syms;
5d5c9930 2709
49918a75 2710 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2711
49918a75
PB
2712 s->disas_num_syms = nsyms;
2713#if ELF_CLASS == ELFCLASS32
2714 s->disas_symtab.elf32 = syms;
49918a75
PB
2715#else
2716 s->disas_symtab.elf64 = syms;
49918a75 2717#endif
682674b8 2718 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2719 s->next = syminfos;
2720 syminfos = s;
b9475279
CV
2721
2722 return;
2723
2724give_up:
0ef9ea29
PM
2725 g_free(s);
2726 g_free(strings);
2727 g_free(syms);
689f936f 2728}
31e31b8a 2729
768fe76e
YS
2730uint32_t get_elf_eflags(int fd)
2731{
2732 struct elfhdr ehdr;
2733 off_t offset;
2734 int ret;
2735
2736 /* Read ELF header */
2737 offset = lseek(fd, 0, SEEK_SET);
2738 if (offset == (off_t) -1) {
2739 return 0;
2740 }
2741 ret = read(fd, &ehdr, sizeof(ehdr));
2742 if (ret < sizeof(ehdr)) {
2743 return 0;
2744 }
2745 offset = lseek(fd, offset, SEEK_SET);
2746 if (offset == (off_t) -1) {
2747 return 0;
2748 }
2749
2750 /* Check ELF signature */
2751 if (!elf_check_ident(&ehdr)) {
2752 return 0;
2753 }
2754
2755 /* check header */
2756 bswap_ehdr(&ehdr);
2757 if (!elf_check_ehdr(&ehdr)) {
2758 return 0;
2759 }
2760
2761 /* return architecture id */
2762 return ehdr.e_flags;
2763}
2764
f0116c54 2765int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2766{
8e62a717 2767 struct image_info interp_info;
31e31b8a 2768 struct elfhdr elf_ex;
8e62a717 2769 char *elf_interpreter = NULL;
59baae9a 2770 char *scratch;
31e31b8a 2771
abcac736
DS
2772 memset(&interp_info, 0, sizeof(interp_info));
2773#ifdef TARGET_MIPS
2774 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2775#endif
2776
bf858897 2777 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2778
2779 load_elf_image(bprm->filename, bprm->fd, info,
2780 &elf_interpreter, bprm->buf);
31e31b8a 2781
bf858897
RH
2782 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2783 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2784 when we load the interpreter. */
2785 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2786
59baae9a
SB
2787 /* Do this so that we can load the interpreter, if need be. We will
2788 change some of these later */
2789 bprm->p = setup_arg_pages(bprm, info);
2790
2791 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2792 if (STACK_GROWS_DOWN) {
2793 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2794 bprm->p, info->stack_limit);
2795 info->file_string = bprm->p;
2796 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2797 bprm->p, info->stack_limit);
2798 info->env_strings = bprm->p;
2799 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2800 bprm->p, info->stack_limit);
2801 info->arg_strings = bprm->p;
2802 } else {
2803 info->arg_strings = bprm->p;
2804 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2805 bprm->p, info->stack_limit);
2806 info->env_strings = bprm->p;
2807 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2808 bprm->p, info->stack_limit);
2809 info->file_string = bprm->p;
2810 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2811 bprm->p, info->stack_limit);
2812 }
2813
59baae9a
SB
2814 g_free(scratch);
2815
e5fe0c52 2816 if (!bprm->p) {
bf858897
RH
2817 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2818 exit(-1);
379f6698 2819 }
379f6698 2820
8e62a717
RH
2821 if (elf_interpreter) {
2822 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2823
8e62a717
RH
2824 /* If the program interpreter is one of these two, then assume
2825 an iBCS2 image. Otherwise assume a native linux image. */
2826
2827 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2828 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2829 info->personality = PER_SVR4;
31e31b8a 2830
8e62a717
RH
2831 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2832 and some applications "depend" upon this behavior. Since
2833 we do not have the power to recompile these, we emulate
2834 the SVr4 behavior. Sigh. */
2835 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2836 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2837 }
c94cb6c9
SM
2838#ifdef TARGET_MIPS
2839 info->interp_fp_abi = interp_info.fp_abi;
2840#endif
31e31b8a
FB
2841 }
2842
8e62a717
RH
2843 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2844 info, (elf_interpreter ? &interp_info : NULL));
2845 info->start_stack = bprm->p;
2846
2847 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2848 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2849 point as a function descriptor. Do this after creating elf tables
2850 so that we copy the original program entry point into the AUXV. */
2851 if (elf_interpreter) {
8e78064e 2852 info->load_bias = interp_info.load_bias;
8e62a717 2853 info->entry = interp_info.entry;
bf858897 2854 free(elf_interpreter);
8e62a717 2855 }
31e31b8a 2856
edf8e2af
MW
2857#ifdef USE_ELF_CORE_DUMP
2858 bprm->core_dump = &elf_core_dump;
2859#endif
2860
31e31b8a
FB
2861 return 0;
2862}
2863
edf8e2af 2864#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2865/*
2866 * Definitions to generate Intel SVR4-like core files.
a2547a13 2867 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2868 * tacked on the front to prevent clashes with linux definitions,
2869 * and the typedef forms have been avoided. This is mostly like
2870 * the SVR4 structure, but more Linuxy, with things that Linux does
2871 * not support and which gdb doesn't really use excluded.
2872 *
2873 * Fields we don't dump (their contents is zero) in linux-user qemu
2874 * are marked with XXX.
2875 *
2876 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2877 *
2878 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2879 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2880 * the target resides):
2881 *
2882 * #define USE_ELF_CORE_DUMP
2883 *
2884 * Next you define type of register set used for dumping. ELF specification
2885 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2886 *
c227f099 2887 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2888 * #define ELF_NREG <number of registers>
c227f099 2889 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2890 *
edf8e2af
MW
2891 * Last step is to implement target specific function that copies registers
2892 * from given cpu into just specified register set. Prototype is:
2893 *
c227f099 2894 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2895 * const CPUArchState *env);
edf8e2af
MW
2896 *
2897 * Parameters:
2898 * regs - copy register values into here (allocated and zeroed by caller)
2899 * env - copy registers from here
2900 *
2901 * Example for ARM target is provided in this file.
2902 */
2903
2904/* An ELF note in memory */
2905struct memelfnote {
2906 const char *name;
2907 size_t namesz;
2908 size_t namesz_rounded;
2909 int type;
2910 size_t datasz;
80f5ce75 2911 size_t datasz_rounded;
edf8e2af
MW
2912 void *data;
2913 size_t notesz;
2914};
2915
a2547a13 2916struct target_elf_siginfo {
f8fd4fc4
PB
2917 abi_int si_signo; /* signal number */
2918 abi_int si_code; /* extra code */
2919 abi_int si_errno; /* errno */
edf8e2af
MW
2920};
2921
a2547a13
LD
2922struct target_elf_prstatus {
2923 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2924 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2925 abi_ulong pr_sigpend; /* XXX */
2926 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2927 target_pid_t pr_pid;
2928 target_pid_t pr_ppid;
2929 target_pid_t pr_pgrp;
2930 target_pid_t pr_sid;
edf8e2af
MW
2931 struct target_timeval pr_utime; /* XXX User time */
2932 struct target_timeval pr_stime; /* XXX System time */
2933 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2934 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2935 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2936 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2937};
2938
2939#define ELF_PRARGSZ (80) /* Number of chars for args */
2940
a2547a13 2941struct target_elf_prpsinfo {
edf8e2af
MW
2942 char pr_state; /* numeric process state */
2943 char pr_sname; /* char for pr_state */
2944 char pr_zomb; /* zombie */
2945 char pr_nice; /* nice val */
ca98ac83 2946 abi_ulong pr_flag; /* flags */
c227f099
AL
2947 target_uid_t pr_uid;
2948 target_gid_t pr_gid;
2949 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 2950 /* Lots missing */
d7eb2b92 2951 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
2952 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2953};
2954
2955/* Here is the structure in which status of each thread is captured. */
2956struct elf_thread_status {
72cf2d4f 2957 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2958 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2959#if 0
2960 elf_fpregset_t fpu; /* NT_PRFPREG */
2961 struct task_struct *thread;
2962 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2963#endif
2964 struct memelfnote notes[1];
2965 int num_notes;
2966};
2967
2968struct elf_note_info {
2969 struct memelfnote *notes;
a2547a13
LD
2970 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2971 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2972
b58deb34 2973 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
2974#if 0
2975 /*
2976 * Current version of ELF coredump doesn't support
2977 * dumping fp regs etc.
2978 */
2979 elf_fpregset_t *fpu;
2980 elf_fpxregset_t *xfpu;
2981 int thread_status_size;
2982#endif
2983 int notes_size;
2984 int numnote;
2985};
2986
2987struct vm_area_struct {
1a1c4db9
MI
2988 target_ulong vma_start; /* start vaddr of memory region */
2989 target_ulong vma_end; /* end vaddr of memory region */
2990 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2991 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2992};
2993
2994struct mm_struct {
72cf2d4f 2995 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2996 int mm_count; /* number of mappings */
2997};
2998
2999static struct mm_struct *vma_init(void);
3000static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3001static int vma_add_mapping(struct mm_struct *, target_ulong,
3002 target_ulong, abi_ulong);
edf8e2af
MW
3003static int vma_get_mapping_count(const struct mm_struct *);
3004static struct vm_area_struct *vma_first(const struct mm_struct *);
3005static struct vm_area_struct *vma_next(struct vm_area_struct *);
3006static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3007static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3008 unsigned long flags);
edf8e2af
MW
3009
3010static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3011static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3012 unsigned int, void *);
a2547a13
LD
3013static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3014static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3015static void fill_auxv_note(struct memelfnote *, const TaskState *);
3016static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3017static size_t note_size(const struct memelfnote *);
3018static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3019static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3020static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3021static int core_dump_filename(const TaskState *, char *, size_t);
3022
3023static int dump_write(int, const void *, size_t);
3024static int write_note(struct memelfnote *, int);
3025static int write_note_info(struct elf_note_info *, int);
3026
3027#ifdef BSWAP_NEEDED
a2547a13 3028static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3029{
ca98ac83
PB
3030 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3031 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3032 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3033 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3034 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3035 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3036 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3037 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3038 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3039 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3040 /* cpu times are not filled, so we skip them */
3041 /* regs should be in correct format already */
3042 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3043}
3044
a2547a13 3045static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3046{
ca98ac83 3047 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3048 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3049 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3050 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3051 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3052 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3053 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3054}
991f8f0c
RH
3055
3056static void bswap_note(struct elf_note *en)
3057{
3058 bswap32s(&en->n_namesz);
3059 bswap32s(&en->n_descsz);
3060 bswap32s(&en->n_type);
3061}
3062#else
3063static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3064static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3065static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3066#endif /* BSWAP_NEEDED */
3067
3068/*
3069 * Minimal support for linux memory regions. These are needed
3070 * when we are finding out what memory exactly belongs to
3071 * emulated process. No locks needed here, as long as
3072 * thread that received the signal is stopped.
3073 */
3074
3075static struct mm_struct *vma_init(void)
3076{
3077 struct mm_struct *mm;
3078
7267c094 3079 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3080 return (NULL);
3081
3082 mm->mm_count = 0;
72cf2d4f 3083 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3084
3085 return (mm);
3086}
3087
3088static void vma_delete(struct mm_struct *mm)
3089{
3090 struct vm_area_struct *vma;
3091
3092 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3093 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3094 g_free(vma);
edf8e2af 3095 }
7267c094 3096 g_free(mm);
edf8e2af
MW
3097}
3098
1a1c4db9
MI
3099static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3100 target_ulong end, abi_ulong flags)
edf8e2af
MW
3101{
3102 struct vm_area_struct *vma;
3103
7267c094 3104 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3105 return (-1);
3106
3107 vma->vma_start = start;
3108 vma->vma_end = end;
3109 vma->vma_flags = flags;
3110
72cf2d4f 3111 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3112 mm->mm_count++;
3113
3114 return (0);
3115}
3116
3117static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3118{
72cf2d4f 3119 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3120}
3121
3122static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3123{
72cf2d4f 3124 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3125}
3126
3127static int vma_get_mapping_count(const struct mm_struct *mm)
3128{
3129 return (mm->mm_count);
3130}
3131
3132/*
3133 * Calculate file (dump) size of given memory region.
3134 */
3135static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3136{
3137 /* if we cannot even read the first page, skip it */
3138 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3139 return (0);
3140
3141 /*
3142 * Usually we don't dump executable pages as they contain
3143 * non-writable code that debugger can read directly from
3144 * target library etc. However, thread stacks are marked
3145 * also executable so we read in first page of given region
3146 * and check whether it contains elf header. If there is
3147 * no elf header, we dump it.
3148 */
3149 if (vma->vma_flags & PROT_EXEC) {
3150 char page[TARGET_PAGE_SIZE];
3151
3152 copy_from_user(page, vma->vma_start, sizeof (page));
3153 if ((page[EI_MAG0] == ELFMAG0) &&
3154 (page[EI_MAG1] == ELFMAG1) &&
3155 (page[EI_MAG2] == ELFMAG2) &&
3156 (page[EI_MAG3] == ELFMAG3)) {
3157 /*
3158 * Mappings are possibly from ELF binary. Don't dump
3159 * them.
3160 */
3161 return (0);
3162 }
3163 }
3164
3165 return (vma->vma_end - vma->vma_start);
3166}
3167
1a1c4db9 3168static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3169 unsigned long flags)
edf8e2af
MW
3170{
3171 struct mm_struct *mm = (struct mm_struct *)priv;
3172
edf8e2af
MW
3173 vma_add_mapping(mm, start, end, flags);
3174 return (0);
3175}
3176
3177static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3178 unsigned int sz, void *data)
edf8e2af
MW
3179{
3180 unsigned int namesz;
3181
3182 namesz = strlen(name) + 1;
3183 note->name = name;
3184 note->namesz = namesz;
3185 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3186 note->type = type;
80f5ce75
LV
3187 note->datasz = sz;
3188 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3189
edf8e2af
MW
3190 note->data = data;
3191
3192 /*
3193 * We calculate rounded up note size here as specified by
3194 * ELF document.
3195 */
3196 note->notesz = sizeof (struct elf_note) +
80f5ce75 3197 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3198}
3199
3200static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3201 uint32_t flags)
edf8e2af
MW
3202{
3203 (void) memset(elf, 0, sizeof(*elf));
3204
3205 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3206 elf->e_ident[EI_CLASS] = ELF_CLASS;
3207 elf->e_ident[EI_DATA] = ELF_DATA;
3208 elf->e_ident[EI_VERSION] = EV_CURRENT;
3209 elf->e_ident[EI_OSABI] = ELF_OSABI;
3210
3211 elf->e_type = ET_CORE;
3212 elf->e_machine = machine;
3213 elf->e_version = EV_CURRENT;
3214 elf->e_phoff = sizeof(struct elfhdr);
3215 elf->e_flags = flags;
3216 elf->e_ehsize = sizeof(struct elfhdr);
3217 elf->e_phentsize = sizeof(struct elf_phdr);
3218 elf->e_phnum = segs;
3219
edf8e2af 3220 bswap_ehdr(elf);
edf8e2af
MW
3221}
3222
3223static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3224{
3225 phdr->p_type = PT_NOTE;
3226 phdr->p_offset = offset;
3227 phdr->p_vaddr = 0;
3228 phdr->p_paddr = 0;
3229 phdr->p_filesz = sz;
3230 phdr->p_memsz = 0;
3231 phdr->p_flags = 0;
3232 phdr->p_align = 0;
3233
991f8f0c 3234 bswap_phdr(phdr, 1);
edf8e2af
MW
3235}
3236
3237static size_t note_size(const struct memelfnote *note)
3238{
3239 return (note->notesz);
3240}
3241
a2547a13 3242static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3243 const TaskState *ts, int signr)
edf8e2af
MW
3244{
3245 (void) memset(prstatus, 0, sizeof (*prstatus));
3246 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3247 prstatus->pr_pid = ts->ts_tid;
3248 prstatus->pr_ppid = getppid();
3249 prstatus->pr_pgrp = getpgrp();
3250 prstatus->pr_sid = getsid(0);
3251
edf8e2af 3252 bswap_prstatus(prstatus);
edf8e2af
MW
3253}
3254
a2547a13 3255static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3256{
900cfbca 3257 char *base_filename;
edf8e2af
MW
3258 unsigned int i, len;
3259
3260 (void) memset(psinfo, 0, sizeof (*psinfo));
3261
3262 len = ts->info->arg_end - ts->info->arg_start;
3263 if (len >= ELF_PRARGSZ)
3264 len = ELF_PRARGSZ - 1;
3265 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3266 return -EFAULT;
3267 for (i = 0; i < len; i++)
3268 if (psinfo->pr_psargs[i] == 0)
3269 psinfo->pr_psargs[i] = ' ';
3270 psinfo->pr_psargs[len] = 0;
3271
3272 psinfo->pr_pid = getpid();
3273 psinfo->pr_ppid = getppid();
3274 psinfo->pr_pgrp = getpgrp();
3275 psinfo->pr_sid = getsid(0);
3276 psinfo->pr_uid = getuid();
3277 psinfo->pr_gid = getgid();
3278
900cfbca
JM
3279 base_filename = g_path_get_basename(ts->bprm->filename);
3280 /*
3281 * Using strncpy here is fine: at max-length,
3282 * this field is not NUL-terminated.
3283 */
edf8e2af 3284 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3285 sizeof(psinfo->pr_fname));
edf8e2af 3286
900cfbca 3287 g_free(base_filename);
edf8e2af 3288 bswap_psinfo(psinfo);
edf8e2af
MW
3289 return (0);
3290}
3291
3292static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3293{
3294 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3295 elf_addr_t orig_auxv = auxv;
edf8e2af 3296 void *ptr;
125b0f55 3297 int len = ts->info->auxv_len;
edf8e2af
MW
3298
3299 /*
3300 * Auxiliary vector is stored in target process stack. It contains
3301 * {type, value} pairs that we need to dump into note. This is not
3302 * strictly necessary but we do it here for sake of completeness.
3303 */
3304
edf8e2af
MW
3305 /* read in whole auxv vector and copy it to memelfnote */
3306 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3307 if (ptr != NULL) {
3308 fill_note(note, "CORE", NT_AUXV, len, ptr);
3309 unlock_user(ptr, auxv, len);
3310 }
3311}
3312
3313/*
3314 * Constructs name of coredump file. We have following convention
3315 * for the name:
3316 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3317 *
3318 * Returns 0 in case of success, -1 otherwise (errno is set).
3319 */
3320static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3321 size_t bufsize)
edf8e2af
MW
3322{
3323 char timestamp[64];
edf8e2af
MW
3324 char *base_filename = NULL;
3325 struct timeval tv;
3326 struct tm tm;
3327
3328 assert(bufsize >= PATH_MAX);
3329
3330 if (gettimeofday(&tv, NULL) < 0) {
3331 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3332 strerror(errno));
edf8e2af
MW
3333 return (-1);
3334 }
3335
b8da57fa 3336 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3337 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3338 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3339 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3340 base_filename, timestamp, (int)getpid());
b8da57fa 3341 g_free(base_filename);
edf8e2af
MW
3342
3343 return (0);
3344}
3345
3346static int dump_write(int fd, const void *ptr, size_t size)
3347{
3348 const char *bufp = (const char *)ptr;
3349 ssize_t bytes_written, bytes_left;
3350 struct rlimit dumpsize;
3351 off_t pos;
3352
3353 bytes_written = 0;
3354 getrlimit(RLIMIT_CORE, &dumpsize);
3355 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3356 if (errno == ESPIPE) { /* not a seekable stream */
3357 bytes_left = size;
3358 } else {
3359 return pos;
3360 }
3361 } else {
3362 if (dumpsize.rlim_cur <= pos) {
3363 return -1;
3364 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3365 bytes_left = size;
3366 } else {
3367 size_t limit_left=dumpsize.rlim_cur - pos;
3368 bytes_left = limit_left >= size ? size : limit_left ;
3369 }
3370 }
3371
3372 /*
3373 * In normal conditions, single write(2) should do but
3374 * in case of socket etc. this mechanism is more portable.
3375 */
3376 do {
3377 bytes_written = write(fd, bufp, bytes_left);
3378 if (bytes_written < 0) {
3379 if (errno == EINTR)
3380 continue;
3381 return (-1);
3382 } else if (bytes_written == 0) { /* eof */
3383 return (-1);
3384 }
3385 bufp += bytes_written;
3386 bytes_left -= bytes_written;
3387 } while (bytes_left > 0);
3388
3389 return (0);
3390}
3391
3392static int write_note(struct memelfnote *men, int fd)
3393{
3394 struct elf_note en;
3395
3396 en.n_namesz = men->namesz;
3397 en.n_type = men->type;
3398 en.n_descsz = men->datasz;
3399
edf8e2af 3400 bswap_note(&en);
edf8e2af
MW
3401
3402 if (dump_write(fd, &en, sizeof(en)) != 0)
3403 return (-1);
3404 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3405 return (-1);
80f5ce75 3406 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3407 return (-1);
3408
3409 return (0);
3410}
3411
9349b4f9 3412static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3413{
29a0af61 3414 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3415 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3416 struct elf_thread_status *ets;
3417
7267c094 3418 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3419 ets->num_notes = 1; /* only prstatus is dumped */
3420 fill_prstatus(&ets->prstatus, ts, 0);
3421 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3422 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3423 &ets->prstatus);
edf8e2af 3424
72cf2d4f 3425 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3426
3427 info->notes_size += note_size(&ets->notes[0]);
3428}
3429
6afafa86
PM
3430static void init_note_info(struct elf_note_info *info)
3431{
3432 /* Initialize the elf_note_info structure so that it is at
3433 * least safe to call free_note_info() on it. Must be
3434 * called before calling fill_note_info().
3435 */
3436 memset(info, 0, sizeof (*info));
3437 QTAILQ_INIT(&info->thread_list);
3438}
3439
edf8e2af 3440static int fill_note_info(struct elf_note_info *info,
9349b4f9 3441 long signr, const CPUArchState *env)
edf8e2af
MW
3442{
3443#define NUMNOTES 3
29a0af61 3444 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3445 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3446 int i;
3447
c78d65e8 3448 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3449 if (info->notes == NULL)
3450 return (-ENOMEM);
7267c094 3451 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3452 if (info->prstatus == NULL)
3453 return (-ENOMEM);
7267c094 3454 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3455 if (info->prstatus == NULL)
3456 return (-ENOMEM);
3457
3458 /*
3459 * First fill in status (and registers) of current thread
3460 * including process info & aux vector.
3461 */
3462 fill_prstatus(info->prstatus, ts, signr);
3463 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3464 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3465 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3466 fill_psinfo(info->psinfo, ts);
3467 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3468 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3469 fill_auxv_note(&info->notes[2], ts);
3470 info->numnote = 3;
3471
3472 info->notes_size = 0;
3473 for (i = 0; i < info->numnote; i++)
3474 info->notes_size += note_size(&info->notes[i]);
3475
3476 /* read and fill status of all threads */
3477 cpu_list_lock();
bdc44640 3478 CPU_FOREACH(cpu) {
a2247f8e 3479 if (cpu == thread_cpu) {
edf8e2af 3480 continue;
182735ef
AF
3481 }
3482 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3483 }
3484 cpu_list_unlock();
3485
3486 return (0);
3487}
3488
3489static void free_note_info(struct elf_note_info *info)
3490{
3491 struct elf_thread_status *ets;
3492
72cf2d4f
BS
3493 while (!QTAILQ_EMPTY(&info->thread_list)) {
3494 ets = QTAILQ_FIRST(&info->thread_list);
3495 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3496 g_free(ets);
edf8e2af
MW
3497 }
3498
7267c094
AL
3499 g_free(info->prstatus);
3500 g_free(info->psinfo);
3501 g_free(info->notes);
edf8e2af
MW
3502}
3503
3504static int write_note_info(struct elf_note_info *info, int fd)
3505{
3506 struct elf_thread_status *ets;
3507 int i, error = 0;
3508
3509 /* write prstatus, psinfo and auxv for current thread */
3510 for (i = 0; i < info->numnote; i++)
3511 if ((error = write_note(&info->notes[i], fd)) != 0)
3512 return (error);
3513
3514 /* write prstatus for each thread */
52a53afe 3515 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3516 if ((error = write_note(&ets->notes[0], fd)) != 0)
3517 return (error);
3518 }
3519
3520 return (0);
3521}
3522
3523/*
3524 * Write out ELF coredump.
3525 *
3526 * See documentation of ELF object file format in:
3527 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3528 *
3529 * Coredump format in linux is following:
3530 *
3531 * 0 +----------------------+ \
3532 * | ELF header | ET_CORE |
3533 * +----------------------+ |
3534 * | ELF program headers | |--- headers
3535 * | - NOTE section | |
3536 * | - PT_LOAD sections | |
3537 * +----------------------+ /
3538 * | NOTEs: |
3539 * | - NT_PRSTATUS |
3540 * | - NT_PRSINFO |
3541 * | - NT_AUXV |
3542 * +----------------------+ <-- aligned to target page
3543 * | Process memory dump |
3544 * : :
3545 * . .
3546 * : :
3547 * | |
3548 * +----------------------+
3549 *
3550 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3551 * NT_PRSINFO -> struct elf_prpsinfo
3552 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3553 *
3554 * Format follows System V format as close as possible. Current
3555 * version limitations are as follows:
3556 * - no floating point registers are dumped
3557 *
3558 * Function returns 0 in case of success, negative errno otherwise.
3559 *
3560 * TODO: make this work also during runtime: it should be
3561 * possible to force coredump from running process and then
3562 * continue processing. For example qemu could set up SIGUSR2
3563 * handler (provided that target process haven't registered
3564 * handler for that) that does the dump when signal is received.
3565 */
9349b4f9 3566static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3567{
29a0af61 3568 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3569 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3570 struct vm_area_struct *vma = NULL;
3571 char corefile[PATH_MAX];
3572 struct elf_note_info info;
3573 struct elfhdr elf;
3574 struct elf_phdr phdr;
3575 struct rlimit dumpsize;
3576 struct mm_struct *mm = NULL;
3577 off_t offset = 0, data_offset = 0;
3578 int segs = 0;
3579 int fd = -1;
3580
6afafa86
PM
3581 init_note_info(&info);
3582
edf8e2af
MW
3583 errno = 0;
3584 getrlimit(RLIMIT_CORE, &dumpsize);
3585 if (dumpsize.rlim_cur == 0)
d97ef72e 3586 return 0;
edf8e2af
MW
3587
3588 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3589 return (-errno);
3590
3591 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3592 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3593 return (-errno);
3594
3595 /*
3596 * Walk through target process memory mappings and
3597 * set up structure containing this information. After
3598 * this point vma_xxx functions can be used.
3599 */
3600 if ((mm = vma_init()) == NULL)
3601 goto out;
3602
3603 walk_memory_regions(mm, vma_walker);
3604 segs = vma_get_mapping_count(mm);
3605
3606 /*
3607 * Construct valid coredump ELF header. We also
3608 * add one more segment for notes.
3609 */
3610 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3611 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3612 goto out;
3613
b6af0975 3614 /* fill in the in-memory version of notes */
edf8e2af
MW
3615 if (fill_note_info(&info, signr, env) < 0)
3616 goto out;
3617
3618 offset += sizeof (elf); /* elf header */
3619 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3620
3621 /* write out notes program header */
3622 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3623
3624 offset += info.notes_size;
3625 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3626 goto out;
3627
3628 /*
3629 * ELF specification wants data to start at page boundary so
3630 * we align it here.
3631 */
80f5ce75 3632 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3633
3634 /*
3635 * Write program headers for memory regions mapped in
3636 * the target process.
3637 */
3638 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3639 (void) memset(&phdr, 0, sizeof (phdr));
3640
3641 phdr.p_type = PT_LOAD;
3642 phdr.p_offset = offset;
3643 phdr.p_vaddr = vma->vma_start;
3644 phdr.p_paddr = 0;
3645 phdr.p_filesz = vma_dump_size(vma);
3646 offset += phdr.p_filesz;
3647 phdr.p_memsz = vma->vma_end - vma->vma_start;
3648 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3649 if (vma->vma_flags & PROT_WRITE)
3650 phdr.p_flags |= PF_W;
3651 if (vma->vma_flags & PROT_EXEC)
3652 phdr.p_flags |= PF_X;
3653 phdr.p_align = ELF_EXEC_PAGESIZE;
3654
80f5ce75 3655 bswap_phdr(&phdr, 1);
772034b6
PM
3656 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3657 goto out;
3658 }
edf8e2af
MW
3659 }
3660
3661 /*
3662 * Next we write notes just after program headers. No
3663 * alignment needed here.
3664 */
3665 if (write_note_info(&info, fd) < 0)
3666 goto out;
3667
3668 /* align data to page boundary */
edf8e2af
MW
3669 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3670 goto out;
3671
3672 /*
3673 * Finally we can dump process memory into corefile as well.
3674 */
3675 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3676 abi_ulong addr;
3677 abi_ulong end;
3678
3679 end = vma->vma_start + vma_dump_size(vma);
3680
3681 for (addr = vma->vma_start; addr < end;
d97ef72e 3682 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3683 char page[TARGET_PAGE_SIZE];
3684 int error;
3685
3686 /*
3687 * Read in page from target process memory and
3688 * write it to coredump file.
3689 */
3690 error = copy_from_user(page, addr, sizeof (page));
3691 if (error != 0) {
49995e17 3692 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3693 addr);
edf8e2af
MW
3694 errno = -error;
3695 goto out;
3696 }
3697 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3698 goto out;
3699 }
3700 }
3701
d97ef72e 3702 out:
edf8e2af
MW
3703 free_note_info(&info);
3704 if (mm != NULL)
3705 vma_delete(mm);
3706 (void) close(fd);
3707
3708 if (errno != 0)
3709 return (-errno);
3710 return (0);
3711}
edf8e2af
MW
3712#endif /* USE_ELF_CORE_DUMP */
3713
e5fe0c52
PB
3714void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3715{
3716 init_thread(regs, infop);
3717}