]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
Merge remote-tracking branch 'remotes/ehabkost/tags/machine-next-pull-request' into...
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
83fb7adf
FB
81/* this flag is uneffective under linux too, should be deleted */
82#ifndef MAP_DENYWRITE
83#define MAP_DENYWRITE 0
84#endif
85
86/* should probably go in elf.h */
87#ifndef ELIBBAD
88#define ELIBBAD 80
89#endif
90
28490231
RH
91#ifdef TARGET_WORDS_BIGENDIAN
92#define ELF_DATA ELFDATA2MSB
93#else
94#define ELF_DATA ELFDATA2LSB
95#endif
96
a29f998d 97#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
98typedef abi_ullong target_elf_greg_t;
99#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
100#else
101typedef abi_ulong target_elf_greg_t;
102#define tswapreg(ptr) tswapal(ptr)
103#endif
104
21e807fa 105#ifdef USE_UID16
1ddd592f
PB
106typedef abi_ushort target_uid_t;
107typedef abi_ushort target_gid_t;
21e807fa 108#else
f8fd4fc4
PB
109typedef abi_uint target_uid_t;
110typedef abi_uint target_gid_t;
21e807fa 111#endif
f8fd4fc4 112typedef abi_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
a2247f8e 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
a2247f8e
AF
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
136}
137
84409ddb
JM
138#ifdef TARGET_X86_64
139#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
140
141#define ELF_CLASS ELFCLASS64
84409ddb
JM
142#define ELF_ARCH EM_X86_64
143
144static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145{
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149}
150
9edc5d79 151#define ELF_NREG 27
c227f099 152typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
153
154/*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
05390248 161static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
162{
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190}
191
84409ddb
JM
192#else
193
30ac07d4
FB
194#define ELF_START_MMAP 0x80000000
195
30ac07d4
FB
196/*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201/*
202 * These are used to set parameters in the core dumps.
203 */
d97ef72e 204#define ELF_CLASS ELFCLASS32
d97ef72e 205#define ELF_ARCH EM_386
30ac07d4 206
d97ef72e
RH
207static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
b346ff46
FB
209{
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
e5fe0c52
PB
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
b346ff46 221}
9edc5d79 222
9edc5d79 223#define ELF_NREG 17
c227f099 224typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
225
226/*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
05390248 233static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
234{
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252}
84409ddb 253#endif
b346ff46 254
9edc5d79 255#define USE_ELF_CORE_DUMP
d97ef72e 256#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
257
258#endif
259
260#ifdef TARGET_ARM
261
24e76ff0
PM
262#ifndef TARGET_AARCH64
263/* 32 bit ARM definitions */
264
b346ff46
FB
265#define ELF_START_MMAP 0x80000000
266
b597c3f7 267#define ELF_ARCH EM_ARM
d97ef72e 268#define ELF_CLASS ELFCLASS32
b346ff46 269
d97ef72e
RH
270static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
b346ff46 272{
992f48a0 273 abi_long stack = infop->start_stack;
b346ff46 274 memset(regs, 0, sizeof(*regs));
99033cae 275
167e4cdc
PM
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
2f619698 282 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 285 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 286 regs->uregs[0] = 0;
e5fe0c52 287 /* For uClinux PIC binaries. */
863cf0b7 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 289 regs->uregs[10] = infop->start_data;
b346ff46
FB
290}
291
edf8e2af 292#define ELF_NREG 18
c227f099 293typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 294
05390248 295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 296{
86cd7b2d
PB
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
316}
317
30ac07d4 318#define USE_ELF_CORE_DUMP
d97ef72e 319#define ELF_EXEC_PAGESIZE 4096
30ac07d4 320
afce2927
FB
321enum
322{
d97ef72e
RH
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
345};
346
ad6919dc
PM
347enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353};
354
6b1275ff
PM
355/* The commpage only exists for 32 bit kernels */
356
806d1021
MI
357/* Return 1 if the proposed guest space is suitable for the guest.
358 * Return 0 if the proposed guest space isn't suitable, but another
359 * address space should be tried.
360 * Return -1 if there is no way the proposed guest space can be
361 * valid regardless of the base.
362 * The guest code may leave a page mapped and populate it if the
363 * address is suitable.
364 */
c3637eaf
LS
365static int init_guest_commpage(unsigned long guest_base,
366 unsigned long guest_size)
97cc7560
DDAG
367{
368 unsigned long real_start, test_page_addr;
369
370 /* We need to check that we can force a fault on access to the
371 * commpage at 0xffff0fxx
372 */
373 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
374
375 /* If the commpage lies within the already allocated guest space,
376 * then there is no way we can allocate it.
955e304f
LS
377 *
378 * You may be thinking that that this check is redundant because
379 * we already validated the guest size against MAX_RESERVED_VA;
380 * but if qemu_host_page_mask is unusually large, then
381 * test_page_addr may be lower.
806d1021
MI
382 */
383 if (test_page_addr >= guest_base
e568f9df 384 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
385 return -1;
386 }
387
97cc7560
DDAG
388 /* Note it needs to be writeable to let us initialise it */
389 real_start = (unsigned long)
390 mmap((void *)test_page_addr, qemu_host_page_size,
391 PROT_READ | PROT_WRITE,
392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
393
394 /* If we can't map it then try another address */
395 if (real_start == -1ul) {
396 return 0;
397 }
398
399 if (real_start != test_page_addr) {
400 /* OS didn't put the page where we asked - unmap and reject */
401 munmap((void *)real_start, qemu_host_page_size);
402 return 0;
403 }
404
405 /* Leave the page mapped
406 * Populate it (mmap should have left it all 0'd)
407 */
408
409 /* Kernel helper versions */
410 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
411
412 /* Now it's populated make it RO */
413 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
414 perror("Protecting guest commpage");
415 exit(-1);
416 }
417
418 return 1; /* All good */
419}
adf050b1
BC
420
421#define ELF_HWCAP get_elf_hwcap()
ad6919dc 422#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
423
424static uint32_t get_elf_hwcap(void)
425{
a2247f8e 426 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
427 uint32_t hwcaps = 0;
428
429 hwcaps |= ARM_HWCAP_ARM_SWP;
430 hwcaps |= ARM_HWCAP_ARM_HALF;
431 hwcaps |= ARM_HWCAP_ARM_THUMB;
432 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
433
434 /* probe for the extra features */
435#define GET_FEATURE(feat, hwcap) \
a2247f8e 436 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
437 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
438 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
439 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
440 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
441 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
442 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
443 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
446 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
447 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
448 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
449 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
450 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
451 * to our VFP_FP16 feature bit.
452 */
453 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
454 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
455
456 return hwcaps;
457}
afce2927 458
ad6919dc
PM
459static uint32_t get_elf_hwcap2(void)
460{
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
463
464 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 465 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
466 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
468 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
469 return hwcaps;
470}
471
472#undef GET_FEATURE
473
24e76ff0
PM
474#else
475/* 64 bit ARM definitions */
476#define ELF_START_MMAP 0x80000000
477
b597c3f7 478#define ELF_ARCH EM_AARCH64
24e76ff0
PM
479#define ELF_CLASS ELFCLASS64
480#define ELF_PLATFORM "aarch64"
481
482static inline void init_thread(struct target_pt_regs *regs,
483 struct image_info *infop)
484{
485 abi_long stack = infop->start_stack;
486 memset(regs, 0, sizeof(*regs));
487
488 regs->pc = infop->entry & ~0x3ULL;
489 regs->sp = stack;
490}
491
492#define ELF_NREG 34
493typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
494
495static void elf_core_copy_regs(target_elf_gregset_t *regs,
496 const CPUARMState *env)
497{
498 int i;
499
500 for (i = 0; i < 32; i++) {
501 (*regs)[i] = tswapreg(env->xregs[i]);
502 }
503 (*regs)[32] = tswapreg(env->pc);
504 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
505}
506
507#define USE_ELF_CORE_DUMP
508#define ELF_EXEC_PAGESIZE 4096
509
510enum {
511 ARM_HWCAP_A64_FP = 1 << 0,
512 ARM_HWCAP_A64_ASIMD = 1 << 1,
513 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
514 ARM_HWCAP_A64_AES = 1 << 3,
515 ARM_HWCAP_A64_PMULL = 1 << 4,
516 ARM_HWCAP_A64_SHA1 = 1 << 5,
517 ARM_HWCAP_A64_SHA2 = 1 << 6,
518 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
519 ARM_HWCAP_A64_ATOMICS = 1 << 8,
520 ARM_HWCAP_A64_FPHP = 1 << 9,
521 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
522 ARM_HWCAP_A64_CPUID = 1 << 11,
523 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
524 ARM_HWCAP_A64_JSCVT = 1 << 13,
525 ARM_HWCAP_A64_FCMA = 1 << 14,
526 ARM_HWCAP_A64_LRCPC = 1 << 15,
527 ARM_HWCAP_A64_DCPOP = 1 << 16,
528 ARM_HWCAP_A64_SHA3 = 1 << 17,
529 ARM_HWCAP_A64_SM3 = 1 << 18,
530 ARM_HWCAP_A64_SM4 = 1 << 19,
531 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
532 ARM_HWCAP_A64_SHA512 = 1 << 21,
533 ARM_HWCAP_A64_SVE = 1 << 22,
24e76ff0
PM
534};
535
536#define ELF_HWCAP get_elf_hwcap()
537
538static uint32_t get_elf_hwcap(void)
539{
540 ARMCPU *cpu = ARM_CPU(thread_cpu);
541 uint32_t hwcaps = 0;
542
543 hwcaps |= ARM_HWCAP_A64_FP;
544 hwcaps |= ARM_HWCAP_A64_ASIMD;
545
546 /* probe for the extra features */
547#define GET_FEATURE(feat, hwcap) \
548 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 549 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 550 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
551 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
552 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 553 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
955f56d4
AB
554 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
555 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
556 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
557 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
201b19d5
PM
558 GET_FEATURE(ARM_FEATURE_V8_FP16,
559 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
1dc81c15 560 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
0438f037 561 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
24e76ff0
PM
562#undef GET_FEATURE
563
564 return hwcaps;
565}
566
567#endif /* not TARGET_AARCH64 */
568#endif /* TARGET_ARM */
30ac07d4 569
853d6f7a 570#ifdef TARGET_SPARC
a315a145 571#ifdef TARGET_SPARC64
853d6f7a
FB
572
573#define ELF_START_MMAP 0x80000000
cf973e46
AT
574#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
575 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 576#ifndef TARGET_ABI32
cb33da57 577#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
578#else
579#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
580#endif
853d6f7a 581
a315a145 582#define ELF_CLASS ELFCLASS64
5ef54116
FB
583#define ELF_ARCH EM_SPARCV9
584
d97ef72e 585#define STACK_BIAS 2047
a315a145 586
d97ef72e
RH
587static inline void init_thread(struct target_pt_regs *regs,
588 struct image_info *infop)
a315a145 589{
992f48a0 590#ifndef TARGET_ABI32
a315a145 591 regs->tstate = 0;
992f48a0 592#endif
a315a145
FB
593 regs->pc = infop->entry;
594 regs->npc = regs->pc + 4;
595 regs->y = 0;
992f48a0
BS
596#ifdef TARGET_ABI32
597 regs->u_regs[14] = infop->start_stack - 16 * 4;
598#else
cb33da57
BS
599 if (personality(infop->personality) == PER_LINUX32)
600 regs->u_regs[14] = infop->start_stack - 16 * 4;
601 else
602 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 603#endif
a315a145
FB
604}
605
606#else
607#define ELF_START_MMAP 0x80000000
cf973e46
AT
608#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
609 | HWCAP_SPARC_MULDIV)
a315a145 610
853d6f7a 611#define ELF_CLASS ELFCLASS32
853d6f7a
FB
612#define ELF_ARCH EM_SPARC
613
d97ef72e
RH
614static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
853d6f7a 616{
f5155289
FB
617 regs->psr = 0;
618 regs->pc = infop->entry;
619 regs->npc = regs->pc + 4;
620 regs->y = 0;
621 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
622}
623
a315a145 624#endif
853d6f7a
FB
625#endif
626
67867308
FB
627#ifdef TARGET_PPC
628
4ecd4d16 629#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
630#define ELF_START_MMAP 0x80000000
631
e85e7c6e 632#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
633
634#define elf_check_arch(x) ( (x) == EM_PPC64 )
635
d97ef72e 636#define ELF_CLASS ELFCLASS64
84409ddb
JM
637
638#else
639
d97ef72e 640#define ELF_CLASS ELFCLASS32
84409ddb
JM
641
642#endif
643
d97ef72e 644#define ELF_ARCH EM_PPC
67867308 645
df84e4f3
NF
646/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
647 See arch/powerpc/include/asm/cputable.h. */
648enum {
3efa9a67 649 QEMU_PPC_FEATURE_32 = 0x80000000,
650 QEMU_PPC_FEATURE_64 = 0x40000000,
651 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
652 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
653 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
654 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
655 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
656 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
657 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
658 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
659 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
660 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
661 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
662 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
663 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
664 QEMU_PPC_FEATURE_CELL = 0x00010000,
665 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
666 QEMU_PPC_FEATURE_SMT = 0x00004000,
667 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
668 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
669 QEMU_PPC_FEATURE_PA6T = 0x00000800,
670 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
671 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
672 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
673 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
674 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
675
676 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
677 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
678
679 /* Feature definitions in AT_HWCAP2. */
680 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
681 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
682 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
683 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
684 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
685 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
686};
687
688#define ELF_HWCAP get_elf_hwcap()
689
690static uint32_t get_elf_hwcap(void)
691{
a2247f8e 692 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
693 uint32_t features = 0;
694
695 /* We don't have to be terribly complete here; the high points are
696 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 697#define GET_FEATURE(flag, feature) \
a2247f8e 698 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
699#define GET_FEATURE2(flags, feature) \
700 do { \
701 if ((cpu->env.insns_flags2 & flags) == flags) { \
702 features |= feature; \
703 } \
704 } while (0)
3efa9a67 705 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
706 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
707 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
708 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
709 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
710 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
711 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
712 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
713 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
714 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
715 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
716 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
717 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 718#undef GET_FEATURE
0e019746 719#undef GET_FEATURE2
df84e4f3
NF
720
721 return features;
722}
723
a60438dd
TM
724#define ELF_HWCAP2 get_elf_hwcap2()
725
726static uint32_t get_elf_hwcap2(void)
727{
728 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
729 uint32_t features = 0;
730
731#define GET_FEATURE(flag, feature) \
732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
733#define GET_FEATURE2(flag, feature) \
734 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
735
736 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
737 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
738 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
739 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
740
741#undef GET_FEATURE
742#undef GET_FEATURE2
743
744 return features;
745}
746
f5155289
FB
747/*
748 * The requirements here are:
749 * - keep the final alignment of sp (sp & 0xf)
750 * - make sure the 32-bit value at the first 16 byte aligned position of
751 * AUXV is greater than 16 for glibc compatibility.
752 * AT_IGNOREPPC is used for that.
753 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
754 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
755 */
0bccf03d 756#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
757#define ARCH_DLINFO \
758 do { \
623e250a 759 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 760 /* \
82991bed
PM
761 * Handle glibc compatibility: these magic entries must \
762 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
763 */ \
764 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
765 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
766 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
767 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
768 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 769 } while (0)
f5155289 770
67867308
FB
771static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
772{
67867308 773 _regs->gpr[1] = infop->start_stack;
e85e7c6e 774#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 775 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
776 uint64_t val;
777 get_user_u64(val, infop->entry + 8);
778 _regs->gpr[2] = val + infop->load_bias;
779 get_user_u64(val, infop->entry);
780 infop->entry = val + infop->load_bias;
d90b94cd
DK
781 } else {
782 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
783 }
84409ddb 784#endif
67867308
FB
785 _regs->nip = infop->entry;
786}
787
e2f3e741
NF
788/* See linux kernel: arch/powerpc/include/asm/elf.h. */
789#define ELF_NREG 48
790typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
791
05390248 792static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
793{
794 int i;
795 target_ulong ccr = 0;
796
797 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 798 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
799 }
800
86cd7b2d
PB
801 (*regs)[32] = tswapreg(env->nip);
802 (*regs)[33] = tswapreg(env->msr);
803 (*regs)[35] = tswapreg(env->ctr);
804 (*regs)[36] = tswapreg(env->lr);
805 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
806
807 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
808 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
809 }
86cd7b2d 810 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
811}
812
813#define USE_ELF_CORE_DUMP
d97ef72e 814#define ELF_EXEC_PAGESIZE 4096
67867308
FB
815
816#endif
817
048f6b4d
FB
818#ifdef TARGET_MIPS
819
820#define ELF_START_MMAP 0x80000000
821
388bb21a
TS
822#ifdef TARGET_MIPS64
823#define ELF_CLASS ELFCLASS64
824#else
048f6b4d 825#define ELF_CLASS ELFCLASS32
388bb21a 826#endif
048f6b4d
FB
827#define ELF_ARCH EM_MIPS
828
d97ef72e
RH
829static inline void init_thread(struct target_pt_regs *regs,
830 struct image_info *infop)
048f6b4d 831{
623a930e 832 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
833 regs->cp0_epc = infop->entry;
834 regs->regs[29] = infop->start_stack;
835}
836
51e52606
NF
837/* See linux kernel: arch/mips/include/asm/elf.h. */
838#define ELF_NREG 45
839typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
840
841/* See linux kernel: arch/mips/include/asm/reg.h. */
842enum {
843#ifdef TARGET_MIPS64
844 TARGET_EF_R0 = 0,
845#else
846 TARGET_EF_R0 = 6,
847#endif
848 TARGET_EF_R26 = TARGET_EF_R0 + 26,
849 TARGET_EF_R27 = TARGET_EF_R0 + 27,
850 TARGET_EF_LO = TARGET_EF_R0 + 32,
851 TARGET_EF_HI = TARGET_EF_R0 + 33,
852 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
853 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
854 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
855 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
856};
857
858/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 859static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
860{
861 int i;
862
863 for (i = 0; i < TARGET_EF_R0; i++) {
864 (*regs)[i] = 0;
865 }
866 (*regs)[TARGET_EF_R0] = 0;
867
868 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 869 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
870 }
871
872 (*regs)[TARGET_EF_R26] = 0;
873 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
874 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
875 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
876 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
877 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
878 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
879 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
880}
881
882#define USE_ELF_CORE_DUMP
388bb21a
TS
883#define ELF_EXEC_PAGESIZE 4096
884
048f6b4d
FB
885#endif /* TARGET_MIPS */
886
b779e29e
EI
887#ifdef TARGET_MICROBLAZE
888
889#define ELF_START_MMAP 0x80000000
890
0d5d4699 891#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
892
893#define ELF_CLASS ELFCLASS32
0d5d4699 894#define ELF_ARCH EM_MICROBLAZE
b779e29e 895
d97ef72e
RH
896static inline void init_thread(struct target_pt_regs *regs,
897 struct image_info *infop)
b779e29e
EI
898{
899 regs->pc = infop->entry;
900 regs->r1 = infop->start_stack;
901
902}
903
b779e29e
EI
904#define ELF_EXEC_PAGESIZE 4096
905
e4cbd44d
EI
906#define USE_ELF_CORE_DUMP
907#define ELF_NREG 38
908typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
909
910/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 911static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
912{
913 int i, pos = 0;
914
915 for (i = 0; i < 32; i++) {
86cd7b2d 916 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
917 }
918
919 for (i = 0; i < 6; i++) {
86cd7b2d 920 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
921 }
922}
923
b779e29e
EI
924#endif /* TARGET_MICROBLAZE */
925
a0a839b6
MV
926#ifdef TARGET_NIOS2
927
928#define ELF_START_MMAP 0x80000000
929
930#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
931
932#define ELF_CLASS ELFCLASS32
933#define ELF_ARCH EM_ALTERA_NIOS2
934
935static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
936{
937 regs->ea = infop->entry;
938 regs->sp = infop->start_stack;
939 regs->estatus = 0x3;
940}
941
942#define ELF_EXEC_PAGESIZE 4096
943
944#define USE_ELF_CORE_DUMP
945#define ELF_NREG 49
946typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
947
948/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
949static void elf_core_copy_regs(target_elf_gregset_t *regs,
950 const CPUNios2State *env)
951{
952 int i;
953
954 (*regs)[0] = -1;
955 for (i = 1; i < 8; i++) /* r0-r7 */
956 (*regs)[i] = tswapreg(env->regs[i + 7]);
957
958 for (i = 8; i < 16; i++) /* r8-r15 */
959 (*regs)[i] = tswapreg(env->regs[i - 8]);
960
961 for (i = 16; i < 24; i++) /* r16-r23 */
962 (*regs)[i] = tswapreg(env->regs[i + 7]);
963 (*regs)[24] = -1; /* R_ET */
964 (*regs)[25] = -1; /* R_BT */
965 (*regs)[26] = tswapreg(env->regs[R_GP]);
966 (*regs)[27] = tswapreg(env->regs[R_SP]);
967 (*regs)[28] = tswapreg(env->regs[R_FP]);
968 (*regs)[29] = tswapreg(env->regs[R_EA]);
969 (*regs)[30] = -1; /* R_SSTATUS */
970 (*regs)[31] = tswapreg(env->regs[R_RA]);
971
972 (*regs)[32] = tswapreg(env->regs[R_PC]);
973
974 (*regs)[33] = -1; /* R_STATUS */
975 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
976
977 for (i = 35; i < 49; i++) /* ... */
978 (*regs)[i] = -1;
979}
980
981#endif /* TARGET_NIOS2 */
982
d962783e
JL
983#ifdef TARGET_OPENRISC
984
985#define ELF_START_MMAP 0x08000000
986
d962783e
JL
987#define ELF_ARCH EM_OPENRISC
988#define ELF_CLASS ELFCLASS32
989#define ELF_DATA ELFDATA2MSB
990
991static inline void init_thread(struct target_pt_regs *regs,
992 struct image_info *infop)
993{
994 regs->pc = infop->entry;
995 regs->gpr[1] = infop->start_stack;
996}
997
998#define USE_ELF_CORE_DUMP
999#define ELF_EXEC_PAGESIZE 8192
1000
1001/* See linux kernel arch/openrisc/include/asm/elf.h. */
1002#define ELF_NREG 34 /* gprs and pc, sr */
1003typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1004
1005static void elf_core_copy_regs(target_elf_gregset_t *regs,
1006 const CPUOpenRISCState *env)
1007{
1008 int i;
1009
1010 for (i = 0; i < 32; i++) {
d89e71e8 1011 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1012 }
86cd7b2d 1013 (*regs)[32] = tswapreg(env->pc);
84775c43 1014 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1015}
1016#define ELF_HWCAP 0
1017#define ELF_PLATFORM NULL
1018
1019#endif /* TARGET_OPENRISC */
1020
fdf9b3e8
FB
1021#ifdef TARGET_SH4
1022
1023#define ELF_START_MMAP 0x80000000
1024
fdf9b3e8 1025#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1026#define ELF_ARCH EM_SH
1027
d97ef72e
RH
1028static inline void init_thread(struct target_pt_regs *regs,
1029 struct image_info *infop)
fdf9b3e8 1030{
d97ef72e
RH
1031 /* Check other registers XXXXX */
1032 regs->pc = infop->entry;
1033 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1034}
1035
7631c97e
NF
1036/* See linux kernel: arch/sh/include/asm/elf.h. */
1037#define ELF_NREG 23
1038typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1039
1040/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1041enum {
1042 TARGET_REG_PC = 16,
1043 TARGET_REG_PR = 17,
1044 TARGET_REG_SR = 18,
1045 TARGET_REG_GBR = 19,
1046 TARGET_REG_MACH = 20,
1047 TARGET_REG_MACL = 21,
1048 TARGET_REG_SYSCALL = 22
1049};
1050
d97ef72e 1051static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1052 const CPUSH4State *env)
7631c97e
NF
1053{
1054 int i;
1055
1056 for (i = 0; i < 16; i++) {
72cd500b 1057 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1058 }
1059
86cd7b2d
PB
1060 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1061 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1062 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1063 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1064 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1065 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1066 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1067}
1068
1069#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1070#define ELF_EXEC_PAGESIZE 4096
1071
e42fd944
RH
1072enum {
1073 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1074 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1075 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1076 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1077 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1078 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1079 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1080 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1081 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1082 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1083};
1084
1085#define ELF_HWCAP get_elf_hwcap()
1086
1087static uint32_t get_elf_hwcap(void)
1088{
1089 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1090 uint32_t hwcap = 0;
1091
1092 hwcap |= SH_CPU_HAS_FPU;
1093
1094 if (cpu->env.features & SH_FEATURE_SH4A) {
1095 hwcap |= SH_CPU_HAS_LLSC;
1096 }
1097
1098 return hwcap;
1099}
1100
fdf9b3e8
FB
1101#endif
1102
48733d19
TS
1103#ifdef TARGET_CRIS
1104
1105#define ELF_START_MMAP 0x80000000
1106
48733d19 1107#define ELF_CLASS ELFCLASS32
48733d19
TS
1108#define ELF_ARCH EM_CRIS
1109
d97ef72e
RH
1110static inline void init_thread(struct target_pt_regs *regs,
1111 struct image_info *infop)
48733d19 1112{
d97ef72e 1113 regs->erp = infop->entry;
48733d19
TS
1114}
1115
48733d19
TS
1116#define ELF_EXEC_PAGESIZE 8192
1117
1118#endif
1119
e6e5906b
PB
1120#ifdef TARGET_M68K
1121
1122#define ELF_START_MMAP 0x80000000
1123
d97ef72e 1124#define ELF_CLASS ELFCLASS32
d97ef72e 1125#define ELF_ARCH EM_68K
e6e5906b
PB
1126
1127/* ??? Does this need to do anything?
d97ef72e 1128 #define ELF_PLAT_INIT(_r) */
e6e5906b 1129
d97ef72e
RH
1130static inline void init_thread(struct target_pt_regs *regs,
1131 struct image_info *infop)
e6e5906b
PB
1132{
1133 regs->usp = infop->start_stack;
1134 regs->sr = 0;
1135 regs->pc = infop->entry;
1136}
1137
7a93cc55
NF
1138/* See linux kernel: arch/m68k/include/asm/elf.h. */
1139#define ELF_NREG 20
1140typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1141
05390248 1142static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1143{
86cd7b2d
PB
1144 (*regs)[0] = tswapreg(env->dregs[1]);
1145 (*regs)[1] = tswapreg(env->dregs[2]);
1146 (*regs)[2] = tswapreg(env->dregs[3]);
1147 (*regs)[3] = tswapreg(env->dregs[4]);
1148 (*regs)[4] = tswapreg(env->dregs[5]);
1149 (*regs)[5] = tswapreg(env->dregs[6]);
1150 (*regs)[6] = tswapreg(env->dregs[7]);
1151 (*regs)[7] = tswapreg(env->aregs[0]);
1152 (*regs)[8] = tswapreg(env->aregs[1]);
1153 (*regs)[9] = tswapreg(env->aregs[2]);
1154 (*regs)[10] = tswapreg(env->aregs[3]);
1155 (*regs)[11] = tswapreg(env->aregs[4]);
1156 (*regs)[12] = tswapreg(env->aregs[5]);
1157 (*regs)[13] = tswapreg(env->aregs[6]);
1158 (*regs)[14] = tswapreg(env->dregs[0]);
1159 (*regs)[15] = tswapreg(env->aregs[7]);
1160 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1161 (*regs)[17] = tswapreg(env->sr);
1162 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1163 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1164}
1165
1166#define USE_ELF_CORE_DUMP
d97ef72e 1167#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1168
1169#endif
1170
7a3148a9
JM
1171#ifdef TARGET_ALPHA
1172
1173#define ELF_START_MMAP (0x30000000000ULL)
1174
7a3148a9 1175#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1176#define ELF_ARCH EM_ALPHA
1177
d97ef72e
RH
1178static inline void init_thread(struct target_pt_regs *regs,
1179 struct image_info *infop)
7a3148a9
JM
1180{
1181 regs->pc = infop->entry;
1182 regs->ps = 8;
1183 regs->usp = infop->start_stack;
7a3148a9
JM
1184}
1185
7a3148a9
JM
1186#define ELF_EXEC_PAGESIZE 8192
1187
1188#endif /* TARGET_ALPHA */
1189
a4c075f1
UH
1190#ifdef TARGET_S390X
1191
1192#define ELF_START_MMAP (0x20000000000ULL)
1193
a4c075f1
UH
1194#define ELF_CLASS ELFCLASS64
1195#define ELF_DATA ELFDATA2MSB
1196#define ELF_ARCH EM_S390
1197
1198static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1199{
1200 regs->psw.addr = infop->entry;
1201 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1202 regs->gprs[15] = infop->start_stack;
1203}
1204
1205#endif /* TARGET_S390X */
1206
b16189b2
CG
1207#ifdef TARGET_TILEGX
1208
1209/* 42 bits real used address, a half for user mode */
1210#define ELF_START_MMAP (0x00000020000000000ULL)
1211
1212#define elf_check_arch(x) ((x) == EM_TILEGX)
1213
1214#define ELF_CLASS ELFCLASS64
1215#define ELF_DATA ELFDATA2LSB
1216#define ELF_ARCH EM_TILEGX
1217
1218static inline void init_thread(struct target_pt_regs *regs,
1219 struct image_info *infop)
1220{
1221 regs->pc = infop->entry;
1222 regs->sp = infop->start_stack;
1223
1224}
1225
1226#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1227
1228#endif /* TARGET_TILEGX */
1229
47ae93cd
MC
1230#ifdef TARGET_RISCV
1231
1232#define ELF_START_MMAP 0x80000000
1233#define ELF_ARCH EM_RISCV
1234
1235#ifdef TARGET_RISCV32
1236#define ELF_CLASS ELFCLASS32
1237#else
1238#define ELF_CLASS ELFCLASS64
1239#endif
1240
1241static inline void init_thread(struct target_pt_regs *regs,
1242 struct image_info *infop)
1243{
1244 regs->sepc = infop->entry;
1245 regs->sp = infop->start_stack;
1246}
1247
1248#define ELF_EXEC_PAGESIZE 4096
1249
1250#endif /* TARGET_RISCV */
1251
7c248bcd
RH
1252#ifdef TARGET_HPPA
1253
1254#define ELF_START_MMAP 0x80000000
1255#define ELF_CLASS ELFCLASS32
1256#define ELF_ARCH EM_PARISC
1257#define ELF_PLATFORM "PARISC"
1258#define STACK_GROWS_DOWN 0
1259#define STACK_ALIGNMENT 64
1260
1261static inline void init_thread(struct target_pt_regs *regs,
1262 struct image_info *infop)
1263{
1264 regs->iaoq[0] = infop->entry;
1265 regs->iaoq[1] = infop->entry + 4;
1266 regs->gr[23] = 0;
1267 regs->gr[24] = infop->arg_start;
1268 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1269 /* The top-of-stack contains a linkage buffer. */
1270 regs->gr[30] = infop->start_stack + 64;
1271 regs->gr[31] = infop->entry;
1272}
1273
1274#endif /* TARGET_HPPA */
1275
ba7651fb
MF
1276#ifdef TARGET_XTENSA
1277
1278#define ELF_START_MMAP 0x20000000
1279
1280#define ELF_CLASS ELFCLASS32
1281#define ELF_ARCH EM_XTENSA
1282
1283static inline void init_thread(struct target_pt_regs *regs,
1284 struct image_info *infop)
1285{
1286 regs->windowbase = 0;
1287 regs->windowstart = 1;
1288 regs->areg[1] = infop->start_stack;
1289 regs->pc = infop->entry;
1290}
1291
1292/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1293#define ELF_NREG 128
1294typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1295
1296enum {
1297 TARGET_REG_PC,
1298 TARGET_REG_PS,
1299 TARGET_REG_LBEG,
1300 TARGET_REG_LEND,
1301 TARGET_REG_LCOUNT,
1302 TARGET_REG_SAR,
1303 TARGET_REG_WINDOWSTART,
1304 TARGET_REG_WINDOWBASE,
1305 TARGET_REG_THREADPTR,
1306 TARGET_REG_AR0 = 64,
1307};
1308
1309static void elf_core_copy_regs(target_elf_gregset_t *regs,
1310 const CPUXtensaState *env)
1311{
1312 unsigned i;
1313
1314 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1315 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1316 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1317 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1318 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1319 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1320 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1321 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1322 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1323 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1324 for (i = 0; i < env->config->nareg; ++i) {
1325 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1326 }
1327}
1328
1329#define USE_ELF_CORE_DUMP
1330#define ELF_EXEC_PAGESIZE 4096
1331
1332#endif /* TARGET_XTENSA */
1333
15338fd7
FB
1334#ifndef ELF_PLATFORM
1335#define ELF_PLATFORM (NULL)
1336#endif
1337
75be901c
PC
1338#ifndef ELF_MACHINE
1339#define ELF_MACHINE ELF_ARCH
1340#endif
1341
d276a604
PC
1342#ifndef elf_check_arch
1343#define elf_check_arch(x) ((x) == ELF_ARCH)
1344#endif
1345
15338fd7
FB
1346#ifndef ELF_HWCAP
1347#define ELF_HWCAP 0
1348#endif
1349
7c4ee5bc
RH
1350#ifndef STACK_GROWS_DOWN
1351#define STACK_GROWS_DOWN 1
1352#endif
1353
1354#ifndef STACK_ALIGNMENT
1355#define STACK_ALIGNMENT 16
1356#endif
1357
992f48a0 1358#ifdef TARGET_ABI32
cb33da57 1359#undef ELF_CLASS
992f48a0 1360#define ELF_CLASS ELFCLASS32
cb33da57
BS
1361#undef bswaptls
1362#define bswaptls(ptr) bswap32s(ptr)
1363#endif
1364
31e31b8a 1365#include "elf.h"
09bfb054 1366
09bfb054
FB
1367struct exec
1368{
d97ef72e
RH
1369 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1370 unsigned int a_text; /* length of text, in bytes */
1371 unsigned int a_data; /* length of data, in bytes */
1372 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1373 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1374 unsigned int a_entry; /* start address */
1375 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1376 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1377};
1378
1379
1380#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1381#define OMAGIC 0407
1382#define NMAGIC 0410
1383#define ZMAGIC 0413
1384#define QMAGIC 0314
1385
31e31b8a 1386/* Necessary parameters */
54936004 1387#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1388#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1389 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1390#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1391
444cd5c3 1392#define DLINFO_ITEMS 15
31e31b8a 1393
09bfb054
FB
1394static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1395{
d97ef72e 1396 memcpy(to, from, n);
09bfb054 1397}
d691f669 1398
31e31b8a 1399#ifdef BSWAP_NEEDED
92a31b1f 1400static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1401{
d97ef72e
RH
1402 bswap16s(&ehdr->e_type); /* Object file type */
1403 bswap16s(&ehdr->e_machine); /* Architecture */
1404 bswap32s(&ehdr->e_version); /* Object file version */
1405 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1406 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1407 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1408 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1409 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1410 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1411 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1412 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1413 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1414 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1415}
1416
991f8f0c 1417static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1418{
991f8f0c
RH
1419 int i;
1420 for (i = 0; i < phnum; ++i, ++phdr) {
1421 bswap32s(&phdr->p_type); /* Segment type */
1422 bswap32s(&phdr->p_flags); /* Segment flags */
1423 bswaptls(&phdr->p_offset); /* Segment file offset */
1424 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1425 bswaptls(&phdr->p_paddr); /* Segment physical address */
1426 bswaptls(&phdr->p_filesz); /* Segment size in file */
1427 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1428 bswaptls(&phdr->p_align); /* Segment alignment */
1429 }
31e31b8a 1430}
689f936f 1431
991f8f0c 1432static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1433{
991f8f0c
RH
1434 int i;
1435 for (i = 0; i < shnum; ++i, ++shdr) {
1436 bswap32s(&shdr->sh_name);
1437 bswap32s(&shdr->sh_type);
1438 bswaptls(&shdr->sh_flags);
1439 bswaptls(&shdr->sh_addr);
1440 bswaptls(&shdr->sh_offset);
1441 bswaptls(&shdr->sh_size);
1442 bswap32s(&shdr->sh_link);
1443 bswap32s(&shdr->sh_info);
1444 bswaptls(&shdr->sh_addralign);
1445 bswaptls(&shdr->sh_entsize);
1446 }
689f936f
FB
1447}
1448
7a3148a9 1449static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1450{
1451 bswap32s(&sym->st_name);
7a3148a9
JM
1452 bswaptls(&sym->st_value);
1453 bswaptls(&sym->st_size);
689f936f
FB
1454 bswap16s(&sym->st_shndx);
1455}
991f8f0c
RH
1456#else
1457static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1458static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1459static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1460static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1461#endif
1462
edf8e2af 1463#ifdef USE_ELF_CORE_DUMP
9349b4f9 1464static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1465#endif /* USE_ELF_CORE_DUMP */
682674b8 1466static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1467
9058abdd
RH
1468/* Verify the portions of EHDR within E_IDENT for the target.
1469 This can be performed before bswapping the entire header. */
1470static bool elf_check_ident(struct elfhdr *ehdr)
1471{
1472 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1473 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1474 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1475 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1476 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1477 && ehdr->e_ident[EI_DATA] == ELF_DATA
1478 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1479}
1480
1481/* Verify the portions of EHDR outside of E_IDENT for the target.
1482 This has to wait until after bswapping the header. */
1483static bool elf_check_ehdr(struct elfhdr *ehdr)
1484{
1485 return (elf_check_arch(ehdr->e_machine)
1486 && ehdr->e_ehsize == sizeof(struct elfhdr)
1487 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1488 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1489}
1490
31e31b8a 1491/*
e5fe0c52 1492 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1493 * memory to free pages in kernel mem. These are in a format ready
1494 * to be put directly into the top of new user memory.
1495 *
1496 */
59baae9a
SB
1497static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1498 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1499{
59baae9a 1500 char *tmp;
7c4ee5bc 1501 int len, i;
59baae9a 1502 abi_ulong top = p;
31e31b8a
FB
1503
1504 if (!p) {
d97ef72e 1505 return 0; /* bullet-proofing */
31e31b8a 1506 }
59baae9a 1507
7c4ee5bc
RH
1508 if (STACK_GROWS_DOWN) {
1509 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1510 for (i = argc - 1; i >= 0; --i) {
1511 tmp = argv[i];
1512 if (!tmp) {
1513 fprintf(stderr, "VFS: argc is wrong");
1514 exit(-1);
1515 }
1516 len = strlen(tmp) + 1;
1517 tmp += len;
59baae9a 1518
7c4ee5bc
RH
1519 if (len > (p - stack_limit)) {
1520 return 0;
1521 }
1522 while (len) {
1523 int bytes_to_copy = (len > offset) ? offset : len;
1524 tmp -= bytes_to_copy;
1525 p -= bytes_to_copy;
1526 offset -= bytes_to_copy;
1527 len -= bytes_to_copy;
1528
1529 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1530
1531 if (offset == 0) {
1532 memcpy_to_target(p, scratch, top - p);
1533 top = p;
1534 offset = TARGET_PAGE_SIZE;
1535 }
1536 }
d97ef72e 1537 }
7c4ee5bc
RH
1538 if (p != top) {
1539 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1540 }
7c4ee5bc
RH
1541 } else {
1542 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1543 for (i = 0; i < argc; ++i) {
1544 tmp = argv[i];
1545 if (!tmp) {
1546 fprintf(stderr, "VFS: argc is wrong");
1547 exit(-1);
1548 }
1549 len = strlen(tmp) + 1;
1550 if (len > (stack_limit - p)) {
1551 return 0;
1552 }
1553 while (len) {
1554 int bytes_to_copy = (len > remaining) ? remaining : len;
1555
1556 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1557
1558 tmp += bytes_to_copy;
1559 remaining -= bytes_to_copy;
1560 p += bytes_to_copy;
1561 len -= bytes_to_copy;
1562
1563 if (remaining == 0) {
1564 memcpy_to_target(top, scratch, p - top);
1565 top = p;
1566 remaining = TARGET_PAGE_SIZE;
1567 }
d97ef72e
RH
1568 }
1569 }
7c4ee5bc
RH
1570 if (p != top) {
1571 memcpy_to_target(top, scratch, p - top);
1572 }
59baae9a
SB
1573 }
1574
31e31b8a
FB
1575 return p;
1576}
1577
59baae9a
SB
1578/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1579 * argument/environment space. Newer kernels (>2.6.33) allow more,
1580 * dependent on stack size, but guarantee at least 32 pages for
1581 * backwards compatibility.
1582 */
1583#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1584
1585static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1586 struct image_info *info)
53a5960a 1587{
59baae9a 1588 abi_ulong size, error, guard;
31e31b8a 1589
703e0e89 1590 size = guest_stack_size;
59baae9a
SB
1591 if (size < STACK_LOWER_LIMIT) {
1592 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1593 }
1594 guard = TARGET_PAGE_SIZE;
1595 if (guard < qemu_real_host_page_size) {
1596 guard = qemu_real_host_page_size;
1597 }
1598
1599 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1600 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1601 if (error == -1) {
60dcbcb5 1602 perror("mmap stack");
09bfb054
FB
1603 exit(-1);
1604 }
31e31b8a 1605
60dcbcb5 1606 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1607 if (STACK_GROWS_DOWN) {
1608 target_mprotect(error, guard, PROT_NONE);
1609 info->stack_limit = error + guard;
1610 return info->stack_limit + size - sizeof(void *);
1611 } else {
1612 target_mprotect(error + size, guard, PROT_NONE);
1613 info->stack_limit = error + size;
1614 return error;
1615 }
31e31b8a
FB
1616}
1617
cf129f3a
RH
1618/* Map and zero the bss. We need to explicitly zero any fractional pages
1619 after the data section (i.e. bss). */
1620static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1621{
cf129f3a
RH
1622 uintptr_t host_start, host_map_start, host_end;
1623
1624 last_bss = TARGET_PAGE_ALIGN(last_bss);
1625
1626 /* ??? There is confusion between qemu_real_host_page_size and
1627 qemu_host_page_size here and elsewhere in target_mmap, which
1628 may lead to the end of the data section mapping from the file
1629 not being mapped. At least there was an explicit test and
1630 comment for that here, suggesting that "the file size must
1631 be known". The comment probably pre-dates the introduction
1632 of the fstat system call in target_mmap which does in fact
1633 find out the size. What isn't clear is if the workaround
1634 here is still actually needed. For now, continue with it,
1635 but merge it with the "normal" mmap that would allocate the bss. */
1636
1637 host_start = (uintptr_t) g2h(elf_bss);
1638 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1639 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1640
1641 if (host_map_start < host_end) {
1642 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1643 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1644 if (p == MAP_FAILED) {
1645 perror("cannot mmap brk");
1646 exit(-1);
853d6f7a 1647 }
f46e9a0b 1648 }
853d6f7a 1649
f46e9a0b
TM
1650 /* Ensure that the bss page(s) are valid */
1651 if ((page_get_flags(last_bss-1) & prot) != prot) {
1652 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1653 }
31e31b8a 1654
cf129f3a
RH
1655 if (host_start < host_map_start) {
1656 memset((void *)host_start, 0, host_map_start - host_start);
1657 }
1658}
53a5960a 1659
1af02e83
MF
1660#ifdef CONFIG_USE_FDPIC
1661static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1662{
1663 uint16_t n;
1664 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1665
1666 /* elf32_fdpic_loadseg */
1667 n = info->nsegs;
1668 while (n--) {
1669 sp -= 12;
1670 put_user_u32(loadsegs[n].addr, sp+0);
1671 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1672 put_user_u32(loadsegs[n].p_memsz, sp+8);
1673 }
1674
1675 /* elf32_fdpic_loadmap */
1676 sp -= 4;
1677 put_user_u16(0, sp+0); /* version */
1678 put_user_u16(info->nsegs, sp+2); /* nsegs */
1679
1680 info->personality = PER_LINUX_FDPIC;
1681 info->loadmap_addr = sp;
1682
1683 return sp;
1684}
1685#endif
1686
992f48a0 1687static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1688 struct elfhdr *exec,
1689 struct image_info *info,
1690 struct image_info *interp_info)
31e31b8a 1691{
d97ef72e 1692 abi_ulong sp;
7c4ee5bc 1693 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1694 int size;
14322bad
LA
1695 int i;
1696 abi_ulong u_rand_bytes;
1697 uint8_t k_rand_bytes[16];
d97ef72e
RH
1698 abi_ulong u_platform;
1699 const char *k_platform;
1700 const int n = sizeof(elf_addr_t);
1701
1702 sp = p;
1af02e83
MF
1703
1704#ifdef CONFIG_USE_FDPIC
1705 /* Needs to be before we load the env/argc/... */
1706 if (elf_is_fdpic(exec)) {
1707 /* Need 4 byte alignment for these structs */
1708 sp &= ~3;
1709 sp = loader_build_fdpic_loadmap(info, sp);
1710 info->other_info = interp_info;
1711 if (interp_info) {
1712 interp_info->other_info = info;
1713 sp = loader_build_fdpic_loadmap(interp_info, sp);
1714 }
1715 }
1716#endif
1717
d97ef72e
RH
1718 u_platform = 0;
1719 k_platform = ELF_PLATFORM;
1720 if (k_platform) {
1721 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1722 if (STACK_GROWS_DOWN) {
1723 sp -= (len + n - 1) & ~(n - 1);
1724 u_platform = sp;
1725 /* FIXME - check return value of memcpy_to_target() for failure */
1726 memcpy_to_target(sp, k_platform, len);
1727 } else {
1728 memcpy_to_target(sp, k_platform, len);
1729 u_platform = sp;
1730 sp += len + 1;
1731 }
1732 }
1733
1734 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1735 * the argv and envp pointers.
1736 */
1737 if (STACK_GROWS_DOWN) {
1738 sp = QEMU_ALIGN_DOWN(sp, 16);
1739 } else {
1740 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1741 }
14322bad
LA
1742
1743 /*
1744 * Generate 16 random bytes for userspace PRNG seeding (not
1745 * cryptically secure but it's not the aim of QEMU).
1746 */
14322bad
LA
1747 for (i = 0; i < 16; i++) {
1748 k_rand_bytes[i] = rand();
1749 }
7c4ee5bc
RH
1750 if (STACK_GROWS_DOWN) {
1751 sp -= 16;
1752 u_rand_bytes = sp;
1753 /* FIXME - check return value of memcpy_to_target() for failure */
1754 memcpy_to_target(sp, k_rand_bytes, 16);
1755 } else {
1756 memcpy_to_target(sp, k_rand_bytes, 16);
1757 u_rand_bytes = sp;
1758 sp += 16;
1759 }
14322bad 1760
d97ef72e
RH
1761 size = (DLINFO_ITEMS + 1) * 2;
1762 if (k_platform)
1763 size += 2;
f5155289 1764#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1765 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1766#endif
1767#ifdef ELF_HWCAP2
1768 size += 2;
f5155289 1769#endif
f516511e
PM
1770 info->auxv_len = size * n;
1771
d97ef72e 1772 size += envc + argc + 2;
b9329d4b 1773 size += 1; /* argc itself */
d97ef72e 1774 size *= n;
7c4ee5bc
RH
1775
1776 /* Allocate space and finalize stack alignment for entry now. */
1777 if (STACK_GROWS_DOWN) {
1778 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1779 sp = u_argc;
1780 } else {
1781 u_argc = sp;
1782 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1783 }
1784
1785 u_argv = u_argc + n;
1786 u_envp = u_argv + (argc + 1) * n;
1787 u_auxv = u_envp + (envc + 1) * n;
1788 info->saved_auxv = u_auxv;
1789 info->arg_start = u_argv;
1790 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1791
1792 /* This is correct because Linux defines
1793 * elf_addr_t as Elf32_Off / Elf64_Off
1794 */
1795#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1796 put_user_ual(id, u_auxv); u_auxv += n; \
1797 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1798 } while(0)
1799
82991bed
PM
1800#ifdef ARCH_DLINFO
1801 /*
1802 * ARCH_DLINFO must come first so platform specific code can enforce
1803 * special alignment requirements on the AUXV if necessary (eg. PPC).
1804 */
1805 ARCH_DLINFO;
1806#endif
f516511e
PM
1807 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1808 * on info->auxv_len will trigger.
1809 */
8e62a717 1810 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1811 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1812 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1813 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1814 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1815 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1816 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1817 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1818 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1819 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1820 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1821 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1822 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1823 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1824 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1825
ad6919dc
PM
1826#ifdef ELF_HWCAP2
1827 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1828#endif
1829
7c4ee5bc 1830 if (u_platform) {
d97ef72e 1831 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1832 }
7c4ee5bc 1833 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1834#undef NEW_AUX_ENT
1835
f516511e
PM
1836 /* Check that our initial calculation of the auxv length matches how much
1837 * we actually put into it.
1838 */
1839 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1840
1841 put_user_ual(argc, u_argc);
1842
1843 p = info->arg_strings;
1844 for (i = 0; i < argc; ++i) {
1845 put_user_ual(p, u_argv);
1846 u_argv += n;
1847 p += target_strlen(p) + 1;
1848 }
1849 put_user_ual(0, u_argv);
1850
1851 p = info->env_strings;
1852 for (i = 0; i < envc; ++i) {
1853 put_user_ual(p, u_envp);
1854 u_envp += n;
1855 p += target_strlen(p) + 1;
1856 }
1857 put_user_ual(0, u_envp);
edf8e2af 1858
d97ef72e 1859 return sp;
31e31b8a
FB
1860}
1861
dce10401
MI
1862unsigned long init_guest_space(unsigned long host_start,
1863 unsigned long host_size,
1864 unsigned long guest_start,
1865 bool fixed)
1866{
293f2060 1867 unsigned long current_start, aligned_start;
dce10401
MI
1868 int flags;
1869
1870 assert(host_start || host_size);
1871
1872 /* If just a starting address is given, then just verify that
1873 * address. */
1874 if (host_start && !host_size) {
8756e136 1875#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 1876 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
1877 return (unsigned long)-1;
1878 }
8756e136
LS
1879#endif
1880 return host_start;
dce10401
MI
1881 }
1882
1883 /* Setup the initial flags and start address. */
1884 current_start = host_start & qemu_host_page_mask;
1885 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1886 if (fixed) {
1887 flags |= MAP_FIXED;
1888 }
1889
1890 /* Otherwise, a non-zero size region of memory needs to be mapped
1891 * and validated. */
1892 while (1) {
293f2060
LS
1893 unsigned long real_start, real_size, aligned_size;
1894 aligned_size = real_size = host_size;
806d1021 1895
dce10401
MI
1896 /* Do not use mmap_find_vma here because that is limited to the
1897 * guest address space. We are going to make the
1898 * guest address space fit whatever we're given.
1899 */
1900 real_start = (unsigned long)
1901 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1902 if (real_start == (unsigned long)-1) {
1903 return (unsigned long)-1;
1904 }
1905
aac362e4
LS
1906 /* Check to see if the address is valid. */
1907 if (host_start && real_start != current_start) {
1908 goto try_again;
1909 }
1910
806d1021
MI
1911 /* Ensure the address is properly aligned. */
1912 if (real_start & ~qemu_host_page_mask) {
293f2060
LS
1913 /* Ideally, we adjust like
1914 *
1915 * pages: [ ][ ][ ][ ][ ]
1916 * old: [ real ]
1917 * [ aligned ]
1918 * new: [ real ]
1919 * [ aligned ]
1920 *
1921 * But if there is something else mapped right after it,
1922 * then obviously it won't have room to grow, and the
1923 * kernel will put the new larger real someplace else with
1924 * unknown alignment (if we made it to here, then
1925 * fixed=false). Which is why we grow real by a full page
1926 * size, instead of by part of one; so that even if we get
1927 * moved, we can still guarantee alignment. But this does
1928 * mean that there is a padding of < 1 page both before
1929 * and after the aligned range; the "after" could could
1930 * cause problems for ARM emulation where it could butt in
1931 * to where we need to put the commpage.
1932 */
806d1021 1933 munmap((void *)real_start, host_size);
293f2060 1934 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
1935 real_start = (unsigned long)
1936 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1937 if (real_start == (unsigned long)-1) {
1938 return (unsigned long)-1;
1939 }
293f2060
LS
1940 aligned_start = HOST_PAGE_ALIGN(real_start);
1941 } else {
1942 aligned_start = real_start;
806d1021
MI
1943 }
1944
8756e136 1945#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
1946 /* On 32-bit ARM, we need to also be able to map the commpage. */
1947 int valid = init_guest_commpage(aligned_start - guest_start,
1948 aligned_size + guest_start);
1949 if (valid == -1) {
1950 munmap((void *)real_start, real_size);
1951 return (unsigned long)-1;
1952 } else if (valid == 0) {
1953 goto try_again;
dce10401 1954 }
7ad75eea
LS
1955#endif
1956
1957 /* If nothing has said `return -1` or `goto try_again` yet,
1958 * then the address we have is good.
1959 */
1960 break;
dce10401 1961
7ad75eea 1962 try_again:
dce10401
MI
1963 /* That address didn't work. Unmap and try a different one.
1964 * The address the host picked because is typically right at
1965 * the top of the host address space and leaves the guest with
1966 * no usable address space. Resort to a linear search. We
1967 * already compensated for mmap_min_addr, so this should not
1968 * happen often. Probably means we got unlucky and host
1969 * address space randomization put a shared library somewhere
1970 * inconvenient.
8c17d862
LS
1971 *
1972 * This is probably a good strategy if host_start, but is
1973 * probably a bad strategy if not, which means we got here
1974 * because of trouble with ARM commpage setup.
dce10401 1975 */
293f2060 1976 munmap((void *)real_start, real_size);
dce10401
MI
1977 current_start += qemu_host_page_size;
1978 if (host_start == current_start) {
1979 /* Theoretically possible if host doesn't have any suitably
1980 * aligned areas. Normally the first mmap will fail.
1981 */
1982 return (unsigned long)-1;
1983 }
1984 }
1985
13829020 1986 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 1987
293f2060 1988 return aligned_start;
dce10401
MI
1989}
1990
f3ed1f5d
PM
1991static void probe_guest_base(const char *image_name,
1992 abi_ulong loaddr, abi_ulong hiaddr)
1993{
1994 /* Probe for a suitable guest base address, if the user has not set
1995 * it explicitly, and set guest_base appropriately.
1996 * In case of error we will print a suitable message and exit.
1997 */
f3ed1f5d
PM
1998 const char *errmsg;
1999 if (!have_guest_base && !reserved_va) {
2000 unsigned long host_start, real_start, host_size;
2001
2002 /* Round addresses to page boundaries. */
2003 loaddr &= qemu_host_page_mask;
2004 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2005
2006 if (loaddr < mmap_min_addr) {
2007 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2008 } else {
2009 host_start = loaddr;
2010 if (host_start != loaddr) {
2011 errmsg = "Address overflow loading ELF binary";
2012 goto exit_errmsg;
2013 }
2014 }
2015 host_size = hiaddr - loaddr;
dce10401
MI
2016
2017 /* Setup the initial guest memory space with ranges gleaned from
2018 * the ELF image that is being loaded.
2019 */
2020 real_start = init_guest_space(host_start, host_size, loaddr, false);
2021 if (real_start == (unsigned long)-1) {
2022 errmsg = "Unable to find space for application";
2023 goto exit_errmsg;
f3ed1f5d 2024 }
dce10401
MI
2025 guest_base = real_start - loaddr;
2026
13829020
PB
2027 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2028 TARGET_ABI_FMT_lx " to 0x%lx\n",
2029 loaddr, real_start);
f3ed1f5d
PM
2030 }
2031 return;
2032
f3ed1f5d
PM
2033exit_errmsg:
2034 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2035 exit(-1);
f3ed1f5d
PM
2036}
2037
2038
8e62a717 2039/* Load an ELF image into the address space.
31e31b8a 2040
8e62a717
RH
2041 IMAGE_NAME is the filename of the image, to use in error messages.
2042 IMAGE_FD is the open file descriptor for the image.
2043
2044 BPRM_BUF is a copy of the beginning of the file; this of course
2045 contains the elf file header at offset 0. It is assumed that this
2046 buffer is sufficiently aligned to present no problems to the host
2047 in accessing data at aligned offsets within the buffer.
2048
2049 On return: INFO values will be filled in, as necessary or available. */
2050
2051static void load_elf_image(const char *image_name, int image_fd,
bf858897 2052 struct image_info *info, char **pinterp_name,
8e62a717 2053 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2054{
8e62a717
RH
2055 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2056 struct elf_phdr *phdr;
2057 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2058 int i, retval;
2059 const char *errmsg;
5fafdf24 2060
8e62a717
RH
2061 /* First of all, some simple consistency checks */
2062 errmsg = "Invalid ELF image for this architecture";
2063 if (!elf_check_ident(ehdr)) {
2064 goto exit_errmsg;
2065 }
2066 bswap_ehdr(ehdr);
2067 if (!elf_check_ehdr(ehdr)) {
2068 goto exit_errmsg;
d97ef72e 2069 }
5fafdf24 2070
8e62a717
RH
2071 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2072 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2073 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2074 } else {
8e62a717
RH
2075 phdr = (struct elf_phdr *) alloca(i);
2076 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2077 if (retval != i) {
8e62a717 2078 goto exit_read;
9955ffac 2079 }
d97ef72e 2080 }
8e62a717 2081 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2082
1af02e83
MF
2083#ifdef CONFIG_USE_FDPIC
2084 info->nsegs = 0;
2085 info->pt_dynamic_addr = 0;
2086#endif
2087
98c1076c
AB
2088 mmap_lock();
2089
682674b8
RH
2090 /* Find the maximum size of the image and allocate an appropriate
2091 amount of memory to handle that. */
2092 loaddr = -1, hiaddr = 0;
8e62a717
RH
2093 for (i = 0; i < ehdr->e_phnum; ++i) {
2094 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2095 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2096 if (a < loaddr) {
2097 loaddr = a;
2098 }
ccf661f8 2099 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2100 if (a > hiaddr) {
2101 hiaddr = a;
2102 }
1af02e83
MF
2103#ifdef CONFIG_USE_FDPIC
2104 ++info->nsegs;
2105#endif
682674b8
RH
2106 }
2107 }
2108
2109 load_addr = loaddr;
8e62a717 2110 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2111 /* The image indicates that it can be loaded anywhere. Find a
2112 location that can hold the memory space required. If the
2113 image is pre-linked, LOADDR will be non-zero. Since we do
2114 not supply MAP_FIXED here we'll use that address if and
2115 only if it remains available. */
2116 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2117 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2118 -1, 0);
2119 if (load_addr == -1) {
8e62a717 2120 goto exit_perror;
d97ef72e 2121 }
bf858897
RH
2122 } else if (pinterp_name != NULL) {
2123 /* This is the main executable. Make sure that the low
2124 address does not conflict with MMAP_MIN_ADDR or the
2125 QEMU application itself. */
f3ed1f5d 2126 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2127 }
682674b8 2128 load_bias = load_addr - loaddr;
d97ef72e 2129
1af02e83
MF
2130#ifdef CONFIG_USE_FDPIC
2131 {
2132 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2133 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2134
2135 for (i = 0; i < ehdr->e_phnum; ++i) {
2136 switch (phdr[i].p_type) {
2137 case PT_DYNAMIC:
2138 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2139 break;
2140 case PT_LOAD:
2141 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2142 loadsegs->p_vaddr = phdr[i].p_vaddr;
2143 loadsegs->p_memsz = phdr[i].p_memsz;
2144 ++loadsegs;
2145 break;
2146 }
2147 }
2148 }
2149#endif
2150
8e62a717
RH
2151 info->load_bias = load_bias;
2152 info->load_addr = load_addr;
2153 info->entry = ehdr->e_entry + load_bias;
2154 info->start_code = -1;
2155 info->end_code = 0;
2156 info->start_data = -1;
2157 info->end_data = 0;
2158 info->brk = 0;
d8fd2954 2159 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2160
2161 for (i = 0; i < ehdr->e_phnum; i++) {
2162 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2163 if (eppnt->p_type == PT_LOAD) {
682674b8 2164 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 2165 int elf_prot = 0;
d97ef72e
RH
2166
2167 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2168 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2169 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2170
682674b8
RH
2171 vaddr = load_bias + eppnt->p_vaddr;
2172 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2173 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2174
2175 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2176 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2177 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2178 if (error == -1) {
8e62a717 2179 goto exit_perror;
09bfb054 2180 }
09bfb054 2181
682674b8
RH
2182 vaddr_ef = vaddr + eppnt->p_filesz;
2183 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2184
cf129f3a 2185 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2186 if (vaddr_ef < vaddr_em) {
2187 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2188 }
8e62a717
RH
2189
2190 /* Find the full program boundaries. */
2191 if (elf_prot & PROT_EXEC) {
2192 if (vaddr < info->start_code) {
2193 info->start_code = vaddr;
2194 }
2195 if (vaddr_ef > info->end_code) {
2196 info->end_code = vaddr_ef;
2197 }
2198 }
2199 if (elf_prot & PROT_WRITE) {
2200 if (vaddr < info->start_data) {
2201 info->start_data = vaddr;
2202 }
2203 if (vaddr_ef > info->end_data) {
2204 info->end_data = vaddr_ef;
2205 }
2206 if (vaddr_em > info->brk) {
2207 info->brk = vaddr_em;
2208 }
2209 }
bf858897
RH
2210 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2211 char *interp_name;
2212
2213 if (*pinterp_name) {
2214 errmsg = "Multiple PT_INTERP entries";
2215 goto exit_errmsg;
2216 }
2217 interp_name = malloc(eppnt->p_filesz);
2218 if (!interp_name) {
2219 goto exit_perror;
2220 }
2221
2222 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2223 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2224 eppnt->p_filesz);
2225 } else {
2226 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2227 eppnt->p_offset);
2228 if (retval != eppnt->p_filesz) {
2229 goto exit_perror;
2230 }
2231 }
2232 if (interp_name[eppnt->p_filesz - 1] != 0) {
2233 errmsg = "Invalid PT_INTERP entry";
2234 goto exit_errmsg;
2235 }
2236 *pinterp_name = interp_name;
d97ef72e 2237 }
682674b8 2238 }
5fafdf24 2239
8e62a717
RH
2240 if (info->end_data == 0) {
2241 info->start_data = info->end_code;
2242 info->end_data = info->end_code;
2243 info->brk = info->end_code;
2244 }
2245
682674b8 2246 if (qemu_log_enabled()) {
8e62a717 2247 load_symbols(ehdr, image_fd, load_bias);
682674b8 2248 }
31e31b8a 2249
98c1076c
AB
2250 mmap_unlock();
2251
8e62a717
RH
2252 close(image_fd);
2253 return;
2254
2255 exit_read:
2256 if (retval >= 0) {
2257 errmsg = "Incomplete read of file header";
2258 goto exit_errmsg;
2259 }
2260 exit_perror:
2261 errmsg = strerror(errno);
2262 exit_errmsg:
2263 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2264 exit(-1);
2265}
2266
2267static void load_elf_interp(const char *filename, struct image_info *info,
2268 char bprm_buf[BPRM_BUF_SIZE])
2269{
2270 int fd, retval;
2271
2272 fd = open(path(filename), O_RDONLY);
2273 if (fd < 0) {
2274 goto exit_perror;
2275 }
31e31b8a 2276
8e62a717
RH
2277 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2278 if (retval < 0) {
2279 goto exit_perror;
2280 }
2281 if (retval < BPRM_BUF_SIZE) {
2282 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2283 }
2284
bf858897 2285 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2286 return;
2287
2288 exit_perror:
2289 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2290 exit(-1);
31e31b8a
FB
2291}
2292
49918a75
PB
2293static int symfind(const void *s0, const void *s1)
2294{
c7c530cd 2295 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2296 struct elf_sym *sym = (struct elf_sym *)s1;
2297 int result = 0;
c7c530cd 2298 if (addr < sym->st_value) {
49918a75 2299 result = -1;
c7c530cd 2300 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2301 result = 1;
2302 }
2303 return result;
2304}
2305
2306static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2307{
2308#if ELF_CLASS == ELFCLASS32
2309 struct elf_sym *syms = s->disas_symtab.elf32;
2310#else
2311 struct elf_sym *syms = s->disas_symtab.elf64;
2312#endif
2313
2314 // binary search
49918a75
PB
2315 struct elf_sym *sym;
2316
c7c530cd 2317 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2318 if (sym != NULL) {
49918a75
PB
2319 return s->disas_strtab + sym->st_name;
2320 }
2321
2322 return "";
2323}
2324
2325/* FIXME: This should use elf_ops.h */
2326static int symcmp(const void *s0, const void *s1)
2327{
2328 struct elf_sym *sym0 = (struct elf_sym *)s0;
2329 struct elf_sym *sym1 = (struct elf_sym *)s1;
2330 return (sym0->st_value < sym1->st_value)
2331 ? -1
2332 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2333}
2334
689f936f 2335/* Best attempt to load symbols from this ELF object. */
682674b8 2336static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2337{
682674b8 2338 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2339 uint64_t segsz;
682674b8 2340 struct elf_shdr *shdr;
b9475279
CV
2341 char *strings = NULL;
2342 struct syminfo *s = NULL;
2343 struct elf_sym *new_syms, *syms = NULL;
689f936f 2344
682674b8
RH
2345 shnum = hdr->e_shnum;
2346 i = shnum * sizeof(struct elf_shdr);
2347 shdr = (struct elf_shdr *)alloca(i);
2348 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2349 return;
2350 }
2351
2352 bswap_shdr(shdr, shnum);
2353 for (i = 0; i < shnum; ++i) {
2354 if (shdr[i].sh_type == SHT_SYMTAB) {
2355 sym_idx = i;
2356 str_idx = shdr[i].sh_link;
49918a75
PB
2357 goto found;
2358 }
689f936f 2359 }
682674b8
RH
2360
2361 /* There will be no symbol table if the file was stripped. */
2362 return;
689f936f
FB
2363
2364 found:
682674b8 2365 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2366 s = g_try_new(struct syminfo, 1);
682674b8 2367 if (!s) {
b9475279 2368 goto give_up;
682674b8 2369 }
5fafdf24 2370
1e06262d
PM
2371 segsz = shdr[str_idx].sh_size;
2372 s->disas_strtab = strings = g_try_malloc(segsz);
2373 if (!strings ||
2374 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2375 goto give_up;
682674b8 2376 }
49918a75 2377
1e06262d
PM
2378 segsz = shdr[sym_idx].sh_size;
2379 syms = g_try_malloc(segsz);
2380 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2381 goto give_up;
682674b8 2382 }
31e31b8a 2383
1e06262d
PM
2384 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2385 /* Implausibly large symbol table: give up rather than ploughing
2386 * on with the number of symbols calculation overflowing
2387 */
2388 goto give_up;
2389 }
2390 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2391 for (i = 0; i < nsyms; ) {
49918a75 2392 bswap_sym(syms + i);
682674b8
RH
2393 /* Throw away entries which we do not need. */
2394 if (syms[i].st_shndx == SHN_UNDEF
2395 || syms[i].st_shndx >= SHN_LORESERVE
2396 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2397 if (i < --nsyms) {
49918a75
PB
2398 syms[i] = syms[nsyms];
2399 }
682674b8 2400 } else {
49918a75 2401#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2402 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2403 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2404#endif
682674b8
RH
2405 syms[i].st_value += load_bias;
2406 i++;
2407 }
0774bed1 2408 }
49918a75 2409
b9475279
CV
2410 /* No "useful" symbol. */
2411 if (nsyms == 0) {
2412 goto give_up;
2413 }
2414
5d5c9930
RH
2415 /* Attempt to free the storage associated with the local symbols
2416 that we threw away. Whether or not this has any effect on the
2417 memory allocation depends on the malloc implementation and how
2418 many symbols we managed to discard. */
0ef9ea29 2419 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2420 if (new_syms == NULL) {
b9475279 2421 goto give_up;
5d5c9930 2422 }
8d79de6e 2423 syms = new_syms;
5d5c9930 2424
49918a75 2425 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2426
49918a75
PB
2427 s->disas_num_syms = nsyms;
2428#if ELF_CLASS == ELFCLASS32
2429 s->disas_symtab.elf32 = syms;
49918a75
PB
2430#else
2431 s->disas_symtab.elf64 = syms;
49918a75 2432#endif
682674b8 2433 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2434 s->next = syminfos;
2435 syminfos = s;
b9475279
CV
2436
2437 return;
2438
2439give_up:
0ef9ea29
PM
2440 g_free(s);
2441 g_free(strings);
2442 g_free(syms);
689f936f 2443}
31e31b8a 2444
768fe76e
YS
2445uint32_t get_elf_eflags(int fd)
2446{
2447 struct elfhdr ehdr;
2448 off_t offset;
2449 int ret;
2450
2451 /* Read ELF header */
2452 offset = lseek(fd, 0, SEEK_SET);
2453 if (offset == (off_t) -1) {
2454 return 0;
2455 }
2456 ret = read(fd, &ehdr, sizeof(ehdr));
2457 if (ret < sizeof(ehdr)) {
2458 return 0;
2459 }
2460 offset = lseek(fd, offset, SEEK_SET);
2461 if (offset == (off_t) -1) {
2462 return 0;
2463 }
2464
2465 /* Check ELF signature */
2466 if (!elf_check_ident(&ehdr)) {
2467 return 0;
2468 }
2469
2470 /* check header */
2471 bswap_ehdr(&ehdr);
2472 if (!elf_check_ehdr(&ehdr)) {
2473 return 0;
2474 }
2475
2476 /* return architecture id */
2477 return ehdr.e_flags;
2478}
2479
f0116c54 2480int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2481{
8e62a717 2482 struct image_info interp_info;
31e31b8a 2483 struct elfhdr elf_ex;
8e62a717 2484 char *elf_interpreter = NULL;
59baae9a 2485 char *scratch;
31e31b8a 2486
bf858897 2487 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2488
2489 load_elf_image(bprm->filename, bprm->fd, info,
2490 &elf_interpreter, bprm->buf);
31e31b8a 2491
bf858897
RH
2492 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2493 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2494 when we load the interpreter. */
2495 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2496
59baae9a
SB
2497 /* Do this so that we can load the interpreter, if need be. We will
2498 change some of these later */
2499 bprm->p = setup_arg_pages(bprm, info);
2500
2501 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2502 if (STACK_GROWS_DOWN) {
2503 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2504 bprm->p, info->stack_limit);
2505 info->file_string = bprm->p;
2506 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2507 bprm->p, info->stack_limit);
2508 info->env_strings = bprm->p;
2509 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2510 bprm->p, info->stack_limit);
2511 info->arg_strings = bprm->p;
2512 } else {
2513 info->arg_strings = bprm->p;
2514 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2515 bprm->p, info->stack_limit);
2516 info->env_strings = bprm->p;
2517 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2518 bprm->p, info->stack_limit);
2519 info->file_string = bprm->p;
2520 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2521 bprm->p, info->stack_limit);
2522 }
2523
59baae9a
SB
2524 g_free(scratch);
2525
e5fe0c52 2526 if (!bprm->p) {
bf858897
RH
2527 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2528 exit(-1);
379f6698 2529 }
379f6698 2530
8e62a717
RH
2531 if (elf_interpreter) {
2532 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2533
8e62a717
RH
2534 /* If the program interpreter is one of these two, then assume
2535 an iBCS2 image. Otherwise assume a native linux image. */
2536
2537 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2538 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2539 info->personality = PER_SVR4;
31e31b8a 2540
8e62a717
RH
2541 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2542 and some applications "depend" upon this behavior. Since
2543 we do not have the power to recompile these, we emulate
2544 the SVr4 behavior. Sigh. */
2545 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2546 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2547 }
31e31b8a
FB
2548 }
2549
8e62a717
RH
2550 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2551 info, (elf_interpreter ? &interp_info : NULL));
2552 info->start_stack = bprm->p;
2553
2554 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2555 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2556 point as a function descriptor. Do this after creating elf tables
2557 so that we copy the original program entry point into the AUXV. */
2558 if (elf_interpreter) {
8e78064e 2559 info->load_bias = interp_info.load_bias;
8e62a717 2560 info->entry = interp_info.entry;
bf858897 2561 free(elf_interpreter);
8e62a717 2562 }
31e31b8a 2563
edf8e2af
MW
2564#ifdef USE_ELF_CORE_DUMP
2565 bprm->core_dump = &elf_core_dump;
2566#endif
2567
31e31b8a
FB
2568 return 0;
2569}
2570
edf8e2af 2571#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2572/*
2573 * Definitions to generate Intel SVR4-like core files.
a2547a13 2574 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2575 * tacked on the front to prevent clashes with linux definitions,
2576 * and the typedef forms have been avoided. This is mostly like
2577 * the SVR4 structure, but more Linuxy, with things that Linux does
2578 * not support and which gdb doesn't really use excluded.
2579 *
2580 * Fields we don't dump (their contents is zero) in linux-user qemu
2581 * are marked with XXX.
2582 *
2583 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2584 *
2585 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2586 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2587 * the target resides):
2588 *
2589 * #define USE_ELF_CORE_DUMP
2590 *
2591 * Next you define type of register set used for dumping. ELF specification
2592 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2593 *
c227f099 2594 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2595 * #define ELF_NREG <number of registers>
c227f099 2596 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2597 *
edf8e2af
MW
2598 * Last step is to implement target specific function that copies registers
2599 * from given cpu into just specified register set. Prototype is:
2600 *
c227f099 2601 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2602 * const CPUArchState *env);
edf8e2af
MW
2603 *
2604 * Parameters:
2605 * regs - copy register values into here (allocated and zeroed by caller)
2606 * env - copy registers from here
2607 *
2608 * Example for ARM target is provided in this file.
2609 */
2610
2611/* An ELF note in memory */
2612struct memelfnote {
2613 const char *name;
2614 size_t namesz;
2615 size_t namesz_rounded;
2616 int type;
2617 size_t datasz;
80f5ce75 2618 size_t datasz_rounded;
edf8e2af
MW
2619 void *data;
2620 size_t notesz;
2621};
2622
a2547a13 2623struct target_elf_siginfo {
f8fd4fc4
PB
2624 abi_int si_signo; /* signal number */
2625 abi_int si_code; /* extra code */
2626 abi_int si_errno; /* errno */
edf8e2af
MW
2627};
2628
a2547a13
LD
2629struct target_elf_prstatus {
2630 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2631 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2632 abi_ulong pr_sigpend; /* XXX */
2633 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2634 target_pid_t pr_pid;
2635 target_pid_t pr_ppid;
2636 target_pid_t pr_pgrp;
2637 target_pid_t pr_sid;
edf8e2af
MW
2638 struct target_timeval pr_utime; /* XXX User time */
2639 struct target_timeval pr_stime; /* XXX System time */
2640 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2641 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2642 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2643 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2644};
2645
2646#define ELF_PRARGSZ (80) /* Number of chars for args */
2647
a2547a13 2648struct target_elf_prpsinfo {
edf8e2af
MW
2649 char pr_state; /* numeric process state */
2650 char pr_sname; /* char for pr_state */
2651 char pr_zomb; /* zombie */
2652 char pr_nice; /* nice val */
ca98ac83 2653 abi_ulong pr_flag; /* flags */
c227f099
AL
2654 target_uid_t pr_uid;
2655 target_gid_t pr_gid;
2656 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2657 /* Lots missing */
2658 char pr_fname[16]; /* filename of executable */
2659 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2660};
2661
2662/* Here is the structure in which status of each thread is captured. */
2663struct elf_thread_status {
72cf2d4f 2664 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2665 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2666#if 0
2667 elf_fpregset_t fpu; /* NT_PRFPREG */
2668 struct task_struct *thread;
2669 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2670#endif
2671 struct memelfnote notes[1];
2672 int num_notes;
2673};
2674
2675struct elf_note_info {
2676 struct memelfnote *notes;
a2547a13
LD
2677 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2678 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2679
72cf2d4f 2680 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2681#if 0
2682 /*
2683 * Current version of ELF coredump doesn't support
2684 * dumping fp regs etc.
2685 */
2686 elf_fpregset_t *fpu;
2687 elf_fpxregset_t *xfpu;
2688 int thread_status_size;
2689#endif
2690 int notes_size;
2691 int numnote;
2692};
2693
2694struct vm_area_struct {
1a1c4db9
MI
2695 target_ulong vma_start; /* start vaddr of memory region */
2696 target_ulong vma_end; /* end vaddr of memory region */
2697 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2698 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2699};
2700
2701struct mm_struct {
72cf2d4f 2702 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2703 int mm_count; /* number of mappings */
2704};
2705
2706static struct mm_struct *vma_init(void);
2707static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2708static int vma_add_mapping(struct mm_struct *, target_ulong,
2709 target_ulong, abi_ulong);
edf8e2af
MW
2710static int vma_get_mapping_count(const struct mm_struct *);
2711static struct vm_area_struct *vma_first(const struct mm_struct *);
2712static struct vm_area_struct *vma_next(struct vm_area_struct *);
2713static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2714static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2715 unsigned long flags);
edf8e2af
MW
2716
2717static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2718static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2719 unsigned int, void *);
a2547a13
LD
2720static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2721static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2722static void fill_auxv_note(struct memelfnote *, const TaskState *);
2723static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2724static size_t note_size(const struct memelfnote *);
2725static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2726static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2727static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2728static int core_dump_filename(const TaskState *, char *, size_t);
2729
2730static int dump_write(int, const void *, size_t);
2731static int write_note(struct memelfnote *, int);
2732static int write_note_info(struct elf_note_info *, int);
2733
2734#ifdef BSWAP_NEEDED
a2547a13 2735static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2736{
ca98ac83
PB
2737 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2738 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2739 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2740 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2741 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2742 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2743 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2744 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2745 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2746 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2747 /* cpu times are not filled, so we skip them */
2748 /* regs should be in correct format already */
2749 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2750}
2751
a2547a13 2752static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2753{
ca98ac83 2754 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2755 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2756 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2757 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2758 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2759 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2760 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2761}
991f8f0c
RH
2762
2763static void bswap_note(struct elf_note *en)
2764{
2765 bswap32s(&en->n_namesz);
2766 bswap32s(&en->n_descsz);
2767 bswap32s(&en->n_type);
2768}
2769#else
2770static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2771static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2772static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2773#endif /* BSWAP_NEEDED */
2774
2775/*
2776 * Minimal support for linux memory regions. These are needed
2777 * when we are finding out what memory exactly belongs to
2778 * emulated process. No locks needed here, as long as
2779 * thread that received the signal is stopped.
2780 */
2781
2782static struct mm_struct *vma_init(void)
2783{
2784 struct mm_struct *mm;
2785
7267c094 2786 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2787 return (NULL);
2788
2789 mm->mm_count = 0;
72cf2d4f 2790 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2791
2792 return (mm);
2793}
2794
2795static void vma_delete(struct mm_struct *mm)
2796{
2797 struct vm_area_struct *vma;
2798
2799 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2800 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2801 g_free(vma);
edf8e2af 2802 }
7267c094 2803 g_free(mm);
edf8e2af
MW
2804}
2805
1a1c4db9
MI
2806static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2807 target_ulong end, abi_ulong flags)
edf8e2af
MW
2808{
2809 struct vm_area_struct *vma;
2810
7267c094 2811 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2812 return (-1);
2813
2814 vma->vma_start = start;
2815 vma->vma_end = end;
2816 vma->vma_flags = flags;
2817
72cf2d4f 2818 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2819 mm->mm_count++;
2820
2821 return (0);
2822}
2823
2824static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2825{
72cf2d4f 2826 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2827}
2828
2829static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2830{
72cf2d4f 2831 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2832}
2833
2834static int vma_get_mapping_count(const struct mm_struct *mm)
2835{
2836 return (mm->mm_count);
2837}
2838
2839/*
2840 * Calculate file (dump) size of given memory region.
2841 */
2842static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2843{
2844 /* if we cannot even read the first page, skip it */
2845 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2846 return (0);
2847
2848 /*
2849 * Usually we don't dump executable pages as they contain
2850 * non-writable code that debugger can read directly from
2851 * target library etc. However, thread stacks are marked
2852 * also executable so we read in first page of given region
2853 * and check whether it contains elf header. If there is
2854 * no elf header, we dump it.
2855 */
2856 if (vma->vma_flags & PROT_EXEC) {
2857 char page[TARGET_PAGE_SIZE];
2858
2859 copy_from_user(page, vma->vma_start, sizeof (page));
2860 if ((page[EI_MAG0] == ELFMAG0) &&
2861 (page[EI_MAG1] == ELFMAG1) &&
2862 (page[EI_MAG2] == ELFMAG2) &&
2863 (page[EI_MAG3] == ELFMAG3)) {
2864 /*
2865 * Mappings are possibly from ELF binary. Don't dump
2866 * them.
2867 */
2868 return (0);
2869 }
2870 }
2871
2872 return (vma->vma_end - vma->vma_start);
2873}
2874
1a1c4db9 2875static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2876 unsigned long flags)
edf8e2af
MW
2877{
2878 struct mm_struct *mm = (struct mm_struct *)priv;
2879
edf8e2af
MW
2880 vma_add_mapping(mm, start, end, flags);
2881 return (0);
2882}
2883
2884static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2885 unsigned int sz, void *data)
edf8e2af
MW
2886{
2887 unsigned int namesz;
2888
2889 namesz = strlen(name) + 1;
2890 note->name = name;
2891 note->namesz = namesz;
2892 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2893 note->type = type;
80f5ce75
LV
2894 note->datasz = sz;
2895 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2896
edf8e2af
MW
2897 note->data = data;
2898
2899 /*
2900 * We calculate rounded up note size here as specified by
2901 * ELF document.
2902 */
2903 note->notesz = sizeof (struct elf_note) +
80f5ce75 2904 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2905}
2906
2907static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2908 uint32_t flags)
edf8e2af
MW
2909{
2910 (void) memset(elf, 0, sizeof(*elf));
2911
2912 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2913 elf->e_ident[EI_CLASS] = ELF_CLASS;
2914 elf->e_ident[EI_DATA] = ELF_DATA;
2915 elf->e_ident[EI_VERSION] = EV_CURRENT;
2916 elf->e_ident[EI_OSABI] = ELF_OSABI;
2917
2918 elf->e_type = ET_CORE;
2919 elf->e_machine = machine;
2920 elf->e_version = EV_CURRENT;
2921 elf->e_phoff = sizeof(struct elfhdr);
2922 elf->e_flags = flags;
2923 elf->e_ehsize = sizeof(struct elfhdr);
2924 elf->e_phentsize = sizeof(struct elf_phdr);
2925 elf->e_phnum = segs;
2926
edf8e2af 2927 bswap_ehdr(elf);
edf8e2af
MW
2928}
2929
2930static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2931{
2932 phdr->p_type = PT_NOTE;
2933 phdr->p_offset = offset;
2934 phdr->p_vaddr = 0;
2935 phdr->p_paddr = 0;
2936 phdr->p_filesz = sz;
2937 phdr->p_memsz = 0;
2938 phdr->p_flags = 0;
2939 phdr->p_align = 0;
2940
991f8f0c 2941 bswap_phdr(phdr, 1);
edf8e2af
MW
2942}
2943
2944static size_t note_size(const struct memelfnote *note)
2945{
2946 return (note->notesz);
2947}
2948
a2547a13 2949static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2950 const TaskState *ts, int signr)
edf8e2af
MW
2951{
2952 (void) memset(prstatus, 0, sizeof (*prstatus));
2953 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2954 prstatus->pr_pid = ts->ts_tid;
2955 prstatus->pr_ppid = getppid();
2956 prstatus->pr_pgrp = getpgrp();
2957 prstatus->pr_sid = getsid(0);
2958
edf8e2af 2959 bswap_prstatus(prstatus);
edf8e2af
MW
2960}
2961
a2547a13 2962static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2963{
900cfbca 2964 char *base_filename;
edf8e2af
MW
2965 unsigned int i, len;
2966
2967 (void) memset(psinfo, 0, sizeof (*psinfo));
2968
2969 len = ts->info->arg_end - ts->info->arg_start;
2970 if (len >= ELF_PRARGSZ)
2971 len = ELF_PRARGSZ - 1;
2972 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2973 return -EFAULT;
2974 for (i = 0; i < len; i++)
2975 if (psinfo->pr_psargs[i] == 0)
2976 psinfo->pr_psargs[i] = ' ';
2977 psinfo->pr_psargs[len] = 0;
2978
2979 psinfo->pr_pid = getpid();
2980 psinfo->pr_ppid = getppid();
2981 psinfo->pr_pgrp = getpgrp();
2982 psinfo->pr_sid = getsid(0);
2983 psinfo->pr_uid = getuid();
2984 psinfo->pr_gid = getgid();
2985
900cfbca
JM
2986 base_filename = g_path_get_basename(ts->bprm->filename);
2987 /*
2988 * Using strncpy here is fine: at max-length,
2989 * this field is not NUL-terminated.
2990 */
edf8e2af 2991 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2992 sizeof(psinfo->pr_fname));
edf8e2af 2993
900cfbca 2994 g_free(base_filename);
edf8e2af 2995 bswap_psinfo(psinfo);
edf8e2af
MW
2996 return (0);
2997}
2998
2999static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3000{
3001 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3002 elf_addr_t orig_auxv = auxv;
edf8e2af 3003 void *ptr;
125b0f55 3004 int len = ts->info->auxv_len;
edf8e2af
MW
3005
3006 /*
3007 * Auxiliary vector is stored in target process stack. It contains
3008 * {type, value} pairs that we need to dump into note. This is not
3009 * strictly necessary but we do it here for sake of completeness.
3010 */
3011
edf8e2af
MW
3012 /* read in whole auxv vector and copy it to memelfnote */
3013 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3014 if (ptr != NULL) {
3015 fill_note(note, "CORE", NT_AUXV, len, ptr);
3016 unlock_user(ptr, auxv, len);
3017 }
3018}
3019
3020/*
3021 * Constructs name of coredump file. We have following convention
3022 * for the name:
3023 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3024 *
3025 * Returns 0 in case of success, -1 otherwise (errno is set).
3026 */
3027static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3028 size_t bufsize)
edf8e2af
MW
3029{
3030 char timestamp[64];
edf8e2af
MW
3031 char *base_filename = NULL;
3032 struct timeval tv;
3033 struct tm tm;
3034
3035 assert(bufsize >= PATH_MAX);
3036
3037 if (gettimeofday(&tv, NULL) < 0) {
3038 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3039 strerror(errno));
edf8e2af
MW
3040 return (-1);
3041 }
3042
b8da57fa 3043 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3044 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3045 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3046 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3047 base_filename, timestamp, (int)getpid());
b8da57fa 3048 g_free(base_filename);
edf8e2af
MW
3049
3050 return (0);
3051}
3052
3053static int dump_write(int fd, const void *ptr, size_t size)
3054{
3055 const char *bufp = (const char *)ptr;
3056 ssize_t bytes_written, bytes_left;
3057 struct rlimit dumpsize;
3058 off_t pos;
3059
3060 bytes_written = 0;
3061 getrlimit(RLIMIT_CORE, &dumpsize);
3062 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3063 if (errno == ESPIPE) { /* not a seekable stream */
3064 bytes_left = size;
3065 } else {
3066 return pos;
3067 }
3068 } else {
3069 if (dumpsize.rlim_cur <= pos) {
3070 return -1;
3071 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3072 bytes_left = size;
3073 } else {
3074 size_t limit_left=dumpsize.rlim_cur - pos;
3075 bytes_left = limit_left >= size ? size : limit_left ;
3076 }
3077 }
3078
3079 /*
3080 * In normal conditions, single write(2) should do but
3081 * in case of socket etc. this mechanism is more portable.
3082 */
3083 do {
3084 bytes_written = write(fd, bufp, bytes_left);
3085 if (bytes_written < 0) {
3086 if (errno == EINTR)
3087 continue;
3088 return (-1);
3089 } else if (bytes_written == 0) { /* eof */
3090 return (-1);
3091 }
3092 bufp += bytes_written;
3093 bytes_left -= bytes_written;
3094 } while (bytes_left > 0);
3095
3096 return (0);
3097}
3098
3099static int write_note(struct memelfnote *men, int fd)
3100{
3101 struct elf_note en;
3102
3103 en.n_namesz = men->namesz;
3104 en.n_type = men->type;
3105 en.n_descsz = men->datasz;
3106
edf8e2af 3107 bswap_note(&en);
edf8e2af
MW
3108
3109 if (dump_write(fd, &en, sizeof(en)) != 0)
3110 return (-1);
3111 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3112 return (-1);
80f5ce75 3113 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3114 return (-1);
3115
3116 return (0);
3117}
3118
9349b4f9 3119static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3120{
0429a971
AF
3121 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3122 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3123 struct elf_thread_status *ets;
3124
7267c094 3125 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3126 ets->num_notes = 1; /* only prstatus is dumped */
3127 fill_prstatus(&ets->prstatus, ts, 0);
3128 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3129 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3130 &ets->prstatus);
edf8e2af 3131
72cf2d4f 3132 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3133
3134 info->notes_size += note_size(&ets->notes[0]);
3135}
3136
6afafa86
PM
3137static void init_note_info(struct elf_note_info *info)
3138{
3139 /* Initialize the elf_note_info structure so that it is at
3140 * least safe to call free_note_info() on it. Must be
3141 * called before calling fill_note_info().
3142 */
3143 memset(info, 0, sizeof (*info));
3144 QTAILQ_INIT(&info->thread_list);
3145}
3146
edf8e2af 3147static int fill_note_info(struct elf_note_info *info,
9349b4f9 3148 long signr, const CPUArchState *env)
edf8e2af
MW
3149{
3150#define NUMNOTES 3
0429a971
AF
3151 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3152 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3153 int i;
3154
c78d65e8 3155 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3156 if (info->notes == NULL)
3157 return (-ENOMEM);
7267c094 3158 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3159 if (info->prstatus == NULL)
3160 return (-ENOMEM);
7267c094 3161 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3162 if (info->prstatus == NULL)
3163 return (-ENOMEM);
3164
3165 /*
3166 * First fill in status (and registers) of current thread
3167 * including process info & aux vector.
3168 */
3169 fill_prstatus(info->prstatus, ts, signr);
3170 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3171 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3172 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3173 fill_psinfo(info->psinfo, ts);
3174 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3175 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3176 fill_auxv_note(&info->notes[2], ts);
3177 info->numnote = 3;
3178
3179 info->notes_size = 0;
3180 for (i = 0; i < info->numnote; i++)
3181 info->notes_size += note_size(&info->notes[i]);
3182
3183 /* read and fill status of all threads */
3184 cpu_list_lock();
bdc44640 3185 CPU_FOREACH(cpu) {
a2247f8e 3186 if (cpu == thread_cpu) {
edf8e2af 3187 continue;
182735ef
AF
3188 }
3189 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3190 }
3191 cpu_list_unlock();
3192
3193 return (0);
3194}
3195
3196static void free_note_info(struct elf_note_info *info)
3197{
3198 struct elf_thread_status *ets;
3199
72cf2d4f
BS
3200 while (!QTAILQ_EMPTY(&info->thread_list)) {
3201 ets = QTAILQ_FIRST(&info->thread_list);
3202 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3203 g_free(ets);
edf8e2af
MW
3204 }
3205
7267c094
AL
3206 g_free(info->prstatus);
3207 g_free(info->psinfo);
3208 g_free(info->notes);
edf8e2af
MW
3209}
3210
3211static int write_note_info(struct elf_note_info *info, int fd)
3212{
3213 struct elf_thread_status *ets;
3214 int i, error = 0;
3215
3216 /* write prstatus, psinfo and auxv for current thread */
3217 for (i = 0; i < info->numnote; i++)
3218 if ((error = write_note(&info->notes[i], fd)) != 0)
3219 return (error);
3220
3221 /* write prstatus for each thread */
52a53afe 3222 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3223 if ((error = write_note(&ets->notes[0], fd)) != 0)
3224 return (error);
3225 }
3226
3227 return (0);
3228}
3229
3230/*
3231 * Write out ELF coredump.
3232 *
3233 * See documentation of ELF object file format in:
3234 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3235 *
3236 * Coredump format in linux is following:
3237 *
3238 * 0 +----------------------+ \
3239 * | ELF header | ET_CORE |
3240 * +----------------------+ |
3241 * | ELF program headers | |--- headers
3242 * | - NOTE section | |
3243 * | - PT_LOAD sections | |
3244 * +----------------------+ /
3245 * | NOTEs: |
3246 * | - NT_PRSTATUS |
3247 * | - NT_PRSINFO |
3248 * | - NT_AUXV |
3249 * +----------------------+ <-- aligned to target page
3250 * | Process memory dump |
3251 * : :
3252 * . .
3253 * : :
3254 * | |
3255 * +----------------------+
3256 *
3257 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3258 * NT_PRSINFO -> struct elf_prpsinfo
3259 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3260 *
3261 * Format follows System V format as close as possible. Current
3262 * version limitations are as follows:
3263 * - no floating point registers are dumped
3264 *
3265 * Function returns 0 in case of success, negative errno otherwise.
3266 *
3267 * TODO: make this work also during runtime: it should be
3268 * possible to force coredump from running process and then
3269 * continue processing. For example qemu could set up SIGUSR2
3270 * handler (provided that target process haven't registered
3271 * handler for that) that does the dump when signal is received.
3272 */
9349b4f9 3273static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3274{
0429a971
AF
3275 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3276 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3277 struct vm_area_struct *vma = NULL;
3278 char corefile[PATH_MAX];
3279 struct elf_note_info info;
3280 struct elfhdr elf;
3281 struct elf_phdr phdr;
3282 struct rlimit dumpsize;
3283 struct mm_struct *mm = NULL;
3284 off_t offset = 0, data_offset = 0;
3285 int segs = 0;
3286 int fd = -1;
3287
6afafa86
PM
3288 init_note_info(&info);
3289
edf8e2af
MW
3290 errno = 0;
3291 getrlimit(RLIMIT_CORE, &dumpsize);
3292 if (dumpsize.rlim_cur == 0)
d97ef72e 3293 return 0;
edf8e2af
MW
3294
3295 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3296 return (-errno);
3297
3298 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3299 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3300 return (-errno);
3301
3302 /*
3303 * Walk through target process memory mappings and
3304 * set up structure containing this information. After
3305 * this point vma_xxx functions can be used.
3306 */
3307 if ((mm = vma_init()) == NULL)
3308 goto out;
3309
3310 walk_memory_regions(mm, vma_walker);
3311 segs = vma_get_mapping_count(mm);
3312
3313 /*
3314 * Construct valid coredump ELF header. We also
3315 * add one more segment for notes.
3316 */
3317 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3318 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3319 goto out;
3320
b6af0975 3321 /* fill in the in-memory version of notes */
edf8e2af
MW
3322 if (fill_note_info(&info, signr, env) < 0)
3323 goto out;
3324
3325 offset += sizeof (elf); /* elf header */
3326 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3327
3328 /* write out notes program header */
3329 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3330
3331 offset += info.notes_size;
3332 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3333 goto out;
3334
3335 /*
3336 * ELF specification wants data to start at page boundary so
3337 * we align it here.
3338 */
80f5ce75 3339 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3340
3341 /*
3342 * Write program headers for memory regions mapped in
3343 * the target process.
3344 */
3345 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3346 (void) memset(&phdr, 0, sizeof (phdr));
3347
3348 phdr.p_type = PT_LOAD;
3349 phdr.p_offset = offset;
3350 phdr.p_vaddr = vma->vma_start;
3351 phdr.p_paddr = 0;
3352 phdr.p_filesz = vma_dump_size(vma);
3353 offset += phdr.p_filesz;
3354 phdr.p_memsz = vma->vma_end - vma->vma_start;
3355 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3356 if (vma->vma_flags & PROT_WRITE)
3357 phdr.p_flags |= PF_W;
3358 if (vma->vma_flags & PROT_EXEC)
3359 phdr.p_flags |= PF_X;
3360 phdr.p_align = ELF_EXEC_PAGESIZE;
3361
80f5ce75 3362 bswap_phdr(&phdr, 1);
772034b6
PM
3363 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3364 goto out;
3365 }
edf8e2af
MW
3366 }
3367
3368 /*
3369 * Next we write notes just after program headers. No
3370 * alignment needed here.
3371 */
3372 if (write_note_info(&info, fd) < 0)
3373 goto out;
3374
3375 /* align data to page boundary */
edf8e2af
MW
3376 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3377 goto out;
3378
3379 /*
3380 * Finally we can dump process memory into corefile as well.
3381 */
3382 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3383 abi_ulong addr;
3384 abi_ulong end;
3385
3386 end = vma->vma_start + vma_dump_size(vma);
3387
3388 for (addr = vma->vma_start; addr < end;
d97ef72e 3389 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3390 char page[TARGET_PAGE_SIZE];
3391 int error;
3392
3393 /*
3394 * Read in page from target process memory and
3395 * write it to coredump file.
3396 */
3397 error = copy_from_user(page, addr, sizeof (page));
3398 if (error != 0) {
49995e17 3399 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3400 addr);
edf8e2af
MW
3401 errno = -error;
3402 goto out;
3403 }
3404 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3405 goto out;
3406 }
3407 }
3408
d97ef72e 3409 out:
edf8e2af
MW
3410 free_note_info(&info);
3411 if (mm != NULL)
3412 vma_delete(mm);
3413 (void) close(fd);
3414
3415 if (errno != 0)
3416 return (-errno);
3417 return (0);
3418}
edf8e2af
MW
3419#endif /* USE_ELF_CORE_DUMP */
3420
e5fe0c52
PB
3421void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3422{
3423 init_thread(regs, infop);
3424}