]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
linux-user: Add HPPA signal handling
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
83fb7adf
FB
81/* this flag is uneffective under linux too, should be deleted */
82#ifndef MAP_DENYWRITE
83#define MAP_DENYWRITE 0
84#endif
85
86/* should probably go in elf.h */
87#ifndef ELIBBAD
88#define ELIBBAD 80
89#endif
90
28490231
RH
91#ifdef TARGET_WORDS_BIGENDIAN
92#define ELF_DATA ELFDATA2MSB
93#else
94#define ELF_DATA ELFDATA2LSB
95#endif
96
a29f998d 97#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
98typedef abi_ullong target_elf_greg_t;
99#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
100#else
101typedef abi_ulong target_elf_greg_t;
102#define tswapreg(ptr) tswapal(ptr)
103#endif
104
21e807fa 105#ifdef USE_UID16
1ddd592f
PB
106typedef abi_ushort target_uid_t;
107typedef abi_ushort target_gid_t;
21e807fa 108#else
f8fd4fc4
PB
109typedef abi_uint target_uid_t;
110typedef abi_uint target_gid_t;
21e807fa 111#endif
f8fd4fc4 112typedef abi_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
a2247f8e 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
a2247f8e
AF
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
136}
137
84409ddb
JM
138#ifdef TARGET_X86_64
139#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
140
141#define ELF_CLASS ELFCLASS64
84409ddb
JM
142#define ELF_ARCH EM_X86_64
143
144static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145{
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149}
150
9edc5d79 151#define ELF_NREG 27
c227f099 152typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
153
154/*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
05390248 161static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
162{
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190}
191
84409ddb
JM
192#else
193
30ac07d4
FB
194#define ELF_START_MMAP 0x80000000
195
30ac07d4
FB
196/*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201/*
202 * These are used to set parameters in the core dumps.
203 */
d97ef72e 204#define ELF_CLASS ELFCLASS32
d97ef72e 205#define ELF_ARCH EM_386
30ac07d4 206
d97ef72e
RH
207static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
b346ff46
FB
209{
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
e5fe0c52
PB
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
b346ff46 221}
9edc5d79 222
9edc5d79 223#define ELF_NREG 17
c227f099 224typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
225
226/*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
05390248 233static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
234{
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252}
84409ddb 253#endif
b346ff46 254
9edc5d79 255#define USE_ELF_CORE_DUMP
d97ef72e 256#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
257
258#endif
259
260#ifdef TARGET_ARM
261
24e76ff0
PM
262#ifndef TARGET_AARCH64
263/* 32 bit ARM definitions */
264
b346ff46
FB
265#define ELF_START_MMAP 0x80000000
266
b597c3f7 267#define ELF_ARCH EM_ARM
d97ef72e 268#define ELF_CLASS ELFCLASS32
b346ff46 269
d97ef72e
RH
270static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
b346ff46 272{
992f48a0 273 abi_long stack = infop->start_stack;
b346ff46 274 memset(regs, 0, sizeof(*regs));
99033cae 275
167e4cdc
PM
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
2f619698 282 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 285 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 286 regs->uregs[0] = 0;
e5fe0c52 287 /* For uClinux PIC binaries. */
863cf0b7 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 289 regs->uregs[10] = infop->start_data;
b346ff46
FB
290}
291
edf8e2af 292#define ELF_NREG 18
c227f099 293typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 294
05390248 295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 296{
86cd7b2d
PB
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
316}
317
30ac07d4 318#define USE_ELF_CORE_DUMP
d97ef72e 319#define ELF_EXEC_PAGESIZE 4096
30ac07d4 320
afce2927
FB
321enum
322{
d97ef72e
RH
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
345};
346
ad6919dc
PM
347enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353};
354
6b1275ff
PM
355/* The commpage only exists for 32 bit kernels */
356
806d1021
MI
357#define TARGET_HAS_VALIDATE_GUEST_SPACE
358/* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
365 */
366static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
97cc7560
DDAG
368{
369 unsigned long real_start, test_page_addr;
370
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
373 */
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
375
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
378 */
379 if (test_page_addr >= guest_base
380 && test_page_addr <= (guest_base + guest_size)) {
381 return -1;
382 }
383
97cc7560
DDAG
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
393 }
394
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
399 }
400
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
403 */
404
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
412 }
413
414 return 1; /* All good */
415}
adf050b1
BC
416
417#define ELF_HWCAP get_elf_hwcap()
ad6919dc 418#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
419
420static uint32_t get_elf_hwcap(void)
421{
a2247f8e 422 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
423 uint32_t hwcaps = 0;
424
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
429
430 /* probe for the extra features */
431#define GET_FEATURE(feat, hwcap) \
a2247f8e 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
448 */
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
451
452 return hwcaps;
453}
afce2927 454
ad6919dc
PM
455static uint32_t get_elf_hwcap2(void)
456{
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
459
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
466}
467
468#undef GET_FEATURE
469
24e76ff0
PM
470#else
471/* 64 bit ARM definitions */
472#define ELF_START_MMAP 0x80000000
473
b597c3f7 474#define ELF_ARCH EM_AARCH64
24e76ff0
PM
475#define ELF_CLASS ELFCLASS64
476#define ELF_PLATFORM "aarch64"
477
478static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
480{
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
483
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
486}
487
488#define ELF_NREG 34
489typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
490
491static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
493{
494 int i;
495
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
498 }
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501}
502
503#define USE_ELF_CORE_DUMP
504#define ELF_EXEC_PAGESIZE 4096
505
506enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515};
516
517#define ELF_HWCAP get_elf_hwcap()
518
519static uint32_t get_elf_hwcap(void)
520{
521 ARMCPU *cpu = ARM_CPU(thread_cpu);
522 uint32_t hwcaps = 0;
523
524 hwcaps |= ARM_HWCAP_A64_FP;
525 hwcaps |= ARM_HWCAP_A64_ASIMD;
526
527 /* probe for the extra features */
528#define GET_FEATURE(feat, hwcap) \
529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
24e76ff0
PM
535#undef GET_FEATURE
536
537 return hwcaps;
538}
539
540#endif /* not TARGET_AARCH64 */
541#endif /* TARGET_ARM */
30ac07d4 542
d2fbca94
GX
543#ifdef TARGET_UNICORE32
544
545#define ELF_START_MMAP 0x80000000
546
d2fbca94
GX
547#define ELF_CLASS ELFCLASS32
548#define ELF_DATA ELFDATA2LSB
549#define ELF_ARCH EM_UNICORE32
550
551static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
553{
554 abi_long stack = infop->start_stack;
555 memset(regs, 0, sizeof(*regs));
556 regs->UC32_REG_asr = 0x10;
557 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558 regs->UC32_REG_sp = infop->start_stack;
559 /* FIXME - what to for failure of get_user()? */
560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562 /* XXX: it seems that r0 is zeroed after ! */
563 regs->UC32_REG_00 = 0;
564}
565
566#define ELF_NREG 34
567typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
568
05390248 569static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
570{
571 (*regs)[0] = env->regs[0];
572 (*regs)[1] = env->regs[1];
573 (*regs)[2] = env->regs[2];
574 (*regs)[3] = env->regs[3];
575 (*regs)[4] = env->regs[4];
576 (*regs)[5] = env->regs[5];
577 (*regs)[6] = env->regs[6];
578 (*regs)[7] = env->regs[7];
579 (*regs)[8] = env->regs[8];
580 (*regs)[9] = env->regs[9];
581 (*regs)[10] = env->regs[10];
582 (*regs)[11] = env->regs[11];
583 (*regs)[12] = env->regs[12];
584 (*regs)[13] = env->regs[13];
585 (*regs)[14] = env->regs[14];
586 (*regs)[15] = env->regs[15];
587 (*regs)[16] = env->regs[16];
588 (*regs)[17] = env->regs[17];
589 (*regs)[18] = env->regs[18];
590 (*regs)[19] = env->regs[19];
591 (*regs)[20] = env->regs[20];
592 (*regs)[21] = env->regs[21];
593 (*regs)[22] = env->regs[22];
594 (*regs)[23] = env->regs[23];
595 (*regs)[24] = env->regs[24];
596 (*regs)[25] = env->regs[25];
597 (*regs)[26] = env->regs[26];
598 (*regs)[27] = env->regs[27];
599 (*regs)[28] = env->regs[28];
600 (*regs)[29] = env->regs[29];
601 (*regs)[30] = env->regs[30];
602 (*regs)[31] = env->regs[31];
603
05390248 604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
605 (*regs)[33] = env->regs[0]; /* XXX */
606}
607
608#define USE_ELF_CORE_DUMP
609#define ELF_EXEC_PAGESIZE 4096
610
611#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612
613#endif
614
853d6f7a 615#ifdef TARGET_SPARC
a315a145 616#ifdef TARGET_SPARC64
853d6f7a
FB
617
618#define ELF_START_MMAP 0x80000000
cf973e46
AT
619#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 621#ifndef TARGET_ABI32
cb33da57 622#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
623#else
624#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625#endif
853d6f7a 626
a315a145 627#define ELF_CLASS ELFCLASS64
5ef54116
FB
628#define ELF_ARCH EM_SPARCV9
629
d97ef72e 630#define STACK_BIAS 2047
a315a145 631
d97ef72e
RH
632static inline void init_thread(struct target_pt_regs *regs,
633 struct image_info *infop)
a315a145 634{
992f48a0 635#ifndef TARGET_ABI32
a315a145 636 regs->tstate = 0;
992f48a0 637#endif
a315a145
FB
638 regs->pc = infop->entry;
639 regs->npc = regs->pc + 4;
640 regs->y = 0;
992f48a0
BS
641#ifdef TARGET_ABI32
642 regs->u_regs[14] = infop->start_stack - 16 * 4;
643#else
cb33da57
BS
644 if (personality(infop->personality) == PER_LINUX32)
645 regs->u_regs[14] = infop->start_stack - 16 * 4;
646 else
647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 648#endif
a315a145
FB
649}
650
651#else
652#define ELF_START_MMAP 0x80000000
cf973e46
AT
653#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV)
a315a145 655
853d6f7a 656#define ELF_CLASS ELFCLASS32
853d6f7a
FB
657#define ELF_ARCH EM_SPARC
658
d97ef72e
RH
659static inline void init_thread(struct target_pt_regs *regs,
660 struct image_info *infop)
853d6f7a 661{
f5155289
FB
662 regs->psr = 0;
663 regs->pc = infop->entry;
664 regs->npc = regs->pc + 4;
665 regs->y = 0;
666 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
667}
668
a315a145 669#endif
853d6f7a
FB
670#endif
671
67867308
FB
672#ifdef TARGET_PPC
673
4ecd4d16 674#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
675#define ELF_START_MMAP 0x80000000
676
e85e7c6e 677#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
678
679#define elf_check_arch(x) ( (x) == EM_PPC64 )
680
d97ef72e 681#define ELF_CLASS ELFCLASS64
84409ddb
JM
682
683#else
684
d97ef72e 685#define ELF_CLASS ELFCLASS32
84409ddb
JM
686
687#endif
688
d97ef72e 689#define ELF_ARCH EM_PPC
67867308 690
df84e4f3
NF
691/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692 See arch/powerpc/include/asm/cputable.h. */
693enum {
3efa9a67 694 QEMU_PPC_FEATURE_32 = 0x80000000,
695 QEMU_PPC_FEATURE_64 = 0x40000000,
696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709 QEMU_PPC_FEATURE_CELL = 0x00010000,
710 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711 QEMU_PPC_FEATURE_SMT = 0x00004000,
712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714 QEMU_PPC_FEATURE_PA6T = 0x00000800,
715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720
721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
723
724 /* Feature definitions in AT_HWCAP2. */
725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
731};
732
733#define ELF_HWCAP get_elf_hwcap()
734
735static uint32_t get_elf_hwcap(void)
736{
a2247f8e 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
738 uint32_t features = 0;
739
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 742#define GET_FEATURE(flag, feature) \
a2247f8e 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
744#define GET_FEATURE2(flags, feature) \
745 do { \
746 if ((cpu->env.insns_flags2 & flags) == flags) { \
747 features |= feature; \
748 } \
749 } while (0)
3efa9a67 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 763#undef GET_FEATURE
0e019746 764#undef GET_FEATURE2
df84e4f3
NF
765
766 return features;
767}
768
a60438dd
TM
769#define ELF_HWCAP2 get_elf_hwcap2()
770
771static uint32_t get_elf_hwcap2(void)
772{
773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774 uint32_t features = 0;
775
776#define GET_FEATURE(flag, feature) \
777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778#define GET_FEATURE2(flag, feature) \
779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780
781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
785
786#undef GET_FEATURE
787#undef GET_FEATURE2
788
789 return features;
790}
791
f5155289
FB
792/*
793 * The requirements here are:
794 * - keep the final alignment of sp (sp & 0xf)
795 * - make sure the 32-bit value at the first 16 byte aligned position of
796 * AUXV is greater than 16 for glibc compatibility.
797 * AT_IGNOREPPC is used for that.
798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800 */
0bccf03d 801#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
802#define ARCH_DLINFO \
803 do { \
623e250a
TM
804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
d97ef72e
RH
807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
808 /* \
809 * Now handle glibc compatibility. \
810 */ \
811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
813 } while (0)
f5155289 814
67867308
FB
815static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
816{
67867308 817 _regs->gpr[1] = infop->start_stack;
e85e7c6e 818#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 819 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
820 uint64_t val;
821 get_user_u64(val, infop->entry + 8);
822 _regs->gpr[2] = val + infop->load_bias;
823 get_user_u64(val, infop->entry);
824 infop->entry = val + infop->load_bias;
d90b94cd
DK
825 } else {
826 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
827 }
84409ddb 828#endif
67867308
FB
829 _regs->nip = infop->entry;
830}
831
e2f3e741
NF
832/* See linux kernel: arch/powerpc/include/asm/elf.h. */
833#define ELF_NREG 48
834typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
835
05390248 836static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
837{
838 int i;
839 target_ulong ccr = 0;
840
841 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 842 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
843 }
844
86cd7b2d
PB
845 (*regs)[32] = tswapreg(env->nip);
846 (*regs)[33] = tswapreg(env->msr);
847 (*regs)[35] = tswapreg(env->ctr);
848 (*regs)[36] = tswapreg(env->lr);
849 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
850
851 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
852 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
853 }
86cd7b2d 854 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
855}
856
857#define USE_ELF_CORE_DUMP
d97ef72e 858#define ELF_EXEC_PAGESIZE 4096
67867308
FB
859
860#endif
861
048f6b4d
FB
862#ifdef TARGET_MIPS
863
864#define ELF_START_MMAP 0x80000000
865
388bb21a
TS
866#ifdef TARGET_MIPS64
867#define ELF_CLASS ELFCLASS64
868#else
048f6b4d 869#define ELF_CLASS ELFCLASS32
388bb21a 870#endif
048f6b4d
FB
871#define ELF_ARCH EM_MIPS
872
d97ef72e
RH
873static inline void init_thread(struct target_pt_regs *regs,
874 struct image_info *infop)
048f6b4d 875{
623a930e 876 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
877 regs->cp0_epc = infop->entry;
878 regs->regs[29] = infop->start_stack;
879}
880
51e52606
NF
881/* See linux kernel: arch/mips/include/asm/elf.h. */
882#define ELF_NREG 45
883typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
884
885/* See linux kernel: arch/mips/include/asm/reg.h. */
886enum {
887#ifdef TARGET_MIPS64
888 TARGET_EF_R0 = 0,
889#else
890 TARGET_EF_R0 = 6,
891#endif
892 TARGET_EF_R26 = TARGET_EF_R0 + 26,
893 TARGET_EF_R27 = TARGET_EF_R0 + 27,
894 TARGET_EF_LO = TARGET_EF_R0 + 32,
895 TARGET_EF_HI = TARGET_EF_R0 + 33,
896 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
897 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
898 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
899 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
900};
901
902/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 903static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
904{
905 int i;
906
907 for (i = 0; i < TARGET_EF_R0; i++) {
908 (*regs)[i] = 0;
909 }
910 (*regs)[TARGET_EF_R0] = 0;
911
912 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 913 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
914 }
915
916 (*regs)[TARGET_EF_R26] = 0;
917 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
918 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
919 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
920 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
921 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
922 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
923 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
924}
925
926#define USE_ELF_CORE_DUMP
388bb21a
TS
927#define ELF_EXEC_PAGESIZE 4096
928
048f6b4d
FB
929#endif /* TARGET_MIPS */
930
b779e29e
EI
931#ifdef TARGET_MICROBLAZE
932
933#define ELF_START_MMAP 0x80000000
934
0d5d4699 935#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
936
937#define ELF_CLASS ELFCLASS32
0d5d4699 938#define ELF_ARCH EM_MICROBLAZE
b779e29e 939
d97ef72e
RH
940static inline void init_thread(struct target_pt_regs *regs,
941 struct image_info *infop)
b779e29e
EI
942{
943 regs->pc = infop->entry;
944 regs->r1 = infop->start_stack;
945
946}
947
b779e29e
EI
948#define ELF_EXEC_PAGESIZE 4096
949
e4cbd44d
EI
950#define USE_ELF_CORE_DUMP
951#define ELF_NREG 38
952typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
953
954/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 955static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
956{
957 int i, pos = 0;
958
959 for (i = 0; i < 32; i++) {
86cd7b2d 960 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
961 }
962
963 for (i = 0; i < 6; i++) {
86cd7b2d 964 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
965 }
966}
967
b779e29e
EI
968#endif /* TARGET_MICROBLAZE */
969
d962783e
JL
970#ifdef TARGET_OPENRISC
971
972#define ELF_START_MMAP 0x08000000
973
d962783e
JL
974#define ELF_ARCH EM_OPENRISC
975#define ELF_CLASS ELFCLASS32
976#define ELF_DATA ELFDATA2MSB
977
978static inline void init_thread(struct target_pt_regs *regs,
979 struct image_info *infop)
980{
981 regs->pc = infop->entry;
982 regs->gpr[1] = infop->start_stack;
983}
984
985#define USE_ELF_CORE_DUMP
986#define ELF_EXEC_PAGESIZE 8192
987
988/* See linux kernel arch/openrisc/include/asm/elf.h. */
989#define ELF_NREG 34 /* gprs and pc, sr */
990typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
991
992static void elf_core_copy_regs(target_elf_gregset_t *regs,
993 const CPUOpenRISCState *env)
994{
995 int i;
996
997 for (i = 0; i < 32; i++) {
86cd7b2d 998 (*regs)[i] = tswapreg(env->gpr[i]);
d962783e
JL
999 }
1000
86cd7b2d
PB
1001 (*regs)[32] = tswapreg(env->pc);
1002 (*regs)[33] = tswapreg(env->sr);
d962783e
JL
1003}
1004#define ELF_HWCAP 0
1005#define ELF_PLATFORM NULL
1006
1007#endif /* TARGET_OPENRISC */
1008
fdf9b3e8
FB
1009#ifdef TARGET_SH4
1010
1011#define ELF_START_MMAP 0x80000000
1012
fdf9b3e8 1013#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1014#define ELF_ARCH EM_SH
1015
d97ef72e
RH
1016static inline void init_thread(struct target_pt_regs *regs,
1017 struct image_info *infop)
fdf9b3e8 1018{
d97ef72e
RH
1019 /* Check other registers XXXXX */
1020 regs->pc = infop->entry;
1021 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1022}
1023
7631c97e
NF
1024/* See linux kernel: arch/sh/include/asm/elf.h. */
1025#define ELF_NREG 23
1026typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1027
1028/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1029enum {
1030 TARGET_REG_PC = 16,
1031 TARGET_REG_PR = 17,
1032 TARGET_REG_SR = 18,
1033 TARGET_REG_GBR = 19,
1034 TARGET_REG_MACH = 20,
1035 TARGET_REG_MACL = 21,
1036 TARGET_REG_SYSCALL = 22
1037};
1038
d97ef72e 1039static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1040 const CPUSH4State *env)
7631c97e
NF
1041{
1042 int i;
1043
1044 for (i = 0; i < 16; i++) {
86cd7b2d 1045 (*regs[i]) = tswapreg(env->gregs[i]);
7631c97e
NF
1046 }
1047
86cd7b2d
PB
1048 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1049 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1050 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1051 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1052 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1053 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1054 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1055}
1056
1057#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1058#define ELF_EXEC_PAGESIZE 4096
1059
e42fd944
RH
1060enum {
1061 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1062 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1063 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1064 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1065 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1066 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1067 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1068 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1069 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1070 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1071};
1072
1073#define ELF_HWCAP get_elf_hwcap()
1074
1075static uint32_t get_elf_hwcap(void)
1076{
1077 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1078 uint32_t hwcap = 0;
1079
1080 hwcap |= SH_CPU_HAS_FPU;
1081
1082 if (cpu->env.features & SH_FEATURE_SH4A) {
1083 hwcap |= SH_CPU_HAS_LLSC;
1084 }
1085
1086 return hwcap;
1087}
1088
fdf9b3e8
FB
1089#endif
1090
48733d19
TS
1091#ifdef TARGET_CRIS
1092
1093#define ELF_START_MMAP 0x80000000
1094
48733d19 1095#define ELF_CLASS ELFCLASS32
48733d19
TS
1096#define ELF_ARCH EM_CRIS
1097
d97ef72e
RH
1098static inline void init_thread(struct target_pt_regs *regs,
1099 struct image_info *infop)
48733d19 1100{
d97ef72e 1101 regs->erp = infop->entry;
48733d19
TS
1102}
1103
48733d19
TS
1104#define ELF_EXEC_PAGESIZE 8192
1105
1106#endif
1107
e6e5906b
PB
1108#ifdef TARGET_M68K
1109
1110#define ELF_START_MMAP 0x80000000
1111
d97ef72e 1112#define ELF_CLASS ELFCLASS32
d97ef72e 1113#define ELF_ARCH EM_68K
e6e5906b
PB
1114
1115/* ??? Does this need to do anything?
d97ef72e 1116 #define ELF_PLAT_INIT(_r) */
e6e5906b 1117
d97ef72e
RH
1118static inline void init_thread(struct target_pt_regs *regs,
1119 struct image_info *infop)
e6e5906b
PB
1120{
1121 regs->usp = infop->start_stack;
1122 regs->sr = 0;
1123 regs->pc = infop->entry;
1124}
1125
7a93cc55
NF
1126/* See linux kernel: arch/m68k/include/asm/elf.h. */
1127#define ELF_NREG 20
1128typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1129
05390248 1130static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1131{
86cd7b2d
PB
1132 (*regs)[0] = tswapreg(env->dregs[1]);
1133 (*regs)[1] = tswapreg(env->dregs[2]);
1134 (*regs)[2] = tswapreg(env->dregs[3]);
1135 (*regs)[3] = tswapreg(env->dregs[4]);
1136 (*regs)[4] = tswapreg(env->dregs[5]);
1137 (*regs)[5] = tswapreg(env->dregs[6]);
1138 (*regs)[6] = tswapreg(env->dregs[7]);
1139 (*regs)[7] = tswapreg(env->aregs[0]);
1140 (*regs)[8] = tswapreg(env->aregs[1]);
1141 (*regs)[9] = tswapreg(env->aregs[2]);
1142 (*regs)[10] = tswapreg(env->aregs[3]);
1143 (*regs)[11] = tswapreg(env->aregs[4]);
1144 (*regs)[12] = tswapreg(env->aregs[5]);
1145 (*regs)[13] = tswapreg(env->aregs[6]);
1146 (*regs)[14] = tswapreg(env->dregs[0]);
1147 (*regs)[15] = tswapreg(env->aregs[7]);
1148 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1149 (*regs)[17] = tswapreg(env->sr);
1150 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1151 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1152}
1153
1154#define USE_ELF_CORE_DUMP
d97ef72e 1155#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1156
1157#endif
1158
7a3148a9
JM
1159#ifdef TARGET_ALPHA
1160
1161#define ELF_START_MMAP (0x30000000000ULL)
1162
7a3148a9 1163#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1164#define ELF_ARCH EM_ALPHA
1165
d97ef72e
RH
1166static inline void init_thread(struct target_pt_regs *regs,
1167 struct image_info *infop)
7a3148a9
JM
1168{
1169 regs->pc = infop->entry;
1170 regs->ps = 8;
1171 regs->usp = infop->start_stack;
7a3148a9
JM
1172}
1173
7a3148a9
JM
1174#define ELF_EXEC_PAGESIZE 8192
1175
1176#endif /* TARGET_ALPHA */
1177
a4c075f1
UH
1178#ifdef TARGET_S390X
1179
1180#define ELF_START_MMAP (0x20000000000ULL)
1181
a4c075f1
UH
1182#define ELF_CLASS ELFCLASS64
1183#define ELF_DATA ELFDATA2MSB
1184#define ELF_ARCH EM_S390
1185
1186static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1187{
1188 regs->psw.addr = infop->entry;
1189 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1190 regs->gprs[15] = infop->start_stack;
1191}
1192
1193#endif /* TARGET_S390X */
1194
b16189b2
CG
1195#ifdef TARGET_TILEGX
1196
1197/* 42 bits real used address, a half for user mode */
1198#define ELF_START_MMAP (0x00000020000000000ULL)
1199
1200#define elf_check_arch(x) ((x) == EM_TILEGX)
1201
1202#define ELF_CLASS ELFCLASS64
1203#define ELF_DATA ELFDATA2LSB
1204#define ELF_ARCH EM_TILEGX
1205
1206static inline void init_thread(struct target_pt_regs *regs,
1207 struct image_info *infop)
1208{
1209 regs->pc = infop->entry;
1210 regs->sp = infop->start_stack;
1211
1212}
1213
1214#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1215
1216#endif /* TARGET_TILEGX */
1217
15338fd7
FB
1218#ifndef ELF_PLATFORM
1219#define ELF_PLATFORM (NULL)
1220#endif
1221
75be901c
PC
1222#ifndef ELF_MACHINE
1223#define ELF_MACHINE ELF_ARCH
1224#endif
1225
d276a604
PC
1226#ifndef elf_check_arch
1227#define elf_check_arch(x) ((x) == ELF_ARCH)
1228#endif
1229
15338fd7
FB
1230#ifndef ELF_HWCAP
1231#define ELF_HWCAP 0
1232#endif
1233
7c4ee5bc
RH
1234#ifndef STACK_GROWS_DOWN
1235#define STACK_GROWS_DOWN 1
1236#endif
1237
1238#ifndef STACK_ALIGNMENT
1239#define STACK_ALIGNMENT 16
1240#endif
1241
992f48a0 1242#ifdef TARGET_ABI32
cb33da57 1243#undef ELF_CLASS
992f48a0 1244#define ELF_CLASS ELFCLASS32
cb33da57
BS
1245#undef bswaptls
1246#define bswaptls(ptr) bswap32s(ptr)
1247#endif
1248
31e31b8a 1249#include "elf.h"
09bfb054 1250
09bfb054
FB
1251struct exec
1252{
d97ef72e
RH
1253 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1254 unsigned int a_text; /* length of text, in bytes */
1255 unsigned int a_data; /* length of data, in bytes */
1256 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1257 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1258 unsigned int a_entry; /* start address */
1259 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1260 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1261};
1262
1263
1264#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1265#define OMAGIC 0407
1266#define NMAGIC 0410
1267#define ZMAGIC 0413
1268#define QMAGIC 0314
1269
31e31b8a 1270/* Necessary parameters */
54936004 1271#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1272#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1273 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1274#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1275
ad1c7e0f 1276#define DLINFO_ITEMS 14
31e31b8a 1277
09bfb054
FB
1278static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1279{
d97ef72e 1280 memcpy(to, from, n);
09bfb054 1281}
d691f669 1282
31e31b8a 1283#ifdef BSWAP_NEEDED
92a31b1f 1284static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1285{
d97ef72e
RH
1286 bswap16s(&ehdr->e_type); /* Object file type */
1287 bswap16s(&ehdr->e_machine); /* Architecture */
1288 bswap32s(&ehdr->e_version); /* Object file version */
1289 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1290 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1291 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1292 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1293 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1294 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1295 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1296 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1297 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1298 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1299}
1300
991f8f0c 1301static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1302{
991f8f0c
RH
1303 int i;
1304 for (i = 0; i < phnum; ++i, ++phdr) {
1305 bswap32s(&phdr->p_type); /* Segment type */
1306 bswap32s(&phdr->p_flags); /* Segment flags */
1307 bswaptls(&phdr->p_offset); /* Segment file offset */
1308 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1309 bswaptls(&phdr->p_paddr); /* Segment physical address */
1310 bswaptls(&phdr->p_filesz); /* Segment size in file */
1311 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1312 bswaptls(&phdr->p_align); /* Segment alignment */
1313 }
31e31b8a 1314}
689f936f 1315
991f8f0c 1316static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1317{
991f8f0c
RH
1318 int i;
1319 for (i = 0; i < shnum; ++i, ++shdr) {
1320 bswap32s(&shdr->sh_name);
1321 bswap32s(&shdr->sh_type);
1322 bswaptls(&shdr->sh_flags);
1323 bswaptls(&shdr->sh_addr);
1324 bswaptls(&shdr->sh_offset);
1325 bswaptls(&shdr->sh_size);
1326 bswap32s(&shdr->sh_link);
1327 bswap32s(&shdr->sh_info);
1328 bswaptls(&shdr->sh_addralign);
1329 bswaptls(&shdr->sh_entsize);
1330 }
689f936f
FB
1331}
1332
7a3148a9 1333static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1334{
1335 bswap32s(&sym->st_name);
7a3148a9
JM
1336 bswaptls(&sym->st_value);
1337 bswaptls(&sym->st_size);
689f936f
FB
1338 bswap16s(&sym->st_shndx);
1339}
991f8f0c
RH
1340#else
1341static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1342static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1343static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1344static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1345#endif
1346
edf8e2af 1347#ifdef USE_ELF_CORE_DUMP
9349b4f9 1348static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1349#endif /* USE_ELF_CORE_DUMP */
682674b8 1350static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1351
9058abdd
RH
1352/* Verify the portions of EHDR within E_IDENT for the target.
1353 This can be performed before bswapping the entire header. */
1354static bool elf_check_ident(struct elfhdr *ehdr)
1355{
1356 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1357 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1358 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1359 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1360 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1361 && ehdr->e_ident[EI_DATA] == ELF_DATA
1362 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1363}
1364
1365/* Verify the portions of EHDR outside of E_IDENT for the target.
1366 This has to wait until after bswapping the header. */
1367static bool elf_check_ehdr(struct elfhdr *ehdr)
1368{
1369 return (elf_check_arch(ehdr->e_machine)
1370 && ehdr->e_ehsize == sizeof(struct elfhdr)
1371 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1372 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1373}
1374
31e31b8a 1375/*
e5fe0c52 1376 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1377 * memory to free pages in kernel mem. These are in a format ready
1378 * to be put directly into the top of new user memory.
1379 *
1380 */
59baae9a
SB
1381static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1382 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1383{
59baae9a 1384 char *tmp;
7c4ee5bc 1385 int len, i;
59baae9a 1386 abi_ulong top = p;
31e31b8a
FB
1387
1388 if (!p) {
d97ef72e 1389 return 0; /* bullet-proofing */
31e31b8a 1390 }
59baae9a 1391
7c4ee5bc
RH
1392 if (STACK_GROWS_DOWN) {
1393 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1394 for (i = argc - 1; i >= 0; --i) {
1395 tmp = argv[i];
1396 if (!tmp) {
1397 fprintf(stderr, "VFS: argc is wrong");
1398 exit(-1);
1399 }
1400 len = strlen(tmp) + 1;
1401 tmp += len;
59baae9a 1402
7c4ee5bc
RH
1403 if (len > (p - stack_limit)) {
1404 return 0;
1405 }
1406 while (len) {
1407 int bytes_to_copy = (len > offset) ? offset : len;
1408 tmp -= bytes_to_copy;
1409 p -= bytes_to_copy;
1410 offset -= bytes_to_copy;
1411 len -= bytes_to_copy;
1412
1413 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1414
1415 if (offset == 0) {
1416 memcpy_to_target(p, scratch, top - p);
1417 top = p;
1418 offset = TARGET_PAGE_SIZE;
1419 }
1420 }
d97ef72e 1421 }
7c4ee5bc
RH
1422 if (p != top) {
1423 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1424 }
7c4ee5bc
RH
1425 } else {
1426 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1427 for (i = 0; i < argc; ++i) {
1428 tmp = argv[i];
1429 if (!tmp) {
1430 fprintf(stderr, "VFS: argc is wrong");
1431 exit(-1);
1432 }
1433 len = strlen(tmp) + 1;
1434 if (len > (stack_limit - p)) {
1435 return 0;
1436 }
1437 while (len) {
1438 int bytes_to_copy = (len > remaining) ? remaining : len;
1439
1440 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1441
1442 tmp += bytes_to_copy;
1443 remaining -= bytes_to_copy;
1444 p += bytes_to_copy;
1445 len -= bytes_to_copy;
1446
1447 if (remaining == 0) {
1448 memcpy_to_target(top, scratch, p - top);
1449 top = p;
1450 remaining = TARGET_PAGE_SIZE;
1451 }
d97ef72e
RH
1452 }
1453 }
7c4ee5bc
RH
1454 if (p != top) {
1455 memcpy_to_target(top, scratch, p - top);
1456 }
59baae9a
SB
1457 }
1458
31e31b8a
FB
1459 return p;
1460}
1461
59baae9a
SB
1462/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1463 * argument/environment space. Newer kernels (>2.6.33) allow more,
1464 * dependent on stack size, but guarantee at least 32 pages for
1465 * backwards compatibility.
1466 */
1467#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1468
1469static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1470 struct image_info *info)
53a5960a 1471{
59baae9a 1472 abi_ulong size, error, guard;
31e31b8a 1473
703e0e89 1474 size = guest_stack_size;
59baae9a
SB
1475 if (size < STACK_LOWER_LIMIT) {
1476 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1477 }
1478 guard = TARGET_PAGE_SIZE;
1479 if (guard < qemu_real_host_page_size) {
1480 guard = qemu_real_host_page_size;
1481 }
1482
1483 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1484 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1485 if (error == -1) {
60dcbcb5 1486 perror("mmap stack");
09bfb054
FB
1487 exit(-1);
1488 }
31e31b8a 1489
60dcbcb5 1490 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1491 if (STACK_GROWS_DOWN) {
1492 target_mprotect(error, guard, PROT_NONE);
1493 info->stack_limit = error + guard;
1494 return info->stack_limit + size - sizeof(void *);
1495 } else {
1496 target_mprotect(error + size, guard, PROT_NONE);
1497 info->stack_limit = error + size;
1498 return error;
1499 }
31e31b8a
FB
1500}
1501
cf129f3a
RH
1502/* Map and zero the bss. We need to explicitly zero any fractional pages
1503 after the data section (i.e. bss). */
1504static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1505{
cf129f3a
RH
1506 uintptr_t host_start, host_map_start, host_end;
1507
1508 last_bss = TARGET_PAGE_ALIGN(last_bss);
1509
1510 /* ??? There is confusion between qemu_real_host_page_size and
1511 qemu_host_page_size here and elsewhere in target_mmap, which
1512 may lead to the end of the data section mapping from the file
1513 not being mapped. At least there was an explicit test and
1514 comment for that here, suggesting that "the file size must
1515 be known". The comment probably pre-dates the introduction
1516 of the fstat system call in target_mmap which does in fact
1517 find out the size. What isn't clear is if the workaround
1518 here is still actually needed. For now, continue with it,
1519 but merge it with the "normal" mmap that would allocate the bss. */
1520
1521 host_start = (uintptr_t) g2h(elf_bss);
1522 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1523 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1524
1525 if (host_map_start < host_end) {
1526 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1527 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1528 if (p == MAP_FAILED) {
1529 perror("cannot mmap brk");
1530 exit(-1);
853d6f7a 1531 }
f46e9a0b 1532 }
853d6f7a 1533
f46e9a0b
TM
1534 /* Ensure that the bss page(s) are valid */
1535 if ((page_get_flags(last_bss-1) & prot) != prot) {
1536 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1537 }
31e31b8a 1538
cf129f3a
RH
1539 if (host_start < host_map_start) {
1540 memset((void *)host_start, 0, host_map_start - host_start);
1541 }
1542}
53a5960a 1543
1af02e83
MF
1544#ifdef CONFIG_USE_FDPIC
1545static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1546{
1547 uint16_t n;
1548 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1549
1550 /* elf32_fdpic_loadseg */
1551 n = info->nsegs;
1552 while (n--) {
1553 sp -= 12;
1554 put_user_u32(loadsegs[n].addr, sp+0);
1555 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1556 put_user_u32(loadsegs[n].p_memsz, sp+8);
1557 }
1558
1559 /* elf32_fdpic_loadmap */
1560 sp -= 4;
1561 put_user_u16(0, sp+0); /* version */
1562 put_user_u16(info->nsegs, sp+2); /* nsegs */
1563
1564 info->personality = PER_LINUX_FDPIC;
1565 info->loadmap_addr = sp;
1566
1567 return sp;
1568}
1569#endif
1570
992f48a0 1571static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1572 struct elfhdr *exec,
1573 struct image_info *info,
1574 struct image_info *interp_info)
31e31b8a 1575{
d97ef72e 1576 abi_ulong sp;
7c4ee5bc 1577 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1578 int size;
14322bad
LA
1579 int i;
1580 abi_ulong u_rand_bytes;
1581 uint8_t k_rand_bytes[16];
d97ef72e
RH
1582 abi_ulong u_platform;
1583 const char *k_platform;
1584 const int n = sizeof(elf_addr_t);
1585
1586 sp = p;
1af02e83
MF
1587
1588#ifdef CONFIG_USE_FDPIC
1589 /* Needs to be before we load the env/argc/... */
1590 if (elf_is_fdpic(exec)) {
1591 /* Need 4 byte alignment for these structs */
1592 sp &= ~3;
1593 sp = loader_build_fdpic_loadmap(info, sp);
1594 info->other_info = interp_info;
1595 if (interp_info) {
1596 interp_info->other_info = info;
1597 sp = loader_build_fdpic_loadmap(interp_info, sp);
1598 }
1599 }
1600#endif
1601
d97ef72e
RH
1602 u_platform = 0;
1603 k_platform = ELF_PLATFORM;
1604 if (k_platform) {
1605 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1606 if (STACK_GROWS_DOWN) {
1607 sp -= (len + n - 1) & ~(n - 1);
1608 u_platform = sp;
1609 /* FIXME - check return value of memcpy_to_target() for failure */
1610 memcpy_to_target(sp, k_platform, len);
1611 } else {
1612 memcpy_to_target(sp, k_platform, len);
1613 u_platform = sp;
1614 sp += len + 1;
1615 }
1616 }
1617
1618 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1619 * the argv and envp pointers.
1620 */
1621 if (STACK_GROWS_DOWN) {
1622 sp = QEMU_ALIGN_DOWN(sp, 16);
1623 } else {
1624 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1625 }
14322bad
LA
1626
1627 /*
1628 * Generate 16 random bytes for userspace PRNG seeding (not
1629 * cryptically secure but it's not the aim of QEMU).
1630 */
14322bad
LA
1631 for (i = 0; i < 16; i++) {
1632 k_rand_bytes[i] = rand();
1633 }
7c4ee5bc
RH
1634 if (STACK_GROWS_DOWN) {
1635 sp -= 16;
1636 u_rand_bytes = sp;
1637 /* FIXME - check return value of memcpy_to_target() for failure */
1638 memcpy_to_target(sp, k_rand_bytes, 16);
1639 } else {
1640 memcpy_to_target(sp, k_rand_bytes, 16);
1641 u_rand_bytes = sp;
1642 sp += 16;
1643 }
14322bad 1644
d97ef72e
RH
1645 size = (DLINFO_ITEMS + 1) * 2;
1646 if (k_platform)
1647 size += 2;
f5155289 1648#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1649 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1650#endif
1651#ifdef ELF_HWCAP2
1652 size += 2;
f5155289 1653#endif
d97ef72e 1654 size += envc + argc + 2;
b9329d4b 1655 size += 1; /* argc itself */
d97ef72e 1656 size *= n;
7c4ee5bc
RH
1657
1658 /* Allocate space and finalize stack alignment for entry now. */
1659 if (STACK_GROWS_DOWN) {
1660 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1661 sp = u_argc;
1662 } else {
1663 u_argc = sp;
1664 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1665 }
1666
1667 u_argv = u_argc + n;
1668 u_envp = u_argv + (argc + 1) * n;
1669 u_auxv = u_envp + (envc + 1) * n;
1670 info->saved_auxv = u_auxv;
1671 info->arg_start = u_argv;
1672 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1673
1674 /* This is correct because Linux defines
1675 * elf_addr_t as Elf32_Off / Elf64_Off
1676 */
1677#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1678 put_user_ual(id, u_auxv); u_auxv += n; \
1679 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1680 } while(0)
1681
d97ef72e 1682 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1683 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1684 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1685 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1686 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1687 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1688 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1689 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1690 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1691 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1692 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1693 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1694 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1695 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1696 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1697
ad6919dc
PM
1698#ifdef ELF_HWCAP2
1699 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1700#endif
1701
7c4ee5bc 1702 if (u_platform) {
d97ef72e 1703 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1704 }
f5155289 1705#ifdef ARCH_DLINFO
d97ef72e
RH
1706 /*
1707 * ARCH_DLINFO must come last so platform specific code can enforce
1708 * special alignment requirements on the AUXV if necessary (eg. PPC).
1709 */
1710 ARCH_DLINFO;
f5155289 1711#endif
7c4ee5bc 1712 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1713#undef NEW_AUX_ENT
1714
7c4ee5bc
RH
1715 info->auxv_len = u_argv - info->saved_auxv;
1716
1717 put_user_ual(argc, u_argc);
1718
1719 p = info->arg_strings;
1720 for (i = 0; i < argc; ++i) {
1721 put_user_ual(p, u_argv);
1722 u_argv += n;
1723 p += target_strlen(p) + 1;
1724 }
1725 put_user_ual(0, u_argv);
1726
1727 p = info->env_strings;
1728 for (i = 0; i < envc; ++i) {
1729 put_user_ual(p, u_envp);
1730 u_envp += n;
1731 p += target_strlen(p) + 1;
1732 }
1733 put_user_ual(0, u_envp);
edf8e2af 1734
d97ef72e 1735 return sp;
31e31b8a
FB
1736}
1737
806d1021 1738#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1739/* If the guest doesn't have a validation function just agree */
806d1021
MI
1740static int validate_guest_space(unsigned long guest_base,
1741 unsigned long guest_size)
97cc7560
DDAG
1742{
1743 return 1;
1744}
1745#endif
1746
dce10401
MI
1747unsigned long init_guest_space(unsigned long host_start,
1748 unsigned long host_size,
1749 unsigned long guest_start,
1750 bool fixed)
1751{
1752 unsigned long current_start, real_start;
1753 int flags;
1754
1755 assert(host_start || host_size);
1756
1757 /* If just a starting address is given, then just verify that
1758 * address. */
1759 if (host_start && !host_size) {
806d1021 1760 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1761 return host_start;
1762 } else {
1763 return (unsigned long)-1;
1764 }
1765 }
1766
1767 /* Setup the initial flags and start address. */
1768 current_start = host_start & qemu_host_page_mask;
1769 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1770 if (fixed) {
1771 flags |= MAP_FIXED;
1772 }
1773
1774 /* Otherwise, a non-zero size region of memory needs to be mapped
1775 * and validated. */
1776 while (1) {
806d1021
MI
1777 unsigned long real_size = host_size;
1778
dce10401
MI
1779 /* Do not use mmap_find_vma here because that is limited to the
1780 * guest address space. We are going to make the
1781 * guest address space fit whatever we're given.
1782 */
1783 real_start = (unsigned long)
1784 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1785 if (real_start == (unsigned long)-1) {
1786 return (unsigned long)-1;
1787 }
1788
806d1021
MI
1789 /* Ensure the address is properly aligned. */
1790 if (real_start & ~qemu_host_page_mask) {
1791 munmap((void *)real_start, host_size);
1792 real_size = host_size + qemu_host_page_size;
1793 real_start = (unsigned long)
1794 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1795 if (real_start == (unsigned long)-1) {
1796 return (unsigned long)-1;
1797 }
1798 real_start = HOST_PAGE_ALIGN(real_start);
1799 }
1800
1801 /* Check to see if the address is valid. */
1802 if (!host_start || real_start == current_start) {
1803 int valid = validate_guest_space(real_start - guest_start,
1804 real_size);
1805 if (valid == 1) {
1806 break;
1807 } else if (valid == -1) {
1808 return (unsigned long)-1;
1809 }
1810 /* valid == 0, so try again. */
dce10401
MI
1811 }
1812
1813 /* That address didn't work. Unmap and try a different one.
1814 * The address the host picked because is typically right at
1815 * the top of the host address space and leaves the guest with
1816 * no usable address space. Resort to a linear search. We
1817 * already compensated for mmap_min_addr, so this should not
1818 * happen often. Probably means we got unlucky and host
1819 * address space randomization put a shared library somewhere
1820 * inconvenient.
1821 */
1822 munmap((void *)real_start, host_size);
1823 current_start += qemu_host_page_size;
1824 if (host_start == current_start) {
1825 /* Theoretically possible if host doesn't have any suitably
1826 * aligned areas. Normally the first mmap will fail.
1827 */
1828 return (unsigned long)-1;
1829 }
1830 }
1831
13829020 1832 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 1833
dce10401
MI
1834 return real_start;
1835}
1836
f3ed1f5d
PM
1837static void probe_guest_base(const char *image_name,
1838 abi_ulong loaddr, abi_ulong hiaddr)
1839{
1840 /* Probe for a suitable guest base address, if the user has not set
1841 * it explicitly, and set guest_base appropriately.
1842 * In case of error we will print a suitable message and exit.
1843 */
f3ed1f5d
PM
1844 const char *errmsg;
1845 if (!have_guest_base && !reserved_va) {
1846 unsigned long host_start, real_start, host_size;
1847
1848 /* Round addresses to page boundaries. */
1849 loaddr &= qemu_host_page_mask;
1850 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1851
1852 if (loaddr < mmap_min_addr) {
1853 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1854 } else {
1855 host_start = loaddr;
1856 if (host_start != loaddr) {
1857 errmsg = "Address overflow loading ELF binary";
1858 goto exit_errmsg;
1859 }
1860 }
1861 host_size = hiaddr - loaddr;
dce10401
MI
1862
1863 /* Setup the initial guest memory space with ranges gleaned from
1864 * the ELF image that is being loaded.
1865 */
1866 real_start = init_guest_space(host_start, host_size, loaddr, false);
1867 if (real_start == (unsigned long)-1) {
1868 errmsg = "Unable to find space for application";
1869 goto exit_errmsg;
f3ed1f5d 1870 }
dce10401
MI
1871 guest_base = real_start - loaddr;
1872
13829020
PB
1873 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1874 TARGET_ABI_FMT_lx " to 0x%lx\n",
1875 loaddr, real_start);
f3ed1f5d
PM
1876 }
1877 return;
1878
f3ed1f5d
PM
1879exit_errmsg:
1880 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1881 exit(-1);
f3ed1f5d
PM
1882}
1883
1884
8e62a717 1885/* Load an ELF image into the address space.
31e31b8a 1886
8e62a717
RH
1887 IMAGE_NAME is the filename of the image, to use in error messages.
1888 IMAGE_FD is the open file descriptor for the image.
1889
1890 BPRM_BUF is a copy of the beginning of the file; this of course
1891 contains the elf file header at offset 0. It is assumed that this
1892 buffer is sufficiently aligned to present no problems to the host
1893 in accessing data at aligned offsets within the buffer.
1894
1895 On return: INFO values will be filled in, as necessary or available. */
1896
1897static void load_elf_image(const char *image_name, int image_fd,
bf858897 1898 struct image_info *info, char **pinterp_name,
8e62a717 1899 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1900{
8e62a717
RH
1901 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1902 struct elf_phdr *phdr;
1903 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1904 int i, retval;
1905 const char *errmsg;
5fafdf24 1906
8e62a717
RH
1907 /* First of all, some simple consistency checks */
1908 errmsg = "Invalid ELF image for this architecture";
1909 if (!elf_check_ident(ehdr)) {
1910 goto exit_errmsg;
1911 }
1912 bswap_ehdr(ehdr);
1913 if (!elf_check_ehdr(ehdr)) {
1914 goto exit_errmsg;
d97ef72e 1915 }
5fafdf24 1916
8e62a717
RH
1917 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1918 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1919 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1920 } else {
8e62a717
RH
1921 phdr = (struct elf_phdr *) alloca(i);
1922 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1923 if (retval != i) {
8e62a717 1924 goto exit_read;
9955ffac 1925 }
d97ef72e 1926 }
8e62a717 1927 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1928
1af02e83
MF
1929#ifdef CONFIG_USE_FDPIC
1930 info->nsegs = 0;
1931 info->pt_dynamic_addr = 0;
1932#endif
1933
98c1076c
AB
1934 mmap_lock();
1935
682674b8
RH
1936 /* Find the maximum size of the image and allocate an appropriate
1937 amount of memory to handle that. */
1938 loaddr = -1, hiaddr = 0;
8e62a717
RH
1939 for (i = 0; i < ehdr->e_phnum; ++i) {
1940 if (phdr[i].p_type == PT_LOAD) {
a93934fe 1941 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
1942 if (a < loaddr) {
1943 loaddr = a;
1944 }
ccf661f8 1945 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
1946 if (a > hiaddr) {
1947 hiaddr = a;
1948 }
1af02e83
MF
1949#ifdef CONFIG_USE_FDPIC
1950 ++info->nsegs;
1951#endif
682674b8
RH
1952 }
1953 }
1954
1955 load_addr = loaddr;
8e62a717 1956 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1957 /* The image indicates that it can be loaded anywhere. Find a
1958 location that can hold the memory space required. If the
1959 image is pre-linked, LOADDR will be non-zero. Since we do
1960 not supply MAP_FIXED here we'll use that address if and
1961 only if it remains available. */
1962 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1963 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1964 -1, 0);
1965 if (load_addr == -1) {
8e62a717 1966 goto exit_perror;
d97ef72e 1967 }
bf858897
RH
1968 } else if (pinterp_name != NULL) {
1969 /* This is the main executable. Make sure that the low
1970 address does not conflict with MMAP_MIN_ADDR or the
1971 QEMU application itself. */
f3ed1f5d 1972 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1973 }
682674b8 1974 load_bias = load_addr - loaddr;
d97ef72e 1975
1af02e83
MF
1976#ifdef CONFIG_USE_FDPIC
1977 {
1978 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1979 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1980
1981 for (i = 0; i < ehdr->e_phnum; ++i) {
1982 switch (phdr[i].p_type) {
1983 case PT_DYNAMIC:
1984 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1985 break;
1986 case PT_LOAD:
1987 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1988 loadsegs->p_vaddr = phdr[i].p_vaddr;
1989 loadsegs->p_memsz = phdr[i].p_memsz;
1990 ++loadsegs;
1991 break;
1992 }
1993 }
1994 }
1995#endif
1996
8e62a717
RH
1997 info->load_bias = load_bias;
1998 info->load_addr = load_addr;
1999 info->entry = ehdr->e_entry + load_bias;
2000 info->start_code = -1;
2001 info->end_code = 0;
2002 info->start_data = -1;
2003 info->end_data = 0;
2004 info->brk = 0;
d8fd2954 2005 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2006
2007 for (i = 0; i < ehdr->e_phnum; i++) {
2008 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2009 if (eppnt->p_type == PT_LOAD) {
682674b8 2010 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 2011 int elf_prot = 0;
d97ef72e
RH
2012
2013 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2014 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2015 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2016
682674b8
RH
2017 vaddr = load_bias + eppnt->p_vaddr;
2018 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2019 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2020
2021 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2022 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2023 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2024 if (error == -1) {
8e62a717 2025 goto exit_perror;
09bfb054 2026 }
09bfb054 2027
682674b8
RH
2028 vaddr_ef = vaddr + eppnt->p_filesz;
2029 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2030
cf129f3a 2031 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2032 if (vaddr_ef < vaddr_em) {
2033 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2034 }
8e62a717
RH
2035
2036 /* Find the full program boundaries. */
2037 if (elf_prot & PROT_EXEC) {
2038 if (vaddr < info->start_code) {
2039 info->start_code = vaddr;
2040 }
2041 if (vaddr_ef > info->end_code) {
2042 info->end_code = vaddr_ef;
2043 }
2044 }
2045 if (elf_prot & PROT_WRITE) {
2046 if (vaddr < info->start_data) {
2047 info->start_data = vaddr;
2048 }
2049 if (vaddr_ef > info->end_data) {
2050 info->end_data = vaddr_ef;
2051 }
2052 if (vaddr_em > info->brk) {
2053 info->brk = vaddr_em;
2054 }
2055 }
bf858897
RH
2056 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2057 char *interp_name;
2058
2059 if (*pinterp_name) {
2060 errmsg = "Multiple PT_INTERP entries";
2061 goto exit_errmsg;
2062 }
2063 interp_name = malloc(eppnt->p_filesz);
2064 if (!interp_name) {
2065 goto exit_perror;
2066 }
2067
2068 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2069 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2070 eppnt->p_filesz);
2071 } else {
2072 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2073 eppnt->p_offset);
2074 if (retval != eppnt->p_filesz) {
2075 goto exit_perror;
2076 }
2077 }
2078 if (interp_name[eppnt->p_filesz - 1] != 0) {
2079 errmsg = "Invalid PT_INTERP entry";
2080 goto exit_errmsg;
2081 }
2082 *pinterp_name = interp_name;
d97ef72e 2083 }
682674b8 2084 }
5fafdf24 2085
8e62a717
RH
2086 if (info->end_data == 0) {
2087 info->start_data = info->end_code;
2088 info->end_data = info->end_code;
2089 info->brk = info->end_code;
2090 }
2091
682674b8 2092 if (qemu_log_enabled()) {
8e62a717 2093 load_symbols(ehdr, image_fd, load_bias);
682674b8 2094 }
31e31b8a 2095
98c1076c
AB
2096 mmap_unlock();
2097
8e62a717
RH
2098 close(image_fd);
2099 return;
2100
2101 exit_read:
2102 if (retval >= 0) {
2103 errmsg = "Incomplete read of file header";
2104 goto exit_errmsg;
2105 }
2106 exit_perror:
2107 errmsg = strerror(errno);
2108 exit_errmsg:
2109 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2110 exit(-1);
2111}
2112
2113static void load_elf_interp(const char *filename, struct image_info *info,
2114 char bprm_buf[BPRM_BUF_SIZE])
2115{
2116 int fd, retval;
2117
2118 fd = open(path(filename), O_RDONLY);
2119 if (fd < 0) {
2120 goto exit_perror;
2121 }
31e31b8a 2122
8e62a717
RH
2123 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2124 if (retval < 0) {
2125 goto exit_perror;
2126 }
2127 if (retval < BPRM_BUF_SIZE) {
2128 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2129 }
2130
bf858897 2131 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2132 return;
2133
2134 exit_perror:
2135 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2136 exit(-1);
31e31b8a
FB
2137}
2138
49918a75
PB
2139static int symfind(const void *s0, const void *s1)
2140{
c7c530cd 2141 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2142 struct elf_sym *sym = (struct elf_sym *)s1;
2143 int result = 0;
c7c530cd 2144 if (addr < sym->st_value) {
49918a75 2145 result = -1;
c7c530cd 2146 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2147 result = 1;
2148 }
2149 return result;
2150}
2151
2152static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2153{
2154#if ELF_CLASS == ELFCLASS32
2155 struct elf_sym *syms = s->disas_symtab.elf32;
2156#else
2157 struct elf_sym *syms = s->disas_symtab.elf64;
2158#endif
2159
2160 // binary search
49918a75
PB
2161 struct elf_sym *sym;
2162
c7c530cd 2163 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2164 if (sym != NULL) {
49918a75
PB
2165 return s->disas_strtab + sym->st_name;
2166 }
2167
2168 return "";
2169}
2170
2171/* FIXME: This should use elf_ops.h */
2172static int symcmp(const void *s0, const void *s1)
2173{
2174 struct elf_sym *sym0 = (struct elf_sym *)s0;
2175 struct elf_sym *sym1 = (struct elf_sym *)s1;
2176 return (sym0->st_value < sym1->st_value)
2177 ? -1
2178 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2179}
2180
689f936f 2181/* Best attempt to load symbols from this ELF object. */
682674b8 2182static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2183{
682674b8
RH
2184 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2185 struct elf_shdr *shdr;
b9475279
CV
2186 char *strings = NULL;
2187 struct syminfo *s = NULL;
2188 struct elf_sym *new_syms, *syms = NULL;
689f936f 2189
682674b8
RH
2190 shnum = hdr->e_shnum;
2191 i = shnum * sizeof(struct elf_shdr);
2192 shdr = (struct elf_shdr *)alloca(i);
2193 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2194 return;
2195 }
2196
2197 bswap_shdr(shdr, shnum);
2198 for (i = 0; i < shnum; ++i) {
2199 if (shdr[i].sh_type == SHT_SYMTAB) {
2200 sym_idx = i;
2201 str_idx = shdr[i].sh_link;
49918a75
PB
2202 goto found;
2203 }
689f936f 2204 }
682674b8
RH
2205
2206 /* There will be no symbol table if the file was stripped. */
2207 return;
689f936f
FB
2208
2209 found:
682674b8 2210 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2211 s = g_try_new(struct syminfo, 1);
682674b8 2212 if (!s) {
b9475279 2213 goto give_up;
682674b8 2214 }
5fafdf24 2215
682674b8 2216 i = shdr[str_idx].sh_size;
0ef9ea29 2217 s->disas_strtab = strings = g_try_malloc(i);
682674b8 2218 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 2219 goto give_up;
682674b8 2220 }
49918a75 2221
682674b8 2222 i = shdr[sym_idx].sh_size;
0ef9ea29 2223 syms = g_try_malloc(i);
682674b8 2224 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 2225 goto give_up;
682674b8 2226 }
31e31b8a 2227
682674b8
RH
2228 nsyms = i / sizeof(struct elf_sym);
2229 for (i = 0; i < nsyms; ) {
49918a75 2230 bswap_sym(syms + i);
682674b8
RH
2231 /* Throw away entries which we do not need. */
2232 if (syms[i].st_shndx == SHN_UNDEF
2233 || syms[i].st_shndx >= SHN_LORESERVE
2234 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2235 if (i < --nsyms) {
49918a75
PB
2236 syms[i] = syms[nsyms];
2237 }
682674b8 2238 } else {
49918a75 2239#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2240 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2241 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2242#endif
682674b8
RH
2243 syms[i].st_value += load_bias;
2244 i++;
2245 }
0774bed1 2246 }
49918a75 2247
b9475279
CV
2248 /* No "useful" symbol. */
2249 if (nsyms == 0) {
2250 goto give_up;
2251 }
2252
5d5c9930
RH
2253 /* Attempt to free the storage associated with the local symbols
2254 that we threw away. Whether or not this has any effect on the
2255 memory allocation depends on the malloc implementation and how
2256 many symbols we managed to discard. */
0ef9ea29 2257 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2258 if (new_syms == NULL) {
b9475279 2259 goto give_up;
5d5c9930 2260 }
8d79de6e 2261 syms = new_syms;
5d5c9930 2262
49918a75 2263 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2264
49918a75
PB
2265 s->disas_num_syms = nsyms;
2266#if ELF_CLASS == ELFCLASS32
2267 s->disas_symtab.elf32 = syms;
49918a75
PB
2268#else
2269 s->disas_symtab.elf64 = syms;
49918a75 2270#endif
682674b8 2271 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2272 s->next = syminfos;
2273 syminfos = s;
b9475279
CV
2274
2275 return;
2276
2277give_up:
0ef9ea29
PM
2278 g_free(s);
2279 g_free(strings);
2280 g_free(syms);
689f936f 2281}
31e31b8a 2282
f0116c54 2283int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2284{
8e62a717 2285 struct image_info interp_info;
31e31b8a 2286 struct elfhdr elf_ex;
8e62a717 2287 char *elf_interpreter = NULL;
59baae9a 2288 char *scratch;
31e31b8a 2289
bf858897 2290 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2291
2292 load_elf_image(bprm->filename, bprm->fd, info,
2293 &elf_interpreter, bprm->buf);
31e31b8a 2294
bf858897
RH
2295 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2296 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2297 when we load the interpreter. */
2298 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2299
59baae9a
SB
2300 /* Do this so that we can load the interpreter, if need be. We will
2301 change some of these later */
2302 bprm->p = setup_arg_pages(bprm, info);
2303
2304 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2305 if (STACK_GROWS_DOWN) {
2306 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2307 bprm->p, info->stack_limit);
2308 info->file_string = bprm->p;
2309 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2310 bprm->p, info->stack_limit);
2311 info->env_strings = bprm->p;
2312 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2313 bprm->p, info->stack_limit);
2314 info->arg_strings = bprm->p;
2315 } else {
2316 info->arg_strings = bprm->p;
2317 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2318 bprm->p, info->stack_limit);
2319 info->env_strings = bprm->p;
2320 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2321 bprm->p, info->stack_limit);
2322 info->file_string = bprm->p;
2323 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2324 bprm->p, info->stack_limit);
2325 }
2326
59baae9a
SB
2327 g_free(scratch);
2328
e5fe0c52 2329 if (!bprm->p) {
bf858897
RH
2330 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2331 exit(-1);
379f6698 2332 }
379f6698 2333
8e62a717
RH
2334 if (elf_interpreter) {
2335 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2336
8e62a717
RH
2337 /* If the program interpreter is one of these two, then assume
2338 an iBCS2 image. Otherwise assume a native linux image. */
2339
2340 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2341 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2342 info->personality = PER_SVR4;
31e31b8a 2343
8e62a717
RH
2344 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2345 and some applications "depend" upon this behavior. Since
2346 we do not have the power to recompile these, we emulate
2347 the SVr4 behavior. Sigh. */
2348 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2349 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2350 }
31e31b8a
FB
2351 }
2352
8e62a717
RH
2353 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2354 info, (elf_interpreter ? &interp_info : NULL));
2355 info->start_stack = bprm->p;
2356
2357 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2358 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2359 point as a function descriptor. Do this after creating elf tables
2360 so that we copy the original program entry point into the AUXV. */
2361 if (elf_interpreter) {
8e78064e 2362 info->load_bias = interp_info.load_bias;
8e62a717 2363 info->entry = interp_info.entry;
bf858897 2364 free(elf_interpreter);
8e62a717 2365 }
31e31b8a 2366
edf8e2af
MW
2367#ifdef USE_ELF_CORE_DUMP
2368 bprm->core_dump = &elf_core_dump;
2369#endif
2370
31e31b8a
FB
2371 return 0;
2372}
2373
edf8e2af 2374#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2375/*
2376 * Definitions to generate Intel SVR4-like core files.
a2547a13 2377 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2378 * tacked on the front to prevent clashes with linux definitions,
2379 * and the typedef forms have been avoided. This is mostly like
2380 * the SVR4 structure, but more Linuxy, with things that Linux does
2381 * not support and which gdb doesn't really use excluded.
2382 *
2383 * Fields we don't dump (their contents is zero) in linux-user qemu
2384 * are marked with XXX.
2385 *
2386 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2387 *
2388 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2389 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2390 * the target resides):
2391 *
2392 * #define USE_ELF_CORE_DUMP
2393 *
2394 * Next you define type of register set used for dumping. ELF specification
2395 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2396 *
c227f099 2397 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2398 * #define ELF_NREG <number of registers>
c227f099 2399 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2400 *
edf8e2af
MW
2401 * Last step is to implement target specific function that copies registers
2402 * from given cpu into just specified register set. Prototype is:
2403 *
c227f099 2404 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2405 * const CPUArchState *env);
edf8e2af
MW
2406 *
2407 * Parameters:
2408 * regs - copy register values into here (allocated and zeroed by caller)
2409 * env - copy registers from here
2410 *
2411 * Example for ARM target is provided in this file.
2412 */
2413
2414/* An ELF note in memory */
2415struct memelfnote {
2416 const char *name;
2417 size_t namesz;
2418 size_t namesz_rounded;
2419 int type;
2420 size_t datasz;
80f5ce75 2421 size_t datasz_rounded;
edf8e2af
MW
2422 void *data;
2423 size_t notesz;
2424};
2425
a2547a13 2426struct target_elf_siginfo {
f8fd4fc4
PB
2427 abi_int si_signo; /* signal number */
2428 abi_int si_code; /* extra code */
2429 abi_int si_errno; /* errno */
edf8e2af
MW
2430};
2431
a2547a13
LD
2432struct target_elf_prstatus {
2433 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2434 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2435 abi_ulong pr_sigpend; /* XXX */
2436 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2437 target_pid_t pr_pid;
2438 target_pid_t pr_ppid;
2439 target_pid_t pr_pgrp;
2440 target_pid_t pr_sid;
edf8e2af
MW
2441 struct target_timeval pr_utime; /* XXX User time */
2442 struct target_timeval pr_stime; /* XXX System time */
2443 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2444 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2445 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2446 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2447};
2448
2449#define ELF_PRARGSZ (80) /* Number of chars for args */
2450
a2547a13 2451struct target_elf_prpsinfo {
edf8e2af
MW
2452 char pr_state; /* numeric process state */
2453 char pr_sname; /* char for pr_state */
2454 char pr_zomb; /* zombie */
2455 char pr_nice; /* nice val */
ca98ac83 2456 abi_ulong pr_flag; /* flags */
c227f099
AL
2457 target_uid_t pr_uid;
2458 target_gid_t pr_gid;
2459 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2460 /* Lots missing */
2461 char pr_fname[16]; /* filename of executable */
2462 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2463};
2464
2465/* Here is the structure in which status of each thread is captured. */
2466struct elf_thread_status {
72cf2d4f 2467 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2468 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2469#if 0
2470 elf_fpregset_t fpu; /* NT_PRFPREG */
2471 struct task_struct *thread;
2472 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2473#endif
2474 struct memelfnote notes[1];
2475 int num_notes;
2476};
2477
2478struct elf_note_info {
2479 struct memelfnote *notes;
a2547a13
LD
2480 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2481 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2482
72cf2d4f 2483 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2484#if 0
2485 /*
2486 * Current version of ELF coredump doesn't support
2487 * dumping fp regs etc.
2488 */
2489 elf_fpregset_t *fpu;
2490 elf_fpxregset_t *xfpu;
2491 int thread_status_size;
2492#endif
2493 int notes_size;
2494 int numnote;
2495};
2496
2497struct vm_area_struct {
1a1c4db9
MI
2498 target_ulong vma_start; /* start vaddr of memory region */
2499 target_ulong vma_end; /* end vaddr of memory region */
2500 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2501 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2502};
2503
2504struct mm_struct {
72cf2d4f 2505 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2506 int mm_count; /* number of mappings */
2507};
2508
2509static struct mm_struct *vma_init(void);
2510static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2511static int vma_add_mapping(struct mm_struct *, target_ulong,
2512 target_ulong, abi_ulong);
edf8e2af
MW
2513static int vma_get_mapping_count(const struct mm_struct *);
2514static struct vm_area_struct *vma_first(const struct mm_struct *);
2515static struct vm_area_struct *vma_next(struct vm_area_struct *);
2516static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2517static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2518 unsigned long flags);
edf8e2af
MW
2519
2520static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2521static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2522 unsigned int, void *);
a2547a13
LD
2523static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2524static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2525static void fill_auxv_note(struct memelfnote *, const TaskState *);
2526static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2527static size_t note_size(const struct memelfnote *);
2528static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2529static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2530static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2531static int core_dump_filename(const TaskState *, char *, size_t);
2532
2533static int dump_write(int, const void *, size_t);
2534static int write_note(struct memelfnote *, int);
2535static int write_note_info(struct elf_note_info *, int);
2536
2537#ifdef BSWAP_NEEDED
a2547a13 2538static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2539{
ca98ac83
PB
2540 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2541 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2542 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2543 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2544 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2545 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2546 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2547 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2548 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2549 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2550 /* cpu times are not filled, so we skip them */
2551 /* regs should be in correct format already */
2552 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2553}
2554
a2547a13 2555static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2556{
ca98ac83 2557 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2558 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2559 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2560 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2561 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2562 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2563 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2564}
991f8f0c
RH
2565
2566static void bswap_note(struct elf_note *en)
2567{
2568 bswap32s(&en->n_namesz);
2569 bswap32s(&en->n_descsz);
2570 bswap32s(&en->n_type);
2571}
2572#else
2573static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2574static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2575static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2576#endif /* BSWAP_NEEDED */
2577
2578/*
2579 * Minimal support for linux memory regions. These are needed
2580 * when we are finding out what memory exactly belongs to
2581 * emulated process. No locks needed here, as long as
2582 * thread that received the signal is stopped.
2583 */
2584
2585static struct mm_struct *vma_init(void)
2586{
2587 struct mm_struct *mm;
2588
7267c094 2589 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2590 return (NULL);
2591
2592 mm->mm_count = 0;
72cf2d4f 2593 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2594
2595 return (mm);
2596}
2597
2598static void vma_delete(struct mm_struct *mm)
2599{
2600 struct vm_area_struct *vma;
2601
2602 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2603 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2604 g_free(vma);
edf8e2af 2605 }
7267c094 2606 g_free(mm);
edf8e2af
MW
2607}
2608
1a1c4db9
MI
2609static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2610 target_ulong end, abi_ulong flags)
edf8e2af
MW
2611{
2612 struct vm_area_struct *vma;
2613
7267c094 2614 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2615 return (-1);
2616
2617 vma->vma_start = start;
2618 vma->vma_end = end;
2619 vma->vma_flags = flags;
2620
72cf2d4f 2621 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2622 mm->mm_count++;
2623
2624 return (0);
2625}
2626
2627static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2628{
72cf2d4f 2629 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2630}
2631
2632static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2633{
72cf2d4f 2634 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2635}
2636
2637static int vma_get_mapping_count(const struct mm_struct *mm)
2638{
2639 return (mm->mm_count);
2640}
2641
2642/*
2643 * Calculate file (dump) size of given memory region.
2644 */
2645static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2646{
2647 /* if we cannot even read the first page, skip it */
2648 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2649 return (0);
2650
2651 /*
2652 * Usually we don't dump executable pages as they contain
2653 * non-writable code that debugger can read directly from
2654 * target library etc. However, thread stacks are marked
2655 * also executable so we read in first page of given region
2656 * and check whether it contains elf header. If there is
2657 * no elf header, we dump it.
2658 */
2659 if (vma->vma_flags & PROT_EXEC) {
2660 char page[TARGET_PAGE_SIZE];
2661
2662 copy_from_user(page, vma->vma_start, sizeof (page));
2663 if ((page[EI_MAG0] == ELFMAG0) &&
2664 (page[EI_MAG1] == ELFMAG1) &&
2665 (page[EI_MAG2] == ELFMAG2) &&
2666 (page[EI_MAG3] == ELFMAG3)) {
2667 /*
2668 * Mappings are possibly from ELF binary. Don't dump
2669 * them.
2670 */
2671 return (0);
2672 }
2673 }
2674
2675 return (vma->vma_end - vma->vma_start);
2676}
2677
1a1c4db9 2678static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2679 unsigned long flags)
edf8e2af
MW
2680{
2681 struct mm_struct *mm = (struct mm_struct *)priv;
2682
edf8e2af
MW
2683 vma_add_mapping(mm, start, end, flags);
2684 return (0);
2685}
2686
2687static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2688 unsigned int sz, void *data)
edf8e2af
MW
2689{
2690 unsigned int namesz;
2691
2692 namesz = strlen(name) + 1;
2693 note->name = name;
2694 note->namesz = namesz;
2695 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2696 note->type = type;
80f5ce75
LV
2697 note->datasz = sz;
2698 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2699
edf8e2af
MW
2700 note->data = data;
2701
2702 /*
2703 * We calculate rounded up note size here as specified by
2704 * ELF document.
2705 */
2706 note->notesz = sizeof (struct elf_note) +
80f5ce75 2707 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2708}
2709
2710static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2711 uint32_t flags)
edf8e2af
MW
2712{
2713 (void) memset(elf, 0, sizeof(*elf));
2714
2715 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2716 elf->e_ident[EI_CLASS] = ELF_CLASS;
2717 elf->e_ident[EI_DATA] = ELF_DATA;
2718 elf->e_ident[EI_VERSION] = EV_CURRENT;
2719 elf->e_ident[EI_OSABI] = ELF_OSABI;
2720
2721 elf->e_type = ET_CORE;
2722 elf->e_machine = machine;
2723 elf->e_version = EV_CURRENT;
2724 elf->e_phoff = sizeof(struct elfhdr);
2725 elf->e_flags = flags;
2726 elf->e_ehsize = sizeof(struct elfhdr);
2727 elf->e_phentsize = sizeof(struct elf_phdr);
2728 elf->e_phnum = segs;
2729
edf8e2af 2730 bswap_ehdr(elf);
edf8e2af
MW
2731}
2732
2733static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2734{
2735 phdr->p_type = PT_NOTE;
2736 phdr->p_offset = offset;
2737 phdr->p_vaddr = 0;
2738 phdr->p_paddr = 0;
2739 phdr->p_filesz = sz;
2740 phdr->p_memsz = 0;
2741 phdr->p_flags = 0;
2742 phdr->p_align = 0;
2743
991f8f0c 2744 bswap_phdr(phdr, 1);
edf8e2af
MW
2745}
2746
2747static size_t note_size(const struct memelfnote *note)
2748{
2749 return (note->notesz);
2750}
2751
a2547a13 2752static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2753 const TaskState *ts, int signr)
edf8e2af
MW
2754{
2755 (void) memset(prstatus, 0, sizeof (*prstatus));
2756 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2757 prstatus->pr_pid = ts->ts_tid;
2758 prstatus->pr_ppid = getppid();
2759 prstatus->pr_pgrp = getpgrp();
2760 prstatus->pr_sid = getsid(0);
2761
edf8e2af 2762 bswap_prstatus(prstatus);
edf8e2af
MW
2763}
2764
a2547a13 2765static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2766{
900cfbca 2767 char *base_filename;
edf8e2af
MW
2768 unsigned int i, len;
2769
2770 (void) memset(psinfo, 0, sizeof (*psinfo));
2771
2772 len = ts->info->arg_end - ts->info->arg_start;
2773 if (len >= ELF_PRARGSZ)
2774 len = ELF_PRARGSZ - 1;
2775 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2776 return -EFAULT;
2777 for (i = 0; i < len; i++)
2778 if (psinfo->pr_psargs[i] == 0)
2779 psinfo->pr_psargs[i] = ' ';
2780 psinfo->pr_psargs[len] = 0;
2781
2782 psinfo->pr_pid = getpid();
2783 psinfo->pr_ppid = getppid();
2784 psinfo->pr_pgrp = getpgrp();
2785 psinfo->pr_sid = getsid(0);
2786 psinfo->pr_uid = getuid();
2787 psinfo->pr_gid = getgid();
2788
900cfbca
JM
2789 base_filename = g_path_get_basename(ts->bprm->filename);
2790 /*
2791 * Using strncpy here is fine: at max-length,
2792 * this field is not NUL-terminated.
2793 */
edf8e2af 2794 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2795 sizeof(psinfo->pr_fname));
edf8e2af 2796
900cfbca 2797 g_free(base_filename);
edf8e2af 2798 bswap_psinfo(psinfo);
edf8e2af
MW
2799 return (0);
2800}
2801
2802static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2803{
2804 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2805 elf_addr_t orig_auxv = auxv;
edf8e2af 2806 void *ptr;
125b0f55 2807 int len = ts->info->auxv_len;
edf8e2af
MW
2808
2809 /*
2810 * Auxiliary vector is stored in target process stack. It contains
2811 * {type, value} pairs that we need to dump into note. This is not
2812 * strictly necessary but we do it here for sake of completeness.
2813 */
2814
edf8e2af
MW
2815 /* read in whole auxv vector and copy it to memelfnote */
2816 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2817 if (ptr != NULL) {
2818 fill_note(note, "CORE", NT_AUXV, len, ptr);
2819 unlock_user(ptr, auxv, len);
2820 }
2821}
2822
2823/*
2824 * Constructs name of coredump file. We have following convention
2825 * for the name:
2826 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2827 *
2828 * Returns 0 in case of success, -1 otherwise (errno is set).
2829 */
2830static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2831 size_t bufsize)
edf8e2af
MW
2832{
2833 char timestamp[64];
edf8e2af
MW
2834 char *base_filename = NULL;
2835 struct timeval tv;
2836 struct tm tm;
2837
2838 assert(bufsize >= PATH_MAX);
2839
2840 if (gettimeofday(&tv, NULL) < 0) {
2841 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2842 strerror(errno));
edf8e2af
MW
2843 return (-1);
2844 }
2845
b8da57fa 2846 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 2847 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2848 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2849 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2850 base_filename, timestamp, (int)getpid());
b8da57fa 2851 g_free(base_filename);
edf8e2af
MW
2852
2853 return (0);
2854}
2855
2856static int dump_write(int fd, const void *ptr, size_t size)
2857{
2858 const char *bufp = (const char *)ptr;
2859 ssize_t bytes_written, bytes_left;
2860 struct rlimit dumpsize;
2861 off_t pos;
2862
2863 bytes_written = 0;
2864 getrlimit(RLIMIT_CORE, &dumpsize);
2865 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2866 if (errno == ESPIPE) { /* not a seekable stream */
2867 bytes_left = size;
2868 } else {
2869 return pos;
2870 }
2871 } else {
2872 if (dumpsize.rlim_cur <= pos) {
2873 return -1;
2874 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2875 bytes_left = size;
2876 } else {
2877 size_t limit_left=dumpsize.rlim_cur - pos;
2878 bytes_left = limit_left >= size ? size : limit_left ;
2879 }
2880 }
2881
2882 /*
2883 * In normal conditions, single write(2) should do but
2884 * in case of socket etc. this mechanism is more portable.
2885 */
2886 do {
2887 bytes_written = write(fd, bufp, bytes_left);
2888 if (bytes_written < 0) {
2889 if (errno == EINTR)
2890 continue;
2891 return (-1);
2892 } else if (bytes_written == 0) { /* eof */
2893 return (-1);
2894 }
2895 bufp += bytes_written;
2896 bytes_left -= bytes_written;
2897 } while (bytes_left > 0);
2898
2899 return (0);
2900}
2901
2902static int write_note(struct memelfnote *men, int fd)
2903{
2904 struct elf_note en;
2905
2906 en.n_namesz = men->namesz;
2907 en.n_type = men->type;
2908 en.n_descsz = men->datasz;
2909
edf8e2af 2910 bswap_note(&en);
edf8e2af
MW
2911
2912 if (dump_write(fd, &en, sizeof(en)) != 0)
2913 return (-1);
2914 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2915 return (-1);
80f5ce75 2916 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2917 return (-1);
2918
2919 return (0);
2920}
2921
9349b4f9 2922static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 2923{
0429a971
AF
2924 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2925 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2926 struct elf_thread_status *ets;
2927
7267c094 2928 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2929 ets->num_notes = 1; /* only prstatus is dumped */
2930 fill_prstatus(&ets->prstatus, ts, 0);
2931 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2932 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2933 &ets->prstatus);
edf8e2af 2934
72cf2d4f 2935 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2936
2937 info->notes_size += note_size(&ets->notes[0]);
2938}
2939
6afafa86
PM
2940static void init_note_info(struct elf_note_info *info)
2941{
2942 /* Initialize the elf_note_info structure so that it is at
2943 * least safe to call free_note_info() on it. Must be
2944 * called before calling fill_note_info().
2945 */
2946 memset(info, 0, sizeof (*info));
2947 QTAILQ_INIT(&info->thread_list);
2948}
2949
edf8e2af 2950static int fill_note_info(struct elf_note_info *info,
9349b4f9 2951 long signr, const CPUArchState *env)
edf8e2af
MW
2952{
2953#define NUMNOTES 3
0429a971
AF
2954 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2955 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2956 int i;
2957
c78d65e8 2958 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
2959 if (info->notes == NULL)
2960 return (-ENOMEM);
7267c094 2961 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2962 if (info->prstatus == NULL)
2963 return (-ENOMEM);
7267c094 2964 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2965 if (info->prstatus == NULL)
2966 return (-ENOMEM);
2967
2968 /*
2969 * First fill in status (and registers) of current thread
2970 * including process info & aux vector.
2971 */
2972 fill_prstatus(info->prstatus, ts, signr);
2973 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2974 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2975 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2976 fill_psinfo(info->psinfo, ts);
2977 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2978 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2979 fill_auxv_note(&info->notes[2], ts);
2980 info->numnote = 3;
2981
2982 info->notes_size = 0;
2983 for (i = 0; i < info->numnote; i++)
2984 info->notes_size += note_size(&info->notes[i]);
2985
2986 /* read and fill status of all threads */
2987 cpu_list_lock();
bdc44640 2988 CPU_FOREACH(cpu) {
a2247f8e 2989 if (cpu == thread_cpu) {
edf8e2af 2990 continue;
182735ef
AF
2991 }
2992 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
2993 }
2994 cpu_list_unlock();
2995
2996 return (0);
2997}
2998
2999static void free_note_info(struct elf_note_info *info)
3000{
3001 struct elf_thread_status *ets;
3002
72cf2d4f
BS
3003 while (!QTAILQ_EMPTY(&info->thread_list)) {
3004 ets = QTAILQ_FIRST(&info->thread_list);
3005 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3006 g_free(ets);
edf8e2af
MW
3007 }
3008
7267c094
AL
3009 g_free(info->prstatus);
3010 g_free(info->psinfo);
3011 g_free(info->notes);
edf8e2af
MW
3012}
3013
3014static int write_note_info(struct elf_note_info *info, int fd)
3015{
3016 struct elf_thread_status *ets;
3017 int i, error = 0;
3018
3019 /* write prstatus, psinfo and auxv for current thread */
3020 for (i = 0; i < info->numnote; i++)
3021 if ((error = write_note(&info->notes[i], fd)) != 0)
3022 return (error);
3023
3024 /* write prstatus for each thread */
52a53afe 3025 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3026 if ((error = write_note(&ets->notes[0], fd)) != 0)
3027 return (error);
3028 }
3029
3030 return (0);
3031}
3032
3033/*
3034 * Write out ELF coredump.
3035 *
3036 * See documentation of ELF object file format in:
3037 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3038 *
3039 * Coredump format in linux is following:
3040 *
3041 * 0 +----------------------+ \
3042 * | ELF header | ET_CORE |
3043 * +----------------------+ |
3044 * | ELF program headers | |--- headers
3045 * | - NOTE section | |
3046 * | - PT_LOAD sections | |
3047 * +----------------------+ /
3048 * | NOTEs: |
3049 * | - NT_PRSTATUS |
3050 * | - NT_PRSINFO |
3051 * | - NT_AUXV |
3052 * +----------------------+ <-- aligned to target page
3053 * | Process memory dump |
3054 * : :
3055 * . .
3056 * : :
3057 * | |
3058 * +----------------------+
3059 *
3060 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3061 * NT_PRSINFO -> struct elf_prpsinfo
3062 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3063 *
3064 * Format follows System V format as close as possible. Current
3065 * version limitations are as follows:
3066 * - no floating point registers are dumped
3067 *
3068 * Function returns 0 in case of success, negative errno otherwise.
3069 *
3070 * TODO: make this work also during runtime: it should be
3071 * possible to force coredump from running process and then
3072 * continue processing. For example qemu could set up SIGUSR2
3073 * handler (provided that target process haven't registered
3074 * handler for that) that does the dump when signal is received.
3075 */
9349b4f9 3076static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3077{
0429a971
AF
3078 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3079 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3080 struct vm_area_struct *vma = NULL;
3081 char corefile[PATH_MAX];
3082 struct elf_note_info info;
3083 struct elfhdr elf;
3084 struct elf_phdr phdr;
3085 struct rlimit dumpsize;
3086 struct mm_struct *mm = NULL;
3087 off_t offset = 0, data_offset = 0;
3088 int segs = 0;
3089 int fd = -1;
3090
6afafa86
PM
3091 init_note_info(&info);
3092
edf8e2af
MW
3093 errno = 0;
3094 getrlimit(RLIMIT_CORE, &dumpsize);
3095 if (dumpsize.rlim_cur == 0)
d97ef72e 3096 return 0;
edf8e2af
MW
3097
3098 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3099 return (-errno);
3100
3101 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3102 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3103 return (-errno);
3104
3105 /*
3106 * Walk through target process memory mappings and
3107 * set up structure containing this information. After
3108 * this point vma_xxx functions can be used.
3109 */
3110 if ((mm = vma_init()) == NULL)
3111 goto out;
3112
3113 walk_memory_regions(mm, vma_walker);
3114 segs = vma_get_mapping_count(mm);
3115
3116 /*
3117 * Construct valid coredump ELF header. We also
3118 * add one more segment for notes.
3119 */
3120 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3121 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3122 goto out;
3123
b6af0975 3124 /* fill in the in-memory version of notes */
edf8e2af
MW
3125 if (fill_note_info(&info, signr, env) < 0)
3126 goto out;
3127
3128 offset += sizeof (elf); /* elf header */
3129 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3130
3131 /* write out notes program header */
3132 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3133
3134 offset += info.notes_size;
3135 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3136 goto out;
3137
3138 /*
3139 * ELF specification wants data to start at page boundary so
3140 * we align it here.
3141 */
80f5ce75 3142 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3143
3144 /*
3145 * Write program headers for memory regions mapped in
3146 * the target process.
3147 */
3148 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3149 (void) memset(&phdr, 0, sizeof (phdr));
3150
3151 phdr.p_type = PT_LOAD;
3152 phdr.p_offset = offset;
3153 phdr.p_vaddr = vma->vma_start;
3154 phdr.p_paddr = 0;
3155 phdr.p_filesz = vma_dump_size(vma);
3156 offset += phdr.p_filesz;
3157 phdr.p_memsz = vma->vma_end - vma->vma_start;
3158 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3159 if (vma->vma_flags & PROT_WRITE)
3160 phdr.p_flags |= PF_W;
3161 if (vma->vma_flags & PROT_EXEC)
3162 phdr.p_flags |= PF_X;
3163 phdr.p_align = ELF_EXEC_PAGESIZE;
3164
80f5ce75 3165 bswap_phdr(&phdr, 1);
772034b6
PM
3166 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3167 goto out;
3168 }
edf8e2af
MW
3169 }
3170
3171 /*
3172 * Next we write notes just after program headers. No
3173 * alignment needed here.
3174 */
3175 if (write_note_info(&info, fd) < 0)
3176 goto out;
3177
3178 /* align data to page boundary */
edf8e2af
MW
3179 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3180 goto out;
3181
3182 /*
3183 * Finally we can dump process memory into corefile as well.
3184 */
3185 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3186 abi_ulong addr;
3187 abi_ulong end;
3188
3189 end = vma->vma_start + vma_dump_size(vma);
3190
3191 for (addr = vma->vma_start; addr < end;
d97ef72e 3192 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3193 char page[TARGET_PAGE_SIZE];
3194 int error;
3195
3196 /*
3197 * Read in page from target process memory and
3198 * write it to coredump file.
3199 */
3200 error = copy_from_user(page, addr, sizeof (page));
3201 if (error != 0) {
49995e17 3202 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3203 addr);
edf8e2af
MW
3204 errno = -error;
3205 goto out;
3206 }
3207 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3208 goto out;
3209 }
3210 }
3211
d97ef72e 3212 out:
edf8e2af
MW
3213 free_note_info(&info);
3214 if (mm != NULL)
3215 vma_delete(mm);
3216 (void) close(fd);
3217
3218 if (errno != 0)
3219 return (-errno);
3220 return (0);
3221}
edf8e2af
MW
3222#endif /* USE_ELF_CORE_DUMP */
3223
e5fe0c52
PB
3224void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3225{
3226 init_thread(regs, infop);
3227}