]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
linux-user: report signals being taken in strace output
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
83fb7adf
FB
81/* this flag is uneffective under linux too, should be deleted */
82#ifndef MAP_DENYWRITE
83#define MAP_DENYWRITE 0
84#endif
85
86/* should probably go in elf.h */
87#ifndef ELIBBAD
88#define ELIBBAD 80
89#endif
90
28490231
RH
91#ifdef TARGET_WORDS_BIGENDIAN
92#define ELF_DATA ELFDATA2MSB
93#else
94#define ELF_DATA ELFDATA2LSB
95#endif
96
a29f998d 97#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
98typedef abi_ullong target_elf_greg_t;
99#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
100#else
101typedef abi_ulong target_elf_greg_t;
102#define tswapreg(ptr) tswapal(ptr)
103#endif
104
21e807fa 105#ifdef USE_UID16
1ddd592f
PB
106typedef abi_ushort target_uid_t;
107typedef abi_ushort target_gid_t;
21e807fa 108#else
f8fd4fc4
PB
109typedef abi_uint target_uid_t;
110typedef abi_uint target_gid_t;
21e807fa 111#endif
f8fd4fc4 112typedef abi_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
a2247f8e 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
a2247f8e
AF
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
136}
137
84409ddb
JM
138#ifdef TARGET_X86_64
139#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
140
141#define ELF_CLASS ELFCLASS64
84409ddb
JM
142#define ELF_ARCH EM_X86_64
143
144static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145{
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149}
150
9edc5d79 151#define ELF_NREG 27
c227f099 152typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
153
154/*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
05390248 161static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
162{
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190}
191
84409ddb
JM
192#else
193
30ac07d4
FB
194#define ELF_START_MMAP 0x80000000
195
30ac07d4
FB
196/*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201/*
202 * These are used to set parameters in the core dumps.
203 */
d97ef72e 204#define ELF_CLASS ELFCLASS32
d97ef72e 205#define ELF_ARCH EM_386
30ac07d4 206
d97ef72e
RH
207static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
b346ff46
FB
209{
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
e5fe0c52
PB
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
b346ff46 221}
9edc5d79 222
9edc5d79 223#define ELF_NREG 17
c227f099 224typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
225
226/*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
05390248 233static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
234{
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252}
84409ddb 253#endif
b346ff46 254
9edc5d79 255#define USE_ELF_CORE_DUMP
d97ef72e 256#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
257
258#endif
259
260#ifdef TARGET_ARM
261
24e76ff0
PM
262#ifndef TARGET_AARCH64
263/* 32 bit ARM definitions */
264
b346ff46
FB
265#define ELF_START_MMAP 0x80000000
266
b597c3f7 267#define ELF_ARCH EM_ARM
d97ef72e 268#define ELF_CLASS ELFCLASS32
b346ff46 269
d97ef72e
RH
270static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
b346ff46 272{
992f48a0 273 abi_long stack = infop->start_stack;
b346ff46 274 memset(regs, 0, sizeof(*regs));
99033cae 275
167e4cdc
PM
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
2f619698 282 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 285 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 286 regs->uregs[0] = 0;
e5fe0c52 287 /* For uClinux PIC binaries. */
863cf0b7 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 289 regs->uregs[10] = infop->start_data;
b346ff46
FB
290}
291
edf8e2af 292#define ELF_NREG 18
c227f099 293typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 294
05390248 295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 296{
86cd7b2d
PB
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
316}
317
30ac07d4 318#define USE_ELF_CORE_DUMP
d97ef72e 319#define ELF_EXEC_PAGESIZE 4096
30ac07d4 320
afce2927
FB
321enum
322{
d97ef72e
RH
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
345};
346
ad6919dc
PM
347enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353};
354
6b1275ff
PM
355/* The commpage only exists for 32 bit kernels */
356
806d1021
MI
357#define TARGET_HAS_VALIDATE_GUEST_SPACE
358/* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
365 */
366static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
97cc7560
DDAG
368{
369 unsigned long real_start, test_page_addr;
370
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
373 */
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
375
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
378 */
379 if (test_page_addr >= guest_base
380 && test_page_addr <= (guest_base + guest_size)) {
381 return -1;
382 }
383
97cc7560
DDAG
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
393 }
394
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
399 }
400
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
403 */
404
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
412 }
413
414 return 1; /* All good */
415}
adf050b1
BC
416
417#define ELF_HWCAP get_elf_hwcap()
ad6919dc 418#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
419
420static uint32_t get_elf_hwcap(void)
421{
a2247f8e 422 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
423 uint32_t hwcaps = 0;
424
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
429
430 /* probe for the extra features */
431#define GET_FEATURE(feat, hwcap) \
a2247f8e 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
448 */
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
451
452 return hwcaps;
453}
afce2927 454
ad6919dc
PM
455static uint32_t get_elf_hwcap2(void)
456{
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
459
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
466}
467
468#undef GET_FEATURE
469
24e76ff0
PM
470#else
471/* 64 bit ARM definitions */
472#define ELF_START_MMAP 0x80000000
473
b597c3f7 474#define ELF_ARCH EM_AARCH64
24e76ff0
PM
475#define ELF_CLASS ELFCLASS64
476#define ELF_PLATFORM "aarch64"
477
478static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
480{
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
483
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
486}
487
488#define ELF_NREG 34
489typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
490
491static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
493{
494 int i;
495
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
498 }
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501}
502
503#define USE_ELF_CORE_DUMP
504#define ELF_EXEC_PAGESIZE 4096
505
506enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515};
516
517#define ELF_HWCAP get_elf_hwcap()
518
519static uint32_t get_elf_hwcap(void)
520{
521 ARMCPU *cpu = ARM_CPU(thread_cpu);
522 uint32_t hwcaps = 0;
523
524 hwcaps |= ARM_HWCAP_A64_FP;
525 hwcaps |= ARM_HWCAP_A64_ASIMD;
526
527 /* probe for the extra features */
528#define GET_FEATURE(feat, hwcap) \
529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
24e76ff0
PM
535#undef GET_FEATURE
536
537 return hwcaps;
538}
539
540#endif /* not TARGET_AARCH64 */
541#endif /* TARGET_ARM */
30ac07d4 542
d2fbca94
GX
543#ifdef TARGET_UNICORE32
544
545#define ELF_START_MMAP 0x80000000
546
d2fbca94
GX
547#define ELF_CLASS ELFCLASS32
548#define ELF_DATA ELFDATA2LSB
549#define ELF_ARCH EM_UNICORE32
550
551static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
553{
554 abi_long stack = infop->start_stack;
555 memset(regs, 0, sizeof(*regs));
556 regs->UC32_REG_asr = 0x10;
557 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558 regs->UC32_REG_sp = infop->start_stack;
559 /* FIXME - what to for failure of get_user()? */
560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562 /* XXX: it seems that r0 is zeroed after ! */
563 regs->UC32_REG_00 = 0;
564}
565
566#define ELF_NREG 34
567typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
568
05390248 569static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
570{
571 (*regs)[0] = env->regs[0];
572 (*regs)[1] = env->regs[1];
573 (*regs)[2] = env->regs[2];
574 (*regs)[3] = env->regs[3];
575 (*regs)[4] = env->regs[4];
576 (*regs)[5] = env->regs[5];
577 (*regs)[6] = env->regs[6];
578 (*regs)[7] = env->regs[7];
579 (*regs)[8] = env->regs[8];
580 (*regs)[9] = env->regs[9];
581 (*regs)[10] = env->regs[10];
582 (*regs)[11] = env->regs[11];
583 (*regs)[12] = env->regs[12];
584 (*regs)[13] = env->regs[13];
585 (*regs)[14] = env->regs[14];
586 (*regs)[15] = env->regs[15];
587 (*regs)[16] = env->regs[16];
588 (*regs)[17] = env->regs[17];
589 (*regs)[18] = env->regs[18];
590 (*regs)[19] = env->regs[19];
591 (*regs)[20] = env->regs[20];
592 (*regs)[21] = env->regs[21];
593 (*regs)[22] = env->regs[22];
594 (*regs)[23] = env->regs[23];
595 (*regs)[24] = env->regs[24];
596 (*regs)[25] = env->regs[25];
597 (*regs)[26] = env->regs[26];
598 (*regs)[27] = env->regs[27];
599 (*regs)[28] = env->regs[28];
600 (*regs)[29] = env->regs[29];
601 (*regs)[30] = env->regs[30];
602 (*regs)[31] = env->regs[31];
603
05390248 604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
605 (*regs)[33] = env->regs[0]; /* XXX */
606}
607
608#define USE_ELF_CORE_DUMP
609#define ELF_EXEC_PAGESIZE 4096
610
611#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612
613#endif
614
853d6f7a 615#ifdef TARGET_SPARC
a315a145 616#ifdef TARGET_SPARC64
853d6f7a
FB
617
618#define ELF_START_MMAP 0x80000000
cf973e46
AT
619#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 621#ifndef TARGET_ABI32
cb33da57 622#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
623#else
624#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625#endif
853d6f7a 626
a315a145 627#define ELF_CLASS ELFCLASS64
5ef54116
FB
628#define ELF_ARCH EM_SPARCV9
629
d97ef72e 630#define STACK_BIAS 2047
a315a145 631
d97ef72e
RH
632static inline void init_thread(struct target_pt_regs *regs,
633 struct image_info *infop)
a315a145 634{
992f48a0 635#ifndef TARGET_ABI32
a315a145 636 regs->tstate = 0;
992f48a0 637#endif
a315a145
FB
638 regs->pc = infop->entry;
639 regs->npc = regs->pc + 4;
640 regs->y = 0;
992f48a0
BS
641#ifdef TARGET_ABI32
642 regs->u_regs[14] = infop->start_stack - 16 * 4;
643#else
cb33da57
BS
644 if (personality(infop->personality) == PER_LINUX32)
645 regs->u_regs[14] = infop->start_stack - 16 * 4;
646 else
647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 648#endif
a315a145
FB
649}
650
651#else
652#define ELF_START_MMAP 0x80000000
cf973e46
AT
653#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV)
a315a145 655
853d6f7a 656#define ELF_CLASS ELFCLASS32
853d6f7a
FB
657#define ELF_ARCH EM_SPARC
658
d97ef72e
RH
659static inline void init_thread(struct target_pt_regs *regs,
660 struct image_info *infop)
853d6f7a 661{
f5155289
FB
662 regs->psr = 0;
663 regs->pc = infop->entry;
664 regs->npc = regs->pc + 4;
665 regs->y = 0;
666 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
667}
668
a315a145 669#endif
853d6f7a
FB
670#endif
671
67867308
FB
672#ifdef TARGET_PPC
673
4ecd4d16 674#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
675#define ELF_START_MMAP 0x80000000
676
e85e7c6e 677#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
678
679#define elf_check_arch(x) ( (x) == EM_PPC64 )
680
d97ef72e 681#define ELF_CLASS ELFCLASS64
84409ddb
JM
682
683#else
684
d97ef72e 685#define ELF_CLASS ELFCLASS32
84409ddb
JM
686
687#endif
688
d97ef72e 689#define ELF_ARCH EM_PPC
67867308 690
df84e4f3
NF
691/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692 See arch/powerpc/include/asm/cputable.h. */
693enum {
3efa9a67 694 QEMU_PPC_FEATURE_32 = 0x80000000,
695 QEMU_PPC_FEATURE_64 = 0x40000000,
696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709 QEMU_PPC_FEATURE_CELL = 0x00010000,
710 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711 QEMU_PPC_FEATURE_SMT = 0x00004000,
712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714 QEMU_PPC_FEATURE_PA6T = 0x00000800,
715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720
721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
723
724 /* Feature definitions in AT_HWCAP2. */
725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
731};
732
733#define ELF_HWCAP get_elf_hwcap()
734
735static uint32_t get_elf_hwcap(void)
736{
a2247f8e 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
738 uint32_t features = 0;
739
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 742#define GET_FEATURE(flag, feature) \
a2247f8e 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
0e019746
TM
744#define GET_FEATURE2(flag, feature) \
745 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
3efa9a67 746 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
747 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
748 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
749 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
750 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
751 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
752 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
753 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
754 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
755 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
756 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
757 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
758 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 759#undef GET_FEATURE
0e019746 760#undef GET_FEATURE2
df84e4f3
NF
761
762 return features;
763}
764
a60438dd
TM
765#define ELF_HWCAP2 get_elf_hwcap2()
766
767static uint32_t get_elf_hwcap2(void)
768{
769 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
770 uint32_t features = 0;
771
772#define GET_FEATURE(flag, feature) \
773 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
774#define GET_FEATURE2(flag, feature) \
775 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
776
777 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
778 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
779 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
780 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
781
782#undef GET_FEATURE
783#undef GET_FEATURE2
784
785 return features;
786}
787
f5155289
FB
788/*
789 * The requirements here are:
790 * - keep the final alignment of sp (sp & 0xf)
791 * - make sure the 32-bit value at the first 16 byte aligned position of
792 * AUXV is greater than 16 for glibc compatibility.
793 * AT_IGNOREPPC is used for that.
794 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
795 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
796 */
0bccf03d 797#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
798#define ARCH_DLINFO \
799 do { \
623e250a
TM
800 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
801 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
802 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
d97ef72e
RH
803 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
804 /* \
805 * Now handle glibc compatibility. \
806 */ \
807 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
808 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
809 } while (0)
f5155289 810
67867308
FB
811static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
812{
67867308 813 _regs->gpr[1] = infop->start_stack;
e85e7c6e 814#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 815 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
816 uint64_t val;
817 get_user_u64(val, infop->entry + 8);
818 _regs->gpr[2] = val + infop->load_bias;
819 get_user_u64(val, infop->entry);
820 infop->entry = val + infop->load_bias;
d90b94cd
DK
821 } else {
822 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
823 }
84409ddb 824#endif
67867308
FB
825 _regs->nip = infop->entry;
826}
827
e2f3e741
NF
828/* See linux kernel: arch/powerpc/include/asm/elf.h. */
829#define ELF_NREG 48
830typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
831
05390248 832static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
833{
834 int i;
835 target_ulong ccr = 0;
836
837 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 838 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
839 }
840
86cd7b2d
PB
841 (*regs)[32] = tswapreg(env->nip);
842 (*regs)[33] = tswapreg(env->msr);
843 (*regs)[35] = tswapreg(env->ctr);
844 (*regs)[36] = tswapreg(env->lr);
845 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
846
847 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
848 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
849 }
86cd7b2d 850 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
851}
852
853#define USE_ELF_CORE_DUMP
d97ef72e 854#define ELF_EXEC_PAGESIZE 4096
67867308
FB
855
856#endif
857
048f6b4d
FB
858#ifdef TARGET_MIPS
859
860#define ELF_START_MMAP 0x80000000
861
388bb21a
TS
862#ifdef TARGET_MIPS64
863#define ELF_CLASS ELFCLASS64
864#else
048f6b4d 865#define ELF_CLASS ELFCLASS32
388bb21a 866#endif
048f6b4d
FB
867#define ELF_ARCH EM_MIPS
868
d97ef72e
RH
869static inline void init_thread(struct target_pt_regs *regs,
870 struct image_info *infop)
048f6b4d 871{
623a930e 872 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
873 regs->cp0_epc = infop->entry;
874 regs->regs[29] = infop->start_stack;
875}
876
51e52606
NF
877/* See linux kernel: arch/mips/include/asm/elf.h. */
878#define ELF_NREG 45
879typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
880
881/* See linux kernel: arch/mips/include/asm/reg.h. */
882enum {
883#ifdef TARGET_MIPS64
884 TARGET_EF_R0 = 0,
885#else
886 TARGET_EF_R0 = 6,
887#endif
888 TARGET_EF_R26 = TARGET_EF_R0 + 26,
889 TARGET_EF_R27 = TARGET_EF_R0 + 27,
890 TARGET_EF_LO = TARGET_EF_R0 + 32,
891 TARGET_EF_HI = TARGET_EF_R0 + 33,
892 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
893 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
894 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
895 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
896};
897
898/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 899static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
900{
901 int i;
902
903 for (i = 0; i < TARGET_EF_R0; i++) {
904 (*regs)[i] = 0;
905 }
906 (*regs)[TARGET_EF_R0] = 0;
907
908 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 909 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
910 }
911
912 (*regs)[TARGET_EF_R26] = 0;
913 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
914 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
915 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
916 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
917 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
918 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
919 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
920}
921
922#define USE_ELF_CORE_DUMP
388bb21a
TS
923#define ELF_EXEC_PAGESIZE 4096
924
048f6b4d
FB
925#endif /* TARGET_MIPS */
926
b779e29e
EI
927#ifdef TARGET_MICROBLAZE
928
929#define ELF_START_MMAP 0x80000000
930
0d5d4699 931#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
932
933#define ELF_CLASS ELFCLASS32
0d5d4699 934#define ELF_ARCH EM_MICROBLAZE
b779e29e 935
d97ef72e
RH
936static inline void init_thread(struct target_pt_regs *regs,
937 struct image_info *infop)
b779e29e
EI
938{
939 regs->pc = infop->entry;
940 regs->r1 = infop->start_stack;
941
942}
943
b779e29e
EI
944#define ELF_EXEC_PAGESIZE 4096
945
e4cbd44d
EI
946#define USE_ELF_CORE_DUMP
947#define ELF_NREG 38
948typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
949
950/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 951static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
952{
953 int i, pos = 0;
954
955 for (i = 0; i < 32; i++) {
86cd7b2d 956 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
957 }
958
959 for (i = 0; i < 6; i++) {
86cd7b2d 960 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
961 }
962}
963
b779e29e
EI
964#endif /* TARGET_MICROBLAZE */
965
d962783e
JL
966#ifdef TARGET_OPENRISC
967
968#define ELF_START_MMAP 0x08000000
969
d962783e
JL
970#define ELF_ARCH EM_OPENRISC
971#define ELF_CLASS ELFCLASS32
972#define ELF_DATA ELFDATA2MSB
973
974static inline void init_thread(struct target_pt_regs *regs,
975 struct image_info *infop)
976{
977 regs->pc = infop->entry;
978 regs->gpr[1] = infop->start_stack;
979}
980
981#define USE_ELF_CORE_DUMP
982#define ELF_EXEC_PAGESIZE 8192
983
984/* See linux kernel arch/openrisc/include/asm/elf.h. */
985#define ELF_NREG 34 /* gprs and pc, sr */
986typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
987
988static void elf_core_copy_regs(target_elf_gregset_t *regs,
989 const CPUOpenRISCState *env)
990{
991 int i;
992
993 for (i = 0; i < 32; i++) {
86cd7b2d 994 (*regs)[i] = tswapreg(env->gpr[i]);
d962783e
JL
995 }
996
86cd7b2d
PB
997 (*regs)[32] = tswapreg(env->pc);
998 (*regs)[33] = tswapreg(env->sr);
d962783e
JL
999}
1000#define ELF_HWCAP 0
1001#define ELF_PLATFORM NULL
1002
1003#endif /* TARGET_OPENRISC */
1004
fdf9b3e8
FB
1005#ifdef TARGET_SH4
1006
1007#define ELF_START_MMAP 0x80000000
1008
fdf9b3e8 1009#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1010#define ELF_ARCH EM_SH
1011
d97ef72e
RH
1012static inline void init_thread(struct target_pt_regs *regs,
1013 struct image_info *infop)
fdf9b3e8 1014{
d97ef72e
RH
1015 /* Check other registers XXXXX */
1016 regs->pc = infop->entry;
1017 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1018}
1019
7631c97e
NF
1020/* See linux kernel: arch/sh/include/asm/elf.h. */
1021#define ELF_NREG 23
1022typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1023
1024/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1025enum {
1026 TARGET_REG_PC = 16,
1027 TARGET_REG_PR = 17,
1028 TARGET_REG_SR = 18,
1029 TARGET_REG_GBR = 19,
1030 TARGET_REG_MACH = 20,
1031 TARGET_REG_MACL = 21,
1032 TARGET_REG_SYSCALL = 22
1033};
1034
d97ef72e 1035static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1036 const CPUSH4State *env)
7631c97e
NF
1037{
1038 int i;
1039
1040 for (i = 0; i < 16; i++) {
86cd7b2d 1041 (*regs[i]) = tswapreg(env->gregs[i]);
7631c97e
NF
1042 }
1043
86cd7b2d
PB
1044 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1045 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1046 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1047 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1048 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1049 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1050 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1051}
1052
1053#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1054#define ELF_EXEC_PAGESIZE 4096
1055
e42fd944
RH
1056enum {
1057 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1058 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1059 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1060 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1061 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1062 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1063 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1064 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1065 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1066 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1067};
1068
1069#define ELF_HWCAP get_elf_hwcap()
1070
1071static uint32_t get_elf_hwcap(void)
1072{
1073 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1074 uint32_t hwcap = 0;
1075
1076 hwcap |= SH_CPU_HAS_FPU;
1077
1078 if (cpu->env.features & SH_FEATURE_SH4A) {
1079 hwcap |= SH_CPU_HAS_LLSC;
1080 }
1081
1082 return hwcap;
1083}
1084
fdf9b3e8
FB
1085#endif
1086
48733d19
TS
1087#ifdef TARGET_CRIS
1088
1089#define ELF_START_MMAP 0x80000000
1090
48733d19 1091#define ELF_CLASS ELFCLASS32
48733d19
TS
1092#define ELF_ARCH EM_CRIS
1093
d97ef72e
RH
1094static inline void init_thread(struct target_pt_regs *regs,
1095 struct image_info *infop)
48733d19 1096{
d97ef72e 1097 regs->erp = infop->entry;
48733d19
TS
1098}
1099
48733d19
TS
1100#define ELF_EXEC_PAGESIZE 8192
1101
1102#endif
1103
e6e5906b
PB
1104#ifdef TARGET_M68K
1105
1106#define ELF_START_MMAP 0x80000000
1107
d97ef72e 1108#define ELF_CLASS ELFCLASS32
d97ef72e 1109#define ELF_ARCH EM_68K
e6e5906b
PB
1110
1111/* ??? Does this need to do anything?
d97ef72e 1112 #define ELF_PLAT_INIT(_r) */
e6e5906b 1113
d97ef72e
RH
1114static inline void init_thread(struct target_pt_regs *regs,
1115 struct image_info *infop)
e6e5906b
PB
1116{
1117 regs->usp = infop->start_stack;
1118 regs->sr = 0;
1119 regs->pc = infop->entry;
1120}
1121
7a93cc55
NF
1122/* See linux kernel: arch/m68k/include/asm/elf.h. */
1123#define ELF_NREG 20
1124typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1125
05390248 1126static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1127{
86cd7b2d
PB
1128 (*regs)[0] = tswapreg(env->dregs[1]);
1129 (*regs)[1] = tswapreg(env->dregs[2]);
1130 (*regs)[2] = tswapreg(env->dregs[3]);
1131 (*regs)[3] = tswapreg(env->dregs[4]);
1132 (*regs)[4] = tswapreg(env->dregs[5]);
1133 (*regs)[5] = tswapreg(env->dregs[6]);
1134 (*regs)[6] = tswapreg(env->dregs[7]);
1135 (*regs)[7] = tswapreg(env->aregs[0]);
1136 (*regs)[8] = tswapreg(env->aregs[1]);
1137 (*regs)[9] = tswapreg(env->aregs[2]);
1138 (*regs)[10] = tswapreg(env->aregs[3]);
1139 (*regs)[11] = tswapreg(env->aregs[4]);
1140 (*regs)[12] = tswapreg(env->aregs[5]);
1141 (*regs)[13] = tswapreg(env->aregs[6]);
1142 (*regs)[14] = tswapreg(env->dregs[0]);
1143 (*regs)[15] = tswapreg(env->aregs[7]);
1144 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1145 (*regs)[17] = tswapreg(env->sr);
1146 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1147 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1148}
1149
1150#define USE_ELF_CORE_DUMP
d97ef72e 1151#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1152
1153#endif
1154
7a3148a9
JM
1155#ifdef TARGET_ALPHA
1156
1157#define ELF_START_MMAP (0x30000000000ULL)
1158
7a3148a9 1159#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1160#define ELF_ARCH EM_ALPHA
1161
d97ef72e
RH
1162static inline void init_thread(struct target_pt_regs *regs,
1163 struct image_info *infop)
7a3148a9
JM
1164{
1165 regs->pc = infop->entry;
1166 regs->ps = 8;
1167 regs->usp = infop->start_stack;
7a3148a9
JM
1168}
1169
7a3148a9
JM
1170#define ELF_EXEC_PAGESIZE 8192
1171
1172#endif /* TARGET_ALPHA */
1173
a4c075f1
UH
1174#ifdef TARGET_S390X
1175
1176#define ELF_START_MMAP (0x20000000000ULL)
1177
a4c075f1
UH
1178#define ELF_CLASS ELFCLASS64
1179#define ELF_DATA ELFDATA2MSB
1180#define ELF_ARCH EM_S390
1181
1182static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1183{
1184 regs->psw.addr = infop->entry;
1185 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1186 regs->gprs[15] = infop->start_stack;
1187}
1188
1189#endif /* TARGET_S390X */
1190
b16189b2
CG
1191#ifdef TARGET_TILEGX
1192
1193/* 42 bits real used address, a half for user mode */
1194#define ELF_START_MMAP (0x00000020000000000ULL)
1195
1196#define elf_check_arch(x) ((x) == EM_TILEGX)
1197
1198#define ELF_CLASS ELFCLASS64
1199#define ELF_DATA ELFDATA2LSB
1200#define ELF_ARCH EM_TILEGX
1201
1202static inline void init_thread(struct target_pt_regs *regs,
1203 struct image_info *infop)
1204{
1205 regs->pc = infop->entry;
1206 regs->sp = infop->start_stack;
1207
1208}
1209
1210#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1211
1212#endif /* TARGET_TILEGX */
1213
15338fd7
FB
1214#ifndef ELF_PLATFORM
1215#define ELF_PLATFORM (NULL)
1216#endif
1217
75be901c
PC
1218#ifndef ELF_MACHINE
1219#define ELF_MACHINE ELF_ARCH
1220#endif
1221
d276a604
PC
1222#ifndef elf_check_arch
1223#define elf_check_arch(x) ((x) == ELF_ARCH)
1224#endif
1225
15338fd7
FB
1226#ifndef ELF_HWCAP
1227#define ELF_HWCAP 0
1228#endif
1229
992f48a0 1230#ifdef TARGET_ABI32
cb33da57 1231#undef ELF_CLASS
992f48a0 1232#define ELF_CLASS ELFCLASS32
cb33da57
BS
1233#undef bswaptls
1234#define bswaptls(ptr) bswap32s(ptr)
1235#endif
1236
31e31b8a 1237#include "elf.h"
09bfb054 1238
09bfb054
FB
1239struct exec
1240{
d97ef72e
RH
1241 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1242 unsigned int a_text; /* length of text, in bytes */
1243 unsigned int a_data; /* length of data, in bytes */
1244 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1245 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1246 unsigned int a_entry; /* start address */
1247 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1248 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1249};
1250
1251
1252#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1253#define OMAGIC 0407
1254#define NMAGIC 0410
1255#define ZMAGIC 0413
1256#define QMAGIC 0314
1257
31e31b8a 1258/* Necessary parameters */
54936004 1259#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1260#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1261 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1262#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1263
ad1c7e0f 1264#define DLINFO_ITEMS 14
31e31b8a 1265
09bfb054
FB
1266static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1267{
d97ef72e 1268 memcpy(to, from, n);
09bfb054 1269}
d691f669 1270
31e31b8a 1271#ifdef BSWAP_NEEDED
92a31b1f 1272static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1273{
d97ef72e
RH
1274 bswap16s(&ehdr->e_type); /* Object file type */
1275 bswap16s(&ehdr->e_machine); /* Architecture */
1276 bswap32s(&ehdr->e_version); /* Object file version */
1277 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1278 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1279 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1280 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1281 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1282 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1283 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1284 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1285 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1286 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1287}
1288
991f8f0c 1289static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1290{
991f8f0c
RH
1291 int i;
1292 for (i = 0; i < phnum; ++i, ++phdr) {
1293 bswap32s(&phdr->p_type); /* Segment type */
1294 bswap32s(&phdr->p_flags); /* Segment flags */
1295 bswaptls(&phdr->p_offset); /* Segment file offset */
1296 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1297 bswaptls(&phdr->p_paddr); /* Segment physical address */
1298 bswaptls(&phdr->p_filesz); /* Segment size in file */
1299 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1300 bswaptls(&phdr->p_align); /* Segment alignment */
1301 }
31e31b8a 1302}
689f936f 1303
991f8f0c 1304static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1305{
991f8f0c
RH
1306 int i;
1307 for (i = 0; i < shnum; ++i, ++shdr) {
1308 bswap32s(&shdr->sh_name);
1309 bswap32s(&shdr->sh_type);
1310 bswaptls(&shdr->sh_flags);
1311 bswaptls(&shdr->sh_addr);
1312 bswaptls(&shdr->sh_offset);
1313 bswaptls(&shdr->sh_size);
1314 bswap32s(&shdr->sh_link);
1315 bswap32s(&shdr->sh_info);
1316 bswaptls(&shdr->sh_addralign);
1317 bswaptls(&shdr->sh_entsize);
1318 }
689f936f
FB
1319}
1320
7a3148a9 1321static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1322{
1323 bswap32s(&sym->st_name);
7a3148a9
JM
1324 bswaptls(&sym->st_value);
1325 bswaptls(&sym->st_size);
689f936f
FB
1326 bswap16s(&sym->st_shndx);
1327}
991f8f0c
RH
1328#else
1329static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1330static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1331static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1332static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1333#endif
1334
edf8e2af 1335#ifdef USE_ELF_CORE_DUMP
9349b4f9 1336static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1337#endif /* USE_ELF_CORE_DUMP */
682674b8 1338static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1339
9058abdd
RH
1340/* Verify the portions of EHDR within E_IDENT for the target.
1341 This can be performed before bswapping the entire header. */
1342static bool elf_check_ident(struct elfhdr *ehdr)
1343{
1344 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1345 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1346 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1347 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1348 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1349 && ehdr->e_ident[EI_DATA] == ELF_DATA
1350 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1351}
1352
1353/* Verify the portions of EHDR outside of E_IDENT for the target.
1354 This has to wait until after bswapping the header. */
1355static bool elf_check_ehdr(struct elfhdr *ehdr)
1356{
1357 return (elf_check_arch(ehdr->e_machine)
1358 && ehdr->e_ehsize == sizeof(struct elfhdr)
1359 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1360 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1361}
1362
31e31b8a 1363/*
e5fe0c52 1364 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1365 * memory to free pages in kernel mem. These are in a format ready
1366 * to be put directly into the top of new user memory.
1367 *
1368 */
59baae9a
SB
1369static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1370 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1371{
59baae9a
SB
1372 char *tmp;
1373 int len, offset;
1374 abi_ulong top = p;
31e31b8a
FB
1375
1376 if (!p) {
d97ef72e 1377 return 0; /* bullet-proofing */
31e31b8a 1378 }
59baae9a
SB
1379
1380 offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1381
31e31b8a 1382 while (argc-- > 0) {
edf779ff
FB
1383 tmp = argv[argc];
1384 if (!tmp) {
d97ef72e
RH
1385 fprintf(stderr, "VFS: argc is wrong");
1386 exit(-1);
1387 }
59baae9a
SB
1388 len = strlen(tmp) + 1;
1389 tmp += len;
1390
1391 if (len > (p - stack_limit)) {
d97ef72e
RH
1392 return 0;
1393 }
1394 while (len) {
59baae9a
SB
1395 int bytes_to_copy = (len > offset) ? offset : len;
1396 tmp -= bytes_to_copy;
1397 p -= bytes_to_copy;
1398 offset -= bytes_to_copy;
1399 len -= bytes_to_copy;
1400
1401 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1402
1403 if (offset == 0) {
1404 memcpy_to_target(p, scratch, top - p);
1405 top = p;
1406 offset = TARGET_PAGE_SIZE;
d97ef72e
RH
1407 }
1408 }
31e31b8a 1409 }
59baae9a
SB
1410 if (offset) {
1411 memcpy_to_target(p, scratch + offset, top - p);
1412 }
1413
31e31b8a
FB
1414 return p;
1415}
1416
59baae9a
SB
1417/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1418 * argument/environment space. Newer kernels (>2.6.33) allow more,
1419 * dependent on stack size, but guarantee at least 32 pages for
1420 * backwards compatibility.
1421 */
1422#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1423
1424static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1425 struct image_info *info)
53a5960a 1426{
59baae9a 1427 abi_ulong size, error, guard;
31e31b8a 1428
703e0e89 1429 size = guest_stack_size;
59baae9a
SB
1430 if (size < STACK_LOWER_LIMIT) {
1431 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1432 }
1433 guard = TARGET_PAGE_SIZE;
1434 if (guard < qemu_real_host_page_size) {
1435 guard = qemu_real_host_page_size;
1436 }
1437
1438 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1439 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1440 if (error == -1) {
60dcbcb5 1441 perror("mmap stack");
09bfb054
FB
1442 exit(-1);
1443 }
31e31b8a 1444
60dcbcb5
RH
1445 /* We reserve one extra page at the top of the stack as guard. */
1446 target_mprotect(error, guard, PROT_NONE);
1447
1448 info->stack_limit = error + guard;
59baae9a
SB
1449
1450 return info->stack_limit + size - sizeof(void *);
31e31b8a
FB
1451}
1452
cf129f3a
RH
1453/* Map and zero the bss. We need to explicitly zero any fractional pages
1454 after the data section (i.e. bss). */
1455static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1456{
cf129f3a
RH
1457 uintptr_t host_start, host_map_start, host_end;
1458
1459 last_bss = TARGET_PAGE_ALIGN(last_bss);
1460
1461 /* ??? There is confusion between qemu_real_host_page_size and
1462 qemu_host_page_size here and elsewhere in target_mmap, which
1463 may lead to the end of the data section mapping from the file
1464 not being mapped. At least there was an explicit test and
1465 comment for that here, suggesting that "the file size must
1466 be known". The comment probably pre-dates the introduction
1467 of the fstat system call in target_mmap which does in fact
1468 find out the size. What isn't clear is if the workaround
1469 here is still actually needed. For now, continue with it,
1470 but merge it with the "normal" mmap that would allocate the bss. */
1471
1472 host_start = (uintptr_t) g2h(elf_bss);
1473 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1474 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1475
1476 if (host_map_start < host_end) {
1477 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1478 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1479 if (p == MAP_FAILED) {
1480 perror("cannot mmap brk");
1481 exit(-1);
853d6f7a 1482 }
f46e9a0b 1483 }
853d6f7a 1484
f46e9a0b
TM
1485 /* Ensure that the bss page(s) are valid */
1486 if ((page_get_flags(last_bss-1) & prot) != prot) {
1487 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1488 }
31e31b8a 1489
cf129f3a
RH
1490 if (host_start < host_map_start) {
1491 memset((void *)host_start, 0, host_map_start - host_start);
1492 }
1493}
53a5960a 1494
1af02e83
MF
1495#ifdef CONFIG_USE_FDPIC
1496static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1497{
1498 uint16_t n;
1499 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1500
1501 /* elf32_fdpic_loadseg */
1502 n = info->nsegs;
1503 while (n--) {
1504 sp -= 12;
1505 put_user_u32(loadsegs[n].addr, sp+0);
1506 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1507 put_user_u32(loadsegs[n].p_memsz, sp+8);
1508 }
1509
1510 /* elf32_fdpic_loadmap */
1511 sp -= 4;
1512 put_user_u16(0, sp+0); /* version */
1513 put_user_u16(info->nsegs, sp+2); /* nsegs */
1514
1515 info->personality = PER_LINUX_FDPIC;
1516 info->loadmap_addr = sp;
1517
1518 return sp;
1519}
1520#endif
1521
992f48a0 1522static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1523 struct elfhdr *exec,
1524 struct image_info *info,
1525 struct image_info *interp_info)
31e31b8a 1526{
d97ef72e 1527 abi_ulong sp;
125b0f55 1528 abi_ulong sp_auxv;
d97ef72e 1529 int size;
14322bad
LA
1530 int i;
1531 abi_ulong u_rand_bytes;
1532 uint8_t k_rand_bytes[16];
d97ef72e
RH
1533 abi_ulong u_platform;
1534 const char *k_platform;
1535 const int n = sizeof(elf_addr_t);
1536
1537 sp = p;
1af02e83
MF
1538
1539#ifdef CONFIG_USE_FDPIC
1540 /* Needs to be before we load the env/argc/... */
1541 if (elf_is_fdpic(exec)) {
1542 /* Need 4 byte alignment for these structs */
1543 sp &= ~3;
1544 sp = loader_build_fdpic_loadmap(info, sp);
1545 info->other_info = interp_info;
1546 if (interp_info) {
1547 interp_info->other_info = info;
1548 sp = loader_build_fdpic_loadmap(interp_info, sp);
1549 }
1550 }
1551#endif
1552
d97ef72e
RH
1553 u_platform = 0;
1554 k_platform = ELF_PLATFORM;
1555 if (k_platform) {
1556 size_t len = strlen(k_platform) + 1;
1557 sp -= (len + n - 1) & ~(n - 1);
1558 u_platform = sp;
1559 /* FIXME - check return value of memcpy_to_target() for failure */
1560 memcpy_to_target(sp, k_platform, len);
1561 }
14322bad
LA
1562
1563 /*
1564 * Generate 16 random bytes for userspace PRNG seeding (not
1565 * cryptically secure but it's not the aim of QEMU).
1566 */
14322bad
LA
1567 for (i = 0; i < 16; i++) {
1568 k_rand_bytes[i] = rand();
1569 }
1570 sp -= 16;
1571 u_rand_bytes = sp;
1572 /* FIXME - check return value of memcpy_to_target() for failure */
1573 memcpy_to_target(sp, k_rand_bytes, 16);
1574
d97ef72e
RH
1575 /*
1576 * Force 16 byte _final_ alignment here for generality.
1577 */
1578 sp = sp &~ (abi_ulong)15;
1579 size = (DLINFO_ITEMS + 1) * 2;
1580 if (k_platform)
1581 size += 2;
f5155289 1582#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1583 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1584#endif
1585#ifdef ELF_HWCAP2
1586 size += 2;
f5155289 1587#endif
d97ef72e 1588 size += envc + argc + 2;
b9329d4b 1589 size += 1; /* argc itself */
d97ef72e
RH
1590 size *= n;
1591 if (size & 15)
1592 sp -= 16 - (size & 15);
1593
1594 /* This is correct because Linux defines
1595 * elf_addr_t as Elf32_Off / Elf64_Off
1596 */
1597#define NEW_AUX_ENT(id, val) do { \
1598 sp -= n; put_user_ual(val, sp); \
1599 sp -= n; put_user_ual(id, sp); \
1600 } while(0)
1601
125b0f55 1602 sp_auxv = sp;
d97ef72e
RH
1603 NEW_AUX_ENT (AT_NULL, 0);
1604
1605 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1606 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1607 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1608 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1609 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1610 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1611 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1612 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1613 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1614 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1615 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1616 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1617 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1618 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1619 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1620
ad6919dc
PM
1621#ifdef ELF_HWCAP2
1622 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1623#endif
1624
d97ef72e
RH
1625 if (k_platform)
1626 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1627#ifdef ARCH_DLINFO
d97ef72e
RH
1628 /*
1629 * ARCH_DLINFO must come last so platform specific code can enforce
1630 * special alignment requirements on the AUXV if necessary (eg. PPC).
1631 */
1632 ARCH_DLINFO;
f5155289
FB
1633#endif
1634#undef NEW_AUX_ENT
1635
d97ef72e 1636 info->saved_auxv = sp;
125b0f55 1637 info->auxv_len = sp_auxv - sp;
edf8e2af 1638
b9329d4b 1639 sp = loader_build_argptr(envc, argc, sp, p, 0);
8c0f0a60
JH
1640 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1641 assert(sp_auxv - sp == size);
d97ef72e 1642 return sp;
31e31b8a
FB
1643}
1644
806d1021 1645#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1646/* If the guest doesn't have a validation function just agree */
806d1021
MI
1647static int validate_guest_space(unsigned long guest_base,
1648 unsigned long guest_size)
97cc7560
DDAG
1649{
1650 return 1;
1651}
1652#endif
1653
dce10401
MI
1654unsigned long init_guest_space(unsigned long host_start,
1655 unsigned long host_size,
1656 unsigned long guest_start,
1657 bool fixed)
1658{
1659 unsigned long current_start, real_start;
1660 int flags;
1661
1662 assert(host_start || host_size);
1663
1664 /* If just a starting address is given, then just verify that
1665 * address. */
1666 if (host_start && !host_size) {
806d1021 1667 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1668 return host_start;
1669 } else {
1670 return (unsigned long)-1;
1671 }
1672 }
1673
1674 /* Setup the initial flags and start address. */
1675 current_start = host_start & qemu_host_page_mask;
1676 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1677 if (fixed) {
1678 flags |= MAP_FIXED;
1679 }
1680
1681 /* Otherwise, a non-zero size region of memory needs to be mapped
1682 * and validated. */
1683 while (1) {
806d1021
MI
1684 unsigned long real_size = host_size;
1685
dce10401
MI
1686 /* Do not use mmap_find_vma here because that is limited to the
1687 * guest address space. We are going to make the
1688 * guest address space fit whatever we're given.
1689 */
1690 real_start = (unsigned long)
1691 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1692 if (real_start == (unsigned long)-1) {
1693 return (unsigned long)-1;
1694 }
1695
806d1021
MI
1696 /* Ensure the address is properly aligned. */
1697 if (real_start & ~qemu_host_page_mask) {
1698 munmap((void *)real_start, host_size);
1699 real_size = host_size + qemu_host_page_size;
1700 real_start = (unsigned long)
1701 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1702 if (real_start == (unsigned long)-1) {
1703 return (unsigned long)-1;
1704 }
1705 real_start = HOST_PAGE_ALIGN(real_start);
1706 }
1707
1708 /* Check to see if the address is valid. */
1709 if (!host_start || real_start == current_start) {
1710 int valid = validate_guest_space(real_start - guest_start,
1711 real_size);
1712 if (valid == 1) {
1713 break;
1714 } else if (valid == -1) {
1715 return (unsigned long)-1;
1716 }
1717 /* valid == 0, so try again. */
dce10401
MI
1718 }
1719
1720 /* That address didn't work. Unmap and try a different one.
1721 * The address the host picked because is typically right at
1722 * the top of the host address space and leaves the guest with
1723 * no usable address space. Resort to a linear search. We
1724 * already compensated for mmap_min_addr, so this should not
1725 * happen often. Probably means we got unlucky and host
1726 * address space randomization put a shared library somewhere
1727 * inconvenient.
1728 */
1729 munmap((void *)real_start, host_size);
1730 current_start += qemu_host_page_size;
1731 if (host_start == current_start) {
1732 /* Theoretically possible if host doesn't have any suitably
1733 * aligned areas. Normally the first mmap will fail.
1734 */
1735 return (unsigned long)-1;
1736 }
1737 }
1738
13829020 1739 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 1740
dce10401
MI
1741 return real_start;
1742}
1743
f3ed1f5d
PM
1744static void probe_guest_base(const char *image_name,
1745 abi_ulong loaddr, abi_ulong hiaddr)
1746{
1747 /* Probe for a suitable guest base address, if the user has not set
1748 * it explicitly, and set guest_base appropriately.
1749 * In case of error we will print a suitable message and exit.
1750 */
f3ed1f5d
PM
1751 const char *errmsg;
1752 if (!have_guest_base && !reserved_va) {
1753 unsigned long host_start, real_start, host_size;
1754
1755 /* Round addresses to page boundaries. */
1756 loaddr &= qemu_host_page_mask;
1757 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1758
1759 if (loaddr < mmap_min_addr) {
1760 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1761 } else {
1762 host_start = loaddr;
1763 if (host_start != loaddr) {
1764 errmsg = "Address overflow loading ELF binary";
1765 goto exit_errmsg;
1766 }
1767 }
1768 host_size = hiaddr - loaddr;
dce10401
MI
1769
1770 /* Setup the initial guest memory space with ranges gleaned from
1771 * the ELF image that is being loaded.
1772 */
1773 real_start = init_guest_space(host_start, host_size, loaddr, false);
1774 if (real_start == (unsigned long)-1) {
1775 errmsg = "Unable to find space for application";
1776 goto exit_errmsg;
f3ed1f5d 1777 }
dce10401
MI
1778 guest_base = real_start - loaddr;
1779
13829020
PB
1780 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1781 TARGET_ABI_FMT_lx " to 0x%lx\n",
1782 loaddr, real_start);
f3ed1f5d
PM
1783 }
1784 return;
1785
f3ed1f5d
PM
1786exit_errmsg:
1787 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1788 exit(-1);
f3ed1f5d
PM
1789}
1790
1791
8e62a717 1792/* Load an ELF image into the address space.
31e31b8a 1793
8e62a717
RH
1794 IMAGE_NAME is the filename of the image, to use in error messages.
1795 IMAGE_FD is the open file descriptor for the image.
1796
1797 BPRM_BUF is a copy of the beginning of the file; this of course
1798 contains the elf file header at offset 0. It is assumed that this
1799 buffer is sufficiently aligned to present no problems to the host
1800 in accessing data at aligned offsets within the buffer.
1801
1802 On return: INFO values will be filled in, as necessary or available. */
1803
1804static void load_elf_image(const char *image_name, int image_fd,
bf858897 1805 struct image_info *info, char **pinterp_name,
8e62a717 1806 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1807{
8e62a717
RH
1808 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1809 struct elf_phdr *phdr;
1810 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1811 int i, retval;
1812 const char *errmsg;
5fafdf24 1813
8e62a717
RH
1814 /* First of all, some simple consistency checks */
1815 errmsg = "Invalid ELF image for this architecture";
1816 if (!elf_check_ident(ehdr)) {
1817 goto exit_errmsg;
1818 }
1819 bswap_ehdr(ehdr);
1820 if (!elf_check_ehdr(ehdr)) {
1821 goto exit_errmsg;
d97ef72e 1822 }
5fafdf24 1823
8e62a717
RH
1824 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1825 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1826 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1827 } else {
8e62a717
RH
1828 phdr = (struct elf_phdr *) alloca(i);
1829 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1830 if (retval != i) {
8e62a717 1831 goto exit_read;
9955ffac 1832 }
d97ef72e 1833 }
8e62a717 1834 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1835
1af02e83
MF
1836#ifdef CONFIG_USE_FDPIC
1837 info->nsegs = 0;
1838 info->pt_dynamic_addr = 0;
1839#endif
1840
682674b8
RH
1841 /* Find the maximum size of the image and allocate an appropriate
1842 amount of memory to handle that. */
1843 loaddr = -1, hiaddr = 0;
8e62a717
RH
1844 for (i = 0; i < ehdr->e_phnum; ++i) {
1845 if (phdr[i].p_type == PT_LOAD) {
a93934fe 1846 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
1847 if (a < loaddr) {
1848 loaddr = a;
1849 }
ccf661f8 1850 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
1851 if (a > hiaddr) {
1852 hiaddr = a;
1853 }
1af02e83
MF
1854#ifdef CONFIG_USE_FDPIC
1855 ++info->nsegs;
1856#endif
682674b8
RH
1857 }
1858 }
1859
1860 load_addr = loaddr;
8e62a717 1861 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1862 /* The image indicates that it can be loaded anywhere. Find a
1863 location that can hold the memory space required. If the
1864 image is pre-linked, LOADDR will be non-zero. Since we do
1865 not supply MAP_FIXED here we'll use that address if and
1866 only if it remains available. */
1867 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1868 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1869 -1, 0);
1870 if (load_addr == -1) {
8e62a717 1871 goto exit_perror;
d97ef72e 1872 }
bf858897
RH
1873 } else if (pinterp_name != NULL) {
1874 /* This is the main executable. Make sure that the low
1875 address does not conflict with MMAP_MIN_ADDR or the
1876 QEMU application itself. */
f3ed1f5d 1877 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1878 }
682674b8 1879 load_bias = load_addr - loaddr;
d97ef72e 1880
1af02e83
MF
1881#ifdef CONFIG_USE_FDPIC
1882 {
1883 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1884 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1885
1886 for (i = 0; i < ehdr->e_phnum; ++i) {
1887 switch (phdr[i].p_type) {
1888 case PT_DYNAMIC:
1889 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1890 break;
1891 case PT_LOAD:
1892 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1893 loadsegs->p_vaddr = phdr[i].p_vaddr;
1894 loadsegs->p_memsz = phdr[i].p_memsz;
1895 ++loadsegs;
1896 break;
1897 }
1898 }
1899 }
1900#endif
1901
8e62a717
RH
1902 info->load_bias = load_bias;
1903 info->load_addr = load_addr;
1904 info->entry = ehdr->e_entry + load_bias;
1905 info->start_code = -1;
1906 info->end_code = 0;
1907 info->start_data = -1;
1908 info->end_data = 0;
1909 info->brk = 0;
d8fd2954 1910 info->elf_flags = ehdr->e_flags;
8e62a717
RH
1911
1912 for (i = 0; i < ehdr->e_phnum; i++) {
1913 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1914 if (eppnt->p_type == PT_LOAD) {
682674b8 1915 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1916 int elf_prot = 0;
d97ef72e
RH
1917
1918 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1919 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1920 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1921
682674b8
RH
1922 vaddr = load_bias + eppnt->p_vaddr;
1923 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1924 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1925
1926 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1927 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1928 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1929 if (error == -1) {
8e62a717 1930 goto exit_perror;
09bfb054 1931 }
09bfb054 1932
682674b8
RH
1933 vaddr_ef = vaddr + eppnt->p_filesz;
1934 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1935
cf129f3a 1936 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1937 if (vaddr_ef < vaddr_em) {
1938 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1939 }
8e62a717
RH
1940
1941 /* Find the full program boundaries. */
1942 if (elf_prot & PROT_EXEC) {
1943 if (vaddr < info->start_code) {
1944 info->start_code = vaddr;
1945 }
1946 if (vaddr_ef > info->end_code) {
1947 info->end_code = vaddr_ef;
1948 }
1949 }
1950 if (elf_prot & PROT_WRITE) {
1951 if (vaddr < info->start_data) {
1952 info->start_data = vaddr;
1953 }
1954 if (vaddr_ef > info->end_data) {
1955 info->end_data = vaddr_ef;
1956 }
1957 if (vaddr_em > info->brk) {
1958 info->brk = vaddr_em;
1959 }
1960 }
bf858897
RH
1961 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1962 char *interp_name;
1963
1964 if (*pinterp_name) {
1965 errmsg = "Multiple PT_INTERP entries";
1966 goto exit_errmsg;
1967 }
1968 interp_name = malloc(eppnt->p_filesz);
1969 if (!interp_name) {
1970 goto exit_perror;
1971 }
1972
1973 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1974 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1975 eppnt->p_filesz);
1976 } else {
1977 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1978 eppnt->p_offset);
1979 if (retval != eppnt->p_filesz) {
1980 goto exit_perror;
1981 }
1982 }
1983 if (interp_name[eppnt->p_filesz - 1] != 0) {
1984 errmsg = "Invalid PT_INTERP entry";
1985 goto exit_errmsg;
1986 }
1987 *pinterp_name = interp_name;
d97ef72e 1988 }
682674b8 1989 }
5fafdf24 1990
8e62a717
RH
1991 if (info->end_data == 0) {
1992 info->start_data = info->end_code;
1993 info->end_data = info->end_code;
1994 info->brk = info->end_code;
1995 }
1996
682674b8 1997 if (qemu_log_enabled()) {
8e62a717 1998 load_symbols(ehdr, image_fd, load_bias);
682674b8 1999 }
31e31b8a 2000
8e62a717
RH
2001 close(image_fd);
2002 return;
2003
2004 exit_read:
2005 if (retval >= 0) {
2006 errmsg = "Incomplete read of file header";
2007 goto exit_errmsg;
2008 }
2009 exit_perror:
2010 errmsg = strerror(errno);
2011 exit_errmsg:
2012 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2013 exit(-1);
2014}
2015
2016static void load_elf_interp(const char *filename, struct image_info *info,
2017 char bprm_buf[BPRM_BUF_SIZE])
2018{
2019 int fd, retval;
2020
2021 fd = open(path(filename), O_RDONLY);
2022 if (fd < 0) {
2023 goto exit_perror;
2024 }
31e31b8a 2025
8e62a717
RH
2026 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2027 if (retval < 0) {
2028 goto exit_perror;
2029 }
2030 if (retval < BPRM_BUF_SIZE) {
2031 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2032 }
2033
bf858897 2034 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2035 return;
2036
2037 exit_perror:
2038 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2039 exit(-1);
31e31b8a
FB
2040}
2041
49918a75
PB
2042static int symfind(const void *s0, const void *s1)
2043{
c7c530cd 2044 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2045 struct elf_sym *sym = (struct elf_sym *)s1;
2046 int result = 0;
c7c530cd 2047 if (addr < sym->st_value) {
49918a75 2048 result = -1;
c7c530cd 2049 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2050 result = 1;
2051 }
2052 return result;
2053}
2054
2055static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2056{
2057#if ELF_CLASS == ELFCLASS32
2058 struct elf_sym *syms = s->disas_symtab.elf32;
2059#else
2060 struct elf_sym *syms = s->disas_symtab.elf64;
2061#endif
2062
2063 // binary search
49918a75
PB
2064 struct elf_sym *sym;
2065
c7c530cd 2066 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2067 if (sym != NULL) {
49918a75
PB
2068 return s->disas_strtab + sym->st_name;
2069 }
2070
2071 return "";
2072}
2073
2074/* FIXME: This should use elf_ops.h */
2075static int symcmp(const void *s0, const void *s1)
2076{
2077 struct elf_sym *sym0 = (struct elf_sym *)s0;
2078 struct elf_sym *sym1 = (struct elf_sym *)s1;
2079 return (sym0->st_value < sym1->st_value)
2080 ? -1
2081 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2082}
2083
689f936f 2084/* Best attempt to load symbols from this ELF object. */
682674b8 2085static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2086{
682674b8
RH
2087 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2088 struct elf_shdr *shdr;
b9475279
CV
2089 char *strings = NULL;
2090 struct syminfo *s = NULL;
2091 struct elf_sym *new_syms, *syms = NULL;
689f936f 2092
682674b8
RH
2093 shnum = hdr->e_shnum;
2094 i = shnum * sizeof(struct elf_shdr);
2095 shdr = (struct elf_shdr *)alloca(i);
2096 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2097 return;
2098 }
2099
2100 bswap_shdr(shdr, shnum);
2101 for (i = 0; i < shnum; ++i) {
2102 if (shdr[i].sh_type == SHT_SYMTAB) {
2103 sym_idx = i;
2104 str_idx = shdr[i].sh_link;
49918a75
PB
2105 goto found;
2106 }
689f936f 2107 }
682674b8
RH
2108
2109 /* There will be no symbol table if the file was stripped. */
2110 return;
689f936f
FB
2111
2112 found:
682674b8 2113 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 2114 s = malloc(sizeof(*s));
682674b8 2115 if (!s) {
b9475279 2116 goto give_up;
682674b8 2117 }
5fafdf24 2118
682674b8
RH
2119 i = shdr[str_idx].sh_size;
2120 s->disas_strtab = strings = malloc(i);
2121 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 2122 goto give_up;
682674b8 2123 }
49918a75 2124
682674b8
RH
2125 i = shdr[sym_idx].sh_size;
2126 syms = malloc(i);
2127 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 2128 goto give_up;
682674b8 2129 }
31e31b8a 2130
682674b8
RH
2131 nsyms = i / sizeof(struct elf_sym);
2132 for (i = 0; i < nsyms; ) {
49918a75 2133 bswap_sym(syms + i);
682674b8
RH
2134 /* Throw away entries which we do not need. */
2135 if (syms[i].st_shndx == SHN_UNDEF
2136 || syms[i].st_shndx >= SHN_LORESERVE
2137 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2138 if (i < --nsyms) {
49918a75
PB
2139 syms[i] = syms[nsyms];
2140 }
682674b8 2141 } else {
49918a75 2142#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2143 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2144 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2145#endif
682674b8
RH
2146 syms[i].st_value += load_bias;
2147 i++;
2148 }
0774bed1 2149 }
49918a75 2150
b9475279
CV
2151 /* No "useful" symbol. */
2152 if (nsyms == 0) {
2153 goto give_up;
2154 }
2155
5d5c9930
RH
2156 /* Attempt to free the storage associated with the local symbols
2157 that we threw away. Whether or not this has any effect on the
2158 memory allocation depends on the malloc implementation and how
2159 many symbols we managed to discard. */
8d79de6e
SW
2160 new_syms = realloc(syms, nsyms * sizeof(*syms));
2161 if (new_syms == NULL) {
b9475279 2162 goto give_up;
5d5c9930 2163 }
8d79de6e 2164 syms = new_syms;
5d5c9930 2165
49918a75 2166 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2167
49918a75
PB
2168 s->disas_num_syms = nsyms;
2169#if ELF_CLASS == ELFCLASS32
2170 s->disas_symtab.elf32 = syms;
49918a75
PB
2171#else
2172 s->disas_symtab.elf64 = syms;
49918a75 2173#endif
682674b8 2174 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2175 s->next = syminfos;
2176 syminfos = s;
b9475279
CV
2177
2178 return;
2179
2180give_up:
2181 free(s);
2182 free(strings);
2183 free(syms);
689f936f 2184}
31e31b8a 2185
f0116c54 2186int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2187{
8e62a717 2188 struct image_info interp_info;
31e31b8a 2189 struct elfhdr elf_ex;
8e62a717 2190 char *elf_interpreter = NULL;
59baae9a 2191 char *scratch;
31e31b8a 2192
bf858897 2193 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2194
2195 load_elf_image(bprm->filename, bprm->fd, info,
2196 &elf_interpreter, bprm->buf);
31e31b8a 2197
bf858897
RH
2198 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2199 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2200 when we load the interpreter. */
2201 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2202
59baae9a
SB
2203 /* Do this so that we can load the interpreter, if need be. We will
2204 change some of these later */
2205 bprm->p = setup_arg_pages(bprm, info);
2206
2207 scratch = g_new0(char, TARGET_PAGE_SIZE);
2208 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2209 bprm->p, info->stack_limit);
2210 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2211 bprm->p, info->stack_limit);
2212 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2213 bprm->p, info->stack_limit);
2214 g_free(scratch);
2215
e5fe0c52 2216 if (!bprm->p) {
bf858897
RH
2217 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2218 exit(-1);
379f6698 2219 }
379f6698 2220
8e62a717
RH
2221 if (elf_interpreter) {
2222 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2223
8e62a717
RH
2224 /* If the program interpreter is one of these two, then assume
2225 an iBCS2 image. Otherwise assume a native linux image. */
2226
2227 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2228 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2229 info->personality = PER_SVR4;
31e31b8a 2230
8e62a717
RH
2231 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2232 and some applications "depend" upon this behavior. Since
2233 we do not have the power to recompile these, we emulate
2234 the SVr4 behavior. Sigh. */
2235 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2236 MAP_FIXED | MAP_PRIVATE, -1, 0);
2237 }
31e31b8a
FB
2238 }
2239
8e62a717
RH
2240 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2241 info, (elf_interpreter ? &interp_info : NULL));
2242 info->start_stack = bprm->p;
2243
2244 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2245 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2246 point as a function descriptor. Do this after creating elf tables
2247 so that we copy the original program entry point into the AUXV. */
2248 if (elf_interpreter) {
8e78064e 2249 info->load_bias = interp_info.load_bias;
8e62a717 2250 info->entry = interp_info.entry;
bf858897 2251 free(elf_interpreter);
8e62a717 2252 }
31e31b8a 2253
edf8e2af
MW
2254#ifdef USE_ELF_CORE_DUMP
2255 bprm->core_dump = &elf_core_dump;
2256#endif
2257
31e31b8a
FB
2258 return 0;
2259}
2260
edf8e2af 2261#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2262/*
2263 * Definitions to generate Intel SVR4-like core files.
a2547a13 2264 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2265 * tacked on the front to prevent clashes with linux definitions,
2266 * and the typedef forms have been avoided. This is mostly like
2267 * the SVR4 structure, but more Linuxy, with things that Linux does
2268 * not support and which gdb doesn't really use excluded.
2269 *
2270 * Fields we don't dump (their contents is zero) in linux-user qemu
2271 * are marked with XXX.
2272 *
2273 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2274 *
2275 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2276 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2277 * the target resides):
2278 *
2279 * #define USE_ELF_CORE_DUMP
2280 *
2281 * Next you define type of register set used for dumping. ELF specification
2282 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2283 *
c227f099 2284 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2285 * #define ELF_NREG <number of registers>
c227f099 2286 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2287 *
edf8e2af
MW
2288 * Last step is to implement target specific function that copies registers
2289 * from given cpu into just specified register set. Prototype is:
2290 *
c227f099 2291 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2292 * const CPUArchState *env);
edf8e2af
MW
2293 *
2294 * Parameters:
2295 * regs - copy register values into here (allocated and zeroed by caller)
2296 * env - copy registers from here
2297 *
2298 * Example for ARM target is provided in this file.
2299 */
2300
2301/* An ELF note in memory */
2302struct memelfnote {
2303 const char *name;
2304 size_t namesz;
2305 size_t namesz_rounded;
2306 int type;
2307 size_t datasz;
80f5ce75 2308 size_t datasz_rounded;
edf8e2af
MW
2309 void *data;
2310 size_t notesz;
2311};
2312
a2547a13 2313struct target_elf_siginfo {
f8fd4fc4
PB
2314 abi_int si_signo; /* signal number */
2315 abi_int si_code; /* extra code */
2316 abi_int si_errno; /* errno */
edf8e2af
MW
2317};
2318
a2547a13
LD
2319struct target_elf_prstatus {
2320 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2321 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2322 abi_ulong pr_sigpend; /* XXX */
2323 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2324 target_pid_t pr_pid;
2325 target_pid_t pr_ppid;
2326 target_pid_t pr_pgrp;
2327 target_pid_t pr_sid;
edf8e2af
MW
2328 struct target_timeval pr_utime; /* XXX User time */
2329 struct target_timeval pr_stime; /* XXX System time */
2330 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2331 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2332 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2333 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2334};
2335
2336#define ELF_PRARGSZ (80) /* Number of chars for args */
2337
a2547a13 2338struct target_elf_prpsinfo {
edf8e2af
MW
2339 char pr_state; /* numeric process state */
2340 char pr_sname; /* char for pr_state */
2341 char pr_zomb; /* zombie */
2342 char pr_nice; /* nice val */
ca98ac83 2343 abi_ulong pr_flag; /* flags */
c227f099
AL
2344 target_uid_t pr_uid;
2345 target_gid_t pr_gid;
2346 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2347 /* Lots missing */
2348 char pr_fname[16]; /* filename of executable */
2349 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2350};
2351
2352/* Here is the structure in which status of each thread is captured. */
2353struct elf_thread_status {
72cf2d4f 2354 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2355 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2356#if 0
2357 elf_fpregset_t fpu; /* NT_PRFPREG */
2358 struct task_struct *thread;
2359 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2360#endif
2361 struct memelfnote notes[1];
2362 int num_notes;
2363};
2364
2365struct elf_note_info {
2366 struct memelfnote *notes;
a2547a13
LD
2367 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2368 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2369
72cf2d4f 2370 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2371#if 0
2372 /*
2373 * Current version of ELF coredump doesn't support
2374 * dumping fp regs etc.
2375 */
2376 elf_fpregset_t *fpu;
2377 elf_fpxregset_t *xfpu;
2378 int thread_status_size;
2379#endif
2380 int notes_size;
2381 int numnote;
2382};
2383
2384struct vm_area_struct {
1a1c4db9
MI
2385 target_ulong vma_start; /* start vaddr of memory region */
2386 target_ulong vma_end; /* end vaddr of memory region */
2387 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2388 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2389};
2390
2391struct mm_struct {
72cf2d4f 2392 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2393 int mm_count; /* number of mappings */
2394};
2395
2396static struct mm_struct *vma_init(void);
2397static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2398static int vma_add_mapping(struct mm_struct *, target_ulong,
2399 target_ulong, abi_ulong);
edf8e2af
MW
2400static int vma_get_mapping_count(const struct mm_struct *);
2401static struct vm_area_struct *vma_first(const struct mm_struct *);
2402static struct vm_area_struct *vma_next(struct vm_area_struct *);
2403static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2404static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2405 unsigned long flags);
edf8e2af
MW
2406
2407static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2408static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2409 unsigned int, void *);
a2547a13
LD
2410static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2411static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2412static void fill_auxv_note(struct memelfnote *, const TaskState *);
2413static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2414static size_t note_size(const struct memelfnote *);
2415static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2416static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2417static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2418static int core_dump_filename(const TaskState *, char *, size_t);
2419
2420static int dump_write(int, const void *, size_t);
2421static int write_note(struct memelfnote *, int);
2422static int write_note_info(struct elf_note_info *, int);
2423
2424#ifdef BSWAP_NEEDED
a2547a13 2425static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2426{
ca98ac83
PB
2427 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2428 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2429 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2430 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2431 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2432 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2433 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2434 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2435 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2436 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2437 /* cpu times are not filled, so we skip them */
2438 /* regs should be in correct format already */
2439 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2440}
2441
a2547a13 2442static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2443{
ca98ac83 2444 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2445 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2446 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2447 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2448 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2449 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2450 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2451}
991f8f0c
RH
2452
2453static void bswap_note(struct elf_note *en)
2454{
2455 bswap32s(&en->n_namesz);
2456 bswap32s(&en->n_descsz);
2457 bswap32s(&en->n_type);
2458}
2459#else
2460static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2461static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2462static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2463#endif /* BSWAP_NEEDED */
2464
2465/*
2466 * Minimal support for linux memory regions. These are needed
2467 * when we are finding out what memory exactly belongs to
2468 * emulated process. No locks needed here, as long as
2469 * thread that received the signal is stopped.
2470 */
2471
2472static struct mm_struct *vma_init(void)
2473{
2474 struct mm_struct *mm;
2475
7267c094 2476 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2477 return (NULL);
2478
2479 mm->mm_count = 0;
72cf2d4f 2480 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2481
2482 return (mm);
2483}
2484
2485static void vma_delete(struct mm_struct *mm)
2486{
2487 struct vm_area_struct *vma;
2488
2489 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2490 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2491 g_free(vma);
edf8e2af 2492 }
7267c094 2493 g_free(mm);
edf8e2af
MW
2494}
2495
1a1c4db9
MI
2496static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2497 target_ulong end, abi_ulong flags)
edf8e2af
MW
2498{
2499 struct vm_area_struct *vma;
2500
7267c094 2501 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2502 return (-1);
2503
2504 vma->vma_start = start;
2505 vma->vma_end = end;
2506 vma->vma_flags = flags;
2507
72cf2d4f 2508 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2509 mm->mm_count++;
2510
2511 return (0);
2512}
2513
2514static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2515{
72cf2d4f 2516 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2517}
2518
2519static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2520{
72cf2d4f 2521 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2522}
2523
2524static int vma_get_mapping_count(const struct mm_struct *mm)
2525{
2526 return (mm->mm_count);
2527}
2528
2529/*
2530 * Calculate file (dump) size of given memory region.
2531 */
2532static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2533{
2534 /* if we cannot even read the first page, skip it */
2535 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2536 return (0);
2537
2538 /*
2539 * Usually we don't dump executable pages as they contain
2540 * non-writable code that debugger can read directly from
2541 * target library etc. However, thread stacks are marked
2542 * also executable so we read in first page of given region
2543 * and check whether it contains elf header. If there is
2544 * no elf header, we dump it.
2545 */
2546 if (vma->vma_flags & PROT_EXEC) {
2547 char page[TARGET_PAGE_SIZE];
2548
2549 copy_from_user(page, vma->vma_start, sizeof (page));
2550 if ((page[EI_MAG0] == ELFMAG0) &&
2551 (page[EI_MAG1] == ELFMAG1) &&
2552 (page[EI_MAG2] == ELFMAG2) &&
2553 (page[EI_MAG3] == ELFMAG3)) {
2554 /*
2555 * Mappings are possibly from ELF binary. Don't dump
2556 * them.
2557 */
2558 return (0);
2559 }
2560 }
2561
2562 return (vma->vma_end - vma->vma_start);
2563}
2564
1a1c4db9 2565static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2566 unsigned long flags)
edf8e2af
MW
2567{
2568 struct mm_struct *mm = (struct mm_struct *)priv;
2569
edf8e2af
MW
2570 vma_add_mapping(mm, start, end, flags);
2571 return (0);
2572}
2573
2574static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2575 unsigned int sz, void *data)
edf8e2af
MW
2576{
2577 unsigned int namesz;
2578
2579 namesz = strlen(name) + 1;
2580 note->name = name;
2581 note->namesz = namesz;
2582 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2583 note->type = type;
80f5ce75
LV
2584 note->datasz = sz;
2585 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2586
edf8e2af
MW
2587 note->data = data;
2588
2589 /*
2590 * We calculate rounded up note size here as specified by
2591 * ELF document.
2592 */
2593 note->notesz = sizeof (struct elf_note) +
80f5ce75 2594 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2595}
2596
2597static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2598 uint32_t flags)
edf8e2af
MW
2599{
2600 (void) memset(elf, 0, sizeof(*elf));
2601
2602 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2603 elf->e_ident[EI_CLASS] = ELF_CLASS;
2604 elf->e_ident[EI_DATA] = ELF_DATA;
2605 elf->e_ident[EI_VERSION] = EV_CURRENT;
2606 elf->e_ident[EI_OSABI] = ELF_OSABI;
2607
2608 elf->e_type = ET_CORE;
2609 elf->e_machine = machine;
2610 elf->e_version = EV_CURRENT;
2611 elf->e_phoff = sizeof(struct elfhdr);
2612 elf->e_flags = flags;
2613 elf->e_ehsize = sizeof(struct elfhdr);
2614 elf->e_phentsize = sizeof(struct elf_phdr);
2615 elf->e_phnum = segs;
2616
edf8e2af 2617 bswap_ehdr(elf);
edf8e2af
MW
2618}
2619
2620static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2621{
2622 phdr->p_type = PT_NOTE;
2623 phdr->p_offset = offset;
2624 phdr->p_vaddr = 0;
2625 phdr->p_paddr = 0;
2626 phdr->p_filesz = sz;
2627 phdr->p_memsz = 0;
2628 phdr->p_flags = 0;
2629 phdr->p_align = 0;
2630
991f8f0c 2631 bswap_phdr(phdr, 1);
edf8e2af
MW
2632}
2633
2634static size_t note_size(const struct memelfnote *note)
2635{
2636 return (note->notesz);
2637}
2638
a2547a13 2639static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2640 const TaskState *ts, int signr)
edf8e2af
MW
2641{
2642 (void) memset(prstatus, 0, sizeof (*prstatus));
2643 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2644 prstatus->pr_pid = ts->ts_tid;
2645 prstatus->pr_ppid = getppid();
2646 prstatus->pr_pgrp = getpgrp();
2647 prstatus->pr_sid = getsid(0);
2648
edf8e2af 2649 bswap_prstatus(prstatus);
edf8e2af
MW
2650}
2651
a2547a13 2652static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2653{
900cfbca 2654 char *base_filename;
edf8e2af
MW
2655 unsigned int i, len;
2656
2657 (void) memset(psinfo, 0, sizeof (*psinfo));
2658
2659 len = ts->info->arg_end - ts->info->arg_start;
2660 if (len >= ELF_PRARGSZ)
2661 len = ELF_PRARGSZ - 1;
2662 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2663 return -EFAULT;
2664 for (i = 0; i < len; i++)
2665 if (psinfo->pr_psargs[i] == 0)
2666 psinfo->pr_psargs[i] = ' ';
2667 psinfo->pr_psargs[len] = 0;
2668
2669 psinfo->pr_pid = getpid();
2670 psinfo->pr_ppid = getppid();
2671 psinfo->pr_pgrp = getpgrp();
2672 psinfo->pr_sid = getsid(0);
2673 psinfo->pr_uid = getuid();
2674 psinfo->pr_gid = getgid();
2675
900cfbca
JM
2676 base_filename = g_path_get_basename(ts->bprm->filename);
2677 /*
2678 * Using strncpy here is fine: at max-length,
2679 * this field is not NUL-terminated.
2680 */
edf8e2af 2681 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2682 sizeof(psinfo->pr_fname));
edf8e2af 2683
900cfbca 2684 g_free(base_filename);
edf8e2af 2685 bswap_psinfo(psinfo);
edf8e2af
MW
2686 return (0);
2687}
2688
2689static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2690{
2691 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2692 elf_addr_t orig_auxv = auxv;
edf8e2af 2693 void *ptr;
125b0f55 2694 int len = ts->info->auxv_len;
edf8e2af
MW
2695
2696 /*
2697 * Auxiliary vector is stored in target process stack. It contains
2698 * {type, value} pairs that we need to dump into note. This is not
2699 * strictly necessary but we do it here for sake of completeness.
2700 */
2701
edf8e2af
MW
2702 /* read in whole auxv vector and copy it to memelfnote */
2703 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2704 if (ptr != NULL) {
2705 fill_note(note, "CORE", NT_AUXV, len, ptr);
2706 unlock_user(ptr, auxv, len);
2707 }
2708}
2709
2710/*
2711 * Constructs name of coredump file. We have following convention
2712 * for the name:
2713 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2714 *
2715 * Returns 0 in case of success, -1 otherwise (errno is set).
2716 */
2717static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2718 size_t bufsize)
edf8e2af
MW
2719{
2720 char timestamp[64];
edf8e2af
MW
2721 char *base_filename = NULL;
2722 struct timeval tv;
2723 struct tm tm;
2724
2725 assert(bufsize >= PATH_MAX);
2726
2727 if (gettimeofday(&tv, NULL) < 0) {
2728 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2729 strerror(errno));
edf8e2af
MW
2730 return (-1);
2731 }
2732
b8da57fa 2733 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 2734 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2735 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2736 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2737 base_filename, timestamp, (int)getpid());
b8da57fa 2738 g_free(base_filename);
edf8e2af
MW
2739
2740 return (0);
2741}
2742
2743static int dump_write(int fd, const void *ptr, size_t size)
2744{
2745 const char *bufp = (const char *)ptr;
2746 ssize_t bytes_written, bytes_left;
2747 struct rlimit dumpsize;
2748 off_t pos;
2749
2750 bytes_written = 0;
2751 getrlimit(RLIMIT_CORE, &dumpsize);
2752 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2753 if (errno == ESPIPE) { /* not a seekable stream */
2754 bytes_left = size;
2755 } else {
2756 return pos;
2757 }
2758 } else {
2759 if (dumpsize.rlim_cur <= pos) {
2760 return -1;
2761 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2762 bytes_left = size;
2763 } else {
2764 size_t limit_left=dumpsize.rlim_cur - pos;
2765 bytes_left = limit_left >= size ? size : limit_left ;
2766 }
2767 }
2768
2769 /*
2770 * In normal conditions, single write(2) should do but
2771 * in case of socket etc. this mechanism is more portable.
2772 */
2773 do {
2774 bytes_written = write(fd, bufp, bytes_left);
2775 if (bytes_written < 0) {
2776 if (errno == EINTR)
2777 continue;
2778 return (-1);
2779 } else if (bytes_written == 0) { /* eof */
2780 return (-1);
2781 }
2782 bufp += bytes_written;
2783 bytes_left -= bytes_written;
2784 } while (bytes_left > 0);
2785
2786 return (0);
2787}
2788
2789static int write_note(struct memelfnote *men, int fd)
2790{
2791 struct elf_note en;
2792
2793 en.n_namesz = men->namesz;
2794 en.n_type = men->type;
2795 en.n_descsz = men->datasz;
2796
edf8e2af 2797 bswap_note(&en);
edf8e2af
MW
2798
2799 if (dump_write(fd, &en, sizeof(en)) != 0)
2800 return (-1);
2801 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2802 return (-1);
80f5ce75 2803 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2804 return (-1);
2805
2806 return (0);
2807}
2808
9349b4f9 2809static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 2810{
0429a971
AF
2811 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2812 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2813 struct elf_thread_status *ets;
2814
7267c094 2815 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2816 ets->num_notes = 1; /* only prstatus is dumped */
2817 fill_prstatus(&ets->prstatus, ts, 0);
2818 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2819 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2820 &ets->prstatus);
edf8e2af 2821
72cf2d4f 2822 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2823
2824 info->notes_size += note_size(&ets->notes[0]);
2825}
2826
6afafa86
PM
2827static void init_note_info(struct elf_note_info *info)
2828{
2829 /* Initialize the elf_note_info structure so that it is at
2830 * least safe to call free_note_info() on it. Must be
2831 * called before calling fill_note_info().
2832 */
2833 memset(info, 0, sizeof (*info));
2834 QTAILQ_INIT(&info->thread_list);
2835}
2836
edf8e2af 2837static int fill_note_info(struct elf_note_info *info,
9349b4f9 2838 long signr, const CPUArchState *env)
edf8e2af
MW
2839{
2840#define NUMNOTES 3
0429a971
AF
2841 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2842 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2843 int i;
2844
c78d65e8 2845 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
2846 if (info->notes == NULL)
2847 return (-ENOMEM);
7267c094 2848 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2849 if (info->prstatus == NULL)
2850 return (-ENOMEM);
7267c094 2851 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2852 if (info->prstatus == NULL)
2853 return (-ENOMEM);
2854
2855 /*
2856 * First fill in status (and registers) of current thread
2857 * including process info & aux vector.
2858 */
2859 fill_prstatus(info->prstatus, ts, signr);
2860 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2861 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2862 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2863 fill_psinfo(info->psinfo, ts);
2864 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2865 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2866 fill_auxv_note(&info->notes[2], ts);
2867 info->numnote = 3;
2868
2869 info->notes_size = 0;
2870 for (i = 0; i < info->numnote; i++)
2871 info->notes_size += note_size(&info->notes[i]);
2872
2873 /* read and fill status of all threads */
2874 cpu_list_lock();
bdc44640 2875 CPU_FOREACH(cpu) {
a2247f8e 2876 if (cpu == thread_cpu) {
edf8e2af 2877 continue;
182735ef
AF
2878 }
2879 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
2880 }
2881 cpu_list_unlock();
2882
2883 return (0);
2884}
2885
2886static void free_note_info(struct elf_note_info *info)
2887{
2888 struct elf_thread_status *ets;
2889
72cf2d4f
BS
2890 while (!QTAILQ_EMPTY(&info->thread_list)) {
2891 ets = QTAILQ_FIRST(&info->thread_list);
2892 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 2893 g_free(ets);
edf8e2af
MW
2894 }
2895
7267c094
AL
2896 g_free(info->prstatus);
2897 g_free(info->psinfo);
2898 g_free(info->notes);
edf8e2af
MW
2899}
2900
2901static int write_note_info(struct elf_note_info *info, int fd)
2902{
2903 struct elf_thread_status *ets;
2904 int i, error = 0;
2905
2906 /* write prstatus, psinfo and auxv for current thread */
2907 for (i = 0; i < info->numnote; i++)
2908 if ((error = write_note(&info->notes[i], fd)) != 0)
2909 return (error);
2910
2911 /* write prstatus for each thread */
52a53afe 2912 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
2913 if ((error = write_note(&ets->notes[0], fd)) != 0)
2914 return (error);
2915 }
2916
2917 return (0);
2918}
2919
2920/*
2921 * Write out ELF coredump.
2922 *
2923 * See documentation of ELF object file format in:
2924 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2925 *
2926 * Coredump format in linux is following:
2927 *
2928 * 0 +----------------------+ \
2929 * | ELF header | ET_CORE |
2930 * +----------------------+ |
2931 * | ELF program headers | |--- headers
2932 * | - NOTE section | |
2933 * | - PT_LOAD sections | |
2934 * +----------------------+ /
2935 * | NOTEs: |
2936 * | - NT_PRSTATUS |
2937 * | - NT_PRSINFO |
2938 * | - NT_AUXV |
2939 * +----------------------+ <-- aligned to target page
2940 * | Process memory dump |
2941 * : :
2942 * . .
2943 * : :
2944 * | |
2945 * +----------------------+
2946 *
2947 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2948 * NT_PRSINFO -> struct elf_prpsinfo
2949 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2950 *
2951 * Format follows System V format as close as possible. Current
2952 * version limitations are as follows:
2953 * - no floating point registers are dumped
2954 *
2955 * Function returns 0 in case of success, negative errno otherwise.
2956 *
2957 * TODO: make this work also during runtime: it should be
2958 * possible to force coredump from running process and then
2959 * continue processing. For example qemu could set up SIGUSR2
2960 * handler (provided that target process haven't registered
2961 * handler for that) that does the dump when signal is received.
2962 */
9349b4f9 2963static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 2964{
0429a971
AF
2965 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2966 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
2967 struct vm_area_struct *vma = NULL;
2968 char corefile[PATH_MAX];
2969 struct elf_note_info info;
2970 struct elfhdr elf;
2971 struct elf_phdr phdr;
2972 struct rlimit dumpsize;
2973 struct mm_struct *mm = NULL;
2974 off_t offset = 0, data_offset = 0;
2975 int segs = 0;
2976 int fd = -1;
2977
6afafa86
PM
2978 init_note_info(&info);
2979
edf8e2af
MW
2980 errno = 0;
2981 getrlimit(RLIMIT_CORE, &dumpsize);
2982 if (dumpsize.rlim_cur == 0)
d97ef72e 2983 return 0;
edf8e2af
MW
2984
2985 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2986 return (-errno);
2987
2988 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 2989 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
2990 return (-errno);
2991
2992 /*
2993 * Walk through target process memory mappings and
2994 * set up structure containing this information. After
2995 * this point vma_xxx functions can be used.
2996 */
2997 if ((mm = vma_init()) == NULL)
2998 goto out;
2999
3000 walk_memory_regions(mm, vma_walker);
3001 segs = vma_get_mapping_count(mm);
3002
3003 /*
3004 * Construct valid coredump ELF header. We also
3005 * add one more segment for notes.
3006 */
3007 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3008 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3009 goto out;
3010
b6af0975 3011 /* fill in the in-memory version of notes */
edf8e2af
MW
3012 if (fill_note_info(&info, signr, env) < 0)
3013 goto out;
3014
3015 offset += sizeof (elf); /* elf header */
3016 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3017
3018 /* write out notes program header */
3019 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3020
3021 offset += info.notes_size;
3022 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3023 goto out;
3024
3025 /*
3026 * ELF specification wants data to start at page boundary so
3027 * we align it here.
3028 */
80f5ce75 3029 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3030
3031 /*
3032 * Write program headers for memory regions mapped in
3033 * the target process.
3034 */
3035 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3036 (void) memset(&phdr, 0, sizeof (phdr));
3037
3038 phdr.p_type = PT_LOAD;
3039 phdr.p_offset = offset;
3040 phdr.p_vaddr = vma->vma_start;
3041 phdr.p_paddr = 0;
3042 phdr.p_filesz = vma_dump_size(vma);
3043 offset += phdr.p_filesz;
3044 phdr.p_memsz = vma->vma_end - vma->vma_start;
3045 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3046 if (vma->vma_flags & PROT_WRITE)
3047 phdr.p_flags |= PF_W;
3048 if (vma->vma_flags & PROT_EXEC)
3049 phdr.p_flags |= PF_X;
3050 phdr.p_align = ELF_EXEC_PAGESIZE;
3051
80f5ce75 3052 bswap_phdr(&phdr, 1);
edf8e2af
MW
3053 dump_write(fd, &phdr, sizeof (phdr));
3054 }
3055
3056 /*
3057 * Next we write notes just after program headers. No
3058 * alignment needed here.
3059 */
3060 if (write_note_info(&info, fd) < 0)
3061 goto out;
3062
3063 /* align data to page boundary */
edf8e2af
MW
3064 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3065 goto out;
3066
3067 /*
3068 * Finally we can dump process memory into corefile as well.
3069 */
3070 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3071 abi_ulong addr;
3072 abi_ulong end;
3073
3074 end = vma->vma_start + vma_dump_size(vma);
3075
3076 for (addr = vma->vma_start; addr < end;
d97ef72e 3077 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3078 char page[TARGET_PAGE_SIZE];
3079 int error;
3080
3081 /*
3082 * Read in page from target process memory and
3083 * write it to coredump file.
3084 */
3085 error = copy_from_user(page, addr, sizeof (page));
3086 if (error != 0) {
49995e17 3087 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3088 addr);
edf8e2af
MW
3089 errno = -error;
3090 goto out;
3091 }
3092 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3093 goto out;
3094 }
3095 }
3096
d97ef72e 3097 out:
edf8e2af
MW
3098 free_note_info(&info);
3099 if (mm != NULL)
3100 vma_delete(mm);
3101 (void) close(fd);
3102
3103 if (errno != 0)
3104 return (-errno);
3105 return (0);
3106}
edf8e2af
MW
3107#endif /* USE_ELF_CORE_DUMP */
3108
e5fe0c52
PB
3109void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3110{
3111 init_thread(regs, infop);
3112}